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Abstract 
The goal of the paper is to experimentally verify whether infinite two-player zero-sum games with 

payoff functions, present in a form of piecewise affine functions have finite equilibria. Piecewise-

affine functions are defined over a continuous domain, in our case our triangulated square describing 

continuous subdivision of itself, where there is an affine function for each triangle. In our experiment, 

we will focus on computing an equilibrium based on linear programming. The experiment is based 

on the generation of random triangulations with piecewise affine functions arising from them with an 

approximation of such functions over a grid and calculating the equilibrium of the respective finite 

game. To demonstrate it we create a square [0,1] × [0,1] where we randomly insert points along axis 

decided by the user and triangulate them. Initial points have random values as interpolated function, 

we will call heights. After this base state, we make an iteration consisting of finding new points by 

intersecting initial points with lines from triangulation. New points have heights computed with 

interpolated functions of triangles from the triangulation. Next, we create a grid from all existing 

points. The zero-sum game will use the grid point’s heights as entries. The crucial conjecture is that 

after some number of iterations a finite equilibrium from a zero-sum game will arise. 

Klíčová slova 
Teorie her, Po částech afinní hry, Hry s nulovým součtem, Nashovo equilibrium, Hry o dvou hráčích 

Anotace 
Cílem této práce je experimentálně ověřit jestli nekonečná hry o dvou hráčích s nulovým součtem 

s výplatní funkcí, která je přítomna ve formě po částech afinní funkce má konečné equilibrium. Po 

částech afinní funkce jsou definované přes kontinuální doménu, v našem případě triangulovaný 

čtverec popisující kontinuální subdivizi samo sebe, kde je affinní funkce pro každý trojúhelník. 

V našem experimentu se zaměříme na počítání equilibria založeném na lineárním programování. 

Experiment je založen na generování náhodných triangulací s počástech affinními funkcemi z nich 

vytvořených a aproximaci těchto funkcí přes grid pro výpočet equilibria té konečné hry. Pro 

demonstraci uděláme čtverec [0,1] × [0,1] kde máme náhodně dané body podél dimenzí určených 

uživatelem a triangulujeme je. Původní body mají náhodné hodnoty jako interpolované funkce, 

kterým budeme říkat výšky. Po tomto základním stavu vytvoříme iteraci obsahující nalezení nových 

bodů z průsečíků původních bodu a úseček z triangulace. Nové body mají výšky spočtené 

z interpolovaných funkcí trojúhelníku triangulace. Dále vytvoříme grid ze všech existujících bodů. 

Hra s nulovým součtem použije výšky z gridu jako své vstupy. Kritická myšlenka je, že po několika 

iteracích konečné equilibrium vznikne ze hry s nulovým součtem. 
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1 Introduction 
It this thesis, we firstly go into some properties normal form games as a building stone for other, more 

specific, types of games in game theory. Next, we look into zero-sum games as a main topic in our 

project and talk about some other uses in computer science. When solving zero-sum games, we 

introduce Nash equilibrium in them, and describe it to realize, what we are searching for. Then, we 

describe continuous games as to gain more detailed information about what are dealing with and some 

other specific types we can meet when solving a similar task. Lastly in our theory, we talk about 

possible ways in approaching this setup. After all this theoretical knowledge, we are able to comment 

on our code and its specific steps along with examples along the way. Then we summarize all of the 

above in our conclusion. 
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2 Properties of Payoff Mixed Strategies 

Matrix 
At first, we want to look at our games in general, where we build a basic theoretical structure for 

latter usage. 

2.1 Normal form game 
A finite game of n-players is in normal-form when we can form it as a tuple (𝑁, 𝐴, 𝑢), where 𝑁 =

{1, … 𝑛}  is a set of players, 𝐴 = 𝐴1 × … × 𝐴𝑛 are all actions (strategies) with 𝐴𝑖 being a finite set of 

those available to player 𝑖 and 𝑎 = (𝑎1 … 𝑎𝑛) ∈ 𝐴 is called strategy profile. Lastly, 𝑢 where 𝑢𝑖 ∶ 𝐴 →

𝑅 is for each profile 𝑎 ∈ 𝐴 utility (payoff), which describes a utility of player 𝑖 [1, p.56]. 

