
doc. Ing. Hana Kubátová, CSc.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague January 27, 2020

ASSIGNMENT OF MASTER’S THESIS
 Title: GPS assisted implementation of way-back function on ultra low power MCU

 Student: Bc. Richard Stanko

 Supervisor: Ing. Jiří Hušák

 Study Programme: Informatics

 Study Branch: Design and Programming of Embedded Systems

 Department: Department of Digital Design

 Validity: Until the end of summer semester 2020/21

Instructions

For an existing embedded application, implement the following functionality. Automatic data transfer
between a connected smartphone and a GPS module, via the main target processor(ARM-based low power
MCU). These are assistance data and are sent via BLE. Further, develop and tune an algorithm to ensure an
“emergency way back” function. The functionality is as follows:
The phone periodically logs the GPS position and transfers it to the application via a BLE link. The
application stores these positions in its internal memory (internal or external flash).
In the case of smartphone failure, the application should be able to guide the user back to the starting
position, using the stored data.
In addition to the code, provide documentation, results of testing and discuss the limits of the proposed
solution and possible future improvements.

References

Will be provided by the supervisor.

Master’s thesis

GPS assisted implementation of way-back
function on ultra low power MCU

Bc. Richard Stanko

Department of Digital Design
Supervisor: Ing. Jǐŕı Hušák

August 6, 2020

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. I further
declare that I have concluded an agreement with the Czech Technical Univer-
sity in Prague, on the basis of which the Czech Technical University in Prague
has waived its right to conclude a license agreement on the utilization of this
thesis as a school work under the provisions of Article 60 (1) of the Act. This
fact shall not affect the provisions of Article 47b of the Act No. 111/1998 Coll.,
the Higher Education Act, as amended.

In Prague on August 6, 2020

Czech Technical University in Prague
Faculty of Information Technology
© 2020 Richard Stanko. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Stanko, Richard. GPS assisted implementation of way-back function on
ultra low power MCU. Master’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2020.

Abstrakt

V tejto práci sa pojednáva o navigácii na globálnej úrovni, Bluetooth low
energy a ich využitie v reálnej aplikácii, hodiniek, ktoré využ́ıvajú tieto tech-
nológie. V prvej kapitole sa zoznámime s technológiami využ́ıvaných v na-
vigácii, Bluetooth-e, a komponentami hodiniek, ktoré pri práci využijeme
ako je už spomı́naný navigačný modul, Bluetooth, externá pamät’ a zber-
nice určené na komunikáciu s týmito modulmi. Ďalej s asistenčnými datami
pre navigáciu, ako ich źıskat’ a použit’ pre urýchlenie źıskania presnej polohy
z navigačného modulu a ako ich budeme ukladat’ do externej flash pamäte
hodiniek. S navigáciou súviśı aj funkcia návratu domov, ktorá má za úlohu
naviest’ už́ıvatel’a spät’ po predom źıskanej trase, nahranej z pripojenej mo-
bilnej aplikácie alebo zaznamenanú hodinkami. Aby bolo možne s hodinkami
komunikovat’ a posielat’ do nich asistenčné data a trasu pre návrat domov, je
nutná mobilná aplikácia, ktorá bude tieto služby poskytovat’. Kedže je táto
práca zameraná hlavne na embedded aplikáciu a software, je mobilná aplikácia
poṕısaná len v stručnosti. V záverečnej časti práce sú ukázané reálne testy už
spomı́nanej funkcie návratu domov a meranie spotreby, ako na hodinkách tak
na vývojovej doske, aby sa ukázalo ako tieto asistenčné data môžu pomôct’
redukovat’ spotrebu.

Kĺıčová slova GNSS, Navigácia, Asistovaná navigácia, Asistenčné data,
Connected aplikácia, Take me home

v

Abstract

In this thesis we discuss the navigation on a global scale, Bluetooth low energy
and the usage of these technologies in a real application, a wrist-worn watch.
In the first chapter we will give an introduction to the techologies used in nav-
igation, Bluetooth, the components of the watch which we will use througout
this thesis such as the GNSS module, Bluetooth, external memory and the
communication buses. We mention the history of the technologies, some basic
concepts and analyse the main parts of the thesis which are the assistance
data and the Take me home function. In the next chapter we will talk about
the assistance data, how they will be acquired and used for a faster position
acquisition and how they will be stored into the external flash memory of
the watch. The Take me home function which is related to the navigation,
will be used to navigate the user back home on a previously logged track ei-
ther by a connected phone application or by the watch itself. To assure the
communication and the sending of the data to the watch a phone applica-
tion that will provide these services is needed. This thesis is aimed mainly
at the embedded application and software so the mobile application will be
discussed only briefly. In the final parts of the thesis we will show and discuss
some real life tests and power consumption measurements on both the watch
and a development board, to show how these assistance data can reduce the
consumption.

Keywords GNSS, Navigation, Assisted navigation, Assistance data, Con-
nected application, Take me home

vi

Contents

Introduction 1

1 Goals of the thesis 3

2 Analysis and design 5
2.1 GNSS . 6

2.1.1 Brief history . 6
2.1.1.1 GPS . 6
2.1.1.2 GLONASS . 6
2.1.1.3 BeiDou . 6
2.1.1.4 Galileo . 7

2.1.2 Navigation . 7
2.1.3 Coordinate frames . 8
2.1.4 Kalman filter . 9
2.1.5 Satellite navigation . 9
2.1.6 Assisted navigation . 11

2.2 Bluetooth Low Energy . 11
2.2.1 Brief history . 12
2.2.2 Bluetooth architecture 13
2.2.3 Connecting . 14

2.3 Hardware . 15
2.3.1 The processor . 15
2.3.2 The GNSS module . 15
2.3.3 The external flash . 15
2.3.4 Component connection 16

2.4 Storing the assistance data . 16
2.4.1 The assistance data . 16
2.4.2 Downloading the data 17
2.4.3 Formatting, sending & storing 17

vii

2.5 Take me home algorithm design 18
2.5.1 Getting a track . 18
2.5.2 Navigating . 19
2.5.3 Shortcuts and loops . 20
2.5.4 Weaknesses . 21

3 Implementation 23
3.1 Assistance data . 24

3.1.1 Download & Structure 24
3.1.2 Sending & Processing 25
3.1.3 Using the assistance data 28

3.2 Take me Home algorithm . 30
3.2.1 Position logging . 30
3.2.2 Navigating back . 37

3.3 Phone application . 41
3.3.1 Handling the assistance data 41
3.3.2 Location service . 42
3.3.3 Sending the location . 42

4 Testing & measurements 45
4.1 Live tests . 46

4.1.1 First test case . 46
4.1.2 Second test case . 47
4.1.3 Third test case . 48

4.2 Power consumption measurements 49
4.2.1 Equipment . 49
4.2.2 Development board measurements 49
4.2.3 Watch measurements . 50

Conclusion 53

Bibliography 57

A List of abbreviations 59

B Contents of the attached CD 61

viii

List of Figures

2.1 ECEF coordinate frame. Source: [1] 9
2.2 Local coordinate frame. Source: [2] 9
2.3 The location of the user being more precise as we add more satel-

lites. With 2 satellites the location is on the intersecting circle,
with 3 it may be one of two points. Source [3]. 10

2.4 Bluetooth protocol stack
Image downloaded from:
https://commons.wikimedia.org/wiki/File:Bluetooth protocol stack.png 13

2.5 Block schema showing the connection of the main components used
in the thesis. Source: own work. 16

2.6 Block schema depicting the acquisition of the assistance data. Source:
own work. 17

2.7 Block schema depicting logging of the position by the mobile phone.
Source: own work. 18

2.8 Block schema depicting the logging of the position by the watch
itself. Source: own work. 19

2.9 Reducing logging of points by filtering out those that are close or
in the same direction. Source: own work. 19

2.10 Navigating back point by point. We consider a point reached, while
being within a 5 meter radius of it. Source: own work. 20

2.11 Example of track shortening . 21
2.12 Multi-path error propagation. Source [4] 21

3.1 Assistance data download via HTTP GET 24
3.2 Structured data . 25
3.3 Assistance data chunk structure . 26
3.4 Finalizing message . 26
3.5 ACK message . 26
3.6 Phone - Watch assistance data exchange 27
3.7 Use case of the logger . 31

ix

3.8 Haversine formula . 31
3.9 Initial bearing formula . 32
3.10 Location packet structure . 32
3.11 Location finalizing packet . 32
3.12 Track stored in flash memory . 33
3.13 Logging by the watch . 33
3.14 Screenshot of the UBX-NAV-PVT message. Taken from the U-

Blox receiver description[5]. 38
3.15 GET DATA activity. Source: own work. 41
3.16 PROCESS DATA activity. Source: own work. 41
3.17 SEND DATA activity. Source: own work. 42
3.18 Gps foreground service. Source: own work. 42

4.1 First live test using the take me home functionality. Source: own
work. 46

4.2 Second test case, at Ladronka park in Prague. Source: own work. . 47
4.3 Third test case, at Ladronka park in Prague. Source: own work. . 48
4.4 Photo of the watch displaying the actual take me home information

- the number of points, the distance and the watch hand point to
the direction of this point. Source: own work. 48

4.5 Keysight N6705C power supply used for consumption measure-
ment. Source: own screenshot taken from [6]. 49

4.6 Measurement on the development board with an attached active
antenna. The red color depicts the measurement with the assis-
tance data, the purple color without the data - Acquisition phase.
Source: own screenshot taken from Keysight software[6]. 50

4.7 Measurement on the development board with an attached active
antenna. The red color depicts the measurement with the assis-
tance data, the purple color without the data - Tracking/Power
optimized phase. Source: own screenshot taken from Keysight
software[6]. 51

4.8 Measurement on the watch which has a passive antenna, measure-
ment with assistance data present - acqusition phase only. Source:
own screenshot taken from Keysight software[6]. 52

x

Introduction

People nowadays depend heavily on their technology residing in their pockets
without questioning it. They take its functionality for granted and need it
working on demand. As an example we can look at the self-driving cars
(autonomous vehicles), which needs throughout verification, testing and in
case of failure, it must fail safely in order to ensure the well-being of its crew.
These vehicles as well as other so called smart products are connected, meaning
they are a part of some large network in which they share data. To provide
such functionality the engineering team needs to design, implement and test
the product to ensure it behaves as planned under all circumstances.

This thesis focuses on navigation and functions connected to it. Devices
providing navigation services can be stand-alone or integrated. The first kind
can be found in vehicles, usually attached to the windshield or car board.
On the other hand the second kind, the integrated devices, can be found for
example in the car board as a part of the infotainment system, in mobile or
wearable devices etc. Only mobile and wearable devices will be further dis-
cussed as the final application is one of them. In these devices, communication
between said integrated components is vital. Data needs to be sent and re-
ceived to ensure correct and fast functionality. The other important, yet often
overlooked component until it is depleted, is the battery. The one part which
makes sure everything else gets to talk by providing power to it. To ensure the
power is distributed only to the components that really need it some power
management techniques are implemented. This ensures that when we are not
using or do not need the navigation module, no power is distributed to it.
Other ways of draining the battery in a ”more friendly” manner is making the
components low energy which decreases the power consumption. Probably the
most well known is Bluetooth Low Energy or just BLE. It is important that
the technology providing the means of communication is low energy, especially
when the product is meant to be connected and depends on this communica-
tion. We want the communication to be low energy because if the application
is often transmitting and receiving data, it would be unacceptable to have the

1

Introduction

battery drained after a couple of exchanged messages. In fact every device
or component which is engaging in some type of communication should be
low energy or at least have a power saving mode, this includes the navigation
module as well which is exchanging data with individual satellites in orbit.

