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Abstrakt

Aby byl návrh kryptografického obvodu použitelný, musí být hlavně bezpečný.
Útoky postranními kanály jsou čím dál jednodušeji proveditelné a návrháři
obvodů musí věnovat velkou část svého času implementaci obran proti těmto
útokům. V některých případech ale může jejich práce přijít vniveč kvůli au-
tomatickým optimalizacím. Tato práce se zabývá vlivem nastavení syntézních
parametrů na odolnost FPGA obvodů vůči útokům postranními kanály. Za-
měřuje se na implementaci AES s několika obranami proti útokům a sledování,
jaký mají změny vybraných parametrů vliv na bezpečnost obvodu. Nežádoucí
úniky informací jsou vyhodnoceny pomocí Welchova t-testu.

Klíčová slova Útoky postranními kanály, kryptografie, parametry syntézy,
FPGA, Welchův t-test

Abstract

Every cryptographic design has to be secure to fulfil its function properly.
As side-channel attacks are becoming easier and easier to perform, designers
of secure circuits must pay attention to implementing various countermea-
sures against these attacks. However, in some cases, their hard work can be
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thwarted if automatic optimizations invalidate the defences. This thesis ex-
plores the effect of synthesis parameters settings on the vulnerability of the
cryptographic designs implemented in FPGAs to side-channel attacks. It fo-
cuses on the implementation of AES with multiple countermeasures against
attacks and evaluates the effect of parameters settings on security using Test
Vector Leakage Assessment based on Welch’s t-test.

Keywords side-channel attacks, cryptography, synthesis parameters, FPGA,
Welch’s t-test
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Introduction

Security critical designs are more common than ever. Many applications are
dependent on their ability to prevent a potential attacker from interfering with
their task. In many cases, the main focus is put on the security of critical data.
Many different ciphers are widely used to encrypt any data, which could be
abused by a potential attacker. As encrypting is time and memory consuming,
using hardware to accelerate this task is preferred. Implementing the cipher
in FPGA is one option, which can help in reducing the time needed and still
keeping relatively high flexibility.

There are many different ways an attack on a critical application can be
mounted. Some of the most dangerous ones currently are side-channel attacks.
These attacks are focused on the implementation of an encryption algorithm
rather than the algorithm itself. Because of this, designers must create not
only a functional implementation but at the same time, a secure one. We
can defend from these attacks by using various techniques, that try to hide
activity by masking [2][3] the data they are working on or hiding [4] the data
from the attacker in many ways. Countermeasures shall be applied to both
software and hardware implementations of cryptographic applications.

During work on implementing different countermeasures in FPGA, col-
league Jan Brejník [5] has found out that the vulnerability to side-channel
attacks is not affected solely by the countermeasures used, but also signifi-
cantly by the configuration of synthesis parameters. Synthesis is a batch of
processes that translate RTL description of a design to a configuration of the
FPGA. This complex flow uses many different tools, which can be customized
using various parameters, to implement the desired design on board. Changes
in these parameters settings can have various consequences on the designs
implementation properties, which includes its security. This thesis expands
on Brejník’s work and explores the effects of different parameter settings on
vulnerability to side-channel attacks.

To evaluate how vulnerable the implemented design is, we utilize Test
Vector Leakage Assessment based on Welch’s t-test [6], in which the power
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consumption of implemented design is measured during encryption of chosen
constant or random data. From these power traces, two sets are created, one
containing power traces when constant data were encrypted and the other
containing power traces when random data were encrypted.. These two sets
are then compared using Welch’s t-test, and its output is used to conclude
how vulnerable is the measured design to side-channel attack.

This thesis is structured as follows: In Chapter 1, the terminology used in
this work is explained. In Chapter 2, we describe the experiment choices and
the measurement setup; this includes what cipher was chosen to implement in
FPGA, what synthesis parameters were explored, and a detailed description
of the measurement. Chapter 3 presents and analyses the obtained results and
Chapter 4 discusses potential future work. In the last Chapter we summarize
and conclude this work.
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Chapter 1
Preliminaries

In this chapter, the background knowledge needed for further reading and
basic terminology is outlined. Explanation of the Advanced Encryption Stan-
dard (AES) and its function is given, which is a widely used cipher, that is
used in this thesis. After that, side-channel attacks and possible countermea-
sures against them are described. The chosen AES implementation is then
presented. As a tool for measuring the vulnerability of the design, Test Vec-
tor Leakage Assessment using Welch’s t-test is utilized, which is also explained
here.

1.1 Advanced Encryption Standard

Advanced Encryption Standard, or AES for short, is an encryption standard,
chosen by U.S. National Institute of Standards and Technology (NIST) in
2001 to replace DES cipher, after it was broken. AES utilizes a block cipher
originating from Rijndael cipher family, created by Joan Daemen and Vincent
Rijmen.

Aes has blocks 128 bit long, and its key length can be either 128, 192
or 256 bits. As AES is just a standard, some implementation details can
differ through various designs, but in general, AES uses a similar process for
encryption, which can be seen in Figure 1.1. AES utilizes so-called rounds.
The number of rounds depends on the length of the key; there are 10 rounds
for 128 bits long keys, 12 rounds for 192 bits long keys, and 14 rounds for
keys of 256 bits. During each round, a succession of operations is performed,
which encrypt the plaintext into the ciphertext. These operations are called
SubBytes, ShiftRows, MixColumns and AddRoundKey. [7]

For the process of encryption, the input is split into 128 bits long blocks,
which are then processed consecutively. Every block is organized into a 4x4
matrix, which is then used for the encryption. We can see this matrix in
Figure 1.2.

3



1. Preliminaries

Plaintext
128 bit

AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

SubBytes

Shiftrows

AddRoundKey

Ciphertext
128 bit

Round 1 to 9

Round 10

Figure 1.1: Function of AES with 128 bit key
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1.1. Advanced Encryption Standard

p0 p4 p8 p12
p1 p5 p9 p13
p2 p6 p10 p14
p3 p7 p11 p15

Figure 1.2: Block of plaintext in matrix

SubBytes is the only non-linear function in the encryption process. This
operation is a permutation, replacing each byte in the text. It utilizes so-
called S-Box, an implementation of the permutation for one byte, which can
be represented as a look-up table, seen in Table 1.1 bellow.

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
10 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
20 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
30 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
40 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
50 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
60 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
70 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
80 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
90 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a0 e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b0 e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c0 ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d0 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e0 e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f0 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Table 1.1: S-Box for SubBytes operation in AES

ShiftRows is the second function in the encryption process. This operation
is a transposition, which cyclically shifts each row by different offset. The
offset for the first row is 0, so there is no shift, for the second row the offset
is 1, for the third row it is 2, and for the last row, it is 3. We can see this
shift in Figure 1.3. The main reason for this function is the diffusion of data,
which means to mix up the data.

MixColumns is the next function used during the encryption process, and
its main task is the same as ShiftRows, diffusion of data. This function takes
each column of the text matrix and handles it as a vector of 4 bytes, which is
then multiplied to get the desired function. The operation can be represented
as matrix multiplication, which we can see in Figure 1.4.

5



1. Preliminaries

p0 p4 p8 p12
p1 p5 p9 p13
p2 p6 p10 p14
p3 p7 p11 p15

−→

p0 p4 p8 p12
p5 p9 p13 p1
p10 p14 p2 p6
p15 p3 p7 p11

Figure 1.3: Definition of the ShiftRows function


b0
b1
b2
b3

 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02



a0
a1
a2
a3



Figure 1.4: Matrix multiplication describing MixColumns operation

AddRoundKey is the last missing part of the encryption process. This is
just a simple bitwise XOR in its own.

The critical part lies in the Key Expansion or KeySchedule process. This
operation takes the key on input and creates 10 to 14 different sub-keys,
depending on the key length. These sub-keys are then used in each round
separately. In Figure 1.5, we can see the process of Key Expansion. At first,
the key is split into 32 bits long parts, stored in C1 to C4, which is the first
rounds key, the next key is generated as shown in the figure. Last unexplained
symbol in the figure is RC[i], which is a constant, that differs depending on
the round.

C1 C2
this round key

C3 C4

g

C5 C6
next round key

C7 C8

V1 V2 V3 V4

C4

V2 V3 V4 V1

S S S S S-Box

RC[i]→

function g

Figure 1.5: Function of Key Expansion for 128 bit key
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1.2. Side-Channel Attacks

1.2 Side-Channel Attacks

A side-channel attack is a type of attack, that exploits leaking information
from the device, which is caused by an imperfect implementation or properties
of the physical device used. There are many different side-channels, which we
can use to track leakage of critical data; for example, we can use the timing
of operations, electromagnetic field, acoustic signals, or power consumption.
The last one mentioned is the main focus of this research.

Power Analysis Attacks utilize the fact that during any task, done on
a device, the power consumption of this device is directly dependent on the
data, that is processed. To perform this kind of attack, we must have physical
access to the device, or to its power supply. Then we can use an oscilloscope,
that when connected to the power circuit of the device, can measure voltage
drops which can be translated directly to power consumption. The part of
the power consumption measured is called a trace. We can see an example
of a Simple Power Analysis attack in Figure 1.6, where we can see a part
of the trace, captured during encryption with RSA. On this figure, we can
see different lengths of the operations processed at the time. Utilizing the
knowledge of RSA, we can find out that the shorter operation is just squaring
and the longer one is squaring with multiplication. With that, we can find
the key of the cipher only by taking a look at the whole trace.

Figure 1.6: Simple Power Analysis Attack on RSA [1]

There are also more advanced techniques for different ciphers. During this
research, the main focus is on the AES cipher, which can also be attacked
using the Power Analysis. Common attack used in the case of AES is Differ-
ential Power Analysis, whose description is in [8] and [9], or Correlation Power
Analysis described in [10], which is an enhanced version of the former.

1.3 Countermeasures

To lower the vulnerability of the design against attackers, implementation of
countermeasures is a must. In [2] and [3], authors present various counter-
measures utilizing dynamic reconfiguration of FPGA to achieve side-channel
protection. These countermeasures are described in this section, as they will
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be used later in this thesis. All of these countermeasures are explicitly de-
scribed for the AES cipher, as it is the cipher used in this thesis.

1.3.1 S-Box Decomposition

One of the possible countermeasures against side-channel attacks is S-box de-
composition. Power consumption of the digital circuit is proportional to the
switching activity, that is linked to the value being stored to the working reg-
ister between rounds. In classical design, the value stored in working register
strongly depends on the output of the S-Box, providing an attacker significant
information. [2]

The S-box decomposition is storing randomized value in the working regis-
ter by splitting the S-box into two bijections (R1, R2), which meet the following
criteria:

S − box(x) = R2(R1(x)) (1.1)

By putting the register in between those two bijections, we will not be
storing the actual output of the S-box, but rather some random data, which
are harder to determine. There are (2n)! possible n-bit bijections to choose as
the R1 and for every one of them, R2 is possible to compute, so the Equation
1.1 is met. [3]

We can use the dynamic reconfiguration of FPGAs to improve this coun-
termeasure by using different R1 bijection for each encryption and computing
the R2 accordingly. This will ensure that only the value of R1 is stored in the
register, which is unpredictable. To speed up the generation of new bijections,
we can select two pairs in the R1 bijection, switch them and compute only the
R2 bijection. [2]

1.3.2 Boolean Masking

Another technique to hide side-channel leakage is Boolean masking, which
hides the implementation intermediate values by introducing randomized
masks. These masks are added (XOR) at the beginning of the encryption,
and they are subtracted (XOR) at the end to reveal the ciphertext. As the
intermediate values of the implementation are changed, we must alter the
function of the circuit. [2]

The Boolean masking can be used together with the S-box decomposition
and utilize the dynamic reconfiguration of the FPGA. With the non-linear
decomposed S-box, we need two different masks m1 and m2, where mask
m2 will be used inside the decomposed S-box, and mask m1 will be used
everywhere else. To alter the implementation, so that it can work with the
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masks, is fortunately easy. We need to alter the bijections R1 and R2 from
the decomposed S-box in the following way:

R′
1(x) = R1(x⊕MixColumns(ShiftRows(m1)))⊕m2 (1.2)

R′
2(x) = R2(x⊕m2)⊕m1 (1.3)

With these changes, we can use the rest of the cipher implementation as
is, without any changes to its design. [3]

Because the R2 bijection is doing the masking and the R1 bijection the
unmasking, we must mask the input in the first round. In the last round of the
encryption, the MixColumns operation is omitted from the round, therefore
we must change the R′

1 bijection to this:

R′
1(x) = R1(x⊕ ShiftRows(m1))⊕m2 (1.4)

1.3.3 Register Precharge

The last method used to defend against the attacks is Register Precharge.
This method is trying to combat the fact that each round in the encryption is
using the same mask, which leads to leakage that can be detected using the
Hamming distance model, as can be seen here:

HD(x⊕m, y ⊕m) = HW (x⊕ y) (1.5)

To prevent the leakage, we can duplicate the single register, and therefore
the encryption rounds are interleaved with second encryption, using dummy
data. Unfortunately, this method reduces the speed of the encryption by half,
as the real data is processed only in one of two clock cycles. [2]

1.4 Cipher Implementation

To see the change in vulnerability with different parameter configurations, we
have to use a secure implementation of the cipher. Trying to track the differ-
ence in vulnerability on already vulnerable cipher implementation would not
prove anything for these tests. For this case, we decided to use the implemen-
tation from [5].