2.2 Mixed strategies 
A type of strategy, which may not seem obvious, is called a mixed strategy. For each player it consists 

of randomizing over a set of available options according to some probability distribution. This can be 

formally written as follows. The set of mixed strategies for player 𝑖 is 𝑆𝑖 ∶= ∆(𝐴𝑖), where ∆(𝐴𝑖) is 

the set of all probability distributions, where 𝑝𝑖 ∈ 𝑆𝑖 is one such distribution, over 𝐴𝑖. If 𝑝𝑖 ∈ 𝑆𝑖 is a 

mixed strategy such that 𝑝𝑖(𝑎𝑖) = 1 for some 𝑎𝑖 ∈ 𝐴𝑖, then 𝑝𝑖 is called a pure strategy [1, p.60]. 

2.3 Utility theory 
Utility theory is the leading approach to model player's desires. It aims to describe its preferences 

across a set of available options. Furthermore, its focus is to understand how such preferences change 

when a player deals with uncertainty about alternatives it will receive [1, p.47]. 

2.4 Utility functions 
When we talk about utility functions, as will be done much later in the text, we will be trying to make 

a specific assumption that our player has desires about how to behave, which are consistent with 

utility theory mentioned previously [1, p.56]. 

2.5 Expected utility 
As we start, we calculate the probability for each strategy in our set of strategies, from which we 

measure the average payoff among them all weighted by each probability. This can be formally 

defined as follows. Given a normal-form game (𝑁, 𝐴, 𝑢) the expected utility 𝑢𝑖 for player i of the 

mixed-strategy profile 𝑠 = (𝑠1 … 𝑠𝑛) is defined as [1, p.60] 

𝑢𝑖(𝑠) = ∑ 𝑢𝑖(𝑎)
𝑎 ∈ 𝐴

∏ 𝑠𝑗(𝑎𝑗)

𝑗 𝜖 𝑁
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3 Zero-sum Games 

3.1 Description 
When we talk about zero-sum games, we have a matrix game with matrix M. Values in M are called 

utilities. 

𝑀 = [𝑚𝑖𝑗]  ∈ 𝑅𝑚∗𝑛 

The common example uses two players. We will call them 𝐴, as in Alice, and 𝐵 as in Bob. One of 

which uses row and other columns as their respective set of strategies. There is a finite number of 

them 𝐼 and 𝐽. The chosen one is called a play. Players choose what they play at the same time. 

Moreover, one picks 𝑖 ∈ 𝐼, the other 𝑗 ∈ 𝐽. Value 𝑚𝑖𝑗 is called a gain for player 𝐴, which is at the ame 

time a loss of player 𝐵. Specifically, 

0 = 𝑚𝑖𝑗 + (−𝑚𝑖𝑗), ∀𝑖, 𝑗 ∈ 𝐼, 𝐽 

Hence the name zero-sum games. A rational player 𝑖 ∈ 𝑁 chooses a strategy that maximizes 𝑢𝑖  gain 

[1, p.56]. 

3.2 The Idea of Solving 
Players will always choose the best strategies among the worst possible variants. One picks a strategy, 

which maximizes his payoff taking into consideration the fact that others act in the same way. Let us 

consider the following matrix. 

𝑀 = [
8 1 −3
6 4 5
0 2 12

] 

The row minima are −3, 4, 0 and the columns maxima are 8, 4, 12. We can observe that row two and 

columns of the same index have the same value being 2. So (2, 2) is a saddle point with a payoff 

(4, −4)1. 