The target application is a connected product - a watch, in the thesis
referred to as “the watch”, developed by the company ASICentrum, referred
to as “the company” from here on. This thesis is was made in collaboration
with this company. The hardware on which all of the software, that was
developed for the purposes of this thesis is run, was developed and lent to us
by ASICentrum. The base software, such as the operating system and the
interfaces for other modules, some of which we will be using (e.g compass),
was also developed and provided by the engineers from the company. All the
other software used for the purposes of GNSS navigation, assistance data and
the phone application was developed by us.

One of the assets of the function that will be discussed throughout this
thesis, the Take me home feature, is that it provides another means of naviga-
tion at the convenience of your hands. While still remaining portable, mobile
phones are powerhouses if we look at them from the perspective of compu-
tational power but their battery can be quickly drained by the plethora of
features they offer. A nearly depleted battery can cause a degradation in
function or in some cases even the disabling of some functions, which the user
may need. This is were our wrist-worn watch comes in handy, having stored
the locations of a previously walked track, it can navigate the user back to
his/her parking spot, home or any other starting point. By delegating this
task to the watch, the user conserves some battery on the mobile phone, so it
can be used later.

To summarize, we will discuss the technology behind satellite navigation
also known as GNSS and Bluetooth Low Energy. In the second part of the
thesis, we will use these technologies and a couple of others to ensure a fast
and low energy navigation and tracking process. We will show how these
technologies can cooperate together and with a connected mobile phone, which
will provide some assistance data downloaded from the internet. In the final
part we will design and develop a Take me Home algorithm, which when the
connection to a phone is lost or the user triggers it, navigates the user back
to a desired location.

2

Chapter 1
Goals of the thesis

The thesis has several goals as was mentioned before, these goals will be
discussed further in this chapter.

We can split these goals into a main one and a couple of side ones. The
main goal is to design and develop a so called Take me Home function, which
will use the GNSS module along with a couple of other modules of the watch
to provide a functionality as follows: Once this function is enabled on the
watch, the application will periodically store the position of the user to the
flash memory of the watch, received from the mobile phone. Upon activation
or loss of connection between the phone and the watch, this function will look
at the stored positions and navigate the user back to the starting point. The
goal here is to develop a reliable function that will provide the user with a
way back to his/her starting position under any operational circumstances,
meaning there is enough battery to supply the GNSS module and the other
parts of the watch, the GNSS module is operational, etc.

One of the other goals is to implement a function to store and use the
assistance data provided for the GNSS module. This assistance data are a
helpful complement to the GNSS module and they need to be downloaded from
the internet. The data provide almanac and ephemeris information about the
satellites, this topic is further explained in the next chapter. The goal here is
to provide a phone side application which downloads and processes the data
and its counterpart in the watch which receives and stores this data as well as
supplies it to the module. The key part is the watch side since it passes the
data to the navigation module itself and is of embedded nature. The amount
of data supplied and its frequency need to be analyzed and the best solution
has to be found as a trade-off between power consumption and memory usage.

Finally we need to provide thorough and clear documentation, tests which
cover standard use cases of the product and their results and since the power
consumption is mentioned throughout this thesis, provide power consumption
measurements and the change in the consumption with and without the use
of the assistance data.

3

Chapter 2
Analysis and design

5

2. Analysis and design

2.1 GNSS

This section will provide information about the GNSS, which is the main
object of this thesis. We will talk about what it is, how does it operate and
a little bit of history and future. Assisted navigation will also be mentioned,
since it is what the assistance data part is all about.

GNSS stands for Global Navigation Satellite System, which is referring
to a satellite navigation with global coverage. Satellite constellations provid-
ing global coverage include the USA’s NAVSTAR Global Positioning System
(GPS), China’s BeiDou, Russia’s Global’naya Navigatsionnaya Sputnikovaya
Sistema (GLONASS) and Europe’s Galileo.

2.1.1 Brief history

In this part we will very briefly describe the history of the four global satellite
constellations, GPS, GLONASS, BeiDou and Galileo.

2.1.1.1 GPS

The NAVSTAR Global Positioning System was developed by the Department
of Defense of the government of the USA. It was originally launched in 1973,
to improve on previous navigation systems, integrating some ideas from pre-
decessors. At the start it used 24 satellites and was intended for military use.
It became fully operational in 1994, with civilian use being allowed since the
1980s. Since then it has received many improvements and in 2019 there were
33 operational and healthy satellites in orbit [7].

2.1.1.2 GLONASS

Development of the GLONASS constellation began in 1976 and similarly to the
GPS it was fully operational in 1995. The constellation achieved full coverage
of the Russian territory in 2010 and global coverage in 2011. The system
was officially completed in 2015 and as of March 2020 it consists of 24 fully
operational satellites in orbit[7]. It is worth mentioning that GLONASS lacked
behind GPS in promoting commercial use. The first commercial device was
released in 2007 being bigger and more expensive than its GPS counterpart.
Since then it is being actively promoted for commercial use.

2.1.1.3 BeiDou

BeiDou is the only system consisting of several independent constellations.
BeiDou-1 was first launched in 2000 and decommissioned in 2012. Since then
Beidou-2 is offering services in the Asia-Pacific region and Beidou-3 is offering
world-wide coverage since 2018. As of 2020 the system has a total of 35

6

2.1. GNSS

operational satellites in orbit. Just like the previous two systems it is offering
military and commercial services.

2.1.1.4 Galileo

The beginning stage of the Galileo project was agreed upon in 2003 by the
European Union and the European Space Agency. Contrary to the other
systems described above it is intended primarily for civilian use. It reached
global coverage in 2016 and there are currently 26 satellites in orbit, from
which 22 are usable, 2 are spares and 2 are retired.

2.1.2 Navigation

In this section we will define some common terminology widely used when
talking about navigation and navigation systems.

According to [8], navigation is “any of the several available methods of
determining or planning a ship’s or aircraft’s position and course by geometry,
astronomy, radio signals, etc.” This definition consists of two key concepts.
Sometime referred to as the science of navigation and the art of navigation.
The first concept deals with determining the position and velocity of a moving
body with a respect to a previously known reference. While the second concept
is the planning and maintenance of a course from one location to another,
avoiding collisions and obstacles.

A navigation technique is the determination of a position and velocity by
either manual or automatic means. A navigation system is a system that does
the navigation technique but does so only automatically. These systems are
often contained on the navigated vehicle itself, such as automobiles, ships or
aircraft, but they can be stand-alone and may require additional components
and infrastructure.

The output of such systems or techniques is called a navigation solution.
This solution usually contains, in addition to the position, a UTC time, alti-
tude, ground speed, heading of motion, accuracies of the previous data and
much more, depending on the specific system or technique. These solutions
represent the coordinate frame with a respect to a reference frame, the com-
mon reference frame being the Earth.

There are several techniques used in navigation and they are [7]:

• Pilotage - this technique relies on recognizing ones surroundings. In
plain words “you know where you are and know where you want to go”.
This is one of the oldest techniques.

• Celestial navigation - As the name suggest this technique uses angles
between celestial objects (the Sun, Moon, planets, stars) and some local
objects to determine orientation and location on the surface of the Earth.

7

2. Analysis and design

As the Earth and the other celestial bodies move some time estimation
is required.

• Dead reckoning - For this estimation we need to know a starting po-
sition and some form of heading of motion, speed and elapsed time.
Heading can be obtained by some kind of compass measurement. Then
we can provide an estimation for the distance traveled. It is generally
implemented by line plotting, which connect successive locations.

• Radio navigation - relies on radio frequency sources with known lo-
cations, receiving and transmitting technologies, signal structure and
availability. GNSS relies on computer technology and highly precise
and accurate timing, due to high speed of electromagnetic propagation.

• Inertial navigation - Could be described as an automated form of
dead reckoning. Where the measurements of heading, speed, etc. are
done by other sensors such as gyroscopes and accelerometers.

As we can observe, the first three techniques described above can be dated
way back to the times of ancient mathematicians of Greece, the later ones are
relatively new, dating back to the 20th century.

So taking into consideration the information above, satellite navigation
can be described as a combination of both radio and inertial navigation, with
so called Kalman filtering playing a major role in integration.

2.1.3 Coordinate frames

We can look at navigation as a multiple coordinate frame problem. GPS
measures the velocity and position in reference to some satellite constellation,
but the user would like to have this velocity and position in reference to the
Earth. There are two main coordinate frames used in navigation and those are
the Earth-Centered Inertial - ECI and Earth-Centered Earth-Fixed - ECEF.
The axes used in both frames are perpendicular. The ECI frame has its origin
in the center of mass of the Earth, the x and y axes lie on the equatorial plane,
the z-axis is equivalent to the Earth’s center of rotation but the axes do not
rotate, hence it does not provide and unique navigation frame, therefore it
is necessary to specify a time frame at which ECI overlaps with ECEF. The
ECEF frame, sometimes referred to as Earth-fixed rotational, has its x-axis
intersecting the earth at 0° latitude and 0° longitude. This means that the
frame rotates with the Earth [8].

A Local navigation frame, has an origin in the point a navigation solution
is needed for. Differently to the conventional naming of x,y,z axes it has a
Down (D) axis corresponding to the z-axis and pointing towards the mass of
the Earth, the North (N) axis is the projection in the plane orthogonal to the
z-axis of the line from the user to the North pole[7]. The last axis is the East
(E) and corresponds to the y-axis.

8

2.1. GNSS

Figure 2.1: ECEF coordinate frame. Source: [1]

Figure 2.2: Local coordinate frame. Source: [2]

2.1.4 Kalman filter

Named after the Hungarian-American electrical engineer, mathematician Rudolf
E. Kalmán who also was the main developer behind the idea. The filter also
known as the linear quadratic estimation, is an algorithm that uses a series of
measurements made over time, which can contain inaccuracies and produces
estimates of unknown variables that tend to be more accurate than a single
measurement, by estimating a joint probability distribution over the variables
for each time frame. It has numerous applications, usually in guidance, navi-
gation and control of vehicles [8, 9].

2.1.5 Satellite navigation

Since satellite navigation is the main force making every topic discussed in the
further parts of this thesis possible, we will discuss some key concepts about
GNSS navigation principles. The architecture of GNSS navigation systems
consists of three parts: control, space and user segments.

The space segment consists of several satellites also known as a constel-

9

2. Analysis and design

lation. In some literature we can come across the term space vehicle (SV)
used instead of satellite. These satellite send signals to both the control and
user segments. The broadcast signals include both ranging codes and data
messages. Ranging codes allow the user equipment to determine the time the
received signal was transmitted. Data messages include information about
satellite orbits and timing.