This implementation of AES utilizes dynamic reconfiguration of FPGAs
to realize all of the countermeasures described in 1.3. These are S-Box De-
composition, Boolean Masking and Register Precharge. The design created
by the author is configurable and provides multiple modes of function, as well
as all allowed key lengths (128, 192 and 256 bits). In addition to the AES
cipher used in this thesis, there are also PRESENT and SERPENT ciphers
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implemented by the author, which share the same design and can be config-
ured as well. We decided to use the AES cipher, because the author of [5]
made his observations on this cipher and we decided to continue his work.

In this case, we use the AES cipher in parallel mode with 128 bits long
key and with all of the countermeasures turned on. The parallel mode affects
the reconfiguration of the S-Boxes, which is then done in parallel and inde-
pendently on each other. In other words, the bijections R1 and R2 are derived
from different random data for each of the S-Boxes. Therefore we need more
random data for each encryption compared to the serial version, but the masks
are not dependent on each other and therefore potentially more secure.

For the reconfiguration process of the masks, we need random data. For
this implementation, this random data is generated outside the circuit and
sent before each encryption. The implementation also utilizes a trigger sig-
nal indicating that the encryption process has started. This simple addition
makes this research much more comfortable, as it helps to align all of the
measurements for later processing. Such a signal is never present in practical
implementations of any secure circuits for apparent reasons, but for this pur-
pose, it helps to remove problems with alignment and let the research focus
on the main topic.

To communicate with the cipher, we utilize UART over the serial link.
Unlike in similar implementations, where we send binary data to the device,
in this case, we transfer the data in ASCII format. This means that we must
convert the binary data has to the ASCII format, which doubles the size of
the data sent. We will address this later in this thesis, as it can be a problem.

1.5 Welch’s t-test

To assess how much of the information leaks from the implementation of
a cipher, a Leakage Assessment Methodology is needed, in this case, Non-
Specific Welch’s t-test. This statistical analysis tool is used to compare two
sets of data and evaluate, whatever they are identical or more precisely, tests
the null hypothesis that the sets have the same means. [6]

We do the testing in two phases. The first phase includes the measure-
ments, where we feed the circuit under test with data from two sets in random
order. One set of data includes a constant plaintext, that is chosen at the be-
ginning of the measurement, while the other set consists of random plaintexts,
that are generated during the measurement run. For each plaintext, we save
power consumption as a trace in the corresponding set. After these measure-
ments, the second phase is started, which does all the processing of the data.
During this procedure, both sets are evaluated using Non-Specific Welch’s t-
test, and we receive t-values from this phase. Due to its nature, this t-test is
also sometimes called Fixed vs random test. [6]
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The Welch’s t-test is evaluated for each sample point in the measured
traces separately, and the output of it is a vector of t-values. This vector is
representing the similarity of the sets of traces in each time point. A t-value
has no unit, and as proposed in [6], its absolute value should never go over 4.5.
In Figure 1.7, we can see an example of 10 overlapped traces from the random
set and the constant set. From the differences in these two graphs, we can
already deduce that they are different and that the t-value will be peaking,
which we can see in Figure 1.8.

To compute the t-value, we use the following formula, where µ1 (resp. µ2)
correspond to sample means of the two sets, s2

1 (resp. s2
2) correspond to their

sample variances and n1 (resp. n2) correspond to the cardinality of these sets.

t = µ1 − µ2√
s2

1
n1

+ s2
2

n2

(1.6)
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(a) Random set (b) Constant set

Figure 1.7: Example of 10 traces from random and constant sets

Figure 1.8: Example of t-value graph to the measurement from Figure 1.7
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Chapter 2
Experiment Description

Most countermeasures against side-channel attacks are highly dependent on
their implementation in the cryptographic design. Making changes on the
register-transfer level could pose a significant threat to the security of the
design even if the changes do not alter the primary function of the implemented
cipher. This type of changes is frequently used while making optimizations.

Faster and smaller designs are preferable in most applications, so opti-
mizations are always welcome. While using automated tools for this task is
easy, fast and seamless, it is not always the safest option. Some optimization
techniques used in these tools are moving parts of the integrated circuit to im-
prove its parameters, but these changes could be dangerous for implemented
countermeasures and at the same time the security of the whole design.

For the purpose of this thesis, the parameters that we tested are all from
ISE Design Suite by Xilinx [11], which is a software tool for working with Xilinx
programmable devices. The tool allows to synthesise, implement, analyse and
simulate designs for FPGAs by Xilinx. There are several consecutive steps
(Synthesis - Translate - Map - Place & Route - Bitstream Generation) in the
translation of the RTL description into the configuration of the FPGA. Each
of these steps is controlled by a set of parameters that may influence the
result. Testing all combinations of parameters is far beyond our capabilities
and resources; therefore, we focused on parameters that seemed most likely to
have some impact on the placement of crucial parts of the design.

2.1 Chosen Parameters
As stated earlier in this chapter, the design was synthesised and implemented
in ISE Design Suite by Xilinx. It is multi-purpose software that can manage
implementations of the design on Xilinx FPGAs and even help with analysis
and simulation of the design. Unfortunately, Xilinx has halted development
of this software, as it supports only older boards which Xilinx is slowly dis-
continuing. Their new substitute software Vivado is however aimed only at
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newly-released boards, which means that ISE Design Suite is still widely used
today.

Choosing parameters to test was done in two ways. Firstly in [5], the
author inspects three parameters, which could pose a threat to the security
of the implementation, namely Keep Hierarchy, Register Balancing and Allow
Logical Optimizations Across Hierarchy, which are described later in this sec-
tion. In his view, these parameters are crucial for the security of his work and
setting them in another configuration than the one proposed could degrade
the security of the implementation to a lower level. This statement started
these test measurements, and repeating his experiments was the priority for
this thesis. Secondly, there are a few parameters, which designers can use
when trying to match tight user constraints, mainly the performance of the
implementation. Some of these parameters add some kind of non-deterministic
behaviour to the process of synthesis, which could make the implementation
more vulnerable. In this thesis, we study the influence of the Starting Placer
Cost Table parameter. This parameter completely changes the approach of
the Map and Place&Route procedures in a sparsely documented way, by us-
ing different cost tables for each operation. Therefore, this parameter has
a high potential to make some changes to the design that could make the
implementation less secure to attacks.

2.1.1 Keep Hierarchy

The first parameter chosen in [5] is Keep Hierarchy. This parameter is one
of many that control the synthesis procedure, but it is propagated to other
procedures too, if not set otherwise. It has three available states: Yes, No and
Soft. Setting the parameter to Yes or No will tell the synthesis if it should
preserve the design unit in its hierarchy or if it can merge the units, to get
better optimization criteria. Setting this to Soft will keep the hierarchy of a
specific design unit during synthesis, but it will not preserve the hierarchy of
the design in other steps of implementation, specifically in Place&Route.

As a default, this parameter is set to No, so the synthesis does not have
to follow hierarchy and can potentially move some parts of the design across
hierarchy, which could badly influence the security of the implemented cipher.

2.1.2 Register Balancing

The second parameter tested in [5] is Register Balancing. This parameter
decides if the synthesis can or can not move registers through combinatorial
logic to allow for evenly distributed path delays between registers. It can
be in four states: Yes, No, Forward and Backward. Yes allows moving of
the registers in any direction, No disables this functionality and Forward and
Backward allows just for the registers to be moved one way, either forward in
the path, or backward.
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The default value of this parameter is No, which showed to be the best
choice for the security of the design.

2.1.3 Allow Logical Optimizations Across Hierarchy

The third and the last parameter from [5] is Allow Logical Optimizations
Across Hierarchy. Unlike previous parameters in the group, this one does
not make changes in synthesis, but rather in Map process. This parameter
has only True and False states, and it is similar to the Soft setting in Keep
hierarchy, as when set to True, the Keep Hierarchy setting is ignored during
the Map process and optimizations through hierarchies are allowed again.

The default state for this parameter is False, which keeps the selected
setting of Keep Hierarchy. Setting this to True can help achieve better timing
performance thanks to more available optimizations. However, at the same
time, it can create a vulnerable spot in the implemented cipher by moving
some security-critical parts of the design.

2.1.4 Starting Placer Cost Table

Besides the above three parameters discussed in [5], we also explored the pa-
rameter Starting Placer Cost Table, that also controls the Map process. This
parameter is different from the previous ones, and unlike the previous param-
eters, which alter the process of synthesis with observable and deterministic
changes, this parameter does the complete opposite. It is not well documented,
with just a few sentences in the official manual, which are not very helpful in
understanding its function. The parameter is not set for synthesis but Map
and Place&Route procedures and is mainly used when trying to get better
performance from one design. Its value is a number between 1 and 100, where
every setting then uses a different tactic to implement the design on the chip.
The default value of this parameter is 1. Trying all settings and picking the
best performing one is a commonly used procedure when trying to match tight
user constraints on performance. As stated before, Xilinx does not describe
the effect of these settings and usage of these parameters could be a risk to
vulnerability, which we will test in this thesis.

2.2 Experiment Approach
To determine the effect of the parameters on the implementation of the cipher,
we need a way to measure the vulnerability of implementation statistically.
For this purpose, Welch’s t-test is used, which is described more in-depth in
1.5.

Measuring the impact of the parameters on security is done in two exper-
iment groups. In the first group, the influence of Keep Hierarchy, Register
Balancing and Allow Logical Optimizations Across Hierarchy is measured, as
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these parameters can affect each other. During these measurements, we set
the Starting Placer Cost Table to 1, which is its default value. Both Keep
Hierarchy and Register Balancing were set only to their Yes and No values
as we did not test other possible values. Together with two available values
of Allow Logical Optimizations Across Hierarchy, this results in 8 possible
combinations of their settings, which we generated and tested all.

In the second group of experiments we solely test the influence of the
Starting Placer Cost Table parameter by varying its value between 1 and
100, while other three parameters (Keep Hierarchy, Register Balancing, Allow
Logical Optimizations Across Hierarchy) are set to a combination, that is
recommended by the author of the design in [5]. This combination is:

• Keep Hierarchy: Yes

• Register Balancing: No

• Allow Logical Optimizations Across Hierarchy: False

All implementations, synthesized from the same description under different
sets of parameters, are generated in ISE Design Suite. We then compare
them to see if the design tool generated different implementations or if there
are some duplicates. We then remove the duplicates and test only unique
implementations.

We execute the measurement for every combination of parameters and
save the results in the sets defined earlier. We then process these results
with Welch’s t-test and present them as a graph of t-values in time. We
then compare these graphs and make a verdict on the vulnerability of these
settings from them. The t-value should not go over 4.5 in a secure circuit, and
getting higher values means the implementation tested could be vulnerable to
side-channel attacks. [6]

2.3 Measurement Setup

In this section, we describe the measurement scenario in detail, and we show
how the measurements are realized. We summarize all tools and devices used
to run the measurement and then present them one by one. Besides that, we
describe modules for these tools that we had to create or modify.

