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Abstract

The goal of the paper is to experimentally verify whether infinite two-player zero-sum games with
payoff functions, present in a form of piecewise affine functions have finite equilibria. Piecewise-
affine functions are defined over a continuous domain, in our case our triangulated square describing
continuous subdivision of itself, where there is an affine function for each triangle. In our experiment,
we will focus on computing an equilibrium based on linear programming. The experiment is based
on the generation of random triangulations with piecewise affine functions arising from them with an
approximation of such functions over a grid and calculating the equilibrium of the respective finite
game. To demonstrate it we create a square [0,1] x [0,1] where we randomly insert points along axis
decided by the user and triangulate them. Initial points have random values as interpolated function,
we will call heights. After this base state, we make an iteration consisting of finding new points by
intersecting initial points with lines from triangulation. New points have heights computed with
interpolated functions of triangles from the triangulation. Next, we create a grid from all existing
points. The zero-sum game will use the grid point’s heights as entries. The crucial conjecture is that
after some number of iterations a finite equilibrium from a zero-sum game will arise.

Klicova slova

Teorie her, Po ¢astech afinni hry, Hry s nulovym souctem, Nashovo equilibrium, Hry o dvou hracich

Anotace

Cilem této préce je experimentalné ovéfit jestli nekoneéna hry o dvou hracich s nulovym souctem

s vyplatni funkci, ktera je pfitomna ve formé po ¢astech afinni funkce mé kone¢né equilibrium. Po
¢astech afinni funkce jsou definované ptes kontinualni doménu, v nasem piipad¢ triangulovany
¢tverec popisujici kontinudlni subdivizi samo sebe, kde je affinni funkce pro kazdy trojihelnik.

V naSem experimentu se zaméfime na pocitani equilibria zaloZeném na linedrnim programovani.
Experiment je zaloZen na generovani nahodnych triangulaci s po¢astech affinnimi funkcemi z nich
vytvorenych a aproximaci téchto funkci pies grid pro vypocet equilibria té kone¢né hry. Pro
demonstraci udélame ¢tverec [0,1] X [0,1] kde mame nahodné dané body podél dimenzi uréenych
uzivatelem a triangulujeme je. Pavodni body maji ndhodné hodnoty jako interpolované funkce,
kterym budeme fikat vySky. Po tomto zakladnim stavu vytvofime iteraci obsahujici nalezeni novych
bodi z prisecikli ptivodnich bodu a usecek z triangulace. Nové body maji vysky spoctené

z interpolovanych funkci trojuhelniku triangulace. Dale vytvofime grid ze vSech existujicich bodd.
Hra s nulovym sou¢tem pouzije vysky z gridu jako své vstupy. Kritickd myslenka je, Ze po né¢kolika
iteracich konecné equilibrium vznikne ze hry s nulovym souctem.
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1 Introduction

It this thesis, we firstly go into some properties normal form games as a building stone for other, more
specific, types of games in game theory. Next, we look into zero-sum games as a main topic in our
project and talk about some other uses in computer science. When solving zero-sum games, we
introduce Nash equilibrium in them, and describe it to realize, what we are searching for. Then, we
describe continuous games as to gain more detailed information about what are dealing with and some
other specific types we can meet when solving a similar task. Lastly in our theory, we talk about
possible ways in approaching this setup. After all this theoretical knowledge, we are able to comment
on our code and its specific steps along with examples along the way. Then we summarize all of the
above in our conclusion.



2 Properties of Payoff Mixed Strategies
Matrix

At first, we want to look at our games in general, where we build a basic theoretical structure for
latter usage.

2.1 Normal form game

A finite game of n-players is in normal-form when we can form it as a tuple (N, 4, u), where N =
{1,..n} isasetof players, A = A; X ... X A, are all actions (strategies) with A4; being a finite set of
those available to player i and a = (a; ... a,,) € A is called strategy profile. Lastly, u where u; : A -
R is for each profile a € A utility (payoff), which describes a utility of player i [1, p.56].