The control segment is responsible for correcting any deviation in the space
segment. That means some minor orbit or angle corrections. The observation
of these attributes is done by several monitoring stations, which have syn-
chronized timing and sending the adjusted data to the satellite by the uplink
station.

User segment equipment is usually referred to as receivers. The GNSS
segment is often a part of a larger application, with an antenna infrastructure
that receives the data messages which are then demodulated and passed on
to the navigation processor that computes a position, velocity, time (PVT)
solution. To acquire an user’s position at least 3 satellites are necessary be-
cause we can describe the distance from the user to the satellite by a sphere.
The range of the receiver from the satellite can be determined by equation
ρj = (tsa,j − tst,j) ∗ c, where j denotes the number of the satellite or channel
and tsa and tst are the times the signal arrives and is transmitted. The receiver
can be anywhere on the surface of a sphere with the radius of ρ [8]. Adding
a second satellite, therefore achieving an intersection of these spheres gives
us a circle, which the user is located on. A third satellite further improves
upon this, reducing the total amount of points to two. Sometimes this may
be enough because one of the points may lie inside the Earth, in outer space,
etc. To resolve this ambiguity a fourth satellite is added. The pictures in 2.3
depicts this.

Figure 2.3: The location of the user being more precise as we add more satel-
lites. With 2 satellites the location is on the intersecting circle, with 3 it may
be one of two points. Source [3].

10

2.2. Bluetooth Low Energy

2.1.6 Assisted navigation

Before any measurements can be made satellite signals must be acquired.
And before getting those signals the GNSS receiver must find the correct
frequencies for the satellites and their correct code delay. If a receiver has
no prior knowledge of these delays and frequencies it is performing a cold
start. Since the ephemeris and time-of-week data is transmitted every 30
seconds and it takes 20 seconds to search for frequencies, we can say that a
cold start takes approximately 1 minute at the minimum, that is if there were
no errors in the transmission. A warm start indicates that the receiver has
some knowledge of the user’s position, time of day, rough idea of the reference
frequency, and it will be able to calculate the approximate satellite positions
from the almanac. Additionally if the receiver has decoded the ephemeris data
for all visible satellites and computed a solution and stored this information
in its memory, it would be performing a hot start[7].

In poor signal environment, it may be difficult to acquire a GNSS signal
and track it and as a result navigation data message could not be demodulated.
Therefore the receiver can work with out-of-date ephemeris, satellite clock and
calibration parameters, degrading the navigation solution [8].

This can be solved by a so called assisted GNSS system, which provides the
missing parameters via a side communication channel. In our case this is the
data provided by the phone, which were downloaded beforehand from a ded-
icated server. This data contains ephemeris information, almanac, and other
useful parameters designed to speed up the navigation solution calculation.

We use this process to speed up the time to first fix (TTFF), which re-
duces the acquisition time of the user’s position, therefore reducing the power
consumption.

2.2 Bluetooth Low Energy

As the title suggests this section will deal with Bluetooth and the Low energy
part of it. We will describe the protocol itself, some history and development
and mention how it is used throughout the application.

Bluetooth is a wireless technology used to exchange data between fixed and
mobile devices over short distances and building personal area networks. It is
managed by the Bluetooth Special Interest Group, which has over 35,000 mem-
ber companies from telecommunications, networking and computing. The
IEEE standardized Bluetooth as IEEE 802.15.1, but does not maintain the
standard.

Over the years the uses of Bluetooth ranged from exchanging files between
PC and mobile devices, listening to music, wireless calls using headsets and
car kits. Today the attach rate is almost 100% for mobile phones, tablets and
laptops.

11

2. Analysis and design

Bluetooth Low energy as the title suggests is aimed at low power devices,
as it is very useful for applications where it is impossible or inconvenient to
recharge often and battery life is of utmost importance. Data communication
occurs in short data bursts therefore it is best suited for devices that do not
require high data throughput. Nowadays it finds a variety of uses including
the popular and growing Internet of Things, healthcare devices, audio devices,
smart watches and wearables etc.

Some key features of BLE include:

• Ultra low power

• Small size

• Interoperable

• Low cost

• Fast connection

2.2.1 Brief history

The name comes from the tenth century Danish king named Harald Bluetooth,
whose epithet was Bl̊atan. And such as this king united the Danish tribes,
Bluetooth was to unite the communication protocols. The logo is a bind rune
merging two runes, representing his initials.

The development was initiated in 1989 by Nils Rydbeck, CTO at Ericsson
Mobile in Sweden. The purpose was to develop wireless headsets. From
1997 Örjan Johansson took over the project and led the development and
standardization. In 1997 IBM approached Ericsson Mobile for collaboration
on integrating a mobile phone into a laptop. But since the power consumption
of the mobile was too high to allow viable integration, they agreed to integrate
Ericsson’s wireless technology. They made the it and open industry standard
and with Intel, Toshiba and Nokia joining, in 1998 the Bluetooth SIG was
launched. The first device with this technology was launched a year later, it
was a hands-free mobile headset.

In 2001 Nokia started developing a wireless technology adapted from the
Bluetooth standard which would provide low energy consumption and cost.
The results were published in 2004 under the name Bluetooth Low End Exten-
sion. After further development and support from companies such as STMi-
croelectronics and Logitech, it was released in 2016 under the name Wibree
and in 2007 it was agreed to include it into Bluetooth as an ultra low stan-
dard. It was integrated into version 4.0 under the name Bluetooth Low Energy.
Version 4.0 of the Core Specification was released in 2010, and then in 2016
version 5.0 was unveiled. ;

12

2.2. Bluetooth Low Energy

2.2.2 Bluetooth architecture

The architecture of the Bluetooth is layered. On the bottom we have the con-
troller layers responsible for low-level operations such as discovering devices,
making connections, exchanging data, security, etc. This functionality is im-
plemented in a Bluetooth chip also called a Bluetooth Controller. The upper
layers make use of the functionality provided by the lower layers in order to
provide a more complex functionality like music streaming, splitting, sending
and reassembling large data chunks, etc. Next we have profiles which can
be viewed as vertical slices through the layers. They describe how the lay-
ers function and communicate together in order to implement a specific use
case. Profiles guarantee us that an implementation from one vendor works
well with another vendor’s implementation. As we can see they form a base of
interoperability. One device can of course support one or several profiles. A
Bluetooth application can also be considered a part of the architecture because
it provides and interface, usually and MMI(Man Machine Interface), so that
the user can make use of the Bluetooth device. An example of this is selecting
a file to transfer or search and connect to a device.

Figure 2.4: Bluetooth protocol stack
Image downloaded from:
https://commons.wikimedia.org/wiki/File:Bluetooth protocol stack.png

We can split the protocols used in Bluetooth into to categories. Core
protocols are defined from scratch and made by the Bluetooth SIG. Some of
these protocols include L2CAP, SDP and Link manager. The other group of

13

2. Analysis and design

protocols are the adopted protocols, which are adopted from other standards.
In this group we can find protocols such as RFCOMM, OBEX, HID profile,
etc. Depending on the device the Bluetooth functionality is implemented on,
we can distinguish between Host and Host Controller. The Host is a logical
entity that implements the upper layers as seen in 2.4, also implements the
application and profiles. On the other hand the Host Controller executes the
lower layers of the protocol stack and it is typically embedded in a Bluetooth
chip which is attached to the Host. If the two part are not directly interacting
with each other a third entity, a Host Controller Interface is added, that
ensures communication between the two main entities. Physically this can be
a USB, UART, serial link, etc.

As of Bluetooth 3.0 + HS we recognize to types of controllers: Primary and
Secondary. A system can have only one Primary controller, which supports
either BR/EDR(Basic rate/Enhanced data rate) or LE(Low Energy), or a
combination of the prior. The number of Secondary controllers a system
can posses is zero or more. It supports one or more alternative MAC/PHY
controllers(AMP). These AMP controllers help in increasing the throughput
up to 24 Mbps by using the 802.11 transport layer instead of the Bluetooth
transport layer.

Each controller is assigned a globally unique 48-bit Bluetooth Device Ad-
dress, which is used to identify the device, it is similar to a MAC address and
it is provided by the same organization, the IEEE. The device can be assigned
what is called a device name. It can be changed by the application or the user
and provides an easy identification.

Another useful numerical value is the CoD (Class of Device) which is a
24-bit number indicating the capabilities of the device to its vicinity. The first
11 bits determine the service class, the next 5 bits the Major class, 6 bits after
that the Minor class and the final 2 bits are the Format type field [10].

2.2.3 Connecting

When establishing connection between two devices, they may follow the fol-
lowing steps. First one of the devices need to be in a state where it can be
seen by other device, it has to become discoverable. The other device then
searches for devices nearby, this is called an inquiry. In order to connect to
the other device, it has to become connectable, then a connection is created
between the devices. After the connection is established one device becomes
the master and the other the slave and they are able to receive and send pack-
ets. These devices create what is called a piconet, which is the smallest unit
of Bluetooth communication. When the connection is not needed anymore,
the devices disconnect.

14

2.3. Hardware

2.3 Hardware

In this section we will briefly describe the hardware used throughout this
thesis. Only the hardware that is related to the thesis will be discussed such
as the main processor, the GNSS module and the flash memory.

2.3.1 The processor

For the main processing unit we are using the nRF52840 system on chip by
the Nordic Semiconductor company. This SoC provides a 64 MHz Cortex-M4
ARM CPU with a floating point unit, 1 MB of flash memory and 256 KB of
RAM. Has a 2.4 GHz transceiver and supports Bluetooth 5, Bluetooth Low
energy which can run concurrently with Zigbee or Thread. It also has some
of the most used buses such as UART, SPI, QSPI and I2C. As was stated
before it is multiprotocol capable with full protocol concurrency. It has an
exceptionally low power consumption which is achieved using a sophisticated
on-chip adaptive power management [11].

2.3.2 The GNSS module

The GNSS module is of the ZOE-M8 series manufactured by the U-Blox com-
pany, which is a highly integrated SiP(System in package) based on the high
performing M8 concurrent positioning engine. Some of the advantages include
its really small size of 4.5 x 4.5 x 1 mm, and up to 3 different GNSS constella-
tions. It can communicate via UART, SPI or DDC(which is I2C compliant).
It comes in two voltage supply variants, 1.8V and 3V and has a low power
consumption. The module provides an SQI interface for an optional exter-
nal flash and has several defense mechanisms against message spoofing and
jamming [12].

2.3.3 The external flash

While more common than the previously mentioned components, we will de-
scribe the external flash since the one provided by the nRF52840 is used in its
entirety by the application as well as the RAM. We will use the external flash
to store assistance data meant for the GNSS module, which will help in faster
fix times and faster position acquisition time means lower power consumption.
The MX25R32 is a 32Mb serial flash memory, which is configured as 4,194,304
x 8 internally. It features a serial peripheral interface and a software protocol
allowing operation on a 3-wire bus. Programming commands are executed
on a byte or page(256 bytes) basis and the erase command is executed on a
sector(4 Kilobytes) basis [13].

15

2. Analysis and design

2.3.4 Component connection

Unfortunately we cannot provide schematics of the wiring or placement of
these components, but it can be stated that the main MCU is connected
to the external flash by an SPI bus and to the GNSS module by UART.
The GNSS module is not connected to any other memory components, and
therefore relies entirely on the application to supply data to it via the UART.
Block schema depicting the connection of the components is in 2.5.