To ensure a fair comparison, we made all measurements with the same
configuration of devices and tools. We can see the measurements setup and
its description in Figure 2.1.

The central part of the measurement chain is the Sakura-G board, which
is connected to a PC via the serial link for communication, utilizing the USB
to UART adapter. The PicoScope 6404D is connected to the PC by a USB
cable for transfer of measured data. It is also connected to the Sakura-G
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Figure 2.1: Measurement setup. Cryptographic design is downloaded into
Sakura-G FPGA Board (2) via XUP USB-JTAG Programming Cable (3).
Host PC (not shown) communicates with Sakura-G via USB to UART Serial
Adaptor (4). Oscilloscope PicoScope 6404D (1) collects power traces during
encryptions and sends them to host PC.

board in two ports. One port is for the power traces measurement, for which
the board has a dedicated connector and the second connection to the board
is for the trigger signal. Last part of this setup is the Xilinx XUP USB-JTAG
programmer, that loads all the different implementations to the FPGA on the
board. All of these parts are described more deeply in this section.

2.3.1 Target Platform

We used Sakura-G board [12] to measure the leakage of every implementa-
tion. This board utilizing Spartan-6 FPGA by Xilinx is explicitly designed
for research and development on hardware security and therefore is useful for
testing side-channel attacks. The board can also make use of two Spartan-6
FPGAs, where one can serve as the primary security circuit and the other as
a controller to speed up the measurements. We did not utilize this controller
for the measurements made in this thesis, because in the implementation of
the cipher from [5], the author designed it to communicate directly with the
measuring computer and we did not want to alter the original code. The
Sakura-G board has a direct port to measure the power consumption of the
primary processing FPGA.

2.3.2 Oscilloscope

For the measuring part of this task, we used PicoScope 6404D [13] oscilloscope
by Pico Technology. This oscilloscope has 500 MHz bandwidth, 4 analogue
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channels and maximal sample rate of 5 GS/s. We use Channel 3 for the
direct measurement of power consumption of the security circuit FPGA on
the Sakura-G board, and channel 1 for the trigger signal, that starts the
measurement. The reason for this routing is mainly for easier manipulation
with the cables, and it does not serve any other purpose.

2.3.3 SICAK Toolkit

To control all experiments, to run the statistical analysis on acquired results,
and to visualise the results, we used SICAK toolkit [14]. SICAK is a software
toolkit containing different utilities developed for side-channel analysis. It is
a powerful command-line tool, that is actively developed and supported. It
consists of many smaller utilities, but for the use in this thesis, we need just
a few of them, more precisely the meas utility, the stan utility and the visu
utility.

meas is the measuring utility in the SICAK toolkit. It takes a pre-
programmed measurement scenario as a parameter and uses it to make the
measurements. This scenario is specific for the application, but included
scenarios already have Welch’s t-test implemented. The problem is that the
included scenario for it needs to communicate with the tested circuit via
the serial port using binary format. The implementation of the cipher used
in this research, unfortunately, communicates through the serial link using
ASCII symbols. To get around this problem, measurement scenario-specific
for this use case had to be created, using the existing one. We can find more
about this scenario in 2.3.4. In Figure 2.2 is a typical usage of this utility in
the completed measurements. We can find an in-depth description of each
parameter in SICAK documentation [15].

meas −I m1 −M tt e s t 1 2 8b r e j −O ps6000 −S conf . j son
−C s e r i a l p o r t −D //./COM4 −E conf . j son
−n 100000 −−param ch=3

Figure 2.2: Example of meas command

The JSON configuration file is another main component of the measure-
ment scenario, and it is used to manipulate frequently changed parameters of
the scenario. It can be split into two files for the oscilloscope and the commu-
nication device, or it can be combined into one file with both configurations.
We can see an example of this file in SICAK Documentation [15].

This utility saves the data from the measurement in multiple files. There
are two files containing random plaintexts and their ciphertext counterparts
generated during the runs, where measurement of non-constant plaintext was
needed. The measurements themselves are saved in two files as well, one

18



2.3. Measurement Setup

file named constant-traces.bin containing traces of all runs, where the
scenario used constant plaintext and one file named random-traces.bin con-
taining the rest of the traces, where the scenario used a random plaintext.
The last file created by this utility is JSON file containing information about
the measurement, which we can then use as input for the next utilities.

stan is the second utility needed for this research. After taking the mea-
surements with the meas utility, this one processes the recorded data. The
tool uses one of the supplied plug-in modules, either CPA or t-test, but for
this research, we only use the t-test module to handle the data measured. The
t-test module utilizes Welch’s t-test. This utility also has multiple use modes,
specifically create, merge and finalize. Merge function is optional, but we must
use both other functions to get the results. The first function, create, takes the
measured data from the meas utility and makes context file from it. Multiple
context files can be joined together into one using the merge functionality of
the utility. This functionality is useful when the measurement, which can be
tediously long, is split into multiple smaller batches. When the context file
is complete with all measurements, finalize function is used, that takes the
context file as input and outputs a binary file with t-values over every sample.

We can see a typical usage of the stan utility in Figure 2.3 and we can
find the description of every parameter in SICAK Documentation [15].

stan −I s1 −T t t e s t −F cr ea t e m1. j son
. . .
s tan −I s −T t t e s t −F merge −a t t e s t−sX . ctx

−b t t e s t−sY . ctx
. . .
s tan −I s f −T t t e s t −F f i n a l i z e −a t t e s t−s−merged . ctx

Figure 2.3: Example of stan command

The create function must make the .ctx context file from every measure-
ment first and after merging all of these files together, the finalize completes
the processing and outputs .tvals file containing all of the t-values in binary
format. When using the create function, it is possible to use a configuration
file, generated by meas utility during the measurement phase, which makes
it possible to move from measurements straight to the processing.

visu is the last utility needed from SICAK toolkit, as it can visualize most
of the binary files SICAK uses. The utility takes a file generated by SICAK
and transforms it into a graph, that is easier to understand and process by
a human. Unlike the stan utility, this one does not take any configuration
files so we must write out all of the parameters in the command, which we can
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find in the SICAK Documentation [15]. Two main uses of this utility during
this research were to show graphs of t-values and to export traces of power
consumption into a graph for troubleshooting. An example of usage of this
utility can be seen in Figure 2.4, while Figure 2.5 shows the output of that
command.

v i su −t random−t race s−m1. bin −n 50338 −s 3375 t , 0 −D

vi su −a t t e s t−s f . t v a l s −s 3375 v , b lue −D

Figure 2.4: Example of visu command

(a) trace (b) t-value

Figure 2.5: Output of commands in Figure 2.4

As the measurements can take a long time to finish, automation of the
process is required. We use all of the SICAK toolkit utilities by running
their specific commands from the command line, which we can easily pack
into a script. For the measurements, we used the Windows operating system,
and with it, we chose its native BATCH format for scripting as a way of
automation. With this, we split the whole automated process of getting the
result data into two parts.

First automated part consists of doing the measurements, where we pre-
pare all the bitstreams in folders, that are automatically programmed onto
the board, after which the we use the meas utility to do the encryptions on
the board and save the traces of power consumption during these encryptions.
Due to some problems with corrupted files, we divided each measurement into
multiple smaller files, so one corrupted file can be remeasured faster.

The second part of the automated process is the processing of measured
data from the first part using the stan utility. We merge all contexts from the
measurement files together here, and after finalizing the results, we use the
visu utility to get the graphs of t-values for every measured configuration.
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2.3.4 Measurement Scenario for SICAK

One of the problems encountered during the preparations for the measure-
ments was that the chosen cipher implementation from [5] communicates with
the PC by sending one byte of data as an ASCII representation of its hex-
adecimal value. Unfortunately, SICAK does only supports communication
with binary representation, therefore creating our own scenario for the meas
utility from SICAK was necessary. The ttest128co plug-in module included
in SICAK served as a baseline, which was then modified to work with ASCII
characters instead of binary representation.

The second thing that we had to change from the ttest128co module
was the way the commands are sent to the board over the serial link. The
original module sends one starting command at the beginning followed by
the cipher key and after that starts repeating the measurement procedure,
where it sends the device another starting command followed by the plaintext.
This procedure is repeated the desired number of times, and we save the
power consumption of the board for each plaintext during this time. The
implementation of the cipher we use however needs to receive the cipher key
and the plaintext in brackets, that are specific for the type of data sent, so
the format of commands had to be changed too.

Another thing that is different from the ttest128co module is, that the
implementation utilizes echo, repeating everything it receives back to the
sender. For this reason, we had to add a functionality that receives all of
these repeats, for the tested circuit to work correctly.

The last thing that does not match the ttest128co module is tied to the
better security of the implementation, which uses dynamic reconfiguration
of the circuit. This process needs random data as a seed to work, and this
random data must be sent to the circuit from the PC before every encryption.
We added this functionality too, and the new module first generates a random
stream of data, that we send with the plaintext to the board at the beginning
of each encryption.

This new scenario was called ttest128brej and it can be found on the
medium included with this thesis.

Another side-effect of this mean of communication is that we must send
every byte of data as two bytes, which doubles the time to transmit everything
between the Sakura-G board and the computer. In the case of [5], the author
compensated for this by increasing Baud Rate at which are the measuring
computer and FPGA communicate over the serial link. Unfortunately for us,
using high Baud Rate, not supported by Windows operating system resulted
in anomalies and we had to use lower Baud Rate of 115200 Bauds, supported
by Windows.
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Chapter 3
Measurement Results and

Discussion

In this chapter, we present and analyse the measurement results, after which
we make a discussion about their cause. We present the results as graphs of
t-values for each configuration of parameters in time. These graphs are then
analysed to see if there is any leakage, which could make the implementation
vulnerable to side-channel attacks using Power Analysis.

As stated earlier, measurement results are split into two groups by param-
eters that are modified. We used Welch’s t-test [6] to evaluate the security
of the tested circuit. As stated in [6], the t-value should not exceed 4.5 in its
absolute value, because higher values indicate leakage that may be exploited
by an attacker. The boundary of 4.5 is displayed in each graph by two purple
horizontal lines for easier identification.

Figure 3.1 displays an example of power consumption during one run of
encryption with the chosen implementation of AES. There are vertical red
lines, highlighting each round of AES. These lines are also in the t-value
graphs for better understanding of what is happening.

In some cases, the t-value spikes significantly at the end of the measure-
ment. This phenomenon is addressed closely in Section 3.3.

3.1 Keep Hierarchy, Register Balancing and Allow
Logical Optimizations Across Hierarchy

During the first part of the measurements, we examined the effects of different
combinations of parameters Keep Hierarchy (KH), Register Balancing (RB)
and Allow Logical Optimizations Across Hierarchy (ALOAH). The author
of the chosen secure AES implementation [5] suggested these parameters as
critical to the security. His work recommends to set the Keep Hierarchy
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Figure 3.1: Single trace of power consumption during AES encryption with
highlighted rounds

parameter to Yes and disable both the Register Balancing and Allow Logical
Optimizations Across Hierarchy.

During these measurements, we set the Starting Placer Cost Table pa-
rameter to its default value, which is 1. For each of the implementations, we
saved the report summary from the ISE Design Suite, and we can see these
in Appendix B.

3.1.1 Measurement Results

Figures 3.2 to 3.9 show graphs of t-values in time during AES encryption
using all eight combinations of parameters Keep Hierarchy (KH), Register
Balancing (RB) and Allow Logical Optimizations Across Hierarchy (ALOAH).
Note that we set the parameter Starting Placer Cost Table to 1. For every
combination, we recorded and processed 1 000 000 traces of encryption runs,
which is a statistically significant sample, and we can make assumptions from
it.