2.2 Mixed strategies

A type of strategy, which may not seem obvious, is called a mixed strategy. For each player it consists
of randomizing over a set of available options according to some probability distribution. This can be
formally written as follows. The set of mixed strategies for player i is S; := A(A4;), where A(4;) is
the set of all probability distributions, where p; € S; is one such distribution, over A4;. If p; € S; is a
mixed strategy such that p;(a;) = 1 for some a; € A;, then p; is called a pure strategy [1, p.60].

2.3 Utility theory

Utility theory is the leading approach to model player's desires. It aims to describe its preferences
across a set of available options. Furthermore, its focus is to understand how such preferences change
when a player deals with uncertainty about alternatives it will receive [1, p.47].

2.4 Utility functions

When we talk about utility functions, as will be done much later in the text, we will be trying to make
a specific assumption that our player has desires about how to behave, which are consistent with
utility theory mentioned previously [1, p.56].

2.5 Expected utility

As we start, we calculate the probability for each strategy in our set of strategies, from which we
measure the average payoff among them all weighted by each probability. This can be formally
defined as follows. Given a normal-form game (N, 4, u) the expected utility u; for player i of the
mixed-strategy profile s = (s; ... s,,) is defined as [1, p.60]

u;(s) = Za eAui(a) 1_[ si(a)

jeEN



3 Zero-sum Games

3.1 Description

When we talk about zero-sum games, we have a matrix game with matrix M. Values in M are called
utilities.
M = [m;;] € R™™
The common example uses two players. We will call them A, as in Alice, and B as in Bob. One of
which uses row and other columns as their respective set of strategies. There is a finite number of
them I and J. The chosen one is called a play. Players choose what they play at the same time.
Moreover, one picks i € I, the other j € J. Value m;; is called a gain for player A, which is at the ame
time a loss of player B. Specifically,
0=my; + (—my;),Vi,j €L,]
Hence the name zero-sum games. A rational player i € N chooses a strategy that maximizes u; gain

[1, p.56].

3.2 The Idea of Solving

Players will always choose the best strategies among the worst possible variants. One picks a strategy,
which maximizes his payoff taking into consideration the fact that others act in the same way. Let us
consider the following matrix.
8 1 -3
M = [6 4 5 ]

0 2 12
The row minima are —3, 4, 0 and the columns maxima are 8, 4, 12. We can observe that row two and

columns of the same index have the same value being 2. So (2,2) is a saddle point with a payoff
(4, -

3.3 Uses

There are two big areas, where there is a possible usage of zero-sum games in computer science field
of study. They use Nash Equilibria in their models. Firstly cloud computing, we can set players as a
client, who wants to purchase the service, and cloud provider, who owns the cloud. Client decides on
whether to buy the service or not based of off transparency provided by the provider or not based on
Nash Equilibria. Secondly cyber security, where there is a unique approach to the scenario where
hacker is one player and system administrators, who defend a system, are the other. When comparing
these two scenarios cloud computing does not possess the needed quantity of providers and clients
for making the models more scalable for application in practice. On the other hand, in cyber security
there exists an uncertainty which makes it impossible to be presicely quantified in these models [2].

https://bcourses.berkeley.edu/courses/1454200/files/69611157/download?verifier=aGpeJ5AgThKsnB3Sa8cX16sKDK
SG1pKOfbCFKVHH pages 8-12



https://bcourses.berkeley.edu/courses/1454200/files/69611157/download?verifier=aGpeJ5AgTbKsnB3Sa8cX16sKDKSG1pK0fbCFKVHH
https://bcourses.berkeley.edu/courses/1454200/files/69611157/download?verifier=aGpeJ5AgTbKsnB3Sa8cX16sKDKSG1pK0fbCFKVHH

4 Nash Equilibrium of a PA Games is Located
at Vertices

4.1 Nash equilibrium

A Nash equilibrium is a set of strategies, one for each player i, where none has the incentive to deviate,
since it would result in a loss of ones payoff. It can be written formally as s = (s; ... s,,), where for
every player s is s; best response to s_;. With best response we are pointing out that if one player was
to choose another response he would get a lower payoff compared to the one received with best

response [1, p.62].