Figure 2.5: Block schema showing the connection of the main components
used in the thesis. Source: own work.

2.4 Storing the assistance data

One of the tasks of this thesis is to implement storing and using assistance
data for the GNSS module. We can split this tasks into several sub-tasks such
as acquiring the assistance data from the internet, processing and formatting
the data on the phone side of the application, sending and receiving the data
on the watch side of the application and finally storing the data in the external
flash memory and using the data. Before we dwell deeper into these topics we
will discuss what exactly is this assistance data and how does it help.

2.4.1 The assistance data

This assistance data is a set of precalculated data consisting of ephemeris,
almanac, time and satellite status. It helps reducing the required time to
calculate a position even under poor signal conditions.

The data comes in several variants, as supported by the manufacturer at
the time of writing this thesis. These variants are an online version and an
offline version. Since the online variant requires a internet connection, our
watch will be provided with offline assistance data.

16

2.4. Storing the assistance data

Figure 2.6: Block schema depicting the acquisition of the assistance data.
Source: own work.

We will acquire this data from a remote server, specifying which satellite
constellations are required, whether to include the almanac or the ephemeris
and the period of the data in days.

Depending on the above options we are provided with several kilobytes
of structured messages, which can be transferred one by one to the GNSS
module.

2.4.2 Downloading the data

Since our watch is not connected to the internet, we will need to download this
data by the connected mobile application and then transfer it to the watch
by Bluetooth. For this to work the mobile device needs to be connected to
the internet and allow the application to use Bluetooth and GPS. The GPS is
needed to acquire an initial position, which is supplied alongside the assistance
data to provide an even better estimation. The mobile application will down-
load the data, store it for future processing, thus requiring approximately up
to additional 200 Kilobytes of free memory space.

2.4.3 Formatting, sending & storing

After the data have been downloaded, we proceed with some processing. The
processing consists of counting the almanac messages and the assistance data
messages, providing the starting date, number of days the assistance data are
valid for and the initial position of the user. This additional information will
help us later on with navigating through the data and finding the correct
messages for a specific day.

Sending the data involves segmenting it into smaller parts which can be
sent via Bluetooth and then stored into the external flash memory of the
watch. The whole procedure involves from 250 to 260 chunks, one chunk
being 128 bytes long, and takes about 30 to 40 seconds to complete.

17

2. Analysis and design

2.5 Take me home algorithm design

The main idea behind the Take me home algorithm is to navigate the user
back using a previously walked track.

Some of the challenges we will be facing include:

• How often do we store a position

• When do we consider a position to be reached

• Using some features of the watch to help navigate

• Possible elimination of loops and track shortening

2.5.1 Getting a track

To be able to navigate the user back to a starting location, we need a track
first. We will be able to get a track by two means: the phone application
and the watch itself. Using the mobile phone as a logging device, we conserve
energy on the watch but we need the mobile phone itself, with the application
installed. The application has some software requirements such as the proper
version of the Android operating system and hardware requirements such as
existence of a Bluetooth and GNSS module (which nowadays is usually not an
issue anymore). If we decide to use the watch by itself, we completely elimi-
nate the necessity of another device but the power consumption will increase
significantly, since the GNSS module puts a strain on the battery.

Figure 2.7: Block schema depicting logging of the position by the mobile
phone. Source: own work.

The phone application, will periodically acquire a location and send it via
Bluetooth and the watch will store it into its external flash memory for later
use 2.7.

By using the watch itself, once we acquire a solution from the GNSS mod-
ule, we extract and store the actual location into RAM 2.8.

18

2.5. Take me home algorithm design

Figure 2.8: Block schema depicting the logging of the position by the watch
itself. Source: own work.

Figure 2.9: Reducing logging of points by filtering out those that are close or
in the same direction. Source: own work.

In both cases we only store a location if it is more than 5 meters away from
the previous location. This measure is in place to prevent unnecessary logging
in case the user is standing still or moving very slowly. We are also keeping
count of the total distance of the track and the number of logged locations,
which will provide some information to the user.

2.5.2 Navigating

Once we have a track we can navigate backwards, from end to start, location
by location. We always use the actual location provided by the GNSS module
and use it to calculate a distance and direction to the next location of the

19

2. Analysis and design

track. To use this calculated direction from one point to another we also need
to know the real direction the user is currently heading. For this we can get
the heading of motion from the navigation solution provided by the GNSS
module or from a compass device. Only then can we correctly display the
direction the user needs to go in order to reach the next point. A point is
considered reached if we are in a 5 meter radius of that point. Picture 2.10
depicts this behavior.

Figure 2.10: Navigating back point by point. We consider a point reached,
while being within a 5 meter radius of it. Source: own work.

2.5.3 Shortcuts and loops

There is a high probability that the user can create some loops in the track.
We should eliminate these loops or at least mention the possibility of doing
so to the user, to shorten his way back. This could be done by finding the
nearest location with the latest timestamp and navigating to this location
instead. The decision whether to shorten the track or not should be done by
the user, because we cannot know if the user created these loops deliberately,
by going around some environmental obstacles (such as lakes, ravines, etc), or
has done so unintentionally by wandering around.

On the upper track we can see an possible elimination of loops, shown with
red color, which can be proposed to the user. While the bottom track has no
loops, we can propose some shortcuts to the user, shown with blue color.

20

2.5. Take me home algorithm design

Figure 2.11: Example of track shortening

2.5.4 Weaknesses

The main weakness of the Take me home algorithm is the reception of the
signal from the satellites. To navigate the user properly we need a good signal
and a valid position fix. This can prove difficult in an environment where the
signal can be reflected or blocked. So in an urban or metropolitan area, with
tall buildings or other noise inducing elements, the receiver can be prone to
multi-path errors. This can lead to either an invalid position fix, or incorrect
position altogether, which then results wrong navigation. The assistance data
can help with this, but the receiver still needs at least a range measurement
from at least 3 satellites to calculate a navigation solution. A possible solution
is to use a Kalman filter mention previously, but it requires additional compo-
nents such as accelerometers, gyroscopes and matrix operations, thus it can
be computationally demanding. Multi-path errors can lead to interference,
either constructive or destructive, rendering the radio signal too weak to be
received.

Figure 2.12: Multi-path error propagation. Source [4]

21

Chapter 3
Implementation

23

3. Implementation

3.1 Assistance data

The assistance data has to be downloaded, given structure and then sent to
the watch and processed. We will describe each of this step separately from
the perspective of the device these steps happen on. The application that
downloads and provides the assistance data was developed from scratch. We
chose the Android platform because the author had some previous, albeit little,
experience with android development. It was developed and tested using the
Android studio IDE and is written in the Java language. The source code of
this application is available in the attachment of this thesis.

The software for the watch is written in the C programming language. For
development and testing purposes we used a J-Link debugger from Segger,
which allows remote debugging and programming. A Real-time operating
system (RTOS) is running on the watch, so every time we mention a task
in the upcoming sections of the thesis, we mean a RTOS task, which can be
scheduled and executed.

3.1.1 Download & Structure

The download of the assistance data happens only on the phone side. Here
the mobile application connects to the provided website via a HTTP GET
request and the data is downloaded as raw. Meaning that, it is already in a
form where it only needs to be passed to the GNSS module. The size of this
data depends on the parameters we specified in the GET request. We can
specify the desired GNSS constellations, number of days, resolution, inclusion
of almanac, ephemeris, etc. The most important is the unique token, which
grants access to these services.

Figure 3.1: Assistance data download via HTTP GET

We receive the data in binary form, as u-blox messages, in our case the
almanac followed by the assistance data itself. The data is given structure to
help the watch parse and process this data and pass it to the GNSS module
via UART. What we attach to this data is the type of the constellation we

24

3.1. Assistance data

are using, number of days the data are valid for, starting date and the size of
the almanac and assistance parts.

CON DATE DAYS #ALM #ANO LAT LON ALM ANO
0 1 4 5 7 9 13

Figure 3.2: Structured data

The upper row of 3.2 is the description of information it contains while
the bottom row is its starting offset. Description of the columns is as follows:
CON - constellation type - 1 Byte
DATE - starting date of the assistance data - 3 bytes
DAYS - number of days the assistance data are valid for - 1 Byte
#ALM - number of the almanac messages - 2 Bytes
#ANO - number of the assistance data messages per one day - 2 Bytes
LAT - initial latitude - 4 bytes LON - initial longitude - 4 bytes ALM - the
almanac itself - size varies
ANO - the assistance data itself - size varies

Listing 3.1: Download the data using androids network fragment
St r ing u r l S t r i n g =” . . . ” ;
networkFragment =

NetworkFragment
. g e t In s tance (getSupportFragmentManager () , u r l S t r i n g) ;

networkFragment . startDownload () ;

This code handles the downloading of the assistance data, the url begin a
link to the u-blox server with the proper parameters to download the assis-
tance data and the almanac for GPS and GLONASS. It implemented using a
network fragment. In android development a fragment represents a behavior
or a portion of the user interface. We use this to implement asynchronous
network operations. It also requires a DownloadCallback which calls back to
the main activity upon finishing the download, progress update of the ongoing
download, etc.

3.1.2 Sending & Processing

After the data has been given structure we proceed with sending it via Blue-
tooth. For this we are using the Nordic UART service, which is a service that
makes the Bluetooth connection act as it were a UART interface. The Nordic
UART Service is a simple GATT-based service with TX and RX characteris-
tics. Data received from the peer is passed to the application, and the data
received from the application of this service is sent to the peer as Handle Value
Notifications.

25

3. Implementation

The phone sends out chunks, each 128 bytes assistance data plus 3 bytes
framing data long, so 131 bytes in total. After a chunk has been sent, the
phone expects an acknowledgment from the watch, after this ACK message is
received the phone sends out the next chunk. After all chunks have been sent,
the phone sends out a final message, indicating the fact that the transmission
has been finished.

All of the operation codes where selected by the author, so that they do
not collide with other messages already in use by Bluetooth services. These
operation codes may be changed later to comply with the coding standards of
the company.

OPCODE SIZE DATA
0x8899 0-128 0xB5...

Figure 3.3: Assistance data chunk structure

The OPCODE for sending assistance data is, as stated in 3.3, always
0x8899 in little endian. The SIZE is usually 128 bytes, with the only the last
chunk having different size. The DATA is the structured data as presented in
3.2.

OPCODE
0xD0D0

Figure 3.4: Finalizing message

The finalizing message consists only of the OPCODE and its value is always
0xD0D0 in little endian. This message is sent only when all the structured
assitance data was transmitted and acknowledged.

OPCODE
0x1122

Figure 3.5: ACK message

Acknowledging message, similarly to the finalizing message consists only
of the OPCODE column and its value is always 0x1122 in little endian.

After the reception of each chunk, it is written into the flash memory of
the watch at the proper address. The added values of starting date, number of
days and sizes of the almanac and assistance data are there to help navigate
in the data. We use the current date, compare it to the starting date to
determine whether the data are up-to-date, if not, the watch should request
the transmission of new data. After that we just find the first message with
the current date and send the appropriate amount of messages via UART to
the GNSS module. The provided initial latitude and longitude is used to help
with the estimation of the location.