3.3 Uses 
There are two big areas, where there is a possible usage of zero-sum games in computer science field 

of study. They use Nash Equilibria in their models. Firstly cloud computing, we can set players as a 

client, who wants to purchase the service, and cloud provider, who owns the cloud. Client decides on 

whether to buy the service or not based of off transparency provided by the provider or not based on 

Nash Equilibria. Secondly cyber security, where there is a unique approach to the scenario where 

hacker is one player and system administrators, who defend a system, are the other. When comparing 

these two scenarios cloud computing does not possess the needed quantity of providers and clients 

for making the models more scalable for application in practice. On the other hand, in cyber security 

there exists an uncertainty which makes it impossible to be presicely quantified in these models [2].  

  

 
1https://bcourses.berkeley.edu/courses/1454200/files/69611157/download?verifier=aGpeJ5AgTbKsnB3Sa8cX16sKDK

SG1pK0fbCFKVHH pages 8-12 

https://bcourses.berkeley.edu/courses/1454200/files/69611157/download?verifier=aGpeJ5AgTbKsnB3Sa8cX16sKDKSG1pK0fbCFKVHH
https://bcourses.berkeley.edu/courses/1454200/files/69611157/download?verifier=aGpeJ5AgTbKsnB3Sa8cX16sKDKSG1pK0fbCFKVHH
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4 Nash Equilibrium of a PA Games is Located 

at Vertices 

4.1 Nash equilibrium 
A Nash equilibrium is a set of strategies, one for each player i, where none has the incentive to deviate, 

since it would result in a loss of ones payoff. It can be written formally as 𝑠 = (𝑠1 … 𝑠𝑛), where for 

every player 𝑠 is 𝑠𝑖 best response to 𝑠−𝑖. With best response we are pointing out that if one player was 

to choose another response he would get a lower payoff compared to the one received with best 

response [1, p.62].  

4.2 ԑ-Nash 
A type of Nash equilibria is called ԑ-Nash. It shows that for an area surrounding an existing equilibria 

a result will be the same. Formally, for any fix ԑ larger than zero a strategy profile 𝑠 = (𝑠1 … 𝑠𝑛) is 

an ԑ-Nash equilibrium if, for all players 𝑖 and for all strategies 𝑠′𝑖 ≠ 𝑠𝑖 

, 𝑢𝑖(𝑠𝑖, 𝑠−𝑖) ≥  𝑢𝑖(𝑠𝑖, 𝑠−𝑖) −  ԑ [1, p.85]. 

4.3 Location at vertices 
An equilibrium strategy of a player is a vertex of his best response polyhedron, which can also be 

describes as a convex combination of these vertices. Therefore, in two-player game it can be found 

by cycling through combinations of these best response vertices. Now, we know that equilibria will 

be found on these vertices, which are represented in our program as points. Lexicographic reverse 

search will lead us back to the original points2. We ask ourselves, what brought us to this decision 

and do it, until we are back at the beginning [3]. 

4.4 Linear program 
Our problem, zero-sum game, is the easiest to solve using Nash equilibrium. It can be expressed as a 

linear program (LP), which results in solving equilibria in polynomial time. Let us consider a two-

player, zero-sum game 𝐺 = ({1, 2}, 𝐴1 × 𝐴2, (𝑢1, 𝑢2)). We set 𝑈∗
𝑖 be the expected utility for player 

𝑖 in equilibrium, also known as the value of the game. As we pointed out in our zero-sum game 

definition 𝑈∗
2, or the expected utility for the second player, needs to be a negative of 𝑈∗

1, resulting 

in their combined sum is 0. The min-max theorem (in Section 3.4.1 and Theorem 3.4.4. in 

masfoundation book) tells us that our expected utility remains constant in all equilibria and that it is 

the same as the value player 1 achieves under a min-max strategy by player 2. Using this, we can 

construct the linear program as follows. 