4.2 ¢-Nash

A type of Nash equilibria is called -Nash. It shows that for an area surrounding an existing equilibria
a result will be the same. Formally, for any fix € larger than zero a strategy profile s = (s; ...s,) iS
an e-Nash equilibrium if, for all players i and for all strategies s’; # s;

cu;(si,s—) = u(s;,s—;) — €[1,p.85].

4.3 Location at vertices

An equilibrium strategy of a player is a vertex of his best response polyhedron, which can also be
describes as a convex combination of these vertices. Therefore, in two-player game it can be found
by cycling through combinations of these best response vertices. Now, we know that equilibria will
be found on these vertices, which are represented in our program as points. Lexicographic reverse
search will lead us back to the original points2. We ask ourselves, what brought us to this decision
and do it, until we are back at the beginning [3].

4.4 Linear program

Our problem, zero-sum game, is the easiest to solve using Nash equilibrium. It can be expressed as a
linear program (LP), which results in solving equilibria in polynomial time. Let us consider a two-
player, zero-sum game G = ({1, 2}, A; X A,, (uy,u,)). We set U*; be the expected utility for player
i in equilibrium, also known as the value of the game. As we pointed out in our zero-sum game
definition U™, or the expected utility for the second player, needs to be a negative of U*;, resulting
in their combined sum is 0. The min-max theorem (in Section 3.4.1 and Theorem 3.4.4. in
masfoundation book) tells us that our expected utility remains constant in all equilibria and that it is
the same as the value player 1 achieves under a min-max strategy by player 2. Using this, we can
construct the linear program as follows.

2 https://faculty.coe.drexel.edu/jwalsh/JayantLRS.pdf
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min U7
subject to Z w(al,a¥) » sk<u; vje A
KEA

2

k€A,
sk>0 Vk € A,

With this, we are now going to make a dual program, by transforming this minimization [1, p.89-90].

max Uy

subject to Z ul(a{,a’f) * slj >U; Vk € A,
JEA;



5 Continuous games

We consider strategic games in which players may have infinitely many pure strategies. A pure
strategy is a strategy, where a player selects a single action to play. Specifically, we are counting the
real valued interval [0, 1] as a strategy space.

5.1 Why is it hard?

Let us look at some properties that make continuous games hard to solve. First of all, is the fact global
minimization/maximization of a polynomial is hard. These optimization problems are typically non-
convex and highly nonlinear. Complexity is usually non-deterministic polynomial-time hardness,
even for special cases such as maximizing a quadratic form in binary variables. Finding a solution is
difficult for its complexity. It is a combination of heuristics and insight into the special structure of
the game. Lastly, we have different types of games, where some have a special equilibrium. Convex-
concave games, where the first player minimizes and other maximizes, have a goal of finding a
saddle-point. Games of timing, where players start at time zero and the probability of their success
increases with time with known probabilities at given times. We also have games with bell-shaped
utility functions or invariants under symmetries®,

5.2 Selected families of continuous games have special
equilibria

5.2.1 Convex/concave games
Convex-concave games are built on a similar principle. They operate on one player minimizing and
other maximizing what is here called payments. It is an type of two-player, zero-sum game of
RP x R? with payoff function f: RP*9 — R. If we mark one payment as u and other as v, we get
f (u, v) Lastly, a solution of the game is defined as (u*, v*) if

fw,v) < fw,v) < f(u,v"),Yu,v € R’ x R?
At this saddle point, neither player want to deviate, since it would only worsen their standings. The
name convex-concave has to do with the function graphs of u and v. Therefore, we need for each v,
f (u, v) to be convex function of u, and for each u, f(u, v) to be concave function of v. When f is
differentiable our saddle-point will be characterized by a gradient of (u*, v*) equal to 0, which can
formally be noted as V(u*,v*) = 0 [4].