26

3.1. Assistance data

Figure 3.6: Phone - Watch assistance data exchange

Code snippets from both the phone application and the watch will follow,
which implement the behavior described above.

Listing 3.2: Start of sending the assistance data
private stat ic f ina l int GPS DATA MSG1 = 0x99 ;
private stat ic f ina l int GPS DATA MSG2 = 0x88 ;
private stat ic f ina l int GNSS CHUNK SIZE = 128 ;
private stat ic f ina l int GNSS DATA OFFSET = 3 ;

output . wr i t e (GPS DATA MSG1) ;
output . wr i t e (GPS DATA MSG2) ;
output . wr i t e (GNSS CHUNK SIZE) ;
byte [] toSend = new byte [GNSS CHUNK SIZE + GNSS DATA OFFSET] ;
System . arraycopy (structuredData , byte s s ent , toSend , 0 ,

((b y t e s l e n g t h > GNSS CHUNK SIZE) ?
GNSS CHUNK SIZE : b y t e s l e n g t h)) ;

output . wr i t e (toSend) ;
toSend = output . toByteArray () ;
mService . wr i t eRXCharacte r i s t i c (toSend) ;
b y t e s l e n g t h −= GNSS CHUNK SIZE ;
b y t e s s e n t += GNSS CHUNK SIZE ;

The code above is stared after the user presses the SEND FILE button.
It creates the first packet with the adequate header, follow by the length of
the data chunk. The data is then written to RXCharacteristic which sends
it via Bluetooth to the watch. The following code snippet is responsible for
checking the acknowledgment messages and sending the next chunks of data.
The dataSent variable is a boolean indicating whether all the data have been
sent or not.

27

3. Implementation

Listing 3.3: Receiving the ACK message and sending the next chunk of data
private void msgReceived (St r ing msg){

byte [] bts = msg . getBytes () ;
i f (bts [0] == GPS DATA ACK1 &&

bts [1] == GPS DATA ACK2 &&
! dataSent)

{
sendNextChunk () ;

}
i f (dataSent)
{

mService . d i s connec t () ;
}

}

We can see that each time a message is received and the acknowledgment
data is correct the function sendNextChunk() is called which is identical to
the first code snippet shown here. The only difference is in the size of the
chunk, which is not the same for the last chunk and has to be adjusted as
such.

On the watch side each chunk is received, put into a temporary buffer,
stored into flash memory and then an acknowledgment is sent out 3.4.

Listing 3.4: Storing the assistance data
u i n t 8 t chunkSize = p evt−>params . rx data . p data [2] ;
u i n t 8 t he lpe rBu f f [GNSS DATA CHUNK SIZE] ;

memcpy(he lperBuf f ,
p evt−>params . rx data . p data + 3 , chunkSize) ;

a s s i s t n o w o f f l i n e w r i t e d a t a t o f l a s h (he lperBuf f ,
g n s s a n o d a t a o f f s e t , chunkSize) ;

g n s s a n o d a t a o f f s e t += chunkSize ;

m nus tx buf = g n s s r e s p b u f f ;
m n u s t o t a l b y t e l e f t t x = 2 ;

In 3.4 the gnss_resp_buff is equal to the message described in 3.5. The
gnss_ano_data_offset variable is used as an offset to the flash memory to
correctly write the data continuously. After that the event manager of the
watch is used to trigger a Bluetooth event and send out the acknowledgment.
When the finalizing message 3.4 arrives, the watch only responds with an
acknowledgment without storing any more data.

3.1.3 Using the assistance data

After the data has been stored in the flash memory it is ready to be used. It
is loaded into the GNSS module during the start-up of the GNSS task of the

28

3.1. Assistance data

watch. Since the module has no external non-volatile memory of its own, this
data needs to me transmitted on every power-on.

First of all we check whether there is assistance data in the flash memory,
and whether it is valid. By valid we mean that it is within a 7 day span of
the starting date. We do this by simply comparing the dates, if the current
date is greater than the starting date by 7 days, we consider the data invalid,
and the user is prompted to provide new assistance data. This is done in 3.5,
the valid variable is initialized as false.

Listing 3.5: Verifying the assistance data
i f (t o t a l d a y s c u r r e n t + num of days >= t o t a l d a y s c u r r e n t

&& t o t a l d a y s c u r r e n t >= t o t a l d a y s s t a r t)
{

v a l i d = true ;
}
// e l s e e i t h e r i n v a l i d data , or i n v a l i d date

i f (v a l i d)
{

// data are v a l i d , mark them as ready to read
a s s i s t n o w o f f l i n e d a t a r e a d y () ;

}

Next we load some variables that will help navigating to the correct data
of the current day. We get the size of the almanac, number of messages per
day, and the initial latitude and longitude. We load the almanac as well
because it is necessary every time. Having the size of the messages we can
calculate the offset into the flash memory where the data for the current
day reside. Offset = Header + almanac + (current date − start date) ∗
messages in one day ∗ size of message. Where the header represents the
data that were added by the phone, that includes the starting date, number
of days the data are valid, number of almanac messages, number of messages
per day of the assistance data, initial latitude and longitude. With this infor-
mation we can easily calculate the size of the almanac, since every message is
44 bytes in size. Every assistance data message is 84 bytes in size, this is only
valid for GPS and GLONASS constellations[5].

Listing 3.6: Finding the correct assistance data
u i n t 8 t numAlmMsg = a s s i s t n o w o f f l i n e d a t a [ALM MSG OFF] ;
u i n t 1 6 t a lmOffset = ALM OFF + numAlmMsg ∗ ALM MSG LEN;

u i n t 8 t numAnoMsg = a s s i s t n o w o f f l i n e d a t a [MSG DAY OFF] ;
u i n t 3 2 t elapsedDays = currentDate − s tar tDate ;
u i n t 1 6 t dayOf f set = elapsedDays ∗ numAnoMsg ∗ ANO MSG LEN;

f l a s h r e a d (GPS AREA ADDR START + almOffset + dayOffset ,
bu f f e r ,

29

3. Implementation

s izeof (b u f f e r)) ;
p data = b u f f e r ;

Code in 3.6 takes care of finding the correct offset into the flash mem-
ory and then reads the data into a buffer, which is a global variable of the
assistance data module, and a pointer is returned from the function which
is not shown in the snippet. For simplicity the elapsedDays variable in the
example is calculated as difference of dates, this is different in the real code
provided in attached code, where the total number of days are calculated and
then subtracted from each other.

All the code listed above is called from the task responsible for handling
the GNSS related operations. The assistance data is loaded during the ini-
tialization of the task alongside with the current time in UTC format and the
provided latitude and longitude 3.7.

Listing 3.7: Loading the assistance data during start-up
a s s i s t n o w o f f l i n e r e a d d a t a f r o m f l a s h () ;
g p s s e n d c o n f i g p o s i t i o n () ;
u i n t 8 t ∗ p data = a s s i s t n o w o f f l i n e g e t d a t a () ;
p data += GNSS DATA ALM OFF;
p data =

gnss send almanac (p data ,
a s s i s t n o w o f f l i n e g e t a l m m s g c n t ()) ;

p data =
g n s s s e n d o f f l i n e a s s i t a n c e (p data ,

a s s i s t n o w o f f l i n e g e t a n o m s g c n t ()) ;

As we can see in 3.7, first the data is read, provided that it is valid,
from flash into the buffers of the assistance data module. The sending of
the initial latitude and longitude into the GNSS module by UART is handled
by the gps_send_config_position() function. The UBX-MGA-INI-POS_LLH
message of the module is used for this purpose, with the latitude, longitude,
altitude, and precision of the provided position as its arguments. Finally, we
get a pointer to the buffer by calling the assist_now_offline_get_data()
function, and as the messages are being sent into the GNSS module, we shift
this pointer to the correct offset.

3.2 Take me Home algorithm

3.2.1 Position logging

One part of the Take me Home algorithm is the logging of the user’s location
into the watch. For this purpose we will use the connected mobile device and
the GPS services it offers. The general idea is as follows: The user will turn
on location logging. After 10 seconds or a change in direction greater than 5
degrees the location will be sent over to the watch and stored.

30

3.2. Take me Home algorithm

Figure 3.7: Use case of the logger

To further expand on 3.7, after the user turn on logging, the location
updates are retrieved in an interval of 1-10 seconds depending on the service.
The service which we will be using is the FusedLocationProviderClient by
Google API. This allows us to get the location either via the GPS circuit of
the phone or via network. Having retrieved the current position, we use it
and the previously stored location to calculate the distance traveled and the
bearing. For this we use the following equations.

a = sin2(∆ϕ/2) + cos(ϕ1) ∗ cos(ϕ2) ∗ sin2(∆λ/2) (3.1)

c = 2 ∗ atan2(
√
a,
√

1− a) (3.2)

d = R ∗ c (3.3)

Figure 3.8: Haversine formula

To explain the symbols used in 3.8, ϕ1 is the latitude of the starting
location, ϕ2 the latitude of the final location, ∆ϕ = ϕ2−ϕ1 and ∆λ = λ2−λ1
where λ1, λ2 are the longitudes of the locations using the same subscripts
as their latitude counterparts. The values of latitudes and longitudes are in
radians. The atan2 function is the “two argument arctangent” which return
a single value θ such that −π < θ ≤ π and some r > 0 and x = r cos(θ), y =
r sin(θ). R is Earth’s radius (mean radius = 6,371 km).

The haversine formula determines the great-circle distance between two
point on a spherical surface.

31

3. Implementation

If the programming language we are using does not have the atan2 function
we can calculate as follows: c = 2 arcsin(min(1,

√
a)). a is the square of half

the chord length between the points and c is the angular distance in radians.
To calculate the bearing, or to be more precise the initial bearing (or

forward azimuth), which if followed in a straight line will take you from the
starting point to the ending point. The meaning of the symbols is same as in
3.8.

θ = atan2(sin(∆λ) cos(ϕ2), cos(ϕ1) sin(ϕ2)− sin(ϕ1) cos(ϕ2) cos(∆λ)) (3.4)

Figure 3.9: Initial bearing formula

By these calculations we determine whether there was a change in the
general direction the user is heading. If so, the mobile phone will send a BLE
packet to the watch with the current coordinates of the user. The watch will
then store this information into its external flash memory.

OPCODE LAT LON
0x8899 4B 4B

Figure 3.10: Location packet structure

The BLE packet has a similar structure as the ones used in assistance data
transfer, with the difference of the OPCODE and the payload. The latitude
and longitude values are first converted into integers by multiplying them by
107 and then stored into a byte array in little endian form.

When received by the watch, it checks whether the distance between the
new point, and the previous point is greater or equal than 5 meters. If it is so
the new point is stored in flash memory, otherwise it is ignored.

OPCODE
0xBAAB

Figure 3.11: Location finalizing packet

After the turning of the logging in the phone application a finalizing packet
is sent. This packet tells us that there will be no more location messages and
that we can store the total number of locations and total distance into the
flash memory.