  

 
2 https://faculty.coe.drexel.edu/jwalsh/JayantLRS.pdf 

https://faculty.coe.drexel.edu/jwalsh/JayantLRS.pdf
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min 𝑈1
∗ 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑢1(𝑎1
𝑗
, 𝑎2

𝑘)

𝑘 ∈ 𝐴2

∗  𝑠2
𝑘 ≤ 𝑈1

∗       ∀𝑗 ∈  𝐴1 

∑ 𝑠2
𝑘 = 1

𝑘 ∈ 𝐴2

 

𝑠2
𝑘 ≥ 0      ∀𝑘 ∈  𝐴2 

 

With this, we are now going to make a dual program, by transforming this minimization [1, p.89-90]. 
 

max 𝑈1
∗ 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑢1(𝑎1
𝑗
, 𝑎2

𝑘)

𝑗 ∈ 𝐴1

∗  𝑠1
𝑗

≥ 𝑈1
∗       ∀𝑘 ∈  𝐴2 

∑ 𝑠1
𝑗

= 1

𝑗 ∈ 𝐴1

 

𝑠1
𝑗

≥ 0      ∀𝑗 ∈  𝐴1 
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5 Continuous games 
We consider strategic games in which players may have infinitely many pure strategies. A pure 

strategy is a strategy, where a player selects a single action to play. Specifically, we are counting the 

real valued interval [0, 1] as a strategy space. 

5.1 Why is it hard? 
Let us look at some properties that make continuous games hard to solve. First of all, is the fact global 

minimization/maximization of a polynomial is hard. These optimization problems are typically non-

convex and highly nonlinear. Complexity is usually non-deterministic polynomial-time hardness, 

even for special cases such as maximizing a quadratic form in binary variables. Finding a solution is 

difficult for its complexity. It is a combination of heuristics and insight into the special structure of 

the game. Lastly, we have different types of games, where some have a special equilibrium. Convex-

concave games, where the first player minimizes and other maximizes, have a goal of finding a 

saddle-point. Games of timing, where players start at time zero and the probability of their success 

increases with time with known probabilities at given times. We also have games with bell-shaped 

utility functions or invariants under symmetries3. 

5.2 Selected families of continuous games have special 

equilibria 

5.2.1 Convex/concave games 

Convex-concave games are built on a similar principle. They operate on one player minimizing and 

other maximizing what is here called payments. It is an type of two-player, zero-sum game of 

𝑅𝑝 × 𝑅𝑞 with payoff function 𝑓: 𝑅𝑝+𝑞 → 𝑅. If we mark one payment as u and other as v, we get 

𝑓(𝑢, 𝑣) Lastly, a solution of the game is defined as (𝑢∗, 𝑣∗) if 

   𝑓(𝑢∗, 𝑣) ≤  𝑓(𝑢∗, 𝑣∗) ≤  𝑓(𝑢, 𝑣∗), ∀𝑢, 𝑣 ∈  𝑅𝑝 × 𝑅𝑞  

At this saddle point, neither player want to deviate, since it would only worsen their standings. The 

name convex-concave has to do with the function graphs of 𝑢 and 𝑣. Therefore, we need for each 𝑣, 

𝑓(𝑢, 𝑣) to be convex function of 𝑢, and for each 𝑢, 𝑓(𝑢, 𝑣) to be concave function of 𝑣. When f is 

differentiable our saddle-point will be characterized by a gradient of (𝑢∗, 𝑣∗) equal to 0, which can 

formally be noted as ∇(𝑢∗, 𝑣∗) = 0 [4]. 

5.2.2 Games of timing 

When talking about games of timing we set a stage in a game which happens in a [0, 1] windows, 

where each point in it is a specific moment in time. As an example, we imagine a game, where two 

player each have a basketball hoop and a ball. It slowly approaches them and therefore increases the 

probability of one player making a hoop. Players do not know, when the other one shot, but if both 

make it, the one who did it earlier gets a point. It is not a game of zero-sum since one’s point do not 

take away from the other [5].  