5.2.2 Games of timing

When talking about games of timing we set a stage in a game which happens in a [0, 1] windows,
where each point in it is a specific moment in time. As an example, we imagine a game, where two
player each have a basketball hoop and a ball. It slowly approaches them and therefore increases the
probability of one player making a hoop. Players do not know, when the other one shot, but if both
make it, the one who did it earlier gets a point. It is not a game of zero-sum since one’s point do not
take away from the other [5].

3https://books.google.cz/books?id=NWIdIT9Z67wC&dg=Global+maximization+of+a+polynomial+is+hard&source=gb
s_navlinks_s page 6
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6 How to Deal with Games Having Piecewise-
Affine (PA) Utility Functions

Firsly, we want to introduce piecewise-affine game. A strategic zero-sum ggme is piecewise affine,
if strategy sets are [0,1] and u:[0,1]> - R is a piecewise affine function. What are piecewise
functions? They are function which consist of more that one function, either continuous or non-
continuous. When these piecewise functions are affine, what this means is that the collections is
created from separate affine functions. When we have a piecewise game, we need to think about a
way that would represent our pieces correctly. Each piece can then be represented by its function
since it is as a regular single three-dimensional function would be. If we have a way to represent each
piece with some precision, we will keep it throughout the whole game. What was an impossible task
is now uses splitting the problem into small parts and solve each one and put them back together to
solve the big problem? We will describe two options for solving such a game [6, p.79-80].

6.1 Domains of linearity are polyhedral

Convex polyhedron is an intersection of finitely many halfspaces. In our experiments, we have a
square of size [0,1] x [0,1] where we have random points with random heights placed. Therefore,
polyhedra could be used to connect our vertices. The advantage of this shape is the fact it binds
together three or more points. Therefore, if it makes sense it might be able to save some computation,
while it does not always need to use just three points like the second option we will describe [6, p.156-

160].

6.2 Triangulations

When we want to describe a triangulation for a set of points P. We subdivide these points into
maximum possible non-intersecting lines, where vertices of these lines are points from P. Maximum
describes the fact that for every other possible connection of points from P an intersection in formed
with other already existing lines [6, p.59-80].



7 Code Explanation

7.1 Summary

The algorithm has two main parts. The first part creates a plane with triangulated points. The second
part uses these points to find intersections they have with lines from triangulation and points creates
a grid, which is used in solving our two-player Zero-Sum Game. There are pictures from important
steps made with temporary prints in the code. The program takes following input of four parameters:

points_number — Describes how many points you want to have triangulated. Note that 4 are used
for corners. Therefore, if chosen a lower number, the program sets the number to 4.

heights_number — This number changes the height of our points. Note that height must be greater
than 0, otherwise changed to 0 by default.

kernel sizer—We have a Matrix 1 x 1. Furthermore, there can be points anywhere in the interval
0f <0,1>. Kernel sizer makes boxes in between the numbers 0 and 1, therefore this number needs
to be modus of 1, otherwise changed to the default value of 0.2.

steps — Lastly, we use steps to indicate how many iterations we want to calculate. Since we want
our program to get some results is it best to choose a value of 2 or greater. The default value is set at
2.

For the first script, we use:
Input: points number, height number, kernel sizer

Output: Triangulated square [0,1] x [0,1] with randomly placed points and heights along each box
border

Second script uses an output of the first one, therefore we end up with:

Input: Triangulated square [0,1] x [0,1] with randomly placed points and heights along each box
border with steps

Output: x = (xq, ..., x,) IS a mixed strategy of Alice, where we show only those x; > 0
y = (y1, .-, ) IS @ Mixed strategy of Bob, where we show only those y; > 0

Along with our printable outputs we show a triangulated space and intersection points for each
iteration and probability distribution over mixed strategies of players. As an example, we follow a
random generation of 5 points, with kernel sizer setto 0.2 and height number setto 50 to get
rid of fractals or at least mitigate them.