In 3.12 we can see how the data is stored in the external flash memory.
The #POS field is 2 bytes wide and stores the total number of location for
the track, the DIST field is also 2 bytes wide and gives us information about
the total distance of the track. After that #POS number of locations follow

32

3.2. Take me Home algorithm

Figure 3.12: Track stored in flash memory

each containing 4 bytes of latitude and 4 bytes of longitude. Therefore we can
derive the total number of required bytes for a track as follows: Total bytes =
#POS ∗ 8 + 4 , 8 bytes per location plus the 4 bytes of total location number
and distance.

Logging by the watch is done as is described by 3.13. Whenever a new
location is available from the GNSS module, the logger calculates the distance
from this new location to the previous one, if it greater or equal to 5 meters
the location is stored and the variables are updated.

Figure 3.13: Logging by the watch

Whenever we receive an update from the running GPS service, which is
timed to be every ten seconds, a broadcast is sent from the service to the main
activity. This message is received in the following code sample.

Listing 3.8: Receiving the GPS service broadcast and sending a location to
the watch
St r ing data = i n t e n t . ge tSt r ingExtra (GPS MESSAGE) ;
S t r ing [] l ocat ionData = data . s p l i t (” , ”) ;
Double l a t = new Double (locat ionData [0]) ;
Double lon = new Double (locat ionData [1]) ;
Double d i s t = new Double (locat ionData [2]) ;
Double bear ing = new Double (locat ionData [3]) ;
updateUI (la t , lon , d i s t , bear ing) ;
sendLocat ion (la t , lon) ;

33

3. Implementation

First we extract the data from the intent message. By extracting we mean
parsing the latitude, longitude, bearing and distance. After that we pass
these data to two functions. The updateUI() function simply displays the
received data on the phone screen, while the sendLocation() converts the
floating point values of latitude and longitude into integers and stores them
into a byte array in little-endian form, then this array is sent via Bluetooth
into the watch. The conversion is needed because Java stores the values in
big-endian form. We only take the first seven digits of the latitude/longitude
which corresponds to a precision down to meters. The sending procedure is
identical to the one used in the assistance data sending. We use a Bluetooth
service and write to the RX Characteristic.

Listing 3.9: Sending a location to the watch
int index = 0 ;

byte [] msg = new byte [2 + 4 + 4] ;
msg [index++] = (byte) GPS DATA LOC1;
msg [index++] = (byte) GPS DATA LOC2;
int iLat = (int) (l a t ∗ 10000000) ;
int iLon = (int) (lon ∗ 10000000) ;
msg [index++] = (byte) ((iLat) & 0xFF) ;
msg [index++] = (byte) ((iLat >> 8) & 0xFF) ;
msg [index++] = (byte) ((iLat >> 16) & 0xFF) ;
msg [index++] = (byte) ((iLat >> 24) & 0xFF) ;

msg [index++] = (byte) ((iLon) & 0xFF) ;
msg [index++] = (byte) ((iLon >> 8) & 0xFF) ;
msg [index++] = (byte) ((iLon >> 16) & 0xFF) ;
msg [index++] = (byte) ((iLon >> 24) & 0xFF) ;
mService . wr i t eRXCharacte r i s t i c (msg) ;

The watch counterpart to this handles the reception of the position in the
Bluetooth task and calls a function of the GNSS module to handle the storing
of the data 3.10.

Listing 3.10: Storing a location into the watch - BLE
g n s s s t o r e p h o n e l o c a t i o n (p evt−>params . rx data . p data + 2 ,

f a l s e) ;

Then in the GNSS module, we call one of the two functions, determined
by the boolean flag final of the gnss_store_phone_location() function.
This flag is set when the final location has been transmitted indicating the
fact, that the module should store the total number of locations and the total
distance of the the track into the flash memory 3.11.

Listing 3.11: Storing a location into the watch - GNSS module
void g n s s s t o r e p h o n e l o c a t i o n (const u i n t 8 t ∗ bu f f e r ,

bool f i n a l)
{

34

3.2. Take me Home algorithm

i f (f i n a l)
{

take me home s to r e pos i t i on count () ;
}
else
{

take me home s to r e pos i t i on ((const i n t 8 t ∗) b u f f e r) ;
}

}

As the names of the functions suggest, the storing of each individual loca-
tion received is managed by the take_me_home_store_position() function,
which takes a pointer argument where the received locations are temporar-
ily stored. On the other hand the take_me_home_store_position_count()
function, handles the storing of the total locations and total distance of the
track.

We will take a look at the functions described above in the following code
snippet.

Listing 3.12: Storing a location into the watch - Take me home module
e r r o r = f lash program (GPS LOG ADDR START + LOCATION OFFSET

+ l o g o f f s e t ∗ s izeof (i n t 3 2 t) ,
(u i n t 8 t ∗) bu f f e r ,
2 ∗ s izeof (i n t 3 2 t) ,
f a l s e) ;

ERROR CHECK(e r r o r) ;

l o g o f f s e t += LOG ELEMENT SIZE;
t o t a l l o c a t i o n s ++;

p r e v i o u s l o c a t i o n = c u r r e n t l o c a t i o n ;
c u r r e n t l o c a t i o n . l a t i t u d e = ((i n t 3 2 t ∗) b u f f e r) [0] ;
c u r r e n t l o c a t i o n . l ong i tude = ((i n t 3 2 t ∗) b u f f e r) [1] ;

c u r r e n t t r a c k . t o t a l l o c a t i o n s = t o t a l l o c a t i o n s ;
i f (t o t a l l o c a t i o n s > MIN LOCATIONS)
{

c u r r e n t t r a c k . t o t a l d i s t a n c e += distanceToNextPoint (
p r e v i o u s l o c a t i o n . l a t i t u d e ,
p r e v i o u s l o c a t i o n . long i tude ,
c u r r e n t l o c a t i o n . l a t i t u d e ,
c u r r e n t l o c a t i o n . l ong i tude) ;

}

Beside the obvious storing of the position into the flash memory we also
calculate the total distance of the track in this subroutine in 3.12. The writing
to the memory is done by the flash_program() function, which takes several
arguments: first is the address where we wish to write our data, next is a

35

3. Implementation

pointer to the data, its size and a flag indicating if we want to delete the
memory block first. After the writing has been completed without an error, we
shift the offsets so the next position is written into the correct address. Finally
we compute the distance from the last point to the current point by using
the 3.8 equations, which are implemented in the distanceToNextPoint()
function.

Listing 3.13: Storing the position count and total distance
u i n t 3 2 t data = (t o t a l l o c a t i o n s << 16)

| (c u r r e n t t r a c k . t o t a l d i s t a n c e & 0 x 0 0 0 0 f f f f) ;

e r r o r = f lash program (
GPS LOG ADDR START + LOG LOCATION COUNT OFFSET,
(u i n t 8 t ∗)&data ,
s izeof (data) ,
f a l s e) ;

ERROR CHECK(e r r o r) ;

The code in 3.13 is the take_me_home_store_position_count() func-
tion. Here we store the total number of locations as the upper 16 bits of a 32 bit
integer, while the lower 16 bits represent the total distance of the track. Iden-
tically as in 3.12, we write into the flash memory by calling flash_program()
and finally an error check is performed.

Since the watch has a GNSS module of its own, the user can choose to use
a track which was logged by the watch itself. Here the position is logged on
every GNSS event received from the module but only if its distance from the
last point stored is greater than 5 meters.

Listing 3.14: Storing a track by the watch
l og . l a t i t u d e = take me home get l a t i tude () ;
l og . l ong i tude = take me home get long i tude () ;

i f ((p r e v l a t != 0) && (prev lon != 0))
{

f loat d i s t ance =
take me home ca l c d i s t ance f o r wat ch t ra ck (
p r ev l a t , prev lon ,
l og . l a t i t u d e , l og . l ong i tude) ;

}

i f (d i s t anc e >= TAKE ME HOME REACHED RADIUS METERS)
{

g n s s d a t a l o g . t o t a l d i s t a n c e += d i s t anc e ;
p r e v l a t = log . l a t i t u d e ;
p r ev lon = log . l ong i tude ;
gns s data log append ((u i n t 8 t ∗)& log ,

s izeof (l og)) ;

36

3.2. Take me Home algorithm

}

The example shown in 3.14 is straightforward: we get the latitude and longi-
tude from the GNSS module, calculate the distance and if it is greater than
the threshold (which is 5 meters in this case), we store this location into a
buffer. The log structure also stores other information which are absent from
the code example in 3.14, these include the state of the module, heading of
motion and its accuracy and the UTC time. With this we have concluded the
part of sending, receiving and storing the individual locations which will be
used in the next section to navigate back.

3.2.2 Navigating back

We start the navigation process by retrieving the latest logged point from
external flash or from RAM. Next we get the actual location of the user from
the GNSS module and calculate the distance and direction from this point
to the one from the log. The distance is displayed so the user is aware how
far away is the next location. The direction is used in combination with the
heading of motion retrieved from the GNSS module or the azimuth from the
compass to correctly calculate an angle which is then displayed using the
watch hands. This process of acquiring the current location and calculating
distances, direction is repeated until we are within a 5 meter radius of the
logged point. After that the point is considered reached and we move onto
the next point in the log. We repeat everything described above until we reach
the oldest(first) logged point. Pseudocode in 1 describes this.

Result: Navigating to the start of the track
initialization;
while Location log not empty do

read next location from log;
while distance > radius do

read location from GNSS;
calculate distance, direction;
display distance;
adjust direction;

end
mark location as reached;

end
Algorithm 1: Take me home main algorithm

Subroutines used in the above main algorithm will be described below.
Initialization involves setting the pointers, counters to the last location.

Reading the location depends whether we read it from external flash or
from RAM. Reading from RAM is straight forward, we just get the pointer
pointing to the buffer containing the locations and move by 8 bytes every
time we need a new location. Getting the data from flash is quite similar,

37

3. Implementation

but it involves reading the actual flash memory, for which we need to know
the exact address we want to read from. We know where does this data
start, how many locations do we have so we can easily calculate the necessary
offset. Offset = start address+ loc offset+ #loc cnt ∗ 2 ∗ sizeof(int32 t).
Where #loc cnt is the number of stored locations, which we read out prior to
this procedure. We need to be careful because this points to the end of the
log where the next location would be stored, so to get the actual last logged
point, we need to subtract 8 bytes and now we have the address where the last
latitude is stored. To further traverse this log we just subtract the number of
already processed points. From this address we read out 8 bytes, first 4 are
our latitude and the last 4 our longitude.

Getting the location from the GNSS module involves periodically polling a
message. The reply to this message contains, among other things, the latitude,
longitude, heading of motion, etc. This response is in fact a position, velocity,
time (PVT) solution structure.

Figure 3.14: Screenshot of the UBX-NAV-PVT message. Taken from the
U-Blox receiver description[5].

Referring to 3.14 we read out the latitude and longitude fields, and later
in the algorithm the ground speed, heading of motion and heading accuracy
estimate fields. After we have the current location we use 3.8 and 3.9 to
determine the distance and direction. This message is sent from the GNSS
module to the main CPU via UART every second. The period of this message
can be configured or turned off altogether and requested manually.

Since the 1 algorithm represents the main routine, the code connected with
it is quite large. Because of this we will only show important subroutines of
the algorithm.

Let us begin with reading out the latest location from the flash memory.
This is done in the following example.