 
3https://books.google.cz/books?id=NWIdlT9Z67wC&dq=Global+maximization+of+a+polynomial+is+hard&source=gb

s_navlinks_s page 6 

https://books.google.cz/books?id=NWIdlT9Z67wC&dq=Global+maximization+of+a+polynomial+is+hard&source=gbs_navlinks_s
https://books.google.cz/books?id=NWIdlT9Z67wC&dq=Global+maximization+of+a+polynomial+is+hard&source=gbs_navlinks_s
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6 How to Deal with Games Having Piecewise-

Affine (PA) Utility Functions 
Firsly, we want to introduce piecewise-affine game. A strategic zero-sum gqme is piecewise affine, 

if strategy sets are [0,1] and 𝑢: [0,1]2 → 𝑅 is a piecewise affine function. What are piecewise 

functions? They are function which consist of more that one function, either continuous or non-

continuous. When these piecewise functions are affine, what this means is that the collections is 

created from separate affine functions. When we have a piecewise game, we need to think about a 

way that would represent our pieces correctly. Each piece can then be represented by its function 

since it is as a regular single three-dimensional function would be. If we have a way to represent each 

piece with some precision, we will keep it throughout the whole game. What was an impossible task 

is now uses splitting the problem into small parts and solve each one and put them back together to 

solve the big problem? We will describe two options for solving such a game [6, p.79-80]. 

6.1 Domains of linearity are polyhedral 
Convex polyhedron is an intersection of finitely many halfspaces. In our experiments, we have a 

square of size [0,1] ×  [0,1] where we have random points with random heights placed. Therefore, 

polyhedra could be used to connect our vertices. The advantage of this shape is the fact it binds 

together three or more points. Therefore, if it makes sense it might be able to save some computation, 

while it does not always need to use just three points like the second option we will describe [6, p.156-

160]. 

6.2 Triangulations 

When we want to describe a triangulation for a set of points 𝑃. We subdivide these points into 

maximum possible non-intersecting lines, where vertices of these lines are points from 𝑃. Maximum 

describes the fact that for every other possible connection of points from 𝑃 an intersection in formed 

with other already existing lines [6, p.59-80]. 
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7 Code Explanation 

7.1 Summary 
The algorithm has two main parts. The first part creates a plane with triangulated points. The second 

part uses these points to find intersections they have with lines from triangulation and points creates 

a grid, which is used in solving our two-player Zero-Sum Game. There are pictures from important 

steps made with temporary prints in the code. The program takes following input of four parameters: 

points_number – Describes how many points you want to have triangulated. Note that 4 are used 

for corners. Therefore, if chosen a lower number, the program sets the number to 4. 

heights_number – This number changes the height of our points. Note that height must be greater 

than 0, otherwise changed to 0 by default. 

kernel_sizer – We have a Matrix 1 × 1. Furthermore, there can be points anywhere in the interval 

of <0,1>. Kernel_sizer makes boxes in between the numbers 0 and 1, therefore this number needs 

to be modus of 1, otherwise changed to the default value of 0.2. 

steps – Lastly, we use steps to indicate how many iterations we want to calculate. Since we want 

our program to get some results is it best to choose a value of 2 or greater. The default value is set at 

2. 

For the first script, we use: 

Input: points_number, height_number, kernel_sizer 

Output: Triangulated square [0,1]  × [0,1] with randomly placed points and heights along each box 

border 

Second script uses an output of the first one, therefore we end up with: 

Input: Triangulated square [0,1]  × [0,1] with randomly placed points and heights along each box 

border with steps 

Output:  𝑥 = (𝑥1, … , 𝑥𝑛) is a mixed strategy of Alice, where we show only those 𝑥𝑖 > 0 

  𝑦 = (𝑦1, … , 𝑦𝑛) is a mixed strategy of Bob, where we show only those 𝑦𝑖 > 0  

Along with our printable outputs we show a triangulated space and intersection points for each 

iteration and probability distribution over mixed strategies of players. As an example, we follow a 

random generation of 5 points, with kernel_sizer set to 0.2 and height_number set to 50 to get 

rid of fractals or at least mitigate them. 
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7.2 Triangulation Part 

7.2.1 Square creation 

The function to complete the first part is called pa_games_watch. Firstly, to avoid working with 

fractals we use kernel_sizer (now called kernel_size) to calculate how many boxes there are 

between 0 and 1. For example with 0.2 we have 5 boxes, so we create 0,1,2,3,4,5 coordinates. 
 