Each measurement of 100 000 traces took approximately three to four
hours, which means that measuring the 1 000 000 traces for each of the eight
bitstreams took us about 12 days. However, the real time was longer as there
was some processing overhead and we could not run the measurements all the
times.
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3.1. Keep Hierarchy, Register Balancing and Allow Logical Optimizations
Across Hierarchy

Figure 3.2: KH=No, RB=No, ALOAH=False

Figure 3.3: KH=No, RB=No, ALOAH=True
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Figure 3.4: KH=No, RB=Yes, ALOAH=False

Figure 3.5: KH=No, RB=Yes, ALOAH=True
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3.1. Keep Hierarchy, Register Balancing and Allow Logical Optimizations
Across Hierarchy

Figure 3.6: KH=Yes, RB=No, ALOAH=False

Figure 3.7: KH=Yes, RB=No, ALOAH=True
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3. Measurement Results and Discussion

Figure 3.8: KH=Yes, RB=Yes, ALOAH=False

Figure 3.9: KH=Yes, RB=Yes, ALOAH=True
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3.1. Keep Hierarchy, Register Balancing and Allow Logical Optimizations
Across Hierarchy

KH RB ALOAH
Maximum t-value

FigureDuring The whole
encryption measurement

No No False 4.74562 12.3205 3.2
No No True 5.83171 8.99362 3.3
No Yes False 9.23876 9.23876 3.4
No Yes True 10.4804 10.4804 3.5
Yes No False 3.79937 6.84836 3.6
Yes No True 3.34124 23.0041 3.7
Yes Yes False 2.25137 23.2088 3.8
Yes Yes True 3.83813 8.37266 3.9

Table 3.1: Summary of measured t-values

3.1.2 Discussion

In Table 3.1, we can see all of the measurements summarized with the highest
t-value during encryption and the highest t-value during the whole measure-
ment run with the recommended parameter configuration highlighted.

As can be seen in Figure 3.6 (KH=Yes, RB=No, ALOAH=False), this
recommended configuration of parameters seems like one of the best, with
t-value dropping just barely at the end to -5.5, which could be due to the
circumstances discussed later in Section 3.3.

Another surprising thing to see is that in Figure 3.9 (KH=Yes, RB=Yes,
ALOAH=True), the t-value indicates that this implementation seems equiva-
lently secure as the recommended one. This is very counter-intuitive as having
Register Balancing and Allow Logical Optimizations Across Hierarchy turned
on could make the circuit more vulnerable, but it seems like that in this case,
there were no changes made during the synthesis, which would make this
design less secure.

Figures 3.4 (KH=No, RB=Yes, ALOAH=False) and 3.5 (KH=No,
RB=Yes, ALOAH=True) show clearly, that using the opposite values of
KH and RB parameters to the recommended ones made the implementation
vulnerable to side-channel attacks. The t-value spikes during the first two
rounds of AES encryption, which are the most used rounds when using
power analysis attacks on AES. The spikes in t-value are not that big as in
non-secured implementations shown in [5], but they are out of typical values
and would pose a threat to security.

The spikes at the ends of measurements, particularly visible in Fig-
ures 3.7 (KH=Yes, RB=No, ALOAH=True) and 3.8 (KH=Yes, RB=Yes,
ALOAH=False) were also present during virtually all measurement tests, and
we discuss their probable cause and consequence in Section 3.3.

Observing Figures 3.2 (KH=No, RB=No, ALOAH=False) and 3.3
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3. Measurement Results and Discussion

(KH=No, RB=No, ALOAH=True), we can find similar spikes at the end of
the measurement runs, but unlike the previously discussed measurements,
here are the spikes right at the end of last round. This seems like there could
be some leakage making this implementation vulnerable, but after closer
inspection, we can see that this peak occurs after the encryption process and
we can attribute this peak to the phenomenon described in Section 3.3.

In Table 3.2, there is a summary of the implementation reports from ISE
Design Suite, that can be found in Appendix B. Here we can see the effect of
the parameter configuration on the number of registers, LUTs and slices used,
together with the minimal clock period possible. The Keep Hierarchy (KH)
parameter seems to have the most significant effect on the implementation,
followed by the Register Balancing (RB) parameter. The Allow Logical Op-
timizations Across Hierarchy parameter seems to have the least effect. The
recommended configuration of parameters is highlighted.

KH RB ALOAH Registers LUTs Slices
Minimum
period (ns) Figure

No No False 5998 8391 2902 21.451 3.2
No No True 5998 8391 2902 21.451 3.3
No Yes False 6004 8962 3145 19.703 3.4
No Yes True 6004 8962 3145 19.703 3.5
Yes No False 6127 10124 3364 20.752 3.6
Yes No True 6127 9744 3237 24.722 3.7
Yes Yes False 6127 10519 3608 20.425 3.8
Yes Yes True 6127 10380 3245 17.341 3.9

Table 3.2: Effect of the parameters on the implementation details

Another thing discovered after analysing these results is that there were
two cases of duplicates in these configurations. Due to the way the Allow
Logical Optimizations Across Hierarchy parameter functions, configurations
in Figures 3.2 (KH=No, RB=No, ALOAH=False) and 3.3 (KH=No, RB=No,
ALOAH=True) are the same bitstreams, which also applies to implementa-
tions in Figures 3.4 (KH=No, RB=Yes, ALOAH=False) and 3.5 (KH=No,
RB=Yes, ALOAH=True), that are also duplicates. This is due to the fact
that ALOAH parameter only turns KH parameter to No after the synthesis
is complete. However, because KH is set to No in these configurations, the
ALOAH parameter does not affect the design. We can see that these duplici-
ties resulted in slightly different graphs. This is due to the randomized data
used in the Welch’s t-test and also due to different physical conditions during
the measurements.

Comparing our results with the results that the author of [5] got, we can
see some differences. For Figures 3.2 (KH=No, RB=No, ALOAH=False)
and 3.3 (KH=No, RB=No, ALOAH=True), his results are getting high t-

30



3.2. Starting Placer Cost Table

value spikes during the first few rounds and the same applies for Figure 3.8
(KH=Yes, RB=Yes, ALOAH=False). All the other parameter configurations
got us the same results. His results were gathered from 300 000 traces for each
implementation and unfortunately, they are not published anywhere, but the
author kindly gave us access to these results.

3.2 Starting Placer Cost Table
In the second part of the measurements, we examined the Starting Placer
Cost Table (SPCT) parameter. We chose this parameter as designers often
use it to match tight memory or time constraints of the designed circuit during
the Map procedure. Changing this parameter lets the designer create different
implementations from the same design without making any changes that could
change the design drastically.

Starting Placer Cost Table (SPCT) parameter can be set to values of 1 to
100, but after using all of them and comparing generated implementations,
we found some duplicities. From the possible 100 configurations, only 46
generated unique bitstreams. After removing every duplicate and leaving only
the first unique occurrence of every file that was generated multiple times, the
values left were the following:

1 2 4 5 6 7 8 9 10 11 12 17 18 19 22
27 28 29 31 37 39 40 41 47 49 51 53 56 57 58
60 68 69 73 74 77 78 79 86 87 88 91 93 95 96
98

When generating implementations for all values of SPCT parameter, we
set the parameters Keep Hierarchy (KH), Register Balancing (RB) and Allow
Logical Optimizations Across Hierarchy (ALOAH) to the values recommended
by the creator of this design [5]. These settings are KH=Yes, RB=No and
ALOAH=False.

3.2.1 Measurement Results

For each setting of Starting Placer Cost Table (SPCT) measured, we recorded
300 000 traces, as there are more bitstreams to measure. As stated earlier,
measuring 100 000 took us about three to four hours, therefore just the mea-
surements in this experiment approximate to 20 days. This sample size is still
enough to estimate the vulnerability of the configuration and have significant
proof to support it.

All of the measurement results for this part can be found in Appendix A,
where we can see many graphs depicting every different configuration.

Some of the more interesting examples of these graphs can be seen here in
Figures 3.10 through 3.15. The graphs in Figures 3.14 and 3.15 are represent-
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ing the most commonly obtained results that we got during these measure-
ments. All of the results depicted here are then discussed in Section 3.2.2.

Figure 3.10: SPCT=1
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Figure 3.11: SPCT=74

Figure 3.12: SPCT=8

33
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Figure 3.13: SPCT=93

Figure 3.14: SPCT=17, common occurrence
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Figure 3.15: SPCT=77, most common result
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3. Measurement Results and Discussion

SPCT Encryption All
1 4.66137 4.66137
2 3.02121 6.40176
4 2.61497 4.18676
5 3.19079 9.13967
6 3.85763 10.0987
7 2.94035 4.47197
8 2.71808 13.2312
9 2.79295 3.70776
10 2.71645 5.81644
11 3.88973 5.69192
12 3.18508 17.7605
17 4.04652 13.5741
18 3.54947 3.68265
19 3.31398 3.95119
22 2.87762 5.30433
27 3.66442 7.09814
28 2.53476 6.32571
29 2.71008 4.44222
31 3.4037 5.33605
37 2.98636 12.4724
39 3.17341 5.73962
40 3.15729 4.98128
41 3.05212 11.8219

SPCT Encryption All
47 2.72679 6.92341
49 3.68028 5.1538
51 3.11814 5.17906
53 3.14994 6.51683
56 2.82286 4.51883
57 3.65498 11.7555
58 3.21451 5.96552
60 3.28442 5.33132
68 3.53053 5.06532
69 2.4085 4.26307
73 3.2313 9.57199
74 5.50839 7.71146
77 3.26469 4.68116
78 3.13566 5.08574
79 3.36239 9.45607
86 3.46668 9.92921
87 2.93188 4.17628
88 2.90624 5.05841
91 3.86929 5.29514
93 4.33165 5.65837
95 2.0419 6.40732
96 3.56638 8.17365
98 4.01364 7.04754

Table 3.3: Summary of measured t-values

3.2.2 Discussion

During the measurements of Starting Placer Cost Table (SPCT) parameter,
the results were very similar to each other, as should be expected. In Table 3.3,
we can see a summary of every measurement, with highest t-value recorded
during encryption and highest t-value in the whole measurement. Mostly, the
graphs of t-values showed that the implementations were secure as can be seen
in the example graph in Figure 3.15 (SPCT=77).

We can see another common type of results that we got in Figure 3.14
(SPCT=17). Here we can see the spike, similar to the ones got during the
measurements of the previous group of parameters. We address the probable
cause for this in Section 3.3.

In addition to these similar graphs, a few surprising results showed up too.
In Figure 3.12 (SPCT=8), the spike at the end of measurement is showing
right after the last round of encryption. This can also be seen in the previous
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3.3. Transfer of Non-Masked Data

part of the experiment in Figures 3.2 (KH=No, RB=No, ALOAH=False) and
3.3 (KH=No, RB=No, ALOAH=True). However, this spike occurs after the
encryption completes and therefore it is only another cause of the phenomenon
described in 3.3.

Figure 3.11 (SPCT=74) shows the only implementation, where the t-value
exceeded the limit of 4.5 and peaked to 5.5. This could mean that this config-
uration is vulnerable to side-channel attacks. After examination of the graph,
we can see that the leakage is happening only after the second round. Mea-
suring more traces for this implementation would be necessary to see if the
leakage rises, and therefore the security of this implementation is threatened.

We can see another surprise in Figure 3.10 (SPCT=1), where there is a
minor spike in implementation using the default value of the Starting Placer
Cost Table parameter. This is, however, just an anomaly in the measurement
as this configuration is the same as the measured implementation presented
in Figure 3.6.

In Figure 3.13 (SPCT=93), a minor spike presents itself after the sixth
round of encryption. However, as the t-value does not go over 4.5, this is not
considered a risk to security, and we would need more measurements of this
implementation to show the real effect of this configuration.

All of the graphs are in Appendix A. From Table 3.3, we can see that this
parameter does not have a significant effect on the vulnerability of the design
in most cases, but the one case in Figure 3.11 (SPCT=74), could threaten
this claim; however, more measurements are needed, as the peak is not that
significant.