Listing 3.15: Getting the next location from memory
u i n t 8 t b u f f e r [LOG ELEMENT SIZE ∗ s izeof (i n t 3 2 t)] ;

f l a s h r e a d (GPS LOG ADDR START

38

3.2. Take me Home algorithm

+ l o g o f f s e t
− LOG ELEMENT SIZE,
bu f f e r , s izeof (b u f f e r)) ;

l o g o f f s e t −= LOG ELEMENT SIZE;
c u r r e n t t r a c k . c u r r e n t l o c a t i o n i n d e x ++;

c u r r e n t t r a c k . c u r r e n t l o c a t i o n . l a t i t u d e
= convertToFloat (((i n t 3 2 t ∗) b u f f e r) [0]) ;

c u r r e n t t r a c k . c u r r e n t l o c a t i o n . l ong i tude
= convertToFloat (((i n t 3 2 t ∗) b u f f e r) [1]) ;

c u r r e n t t r a c k . c u r r e n t l o c a t i o n . s t a t u s = LOCATION NOT REACHED;

We start by reading out the correct location from the flash memory, the
log_offset variable was set either during the reception and storing of the
locations, or by reading out the total number of locations prior to calling this
function. The latitude and longitude need to be converted to floating point
numbers, because they are stored as integers and the algorithm calculating
the distance and direction uses trigonometric functions which require floating
point arguments. We mark this location as not reached and proceed navigating
to this point.

Navigating to the next point is done in several steps. First we need to get
our actual position, for this we use the GNSS module and the latitude and
longitude provided from the 3.14 UBX-NAV-PVT message, which is a computed
navigation solution. To correctly point the user in the right direction we need
to know his heading of motion. We acquire this from the same message as
the position, alongside with the accuracy of this heading. If the accuracy
is worse than a threshold we use the true north angle from the compass of
the watch. This is done because when the user is standing still, we have
no heading, or when the accuracy of the heading is unreliable, we can still
acquire a measurement from the compass. On the other hand this introduces
another module to the function, which will increase the consumption and
due to the moving watch hands influencing the magnetic field, the compass
measurement and hand movement cannot be done concurrently. When the
accuracy of the heading is good, we do not need any other module, because
the computed navigation solution provides as with any information we may
need for navigation.

Listing 3.16: Getting the heading of motion
u i n t 1 6 t headAcc = gps ge t head ing accuracy () ;
i n t 3 2 t speed = gps get ground speed () ;

i f ((speed < TAKE ME HOME MINIMUM SPEED))
{

f i r s t l o c a t i o n u p d a t e = true ;

39

3. Implementation

return TAKE ME HOME NO HEADING;
}

i f (headAcc > TAKE ME HOME HEADING ACC THRESHOLD)
{

heading = TAKE ME HOME NO HEADING;
}
else
{

heading = TO ABS DEG(gps get head ing mot ion ()
/ HEADING CONVERSION VALUE) ;

}

First we read out the heading of motion accuracy and the ground speed.
We consider the user not moving while the ground speed is below a certain
threshold. We indicate a no heading state when either the ground speed is
low or the accuracy is above a given threshold. In this case the true north
angle is used in another part of the code. It reacts to a compass event from
the watch’s event manager. If none of the conditions mentioned above are
true, than the heading of motion provided by the GNSS module is considered
correct and converted to be in an interval from 0 to 359 degrees.

When we have the correct heading of motion, we use it and the direction
(bearing) calculated beforehand to correctly point the user in the direction
of the next point. This is achieved by subtracting the acquired heading from
360 degrees, by doing that the heading becomes the “north” and by adding
our bearing to that we get the direction we need to point the user 3.17. Then
we set the steps of the motors of the watch hands to represent this fact. If
the compass is used the procedure is the same, but instead of the heading we
subtract the true north angle.

Listing 3.17: Adjust the heading correctly

u i n t 1 6 t a d j u s t D i r e c t i o n (f loat dir , i n t 3 2 t heading)
{

u i n t 1 6 t adjusted = 360 − heading ;
u i n t 1 6 t adjDir = TO ABS DEG((i n t 1 6 t) d i r) ;
return TO ABS DEG(adjDir + adjusted) ;

}

When the compass is used, we need to stop it during the moving of the
motors, because moving watch hands can influence the magnetic field of the
Earth. The direction is shown by the minute hand with the hour hand being
opposite to it. The hands move as the heading of the user changes, so does
the displayed direction.

40

3.3. Phone application

3.3 Phone application

The phone application is designed mainly for testing purposes and to demon-
strate the assistance data transfer and take me home algorithm. It is a simple
android application consisting of one activity and one foreground service.

3.3.1 Handling the assistance data

One of the main purposes of this application is to download the GNSS as-
sistance data and supply it to the watch via Bluetooth. For this action we
designed several buttons with actions attached to them.

The GET DATA button handles the download of the data and storing it
into a buffer. The download is done by a HTTP GET request to a specified
address with some parameters further specifying the constellations, almanac,
duration and resolution of the data 3.1. Activity diagram describing this
behavior is in 3.15.

Figure 3.15: GET DATA activity. Source: own work.

Next in the process is the PROCESS DATA button, which saves the data
from a buffer into a file to the physical storage of the phone. After that the
data are given structure to help us parse them on the watch side and easily
navigate them. By giving structure we mean the addition of starting date,
number of messages in a day, duration, initial latitude and longitude 3.16.

Figure 3.16: PROCESS DATA activity. Source: own work.

41

3. Implementation

When everything is processed and ready the CONNECT button is used
to select the desired device we wish to send the data to and then the SEND
FILE button initiates the file transfer as shown in 3.6. After everything was
sent the application sends a finalizing message indicating this fact 3.17.

Figure 3.17: SEND DATA activity. Source: own work.

3.3.2 Location service

The foreground service mentioned in the beginning of this section handles all
location related actions. That means setting up a periodic location request,
the period itself and a callback function that is called whenever a change in
location is registered. This function structures the new latitude and longitude
alongside the previously acquired location and packs it with the calculated
distance and direction into a string. The string is then sent via a broadcast
to the main activity of the application where it is stored as well as sent via
Bluetooth when a device is connected 3.18.

Figure 3.18: Gps foreground service. Source: own work.

3.3.3 Sending the location

The sending of the location is tightly connected to the location service. If
the user activated the location sending, each time a new location is reported
by the GPS service, it is formatted and sent via Bluetooth to the watch. As
mentioned in the Take me home algorithm section, it is converted from floats

42

3.3. Phone application

to integers and then from big-endian to little-endian and sent. The total size
of this packet is ten bytes, two bytes for the operation code and four bytes for
latitude and longitude.

43

Chapter 4
Testing & measurements

45

4. Testing & measurements

In this final chapter of this thesis we will discuss the results of some live tests
and measurements done on both a development breadboard and the actual
watch.

The live tests consist of walking around with the watch attached to the
wrist and using the phone application to send the location to the watch, and
the phone itself to log the actual location. Then using the “Take me home”
function to navigate to the starting location. All images were created from
logs gather from both the watch and the mobile phone and then visualized
using the website https://www.gpsvisualizer.com/.

The measurements are done by special power measuring equipment both
on the development breadboard with an active antenna attached and on the
watch. The placement of the antenna and watch were the same for both
cases. What we wanted to see was the difference the assistance data will
make in reducing the time to position acquisition therefore reducing the power
consumption.

4.1 Live tests

4.1.1 First test case

The first test was conducted at the Strahov dormitories in Prague. It was
done on a large parking space surrounded by several concrete buildings each
of them approximately 20 meters tall.

Figure 4.1: First live test using the take me home functionality. Source: own
work.

We can see several curves displayed in the picture 4.1. The blue one
represents the “way there” and it was logged by the navigation system of
a mobile phone. This is the path we would like to navigate back on. The
green and red paths are the “way back”, with green being the track logged
by the phone and the red one being the watch track. We logged them by

46

https://www.gpsvisualizer.com/

4.1. Live tests

multiple methods for comparison. As we can see the red track is inaccurate
and we are getting an error of approximately 20 meters. The green track
shows, that the algorithm was trying to compensate these errors, that is why
there is additional walking going off the actual path. However even after this
additional walking we were able to reach the starting point.

The source of these errors could be the so called multipath errors, which
are errors in location generated by reflections of the signal (for example by
buildings) and therefore resulting in false location. As we will see in another
test case, this does not happen in an area without taller buildings.

4.1.2 Second test case

The second test case was done at a large park area with no tall buildings in
the vicinity.

Figure 4.2: Second test case, at Ladronka park in Prague. Source: own work.

Referring to 4.2 the red path is the “way there”, and just like in the
first test case we have two different tracks for the “way back”, one from the
mobile phone (green) and one from the watch (blue). We can immediately
see that there are almost no inaccuracies and that the track from the watch
is more accurate then the one from the phone. This test case consisted of
about 3 minutes walking in one direction and the same amount of time in the
opposite direction. The logs were extracted at the end of each path to prevent
overwriting.

47

4. Testing & measurements

4.1.3 Third test case

The location is the same as the second test case, the difference is the time of
day which was approximately 2 to 3 hours after the second test case.

Figure 4.3: Third test case, at Ladronka park in Prague. Source: own work.

Same as the previous test case we can see that the blue path (watch “way
back”) is more accurate than the green path (phone “way back”) and copies
the red path (phone “way there”) more closely just until the end where it
deviates a little, but it is still within the 5 meter acceptance radius.

Figure 4.4: Photo of the watch displaying the actual take me home information
- the number of points, the distance and the watch hand point to the direction
of this point. Source: own work.

48

4.2. Power consumption measurements

In 4.4 we can see the actual watch displaying the information about the
current track. On the photo the track was taken from the watch itself and we
can see a total of 77 points, the distance to the next point and the direction
shown by the watch hands.

4.2 Power consumption measurements

4.2.1 Equipment

For power consumption measurements we used the N6705C power supply from
Keysight technologies 4.5. We were using 3.7 V of supply voltage and 60 mA
current limit for both the development board and the watch. The measure-
ments were run for 10 minutes with both the assistance data present and
absent.

Figure 4.5: Keysight N6705C power supply used for consumption measure-
ment. Source: own screenshot taken from [6].

4.2.2 Development board measurements

Measurements on the development board were done using an attached active
antenna from Taoglas, the Ulysses AA.162 model. The development board
is similar to the watch in sense of components used. It is more suitable for
development and testing due to its accessibility of individual components,
their pins and the ability to easily swap software inside the main CPU.

We can see the measurement results in 4.6. The measurement was run for
10 minutes, which is not visible in the picture due to cropping. In the bottom
of the picture we can see the measurement at the markers. Here the markers
are set to measure the acquisition portion of the location process. As we can
see the consumption during the acquisition phase is around 27 - 28 mA. The
difference between the setup with the assistance data and without it, differs
only by 0.2 mA in favor of the measurement with the assistance data present.