Input: points_number, height_number, kernel_sizer 

Output: Square [0,1]  × [0,1] with size 6 × 6 (corresponding to 1 / kernel_size + 1) 

7.2.2 Value assigning 

The next step is to use random generation to pick points in the square matrix, we already have 4 

values set, one for each corner. There is an addition of visual matrix for points (indicated by number 

1) to illustrate better, which points we will be working with. The final coordinates are taken from the 

grid of points. After, we create heights for these points and make a visualization (indicated with their 

height). 
 

Input: Square [0,1]  × [0,1] with size 6 × 6 (corresponding to 1 / kernel_size + 1) 

Output: Square [0,1]  × [0,1] with size 6 × 6 (corresponding to 1 / kernel_size + 1) with 

randomly assigned points and heights (with visualization) 

 

 
 

7.2.3 Triangulation 

Now when we have all points and height for the triangulation we use a scipy.spatial.Delaunay 

to create triangles from our points. This library uses Qhull algorithms. The convex hull of a set of 

points 𝑃 in n dimensions is 𝑅𝑛. A set 𝑄 ∈ 𝑅𝑛 is convex if for all 𝑞1,  𝑞2 ∈ 𝑄 the line 𝑞1𝑞2 is fully 

within Q. The Convex hull of set of points P can be described as the smallest wrapping of such points4. 

When we ask how many triangles, we have in triangulation we look at our wrapped points, shaped 

like a polygon, and mark the number of points in consists of as n corners. The rest of the points which 

 
4 http://www.qhull.org/ 

http://www.qhull.org/
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is inside our polygon will be m. We can find a triangulation of a pivot corner, p, with drawing a line 

to n-3 corners with no edge to p. This together with polygon edges gives us  

𝑛 + (𝑛 − 3) = 2𝑛 − 3 edges, and 𝑛 − 2 triangles, since converting points to edges is done by 

dividing the number of edges by  

We have 𝑛 corners out 2 and subtracting 1. The next step is for us to take each of the inner points, 𝑚, 

and do the following. For a point 𝑞 ∈  𝑚 we find the triangle it lies in and connects it with its edges. 

This gives us another 3 edges and 2 more triangles. After pursuing this for all the points in m we get 

2𝑛 − 3 + 3𝑚 = 2𝑛 + 3𝑚 − 3 edges and 𝑛 + 2𝑚 − 2 triangles5. Even though this is a special way 

of creating triangles the number of them and edges remains constant for all other forms of 

triangulation. The plane we perform this in is not without special cases, for this kind of triangulation 

to stay omnipresent there needs to be no four points along a circle circumference, which even for our 

basic points does not apply. To clarify, imagine having a square 𝐴𝐵𝐶𝐷, when you want to triangulate 

it you can either connect 𝐴𝐶 or 𝐵𝐷. Since we added the required corner points of our plane, 

triangulation will always be possible since all our points will never be on a straight line. After the 

algorithms run, we can get tri.simplices for triangles marked by indices of the points in an array with 

coordinates. 
 

Input: Square [0,1]  × [0,1] with size 6 × 6 (corresponding to 1 / kernel_size + 1) with 

randomly assigned points and heights (with visualization) 

Output: List of coordinates and list with array describing indices from the list of coordinates 

 

 

  

 
5 https://www.uio.no/studier/emner/matnat/ifi/INF4130/h18/slides/forelesning-11---triangulering-og-convex-hull.pdf 

 

https://www.uio.no/studier/emner/matnat/ifi/INF4130/h18/slides/forelesning-11---triangulering-og-convex-hull.pdf
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7.3 Part of Creating and Solving Zero-Sum Game 

7.3.1 Line information 

For work clarification, we call a function line_info, which iterates through all lines and for each 

saves the information into an array. It consists of first point’s index, second point’s index, the array 

of size two with their 𝑥 coordinates, and an array of the same size with 𝑦 coordinates. We work with 

this array when we search for intersections. 
 