3.3 Transfer of Non-Masked Data

In many different measurement results, we can find a spike in t-value at the end
of the measurement run. This phenomenon was also observed and addressed
by the author of the chosen cipher implementation in [5]. Most probably, we
can attribute the cause for these increases in t-value to the fact that each
ciphertext is sent to the measuring computer from the FPGA board in non-
masked format after the encryption is complete.

Sending the unmasked ciphertext means that the FPGA has to unmask
it at some stage after the encryption process. This is normally done later
after the measurement is long complete, but in some cases, the optimizations
in synthesis procedure can make enough changes in the design that the un-
masking of the ciphertext is processed much sooner. Therefore, the design
unmasks the ciphertext during the measurement, and we can see the leakage
of this ciphertext in the power trace.

The reason that we can see this leakage is due to the way that Welch’s t-test
works. Because it compares two sets of data, one random and one constant,
once the constant text is unmasked, the circuit is working with the same data
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3. Measurement Results and Discussion

in every measurement run, where the constant data is used. That makes it
easier for the t-test to differentiate between the sets and therefore, the t-value
rises. This can be removed by sending the masked ciphertext back to the
PC and unmasking it in the PC instead. However, the implementation used
in this experiment could not have been easily modified to send the masked
ciphertext and possibility to compare the results with the author would have
been lost if we have made any changes.

Because this leakage does not originate from the encryption phase, but
rather from the working with unmasked ciphertext, we do not have to consider
this leak a vulnerability, and we can mark all of the implementations with this
peak as secure.
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Chapter 4
Future Work

In this chapter, we present a possible continuation of this work. There is a sug-
gestion for improvement during the next measurements, and also some ideas
for potential future extensions on this thesis, that would make its contribution
more significant.

4.1 Increase the Number of Traces

The number of traces measured for each individual implementation is some-
thing that can always be improved, no matter the current number. Increasing
the number of traces measured will always increase the credibility of the ex-
periment.

In this research, we measured 1 million traces for the first measurement
group, which we can consider enough to support the results we got, but as
was said, adding more traces is always welcomed. For the second measurement
group, 300 thousand traces were measured for each implementation, because
of the high volume of bitstreams to test. This test served to see if there is
a possibility of information leakage in any of the implementations, but to have
convincing evidence of the leakage, we would need to extend the measurement
at least for the cases, which showed a hint of leakage.

As was stated in earlier chapters, measurement of 100 000 traces took us
approximately 3 to 4 hours, depending on the number of corrupted files that
had to be measured again. For example, to measure 1 000 000 traces for all
of the Starting Placer Cost Table configurations, it would take approximately
70 days of measurements, but there is also the overhead with processing.

4.2 More Different Parameters

An idea for future extensions on this topic would be to test more various
parameters, which could have some impact on the vulnerability to side-channel
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attacks. There are many different parameters in the ISE Design Suite, which
was used in these measurements and finding the right ones to test is not an
easy task. One possible approach for finding the right parameters for testing
could be to look for parameters, that are used when designers are trying to
get better optimizations. Few examples of possible parameters could be these:

• Optimization Goal

• Optimization Level

• LUT Combining

• Placer Effort Level

• Global Optimization

Another thing to consider would be to move to the new software from
Xilinx, Vivado. This would need to change the board used, as Vivado does
not support the Spartan 6 FPGAs on the Sakura-G board. This software
would bring a new set of parameters to test and newer FPGA boards to work
with, like e.g. Sakura-X board [16] equipped with Kintex 7 FPGA.

When choosing new parameters to test, we would have to consider a pos-
sibility, that some parameters affect others and so a best practice would be to
try combinations of different parameters. However, this would make it very
tedious to measure all possibilities, so the preferred way is to thoughtfully
analyse all of the chosen parameters and decide, which to group together and
which to leave alone.

4.3 Multiple Designs
Measuring the impact of the parameter change on one design could not be
enough to see possible vulnerability, as the changes made by the parameters
could not affect the chosen design. A possibility would be to have multiple
different designs of a cipher, which would be tested each with every parameter
configuration. This would slow down the measurement process, but it would
have a bigger chance to show if any of the parameters could pose a threat to
the security of any circuit. This would make the results more generalizable.

Using all of the suggestions in this chapter would significantly increase the
interest of this research, but at the same time would drastically increase the
time needed for all of the measurements and preparations. This topic is not
very widely researched and could prove to be an important one in near future.
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Conclusion

This thesis aimed to explore the effects of different configurations of the syn-
thesis parameters on vulnerability to side-channel attacks. As the base for
this research, we used a thesis by colleague Jan Brejnik [5], where he men-
tions possible security problem in his implementation of AES cipher. We used
his implementation to test various settings of parameters, and we also chose
a part of the tested parameters from his work. To evaluate how vulnerable the
circuit is, we utilized Test Vector Leakage Assessment using Welch’s t-test [6].

We have chosen four parameters for the tests and split their tests into
two parts. In the first part of tests, we explored all possible combinations of
parameters Keep Hierarchy, Register Balancing and Allow Logical Optimiza-
tions Across Hierarchy. We generated implementation of the AES cipher for
each of these combinations and measured testing data containing 1 000 000
traces for every configuration. This data was then processed and shown as
a graph of t-value. When analysing these graphs, we have found that some
of the combinations of these parameters made the circuit more vulnerable to
side-channel attacks than others. Setting Keep Hierarchy to No and Register
Balancing to Yes proved to be the worst case of all tested, as the t-value spiked
to values between 9 and 10. The best cases were for Keep Hierarchy set to
Yes and Register Balancing set to No, where the peaks stayed under the 3.5
mark and surprisingly setting Keep Hierarchy to Yes and Register Balancing
to Yes proved to be another good configuration, with t-value also bellow 3.5.
The Allow Logical Optimizations parameter seemed to have very little to no
effect on the vulnerability.

As the second part of the tests, we evaluated the impact of a parameter
Starting Placer Cost Table. We chose this parameter as many designers use
it for matching tight memory or time constraints, and its documentation is
shallow. During this test, we generated bitstreams for every possible value
of this parameter, which is 1 to 100. After checking these 100 implementa-
tions for duplicates, we were left with only 46 unique ones; we tested every
unique implementation using the t-test with 300 000 traces. During these
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test, we have not found any significant proof that this parameter could make
the circuit more vulnerable to side-channel attacks, as most values did not
peak over 4. However, implementation for SPCT=74, which peaked to 5.5,
could be dangerous, but more measurements focused on this implementation
are needed, as the peak is not significant enough.

In the measurements, we discovered an anomaly of high leakage of infor-
mation at the end of some measurements. We attributed this to the fact that
the used implementation of AES is sending back the non-masked ciphertext,
which has to be unmasked after the encryption is complete.
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Appendix A
Measurement Results for

Starting Placer Cost Table

Figure A.1: SPCT=1
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Figure A.2: SPCT=2

Figure A.3: SPCT=4
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Figure A.4: SPCT=5

Figure A.5: SPCT=6
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Figure A.6: SPCT=7

Figure A.7: SPCT=8
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Figure A.8: SPCT=9

Figure A.9: SPCT=10
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Figure A.10: SPCT=11

Figure A.11: SPCT=12
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Figure A.12: SPCT=17

Figure A.13: SPCT=18
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Figure A.14: SPCT=19

Figure A.15: SPCT=22
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Figure A.16: SPCT=27

Figure A.17: SPCT=28
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Figure A.18: SPCT=29

Figure A.19: SPCT=31

54



Figure A.20: SPCT=37

Figure A.21: SPCT=39
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Figure A.22: SPCT=40

Figure A.23: SPCT=41
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Figure A.24: SPCT=47

Figure A.25: SPCT=49
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Figure A.26: SPCT=51

Figure A.27: SPCT=53
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Figure A.28: SPCT=56

Figure A.29: SPCT=57
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Figure A.30: SPCT=58

Figure A.31: SPCT=60
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Figure A.32: SPCT=68

Figure A.33: SPCT=69
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Figure A.34: SPCT=73

Figure A.35: SPCT=74
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Figure A.36: SPCT=77

Figure A.37: SPCT=78

63



A. Measurement Results for Starting Placer Cost Table

Figure A.38: SPCT=79

Figure A.39: SPCT=86
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Figure A.40: SPCT=87

Figure A.41: SPCT=88
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Figure A.42: SPCT=91

Figure A.43: SPCT=93
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Figure A.44: SPCT=95

Figure A.45: SPCT=96
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Figure A.46: SPCT=98
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Appendix B
ISE Summaries for

Implementations with Different
Parameters

Here are Summary files from ISE Design Suite, which we generated with the
implementations. These are from the designs with Keep Hierarchy (KH),
Register Balancing (RB) and Allow Logical Optimizations Across Hierarchy
(ALOAH) parameters changing. There are three pages of summary for each
combination. They are in this order:

• KH=No, RB=No, ALOAH=False

• KH=No, RB=No, ALOAH=True

• KH=No, RB=Yes, ALOAH=False

• KH=No, RB=Yes, ALOAH=True

• KH=Yes, RB=No, ALOAH=False

• KH=Yes, RB=No, ALOAH=True

• KH=Yes, RB=Yes, ALOAH=False

• KH=Yes, RB=Yes, ALOAH=True
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TopLevel Project Status (06/30/2020 - 11:21:22)
Project File: Proj.xise Parser Errors: No Errors
Module Name: TopLevel Implementation State: Programming File Generated

Target Device: xc6slx75-3csg484 Errors: No Errors

Product Version: ISE 14.7 Warnings: 806 Warnings (789 new)

Design Goal: Balanced Routing Results: All Signals Completely Routed

Design Strategy: Xilinx Default (unlocked) Timing Constraints: All Constraints Met

Environment: System Settings Final Timing Score: 0  (Timing Report)

 
Device Utilization Summary [-]

Slice Logic Utilization Used Available Utilization Note(s)
Number of Slice Registers 5,998 93,296 6%  
    Number used as Flip Flops 5,998    
    Number used as Latches 0    
    Number used as Latch-thrus 0    
    Number used as AND/OR logics 0    
Number of Slice LUTs 8,391 46,648 17%  
    Number used as logic 4,242 46,648 9%  
        Number using O6 output only 2,413    
        Number using O5 output only 3    
        Number using O5 and O6 1,826    
        Number used as ROM 0    
    Number used as Memory 3,584 11,072 32%  
        Number used as Dual Port RAM 1,536    
            Number using O6 output only 1,536    
            Number using O5 output only 0    
            Number using O5 and O6 0    
        Number used as Single Port RAM 0    
        Number used as Shift Register 2,048    
            Number using O6 output only 2,048    
            Number using O5 output only 0    
            Number using O5 and O6 0    
    Number used exclusively as route-thrus 565    
        Number with same-slice register load 565    
        Number with same-slice carry load 0    
        Number with other load 0    
Number of occupied Slices 2,902 11,662 24%  

KH=No, RB=No, ALOAH=False

;



Number of MUXCYs used 40 23,324 1%  
Number of LUT Flip Flop pairs used 9,876    
    Number with an unused Flip Flop 5,689 9,876 57%  
    Number with an unused LUT 1,485 9,876 15%  
    Number of fully used LUT-FF pairs 2,702 9,876 27%  
    Number of unique control sets 161    
    Number of slice register sites lost
        to control set restrictions 610 93,296 1%  

Number of bonded IOBs 7 328 2%  
    Number of LOCed IOBs 6 7 85%  
    IOB Flip Flops 2    
Number of RAMB16BWERs 0 172 0%  
Number of RAMB8BWERs 0 344 0%  
Number of BUFIO2/BUFIO2_2CLKs 0 32 0%  
Number of BUFIO2FB/BUFIO2FB_2CLKs 0 32 0%  
Number of BUFG/BUFGMUXs 2 16 12%  
    Number used as BUFGs 2    
    Number used as BUFGMUX 0    
Number of DCM/DCM_CLKGENs 0 12 0%  
Number of ILOGIC2/ISERDES2s 1 442 1%  
    Number used as ILOGIC2s 1    
    Number used as ISERDES2s 0    
Number of IODELAY2/IODRP2/IODRP2_MCBs 0 442 0%  
Number of OLOGIC2/OSERDES2s 1 442 1%  
    Number used as OLOGIC2s 1    
    Number used as OSERDES2s 0    
Number of BSCANs 0 4 0%  
Number of BUFHs 0 384 0%  
Number of BUFPLLs 0 8 0%  
Number of BUFPLL_MCBs 0 4 0%  
Number of DSP48A1s 0 132 0%  
Number of ICAPs 0 1 0%  
Number of MCBs 0 4 0%  
Number of PCILOGICSEs 0 2 0%  
Number of PLL_ADVs 0 6 0%  
Number of PMVs 0 1 0%  
Number of STARTUPs 0 1 0%  
Number of SUSPEND_SYNCs 0 1 0%  
Average Fanout of Non-Clock Nets 4.65    