In 4.7 the measurement of the tracking phase is shown. This phase takes
up the majority of the measurement time, about 65% - 70%. The power

49

4. Testing & measurements

Figure 4.6: Measurement on the development board with an attached active
antenna. The red color depicts the measurement with the assistance data, the
purple color without the data - Acquisition phase. Source: own screenshot
taken from Keysight software[6].

consumption decreases from 28 mA to 5 mA and this is one of the reasons
we want to shorten the acquisition phase as much as possible. Just as in the
acquisition phase we do not notice any significant drop in consumption when
we compare the two setups.

It has to be noted that this measurement is done on the board as a whole.
That means that we measure the whole functionality, so the consumption
includes the activity of the MCU, the communication buses, display, other
modules that are running and of course the GNSS module.

4.2.3 Watch measurements

To be able to measure the current on the watch, we need to attach it to a
external component which enables us to access certain pins and modules of the
watch. We connect our external power supply onto this external component
to power the watch and measure the consumption at the same time.

Unfortunately we were not able to get a proper position fix, using the same
location as the active antenna, and due to the character of the measurement
setup we were not able to move it outside. Still we provide a measurement
for 10 minutes just to demonstrate the power consumption of the acquisition
phase. As we see in 4.8 the consumption is on 35 - 37 mA the whole time,

50

4.2. Power consumption measurements

Figure 4.7: Measurement on the development board with an attached active
antenna. The red color depicts the measurement with the assistance data,
the purple color without the data - Tracking/Power optimized phase. Source:
own screenshot taken from Keysight software[6].

which will drain the battery of the watch in no time. The unsuccessful result of
this measurement lies in the placing of the watch. While the active antenna is
strong enough to pick up the signal even from this place, the passive antenna
fails to do so and the fact that the building is blocking half of the field of
vision of the watch is not helpful. There is bound to be signal blocking and
multi-path interference.

51

4. Testing & measurements

Figure 4.8: Measurement on the watch which has a passive antenna, mea-
surement with assistance data present - acqusition phase only. Source: own
screenshot taken from Keysight software[6].

52

Conclusion

Navigation is a topic which can be talked about excessively and several thick
books have been written about this topic. In this thesis we covered the ba-
sics of navigation briefly in the first chapters. We mentioned how navigation
evolved from plain piloting, through radio waves and into nowadays satellite
systems. Brief history of the largest Global Navigation Satellite Systems such
as the GPS, GLONASS, Galileo and BeiDou, how they evolved and how the
majority of these systems was designed for military purposes at first. Then
we moved onto Bluetooth low energy, which is another key technology behind
the main goals of this thesis. Brief history, key architectural concepts and
connections were discussed.

In the second chapter we moved onto the main goals of the thesis, dis-
cussing the analysis and design of the assistance data and the Take me home
functionality. The target application for these functions is a wrist-worn watch
and the hardware of this watch which was used throughout the thesis is the
nRF52480 MCU from Nordic Semiconductor and the ZOE-M8B navigation
module by U-Blox. We started by downloading the necessary assistance data
from the dedicated U-Blox servers. For this purpose we used a mobile phone
application written for Android. This mobile application was developed by the
author of this thesis from scratch, and serves as a demonstrating and testing
application. It was written in the Java programming language and the An-
droid platform was chosen because of previous experience of the author. After
the data has been downloaded the application attaches to them some meta
data, such as the starting date, validity of the data, initial location, etc. Then
the assistance data are sent via Bluetooth to the watch, which stores them
into its flash memory. When everything has been sent and stored, the data
are supplied to the GNSS module. The main purpose behind the assistance
data is to speed up the acquisition of the user’s location and thus lowering
the power consumption because the acquisition phase is quite power demand-
ing. It also helps in low signal environments because the receiver needs only
a range measurement from the satellites due to the fact that the assistance

53

Conclusion

data provide everything else.
The Take me home functionality uses the above mentioned results in the

acquisition of a track. The main purpose of this function is to navigate a user
back on a previously acquired track. This is useful when the other means of
navigation runs out of battery, needs to conserve battery, stops functioning
or the user simply wants to go back on the walked track. For this purpose we
introduce two means of getting a track. The first is via a mobile phone, which
uses the same application as the assistance data. The application periodically
sends a location via Bluetooth to the watch which stores it. The second type
of track is logged by the watch itself and using the assistance data speeds
up the process of acquisition so the user can get accurate locations. If both
tracks are present in the watch, the user is prompted to chose one for the
Take me home function. The function then navigates the user back, point by
point, displaying the distance to the next point and the watch hands show
the direction to this point. For the watch hands to properly point in the right
direction we need a heading of motion, this is acquired from the GNSS module
or if it is inaccurate or the user is standing still we get it from the compass.
The compass has the advantage that is always provides data but it is another
module that needs to be calibrated and powered. While the GNSS heading
of motion is provided in the solution we use to get the location, but can get
inaccurate.

As stated before, the main weakness of these functions and the GNSS in
general is the signal reception and multi-path errors. Weak signal can be
partially resolved by the assistance data. The presence of the assistance data
eliminates the need to get this information from the satellites, but a range
measurement is still needed to determine the location. That means when the
path to the satellite is blocked by something it may be impossible to obtain
a location. The multi-path errors are a phenomenon where the radio signal
reaches the receiver by more than one path. This can be caused, for example,
by reflections from buildings, mountains or water bodies. This causes multi-
path interference, including constructive or destructive interference, causing
the signal to become too weak. Possible solution to this is the usage of a
Kalman filter as stated in the GNSS section of the thesis. One more limitation
that comes into mind is the memory. One week of assistance data take up
about 33 kilobytes, but the storing of the track is what is limiting. We can
store a track depending on the usage of the flash memory by other functions
of the watch.

For future improvements we can recommend the usage of the previously
mentioned Kalman filter. Here the important question to ask is, whether
the navigation module and its features are that essential, that it is worth to
implement such a filter, which uses matrix operations and data from several
other modules. Another improvement may be to change the chip of the GNSS
module. The chip discussed in this thesis can offer assistance data for GPS
and GLONASS only, although it can use all the other constellations. Having

54

the ability to acquire assistance data for both Galileo and BeiDou alongside
GPS and GLONASS could speed up the acquisition phase even more and
retain position even better.

All of the code used and presented in this thesis is provided in the attached
portable medium. Both the phone application written in Java and the code
for the watch in C are documented. Sometimes only a part of the code which
was written by the author and then inserted into a bigger module is provided.

55

Bibliography

[1] Kr7cmw0l: Diagram of Earth Centered, Earth Fixed coordinates in re-
lation to latitude and longitude. [cit. 2020-06-28]. Dostupné z: https:
//commons.wikimedia.org/wiki/File:ECEF.png

[2] Mike1024: ECEF ENU Longitude Latitude relationships. [cit. 2020-06-
28]. Dostupné z: https://commons.wikimedia.org/wiki/File:ECEF_
ENU_Longitude_Latitude_relationships.svg

[3] simeon2, I.: GPS trilateration. [cit. 2020-06-30]. Dostupné z: https:
//commons.wikimedia.org/wiki/File:GPS_trilateration_fig1.jpg

[4] Lithium57: Multipath propagation. [cit. 2020-07-26]. Dostupné
z: https://commons.wikimedia.org/wiki/File:Multipath_
propagation_diagram_en.svg

[5] U-Blox: u-blox 8 / u-blox M8 Receiver description [online]. [cit. 2020-06-
25]. Dostupné z: https://www.u-blox.com

[6] Keysight: Keysight N6705C. [cit. 2020-07-02] - Screenshot. Dostupné
z: https://www.keysight.com/en/pd-2747858-pn-N6705C/dc-power-
analyzer-modular-600-w-4-slots?cc=CZ&lc=eng

[7] Mohinder S. Grewal, C. G. B., Angus P. Andrews: Global Navigation
Satellite Systems, Inertial Navigation, and Integration. John Wiley &
Sons, Incorporated, 2013.

[8] Groves, P. D.: Principles of GNSS, Inertial, and Multi-sensor Integrated
Navigation Systems. Artech House, 2007.

[9] Eubank, R. L.: A Kalman Filter Primer. CRC Press LLC, 2005.

[10] Gupta, N.: Inside Bluetooth Low Energy. Artech House, 2013.

57

https://commons.wikimedia.org/wiki/File:ECEF.png
https://commons.wikimedia.org/wiki/File:ECEF.png
https://commons.wikimedia.org/wiki/File:ECEF_ENU_Longitude_Latitude_relationships.svg
https://commons.wikimedia.org/wiki/File:ECEF_ENU_Longitude_Latitude_relationships.svg
https://commons.wikimedia.org/wiki/File:GPS_trilateration_fig1.jpg
https://commons.wikimedia.org/wiki/File:GPS_trilateration_fig1.jpg
https://commons.wikimedia.org/wiki/File:Multipath_propagation_diagram_en.svg
https://commons.wikimedia.org/wiki/File:Multipath_propagation_diagram_en.svg
https://www.u-blox.com
https://www.keysight.com/en/pd-2747858-pn-N6705C/dc-power-analyzer-modular-600-w-4-slots?cc=CZ&lc=eng
https://www.keysight.com/en/pd-2747858-pn-N6705C/dc-power-analyzer-modular-600-w-4-slots?cc=CZ&lc=eng

Bibliography

[11] NORDIC Semiconductor: nRF52840 Product Brief [online]. [cit. 2020-07-
25]. Dostupné z: https://www.nordicsemi.com/Products/Low-power-
short-range-wireless/nRF52840

[12] U-Blox: ZOE-M8B Product Brief [online]. [cit. 2020-07-25]. Dostupné z:
https://www.u-blox.com/en/product/zoe-m8b-module

[13] Macronix: MX25R32 Product Brief [online]. [cit. 2020-07-25].
Dostupné z: https://www.macronix.com/en-us/products/NOR-
Flash/Serial-NOR-Flash/Pages/spec.aspx?p=MX25R3235F&m=
Serial%20NOR%20Flash&n=PM2159

58

https://www.nordicsemi.com/Products/Low-power-short-range-wireless/nRF52840
https://www.nordicsemi.com/Products/Low-power-short-range-wireless/nRF52840
https://www.u-blox.com/en/product/zoe-m8b-module
https://www.macronix.com/en-us/products/NOR-Flash/Serial-NOR-Flash/Pages/spec.aspx?p=MX25R3235F&m=Serial%20NOR%20Flash&n=PM2159
https://www.macronix.com/en-us/products/NOR-Flash/Serial-NOR-Flash/Pages/spec.aspx?p=MX25R3235F&m=Serial%20NOR%20Flash&n=PM2159
https://www.macronix.com/en-us/products/NOR-Flash/Serial-NOR-Flash/Pages/spec.aspx?p=MX25R3235F&m=Serial%20NOR%20Flash&n=PM2159

Appendix A
List of abbreviations

AGNSS Assisted global navigation satellite system

BLE Bluetooth low energy

GLONASS Global’naya Navigatsionnaya Sputnikovaya Sistema

GNSS Global navigation satellite system

GPS Global positioning system

MCU Micro Controller Unit

SPI Serial Peripheral Interface

UART Universal asynchronous receiver/transmitter

59

Appendix B
Contents of the attached CD

readme.txt brief CD content description
src

impl source codes of the implementation
thesis............................source code of the thesis in LATEX

text...text of the thesis
thesis.pdf........................ text of the thesis in PDF format
thesis.ps........................... text of the thesis in PS format

61