Input: List of coordinates and list with array describing indices from the list of coordinates 

Output: List describing each line with indices of points and 𝑋 and 𝑌 coordinates together for each 

line 

 

 
 

7.3.2 Height 

The next function is called find_A_b. This is used to describe each triangle in our triangulated plane. 

We have a mathematical equation: 

𝐴𝑥 +  𝑏 =  𝑦 

 

 
 

When we know A and b for a triangle, if we give it point’s coordinates, we can calculate its height 

very precisely. 𝑋 in this case consists of coordinates and 𝑦 is height returned. To explain it further A 

is a matrix of size 1 × 2, we multiply it by our coordinates and add b to receive the final height. This 

is used when we receive new coordinates from iteration in function find_height. 

Before we can call for find_height it is necessary to look for new points to assign height to. 
 

Input: List describing each line with indices of points and 𝑋 and 𝑌 coordinates together for each line 

Output: List of 𝐴𝑥 +  𝑏 =  𝑦 for describing each triangle to return more precise height for future 

intersections 
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7.3.3 Intersections 

The function quadratic_direction is called by two functions first_round and 

next_rounds. It is split for the ability to see the process more clearly. First_round calls it for 

randomly generated points, while next_rounds calls it for new points found in the first round and 

then reruns it step minus one time. As an improvement to the time computation, we added direction 

from which was the point found. Since when the points were found by a horizontal intersection from 

its origin, there is no need to search for horizontal intersections again. Quadratic_direction 

checks each line segment for possible intersections, there can be multiple with one line segment, 

afterward, it looks if such point doesn’t already exist and if that is the case it gets added to the pool 

of points. There are a few different types of possible intersections from a point to a line segment. The 

easiest are the ones where either 𝑥 or 𝑦 coordinate is the same for both ends of the line segment. Then 

we can set a new point’s coordinates, being 𝑥 or 𝑦, as one of the points from the line segment and the 

other from the points that were searching intersections. Another option is when the line segment is 

scute to the pivot. In that case, we can use analytic geometry to count the slope or the segment and 

plug it in the equation. 
 

Input: All points in set and in list, information about lines and heights, storage for points in each 

round, number of iterations to run (for next_rounds, first_round only does round 1)   
 

Output: Found intersection and updated grid from them with updated lists and sets of point  

 

 
 

7.3.4 Zero-sum game 

When all new points are received we again use numpy to find all unique 𝑋 and 𝑌 coordinates to create 

a grid from, list of coordinates in a gridded space, using itertools.product(𝑋, 𝑌). Grid_maker does 
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two things. Firstly, it assigns points to their triangles for them to be assigned a height using the 

aforementioned find_height. For triangles, we calculate 𝑐1, 𝑐2, 𝑐3 from out points, and then if all 

are either non-negative or non-positive we have a point inside that triangle. 

 c1 = (x2 - x1) * (yp - y1) - (y2 - y1) * (xp - x1) 

 c2 = (x3 - x2) * (yp - y2) - (y3 - y2) * (xp - x2) 

      c3 = (x1 - x3) * (yp - y3) - (y1 - y3) * (xp - x3)6 

Secondly, it computes a game for Alice and Bob and finds their preferred strategies. Dual 

programming was supposed to be the easiest part, but it turned out that not all python libraries suite 

this problem well. Firstly, we set up a linprog() library, where you only need to insert your values 

into a function and you receive an output. After getting various nonsensical outputs and internet 

searching we found this is not as robust as in its Matlab programming language counterpart. We 

moved on to nashpy(), which was meant to be more stable with our examples. It held better, but we 

could not test if there is something wrong or it is simply not enough. Lastly, we came across pulp(). 

Pulp is the most stable out of the three, it is harder to set up but easier to illustrate. When we wanted 

to put our dual program into a pulp problem, we need to do each part separately.  