 



Performance Summary [-]

Final Timing Score: 0 (Setup: 0, Hold: 0, Component Switching Limit: 0) Pinout Data: Pinout
Report

Routing Results: All Signals Completely Routed Clock Data: Clock
Report

Timing Constraints: All Constraints Met   
 

Detailed Reports [-]
Report Name Status Generated Errors Warnings Infos

Synthesis Report Current út 30. čvn 11:15:00
2020 0 36 Warnings (19 new) 240 Infos

(129 new)

Translation Report Current út 30. čvn 11:15:18
2020 0 0 0

Map Report Current út 30. čvn 11:17:30
2020 0 256 Warnings (256

new)

2568
Infos
(256 new)

Place and Route Report Current út 30. čvn 11:19:38
2020 0 258 Warnings (258

new) 0

Power Report      
Post-PAR Static Timing
Report Current út 30. čvn 11:20:22

2020 0 0 3 Infos (0
new)

Bitgen Report Current út 30. čvn 11:21:20
2020 0 256 Warnings (256

new) 0

 
Secondary Reports [-]

Report Name Status Generated

WebTalk Report Current
út 30. čvn
11:21:20
2020

WebTalk Log File Current
út 30. čvn
11:21:22
2020

Date Generated: 06/30/2020 - 11:21:22



TopLevel Project Status (06/30/2020 - 11:33:39)
Project File: Proj.xise Parser Errors: No Errors
Module Name: TopLevel Implementation State: Programming File Generated

Target Device: xc6slx75-3csg484 Errors: No Errors

Product Version: ISE 14.7 Warnings: 806 Warnings (0 new)

Design Goal: Balanced Routing Results: All Signals Completely Routed

Design Strategy: Xilinx Default (unlocked) Timing Constraints: All Constraints Met

Environment: System Settings Final Timing Score: 0  (Timing Report)

 
Device Utilization Summary [-]

Slice Logic Utilization Used Available Utilization Note(s)
Number of Slice Registers 5,998 93,296 6%  
    Number used as Flip Flops 5,998    
    Number used as Latches 0    
    Number used as Latch-thrus 0    
    Number used as AND/OR logics 0    
Number of Slice LUTs 8,391 46,648 17%  
    Number used as logic 4,242 46,648 9%  
        Number using O6 output only 2,413    
        Number using O5 output only 3    
        Number using O5 and O6 1,826    
        Number used as ROM 0    
    Number used as Memory 3,584 11,072 32%  
        Number used as Dual Port RAM 1,536    
            Number using O6 output only 1,536    
            Number using O5 output only 0    
            Number using O5 and O6 0    
        Number used as Single Port RAM 0    
        Number used as Shift Register 2,048    
            Number using O6 output only 2,048    
            Number using O5 output only 0    
            Number using O5 and O6 0    
    Number used exclusively as route-thrus 565    
        Number with same-slice register load 565    
        Number with same-slice carry load 0    
        Number with other load 0    
Number of occupied Slices 2,902 11,662 24%  

KH=No, RB=No, ALOAH=True

;



Number of MUXCYs used 40 23,324 1%  
Number of LUT Flip Flop pairs used 9,876    
    Number with an unused Flip Flop 5,689 9,876 57%  
    Number with an unused LUT 1,485 9,876 15%  
    Number of fully used LUT-FF pairs 2,702 9,876 27%  
    Number of unique control sets 161    
    Number of slice register sites lost
        to control set restrictions 610 93,296 1%  

Number of bonded IOBs 7 328 2%  
    Number of LOCed IOBs 6 7 85%  
    IOB Flip Flops 2    
Number of RAMB16BWERs 0 172 0%  
Number of RAMB8BWERs 0 344 0%  
Number of BUFIO2/BUFIO2_2CLKs 0 32 0%  
Number of BUFIO2FB/BUFIO2FB_2CLKs 0 32 0%  
Number of BUFG/BUFGMUXs 2 16 12%  
    Number used as BUFGs 2    
    Number used as BUFGMUX 0    
Number of DCM/DCM_CLKGENs 0 12 0%  
Number of ILOGIC2/ISERDES2s 1 442 1%  
    Number used as ILOGIC2s 1    
    Number used as ISERDES2s 0    
Number of IODELAY2/IODRP2/IODRP2_MCBs 0 442 0%  
Number of OLOGIC2/OSERDES2s 1 442 1%  
    Number used as OLOGIC2s 1    
    Number used as OSERDES2s 0    
Number of BSCANs 0 4 0%  
Number of BUFHs 0 384 0%  
Number of BUFPLLs 0 8 0%  
Number of BUFPLL_MCBs 0 4 0%  
Number of DSP48A1s 0 132 0%  
Number of ICAPs 0 1 0%  
Number of MCBs 0 4 0%  
Number of PCILOGICSEs 0 2 0%  
Number of PLL_ADVs 0 6 0%  
Number of PMVs 0 1 0%  
Number of STARTUPs 0 1 0%  
Number of SUSPEND_SYNCs 0 1 0%  
Average Fanout of Non-Clock Nets 4.65    

 



Performance Summary [-]

Final Timing Score: 0 (Setup: 0, Hold: 0, Component Switching Limit: 0) Pinout Data: Pinout
Report

Routing Results: All Signals Completely Routed Clock Data: Clock
Report

Timing Constraints: All Constraints Met   
 

Detailed Reports [-]
Report Name Status Generated Errors Warnings Infos

Synthesis Report Current út 30. čvn 11:26:30
2020 0 36 Warnings (0 new) 240 Infos

(0 new)

Translation Report Current út 30. čvn 11:26:50
2020 0 0 0

Map Report Current út 30. čvn 11:29:30
2020 0 256 Warnings (0

new)

2568
Infos (0
new)

Place and Route Report Current út 30. čvn 11:31:50
2020 0 258 Warnings (0

new) 0

Power Report      
Post-PAR Static Timing
Report Current út 30. čvn 11:32:38

2020 0 0 3 Infos (0
new)

Bitgen Report Current út 30. čvn 11:33:36
2020 0 256 Warnings (0

new) 0

 
Secondary Reports [-]

Report Name Status Generated

WebTalk Report Current
út 30. čvn
11:33:36
2020

WebTalk Log File Current
út 30. čvn
11:33:40
2020

Date Generated: 06/30/2020 - 11:33:39



TopLevel Project Status (06/30/2020 - 12:16:14)
Project File: Proj.xise Parser Errors: No Errors
Module Name: TopLevel Implementation State: Programming File Generated

Target Device: xc6slx75-3csg484 Errors: No Errors

Product Version: ISE 14.7 Warnings: 36 Warnings (19 new)

Design Goal: Balanced Routing Results: All Signals Completely Routed

Design Strategy: Xilinx Default (unlocked) Timing Constraints: All Constraints Met

Environment: System Settings Final Timing Score: 0  (Timing Report)

 
Device Utilization Summary [-]

Slice Logic Utilization Used Available Utilization Note(s)
Number of Slice Registers 6,004 93,296 6%  
    Number used as Flip Flops 6,004    
    Number used as Latches 0    
    Number used as Latch-thrus 0    
    Number used as AND/OR logics 0    
Number of Slice LUTs 8,962 46,648 19%  
    Number used as logic 4,320 46,648 9%  
        Number using O6 output only 2,617    
        Number using O5 output only 3    
        Number using O5 and O6 1,700    
        Number used as ROM 0    
    Number used as Memory 4,096 11,072 36%  
        Number used as Dual Port RAM 2,048    
            Number using O6 output only 2,048    
            Number using O5 output only 0    
            Number using O5 and O6 0    
        Number used as Single Port RAM 0    
        Number used as Shift Register 2,048    
            Number using O6 output only 2,048    
            Number using O5 output only 0    
            Number using O5 and O6 0    
    Number used exclusively as route-thrus 546    
        Number with same-slice register load 546    
        Number with same-slice carry load 0    
        Number with other load 0    
Number of occupied Slices 3,145 11,662 26%  

KH=No, RB=Yes, ALOAH=False

;



Number of MUXCYs used 40 23,324 1%  
Number of LUT Flip Flop pairs used 10,439    
    Number with an unused Flip Flop 6,267 10,439 60%  
    Number with an unused LUT 1,477 10,439 14%  
    Number of fully used LUT-FF pairs 2,695 10,439 25%  
    Number of unique control sets 91    
    Number of slice register sites lost
        to control set restrictions 52 93,296 1%  

Number of bonded IOBs 7 328 2%  
    Number of LOCed IOBs 6 7 85%  
    IOB Flip Flops 1    
Number of RAMB16BWERs 0 172 0%  
Number of RAMB8BWERs 0 344 0%  
Number of BUFIO2/BUFIO2_2CLKs 0 32 0%  
Number of BUFIO2FB/BUFIO2FB_2CLKs 0 32 0%  
Number of BUFG/BUFGMUXs 2 16 12%  
    Number used as BUFGs 2    
    Number used as BUFGMUX 0    
Number of DCM/DCM_CLKGENs 0 12 0%  
Number of ILOGIC2/ISERDES2s 1 442 1%  
    Number used as ILOGIC2s 1    
    Number used as ISERDES2s 0    
Number of IODELAY2/IODRP2/IODRP2_MCBs 0 442 0%  
Number of OLOGIC2/OSERDES2s 0 442 0%  
Number of BSCANs 0 4 0%  
Number of BUFHs 0 384 0%  
Number of BUFPLLs 0 8 0%  
Number of BUFPLL_MCBs 0 4 0%  
Number of DSP48A1s 0 132 0%  
Number of ICAPs 0 1 0%  
Number of MCBs 0 4 0%  
Number of PCILOGICSEs 0 2 0%  
Number of PLL_ADVs 0 6 0%  
Number of PMVs 0 1 0%  
Number of STARTUPs 0 1 0%  
Number of SUSPEND_SYNCs 0 1 0%  
Average Fanout of Non-Clock Nets 5.37    

 
Performance Summary [-]

Final Timing Score: 0 (Setup: 0, Hold: 0, Component Switching Limit: 0) Pinout Data: Pinout
Report



Routing Results: All Signals Completely Routed Clock Data: Clock
Report

Timing Constraints: All Constraints Met   
 

Detailed Reports [-]
Report Name Status Generated Errors Warnings Infos

Synthesis Report Current út 30. čvn 12:09:58
2020 0 36 Warnings (19

new)
240 Infos
(129 new)

Translation Report Current út 30. čvn 12:10:18
2020 0 0 0

Map Report Current út 30. čvn 12:12:30
2020 0 0

2824
Infos
(512 new)

Place and Route Report Current út 30. čvn 12:14:30
2020 0 0 0

Power Report      
Post-PAR Static Timing
Report Current út 30. čvn 12:15:18

2020 0 0 3 Infos (0
new)

Bitgen Report Current út 30. čvn 12:16:12
2020 0 0 0

 
Secondary Reports [-]

Report Name Status Generated

WebTalk Report Current
út 30. čvn
12:16:12
2020

WebTalk Log File Current
út 30. čvn
12:16:14
2020

Date Generated: 06/30/2020 - 12:16:14



TopLevel Project Status (06/30/2020 - 12:30:36)
Project File: Proj.xise Parser Errors: No Errors
Module Name: TopLevel Implementation State: Programming File Generated

Target Device: xc6slx75-3csg484 Errors: No Errors

Product Version: ISE 14.7 Warnings: 36 Warnings (0 new)