 
Alice = np.rot90(A, -1) # We use a different orientation for dual program 

x_names = [format(x, '02d') for x in range(np.shape(Alice)[1] + 1)] 

x = pulp.LpVariable.dicts("x", x_names, cat="Continuous") 

for i in x.keys(): 

    if i == np.shape(Alice)[1]: 

        continue # x0 has no bounds 

    else: 

        x[i].lowBound = 0  # BOUNDS x1-xn >= 0 

 

prob = pulp.LpProblem("Alice", LpMaximize)  # MAX 

prob += x[x_names[np.shape(Alice)[1]]]  # (max) x0 

 

for i in range(np.shape(Alice)[0]): 

 prob += lpSum(Alice[i, k] * x[j] for k, j in enumerate(x_names[:-1])) - 1 * 

x[x_names[np.shape(Alice)[1]]] >= 0 # Ax – 1x1 >= 0 

prob += lpSum(1 * x[i] for i in x_names[:-1]) == 1 # Sum of xs is 1 

prob.solve() 

 

For our dual program we have a maximizing Alice, therefore we create LpProblem(“Alice”, 

LpMaximize). In this style, we add more equations to the problem. We can use for cycle to help us 

add 𝐴𝑥 ≤ 1𝑥0and constraints. The last thing is to call solve() on our problem. The values printed 

are for the strategies, which received more than 0 probability of being played. 

 

 
6 https://www.w3resource.com/python-exercises/basic/python-basic-1-exercise-40.php 

https://www.w3resource.com/python-exercises/basic/python-basic-1-exercise-40.php
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As an example we also create probability graphs. Here is one example from the third round. 
 

Input: Grid of points with all information for this iteration 

Output: Mixed strategies for Alice and Bob in this iteration and visual output showing these values 
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7.3.5 Point Storing 

We have a dictionary for each round, where we store all the points from that round. As the last thing, 

we use our grid to get a list of all points with their information about height and destination from 

where they were created to see them all in one place. 
 

Input: Coordinates current for iteration 

Output: New dictionary key with all values stored  
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7.3.6 Visual Output 

Now all the steps are finished. The first thing on the list to be drawn is a probability distribution over 

the possible strategies for each player side by side. The second thing is to show the viewer points 

active in each round with a triangulated original picture in the background. Below are the first two 

rounds.  

Input: Triangulated space with dictionary with points in each iteration 

Output: Triangulated space with grid points for each iteration 
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8 Conclusion 
Our goal was to experimentally verify whether infinite two-player zero-sum games with payoff 

functions, present in the form of piecewise affine functions have finite equilibria. While making an 

experiment, we needed to find the best way to illustrate our zero-sum two-player game with 

piecewise utility functions was with a square [0,1] ×  [0,1]. We soon realized we can use arrays and 

indices in them as initial points. There were many options for deciding the points, we went with 

pseudo-randomization of python’s NumPy library since it would be the one most beneficial for the 

whole project. Next was to have triangles representing our piecewise functions. To do this, we used 

the Delaunay function from the scipy library for triangulation. As we focused on solving the 

game using linear programming, we needed to have a matrix. Entries for the matrix were 

interpolated functions, we called them heights, of points. As a matrix needs to be rectangular and 

we only had sparsely allocated points, we decided that each iteration of our game would consist of 

finding intersections of points present currently and lines from triangles created in triangulation. 

Then we created a grid using the Cartesian product of unique 𝑥, 𝑦 coordinates of all points now. We 

used interpolated functions of the previous point along with their coordinates to describe each 

triangle in triangulation to give new points their height for the matrix to use in the game. Results of 

which we wanted to see stabilize into a finite equilibrium while iterating over and over. We learned 

that Python is not the greatest mathematical programming language and will rather choose Matlab 

for similar problems since we needed to investigate which library was implemented the best way to 

show the most stable results. Therefore, one iteration consists of finding intersection, creating a 

grid, and computing a two-player zero-sum game with linear programming. After what we learned 

from a theoretical background, we knew that if we observed a finite equilibrium of a zero-sum 

game, we could use it for the initial point as well as it is the case for polynomial games. 
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