Design Goal: Balanced Routing Results: All Signals Completely Routed

Design Strategy: Xilinx Default (unlocked) Timing Constraints: All Constraints Met

Environment: System Settings Final Timing Score: 0  (Timing Report)

 
Device Utilization Summary [-]

Slice Logic Utilization Used Available Utilization Note(s)
Number of Slice Registers 6,004 93,296 6%  
    Number used as Flip Flops 6,004    
    Number used as Latches 0    
    Number used as Latch-thrus 0    
    Number used as AND/OR logics 0    
Number of Slice LUTs 8,962 46,648 19%  
    Number used as logic 4,320 46,648 9%  
        Number using O6 output only 2,617    
        Number using O5 output only 3    
        Number using O5 and O6 1,700    
        Number used as ROM 0    
    Number used as Memory 4,096 11,072 36%  
        Number used as Dual Port RAM 2,048    
            Number using O6 output only 2,048    
            Number using O5 output only 0    
            Number using O5 and O6 0    
        Number used as Single Port RAM 0    
        Number used as Shift Register 2,048    
            Number using O6 output only 2,048    
            Number using O5 output only 0    
            Number using O5 and O6 0    
    Number used exclusively as route-thrus 546    
        Number with same-slice register load 546    
        Number with same-slice carry load 0    
        Number with other load 0    
Number of occupied Slices 3,145 11,662 26%  

KH=No, RB=Yes, ALOAH=True

;



Number of MUXCYs used 40 23,324 1%  
Number of LUT Flip Flop pairs used 10,439    
    Number with an unused Flip Flop 6,267 10,439 60%  
    Number with an unused LUT 1,477 10,439 14%  
    Number of fully used LUT-FF pairs 2,695 10,439 25%  
    Number of unique control sets 91    
    Number of slice register sites lost
        to control set restrictions 52 93,296 1%  

Number of bonded IOBs 7 328 2%  
    Number of LOCed IOBs 6 7 85%  
    IOB Flip Flops 1    
Number of RAMB16BWERs 0 172 0%  
Number of RAMB8BWERs 0 344 0%  
Number of BUFIO2/BUFIO2_2CLKs 0 32 0%  
Number of BUFIO2FB/BUFIO2FB_2CLKs 0 32 0%  
Number of BUFG/BUFGMUXs 2 16 12%  
    Number used as BUFGs 2    
    Number used as BUFGMUX 0    
Number of DCM/DCM_CLKGENs 0 12 0%  
Number of ILOGIC2/ISERDES2s 1 442 1%  
    Number used as ILOGIC2s 1    
    Number used as ISERDES2s 0    
Number of IODELAY2/IODRP2/IODRP2_MCBs 0 442 0%  
Number of OLOGIC2/OSERDES2s 0 442 0%  
Number of BSCANs 0 4 0%  
Number of BUFHs 0 384 0%  
Number of BUFPLLs 0 8 0%  
Number of BUFPLL_MCBs 0 4 0%  
Number of DSP48A1s 0 132 0%  
Number of ICAPs 0 1 0%  
Number of MCBs 0 4 0%  
Number of PCILOGICSEs 0 2 0%  
Number of PLL_ADVs 0 6 0%  
Number of PMVs 0 1 0%  
Number of STARTUPs 0 1 0%  
Number of SUSPEND_SYNCs 0 1 0%  
Average Fanout of Non-Clock Nets 5.37    

 
Performance Summary [-]

Final Timing Score: 0 (Setup: 0, Hold: 0, Component Switching Limit: 0) Pinout Data: Pinout
Report



Routing Results: All Signals Completely Routed Clock Data: Clock
Report

Timing Constraints: All Constraints Met   
 

Detailed Reports [-]
Report Name Status Generated Errors Warnings Infos

Synthesis Report Current út 30. čvn 12:24:40
2020 0 36 Warnings (0

new)
240 Infos
(0 new)

Translation Report Current út 30. čvn 12:24:58
2020 0 0 0

Map Report Current út 30. čvn 12:27:12
2020 0 0

2824
Infos (0
new)

Place and Route Report Current út 30. čvn 12:29:04
2020 0 0 0

Power Report      
Post-PAR Static Timing
Report Current út 30. čvn 12:29:46

2020 0 0 3 Infos (0
new)

Bitgen Report Current út 30. čvn 12:30:34
2020 0 0 0

 
Secondary Reports [-]

Report Name Status Generated

WebTalk Report Current
út 30. čvn
12:30:36
2020

WebTalk Log File Current
út 30. čvn
12:30:38
2020

Date Generated: 06/30/2020 - 12:30:36



TopLevel Project Status (06/30/2020 - 11:50:38)
Project File: Proj.xise Parser Errors: No Errors
Module Name: TopLevel Implementation State: Programming File Generated

Target Device: xc6slx75-3csg484 Errors: No Errors

Product Version: ISE 14.7 Warnings: 806 Warnings (19 new)

Design Goal: Balanced Routing Results: All Signals Completely Routed

Design Strategy: Xilinx Default (unlocked) Timing Constraints: All Constraints Met

Environment: System Settings Final Timing Score: 0  (Timing Report)

 
Device Utilization Summary [-]

Slice Logic Utilization Used Available Utilization Note(s)
Number of Slice Registers 6,127 93,296 6%  
    Number used as Flip Flops 6,127    
    Number used as Latches 0    
    Number used as Latch-thrus 0    
    Number used as AND/OR logics 0    
Number of Slice LUTs 10,124 46,648 21%  
    Number used as logic 5,687 46,648 12%  
        Number using O6 output only 4,842    
        Number using O5 output only 3    
        Number using O5 and O6 842    
        Number used as ROM 0    
    Number used as Memory 3,585 11,072 32%  
        Number used as Dual Port RAM 1,536    
            Number using O6 output only 1,536    
            Number using O5 output only 0    
            Number using O5 and O6 0    
        Number used as Single Port RAM 0    
        Number used as Shift Register 2,049    
            Number using O6 output only 2,049    
            Number using O5 output only 0    
            Number using O5 and O6 0    
    Number used exclusively as route-thrus 852    
        Number with same-slice register load 852    
        Number with same-slice carry load 0    
        Number with other load 0    
Number of occupied Slices 3,364 11,662 28%  

KH=Yes, RB=No, ALOAH=False

;



Number of MUXCYs used 40 23,324 1%  
Number of LUT Flip Flop pairs used 11,386    
    Number with an unused Flip Flop 6,114 11,386 53%  
    Number with an unused LUT 1,262 11,386 11%  
    Number of fully used LUT-FF pairs 4,010 11,386 35%  
    Number of unique control sets 162    
    Number of slice register sites lost
        to control set restrictions 616 93,296 1%  

Number of bonded IOBs 7 328 2%  
    Number of LOCed IOBs 6 7 85%  
Number of RAMB16BWERs 0 172 0%  
Number of RAMB8BWERs 0 344 0%  
Number of BUFIO2/BUFIO2_2CLKs 0 32 0%  
Number of BUFIO2FB/BUFIO2FB_2CLKs 0 32 0%  
Number of BUFG/BUFGMUXs 2 16 12%  
    Number used as BUFGs 2    
    Number used as BUFGMUX 0    
Number of DCM/DCM_CLKGENs 0 12 0%  
Number of ILOGIC2/ISERDES2s 0 442 0%  
Number of IODELAY2/IODRP2/IODRP2_MCBs 0 442 0%  
Number of OLOGIC2/OSERDES2s 0 442 0%  
Number of BSCANs 0 4 0%  
Number of BUFHs 0 384 0%  
Number of BUFPLLs 0 8 0%  
Number of BUFPLL_MCBs 0 4 0%  
Number of DSP48A1s 0 132 0%  
Number of ICAPs 0 1 0%  
Number of MCBs 0 4 0%  
Number of PCILOGICSEs 0 2 0%  
Number of PLL_ADVs 0 6 0%  
Number of PMVs 0 1 0%  
Number of STARTUPs 0 1 0%  
Number of SUSPEND_SYNCs 0 1 0%  
Average Fanout of Non-Clock Nets 5.09    

 
Performance Summary [-]

Final Timing Score: 0 (Setup: 0, Hold: 0, Component Switching Limit: 0) Pinout Data: Pinout
Report

Routing Results: All Signals Completely Routed Clock Data: Clock
Report

Timing Constraints: All Constraints Met   



 
Detailed Reports [-]

Report Name Status Generated Errors Warnings Infos

Synthesis Report Current út 30. čvn 11:39:56
2020 0 36 Warnings (19

new)
112 Infos
(1 new)

Translation Report Current út 30. čvn 11:40:18
2020 0 0 0

Map Report Current út 30. čvn 11:43:02
2020 0 256 Warnings (0

new)

2568
Infos (0
new)

Place and Route Report Current út 30. čvn 11:45:26
2020 0 258 Warnings (0

new) 0

Power Report      
Post-PAR Static Timing
Report Current út 30. čvn 11:46:00

2020 0 0 3 Infos (0
new)

Bitgen Report Current út 30. čvn 11:50:36
2020 0 256 Warnings (0

new) 0

 
Secondary Reports [-]

Report Name Status Generated

WebTalk Report Current
út 30. čvn
11:50:36
2020

WebTalk Log File Current
út 30. čvn
11:50:38
2020

Date Generated: 06/30/2020 - 11:50:38



TopLevel Project Status (06/30/2020 - 12:01:55)
Project File: Proj.xise Parser Errors: No Errors
Module Name: TopLevel Implementation State: Programming File Generated

Target Device: xc6slx75-3csg484 Errors: No Errors

Product Version: ISE 14.7 Warnings: 806 Warnings (0 new)

Design Goal: Balanced Routing Results: All Signals Completely Routed

Design Strategy: Xilinx Default (unlocked) Timing Constraints: All Constraints Met

Environment: System Settings Final Timing Score: 0  (Timing Report)

 
Device Utilization Summary [-]

Slice Logic Utilization Used Available Utilization Note(s)
Number of Slice Registers 6,127 93,296 6%  
    Number used as Flip Flops 6,127    
    Number used as Latches 0    
    Number used as Latch-thrus 0    
    Number used as AND/OR logics 0    
Number of Slice LUTs 9,744 46,648 20%  
    Number used as logic 5,622 46,648 12%  
        Number using O6 output only 4,841    
        Number using O5 output only 3    
        Number using O5 and O6 778    
        Number used as ROM 0    
    Number used as Memory 3,585 11,072 32%  
        Number used as Dual Port RAM 1,536    
            Number using O6 output only 1,536    
            Number using O5 output only 0    
            Number using O5 and O6 0    
        Number used as Single Port RAM 0    
        Number used as Shift Register 2,049    
            Number using O6 output only 2,049    
            Number using O5 output only 0    
            Number using O5 and O6 0    
    Number used exclusively as route-thrus 537    
        Number with same-slice register load 537    
        Number with same-slice carry load 0    
        Number with other load 0    
Number of occupied Slices 3,237 11,662 27%  

KH=Yes, RB=No, ALOAH=True

;



Number of MUXCYs used 40 23,324 1%  
Number of LUT Flip Flop pairs used 11,260    
    Number with an unused Flip Flop 5,692 11,260 50%  
    Number with an unused LUT 1,516 11,260 13%  
    Number of fully used LUT-FF pairs 4,052 11,260 35%  
    Number of unique control sets 162    
    Number of slice register sites lost
        to control set restrictions 616 93,296 1%  

Number of bonded IOBs 7 328 2%  
    Number of LOCed IOBs 6 7 85%  
Number of RAMB16BWERs 0 172 0%  
Number of RAMB8BWERs 0 344 0%  
Number of BUFIO2/BUFIO2_2CLKs 0 32 0%  
Number of BUFIO2FB/BUFIO2FB_2CLKs 0 32 0%  
Number of BUFG/BUFGMUXs 2 16 12%  
    Number used as BUFGs 2    
    Number used as BUFGMUX 0    
Number of DCM/DCM_CLKGENs 0 12 0%  
Number of ILOGIC2/ISERDES2s 0 442 0%  
Number of IODELAY2/IODRP2/IODRP2_MCBs 0 442 0%  
Number of OLOGIC2/OSERDES2s 0 442 0%  
Number of BSCANs 0 4 0%  
Number of BUFHs 0 384 0%  
Number of BUFPLLs 0 8 0%  
Number of BUFPLL_MCBs 0 4 0%  
Number of DSP48A1s 0 132 0%  
Number of ICAPs 0 1 0%  
Number of MCBs 0 4 0%  
Number of PCILOGICSEs 0 2 0%  
Number of PLL_ADVs 0 6 0%  
Number of PMVs 0 1 0%  
Number of STARTUPs 0 1 0%  
Number of SUSPEND_SYNCs 0 1 0%  
Average Fanout of Non-Clock Nets 5.11    

 
Performance Summary [-]

Final Timing Score: 0 (Setup: 0, Hold: 0, Component Switching Limit: 0) Pinout Data: Pinout
Report

Routing Results: All Signals Completely Routed Clock Data: Clock
Report

Timing Constraints: All Constraints Met   



 
Detailed Reports [-]

Report Name Status Generated Errors Warnings Infos

Synthesis Report Current út 30. čvn 11:54:24
2020 0 36 Warnings (0 new) 112 Infos

(0 new)

Translation Report Current út 30. čvn 11:54:46
2020 0 0 0

Map Report Current út 30. čvn 11:57:24
2020 0 256 Warnings (0

new)

2568
Infos (0
new)

Place and Route Report Current út 30. čvn 12:00:10
2020 0 258 Warnings (0

new) 0

Power Report      
Post-PAR Static Timing
Report Current út 30. čvn 12:00:56

2020 0 0 3 Infos (0
new)

Bitgen Report Current út 30. čvn 12:01:54
2020 0 256 Warnings (0

new) 0

 
Secondary Reports [-]

Report Name Status Generated

WebTalk Report Current
út 30. čvn
12:01:54
2020

WebTalk Log File Current
út 30. čvn
12:01:56
2020

Date Generated: 06/30/2020 - 12:01:55



TopLevel Project Status (06/30/2020 - 13:40:40)
Project File: Proj.xise Parser Errors: No Errors
Module Name: TopLevel Implementation State: Programming File Generated

Target Device: xc6slx75-3csg484 Errors: No Errors

Product Version: ISE 14.7 Warnings: 68 Warnings (51 new)

Design Goal: Balanced Routing Results: All Signals Completely Routed

Design Strategy: Xilinx Default (unlocked) Timing Constraints: All Constraints Met

Environment: System Settings Final Timing Score: 0  (Timing Report)

 
Device Utilization Summary [-]

Slice Logic Utilization Used Available Utilization Note(s)
Number of Slice Registers 6,127 93,296 6%  
    Number used as Flip Flops 6,127    
    Number used as Latches 0    
    Number used as Latch-thrus 0    
    Number used as AND/OR logics 0    
Number of Slice LUTs 10,519 46,648 22%  
    Number used as logic 5,702 46,648 12%  
        Number using O6 output only 4,920    
        Number using O5 output only 3    
        Number using O5 and O6 779    
        Number used as ROM 0    
    Number used as Memory 4,097 11,072 37%  
        Number used as Dual Port RAM 2,048    
            Number using O6 output only 2,048    
            Number using O5 output only 0    
            Number using O5 and O6 0    
        Number used as Single Port RAM 0    
        Number used as Shift Register 2,049    
            Number using O6 output only 2,049    
            Number using O5 output only 0    
            Number using O5 and O6 0    
    Number used exclusively as route-thrus 720    
        Number with same-slice register load 720    
        Number with same-slice carry load 0    
        Number with other load 0    
Number of occupied Slices 3,608 11,662 30%  

KH=Yes, RB=Yes, ALOAH=False

;



Number of MUXCYs used 40 23,324 1%  
Number of LUT Flip Flop pairs used 12,038    
    Number with an unused Flip Flop 6,639 12,038 55%  
    Number with an unused LUT 1,519 12,038 12%  
    Number of fully used LUT-FF pairs 3,880 12,038 32%  
    Number of unique control sets 93    
    Number of slice register sites lost
        to control set restrictions 72 93,296 1%  

Number of bonded IOBs 7 328 2%  
    Number of LOCed IOBs 6 7 85%  
Number of RAMB16BWERs 0 172 0%  
Number of RAMB8BWERs 0 344 0%  
Number of BUFIO2/BUFIO2_2CLKs 0 32 0%  
Number of BUFIO2FB/BUFIO2FB_2CLKs 0 32 0%  
Number of BUFG/BUFGMUXs 2 16 12%  
    Number used as BUFGs 2    
    Number used as BUFGMUX 0    
Number of DCM/DCM_CLKGENs 0 12 0%  
Number of ILOGIC2/ISERDES2s 0 442 0%  
Number of IODELAY2/IODRP2/IODRP2_MCBs 0 442 0%  
Number of OLOGIC2/OSERDES2s 0 442 0%  
Number of BSCANs 0 4 0%  
Number of BUFHs 0 384 0%  
Number of BUFPLLs 0 8 0%  
Number of BUFPLL_MCBs 0 4 0%  
Number of DSP48A1s 0 132 0%  
Number of ICAPs 0 1 0%  
Number of MCBs 0 4 0%  
Number of PCILOGICSEs 0 2 0%  
Number of PLL_ADVs 0 6 0%  
Number of PMVs 0 1 0%  
Number of STARTUPs 0 1 0%  
Number of SUSPEND_SYNCs 0 1 0%  
Average Fanout of Non-Clock Nets 5.78    

 
Performance Summary [-]

Final Timing Score: 0 (Setup: 0, Hold: 0, Component Switching Limit: 0) Pinout Data: Pinout
Report

Routing Results: All Signals Completely Routed Clock Data: Clock
Report

Timing Constraints: All Constraints Met   



 
Detailed Reports [-]

Report Name Status Generated Errors Warnings Infos

Synthesis Report Current út 30. čvn 13:33:42
2020 0 36 Warnings (19

new)
112 Infos
(1 new)

Translation Report Current út 30. čvn 13:34:06
2020 0 32 Warnings (32

new) 0

Map Report Current út 30. čvn 13:36:44
2020 0 0

2856
Infos (32
new)

Place and Route Report Current út 30. čvn 13:39:02
2020 0 0 0

Power Report      
Post-PAR Static Timing
Report Current út 30. čvn 13:39:42

2020 0 0 3 Infos (0
new)

Bitgen Report Current út 30. čvn 13:40:38
2020 0 0 0

 
Secondary Reports [-]

Report Name Status Generated

WebTalk Report Current
út 30. čvn
13:40:38
2020

WebTalk Log File Current
út 30. čvn
13:40:40
2020

Date Generated: 06/30/2020 - 13:40:40



TopLevel Project Status (06/30/2020 - 13:52:36)
Project File: Proj.xise Parser Errors: No Errors
Module Name: TopLevel Implementation State: Programming File Generated

Target Device: xc6slx75-3csg484 Errors: No Errors

Product Version: ISE 14.7 Warnings: 68 Warnings (51 new)

Design Goal: Balanced Routing Results: All Signals Completely Routed

Design Strategy: Xilinx Default (unlocked) Timing Constraints: All Constraints Met

Environment: System Settings Final Timing Score: 0  (Timing Report)

 
Device Utilization Summary [-]

Slice Logic Utilization Used Available Utilization Note(s)
Number of Slice Registers 6,127 93,296 6%  
    Number used as Flip Flops 6,127    
    Number used as Latches 0    
    Number used as Latch-thrus 0    
    Number used as AND/OR logics 0    
Number of Slice LUTs 10,380 46,648 22%  
    Number used as logic 5,637 46,648 12%  
        Number using O6 output only 4,919    
        Number using O5 output only 3    
        Number using O5 and O6 715    
        Number used as ROM 0    
    Number used as Memory 4,097 11,072 37%  
        Number used as Dual Port RAM 2,048    
            Number using O6 output only 2,048    
            Number using O5 output only 0    
            Number using O5 and O6 0    
        Number used as Single Port RAM 0    
        Number used as Shift Register 2,049    
            Number using O6 output only 2,049    
            Number using O5 output only 0    
            Number using O5 and O6 0    
    Number used exclusively as route-thrus 646    
        Number with same-slice register load 646    
        Number with same-slice carry load 0    
        Number with other load 0    
Number of occupied Slices 3,245 11,662 27%  

KH=Yes, RB=Yes, ALOAH=True

;



Number of MUXCYs used 40 23,324 1%  
Number of LUT Flip Flop pairs used 11,520    
    Number with an unused Flip Flop 6,053 11,520 52%  
    Number with an unused LUT 1,140 11,520 9%  
    Number of fully used LUT-FF pairs 4,327 11,520 37%  
    Number of unique control sets 93    
    Number of slice register sites lost
        to control set restrictions 72 93,296 1%  

Number of bonded IOBs 7 328 2%  
    Number of LOCed IOBs 6 7 85%  
Number of RAMB16BWERs 0 172 0%  
Number of RAMB8BWERs 0 344 0%  
Number of BUFIO2/BUFIO2_2CLKs 0 32 0%  
Number of BUFIO2FB/BUFIO2FB_2CLKs 0 32 0%  
Number of BUFG/BUFGMUXs 2 16 12%  
    Number used as BUFGs 2    
    Number used as BUFGMUX 0    
Number of DCM/DCM_CLKGENs 0 12 0%  
Number of ILOGIC2/ISERDES2s 0 442 0%  
Number of IODELAY2/IODRP2/IODRP2_MCBs 0 442 0%  
Number of OLOGIC2/OSERDES2s 0 442 0%  
Number of BSCANs 0 4 0%  
Number of BUFHs 0 384 0%  
Number of BUFPLLs 0 8 0%  
Number of BUFPLL_MCBs 0 4 0%  
Number of DSP48A1s 0 132 0%  
Number of ICAPs 0 1 0%  
Number of MCBs 0 4 0%  
Number of PCILOGICSEs 0 2 0%  
Number of PLL_ADVs 0 6 0%  
Number of PMVs 0 1 0%  
Number of STARTUPs 0 1 0%  
Number of SUSPEND_SYNCs 0 1 0%  
Average Fanout of Non-Clock Nets 5.81    

 
Performance Summary [-]

Final Timing Score: 0 (Setup: 0, Hold: 0, Component Switching Limit: 0) Pinout Data: Pinout
Report

Routing Results: All Signals Completely Routed Clock Data: Clock
Report

Timing Constraints: All Constraints Met   



 
Detailed Reports [-]

Report Name Status Generated Errors Warnings Infos

Synthesis Report Current út 30. čvn 13:33:42
2020 0 36 Warnings (19

new)
112 Infos
(1 new)

Translation Report Current út 30. čvn 13:34:06
2020 0 32 Warnings (32

new) 0

Map Report Current út 30. čvn 13:48:14
2020 0 0

2856
Infos (0
new)

Place and Route Report Current út 30. čvn 13:50:46
2020 0 0 0

Power Report      
Post-PAR Static Timing
Report Current út 30. čvn 13:51:34

2020 0 0 3 Infos (0
new)

Bitgen Report Current út 30. čvn 13:52:34
2020 0 0 0

 
Secondary Reports [-]

Report Name Status Generated

WebTalk Report Current
út 30. čvn
13:52:34
2020

WebTalk Log File Current
út 30. čvn
13:52:36
2020

Date Generated: 06/30/2020 - 13:52:36





Appendix C
Acronyms

FPGA Field programmable gate array

RTL Register transfer level

UART Universal asynchronous receiver-transmitter

AES Advanced Encryption Standard
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Appendix D
Contents of Enclosed CD

readme.txt ....................... the file with CD contents description
src........................................................all sources

pictures........................all pictures from the measurements
SICAK-plugin.........the source code for the new plugin for SICAK
bitstreams ................................all generated bitstreams
thesis..............the directory of LATEX source codes of the thesis

thesis.pdf..............................the thesis text in PDF format
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