7.2 Triangulation Part

7.2.1 Square creation

The function to complete the first part is called pa games watch. Firstly, to avoid working with
fractals we use kernel sizer (now called kernel size) to calculate how many boxes there are
between 0 and 1. For example with 0.2 we have 5 boxes, so we create 0,1,2,3,4,5 coordinates.

Input: points number, height number, kernel sizer

Output: Square [0,1] x [0,1] with size 6 X 6 (correspondingto 1 / kernel size + 1)

7.2.2 Value assigning

The next step is to use random generation to pick points in the square matrix, we already have 4
values set, one for each corner. There is an addition of visual matrix for points (indicated by number
1) to illustrate better, which points we will be working with. The final coordinates are taken from the
grid of points. After, we create heights for these points and make a visualization (indicated with their
height).

Input: Square [0,1] x [0,1] with size 6 x 6 (correspondingto 1 / kernel size + 1)

Output: Square [0,1] x [0,1] with size 6 X 6 (correspondingto 1 / kernel size + 1) with
randomly assigned points and heights (with visualization)

0. 0. 0. 0.
0. 0. 0. 0.
0. 1. 0. 0.

heights:

7.2.3 Triangulation

Now when we have all points and height for the triangulation we use a scipy.spatial.Delaunay
to create triangles from our points. This library uses Qhull algorithms. The convex hull of a set of
points P in n dimensions is R™. A set Q € R™ is convex if for all g;, g, € Q the line g,q, is fully
within Q. The Convex hull of set of points P can be described as the smallest wrapping of such points®.
When we ask how many triangles, we have in triangulation we look at our wrapped points, shaped
like a polygon, and mark the number of points in consists of as n corners. The rest of the points which

4 http://www.ghull.org/



http://www.qhull.org/

is inside our polygon will be m. We can find a triangulation of a pivot corner, p, with drawing a line
to n-3 corners with no edge to p. This together with polygon edges gives us

n+ (n—3) =2n—3 edges, and n — 2 triangles, since converting points to edges is done by
dividing the number of edges by

We have n corners out 2 and subtracting 1. The next step is for us to take each of the inner points, m,
and do the following. For a point ¢ € m we find the triangle it lies in and connects it with its edges.
This gives us another 3 edges and 2 more triangles. After pursuing this for all the points in m we get
2n— 3+ 3m = 2n + 3m — 3 edges and n + 2m — 2 triangles®. Even though this is a special way
of creating triangles the number of them and edges remains constant for all other forms of
triangulation. The plane we perform this in is not without special cases, for this kind of triangulation
to stay omnipresent there needs to be no four points along a circle circumference, which even for our
basic points does not apply. To clarify, imagine having a square ABCD, when you want to triangulate
it you can either connect AC or BD. Since we added the required corner points of our plane,
triangulation will always be possible since all our points will never be on a straight line. After the
algorithms run, we can get tri.simplices for triangles marked by indices of the points in an array with
coordinates.

Input: Square [0,1] x [0,1] with size 6 x 6 (corresponding to 1 / kernel size + 1) with
randomly assigned points and heights (with visualization)

Output: List of coordinates and list with array describing indices from the list of coordinates

5 https://www.uio.no/studier/emner/matnat/ifi/INF4130/h18/slides/forelesning-11---triangulering-og-convex-hull.pdf
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7.3 Part of Creating and Solving Zero-Sum Game

7.3.1 Line information

For work clarification, we call a function 1ine info, which iterates through all lines and for each
saves the information into an array. It consists of first point’s index, second point’s index, the array
of size two with their x coordinates, and an array of the same size with y coordinates. We work with
this array when we search for intersections.

Input: List of coordinates and list with array describing indices from the list of coordinates

Output: List describing each line with indices of points and X and Y coordinates together for each
line

7.3.2 Height

The next function is called £ind A b. This is used to describe each triangle in our triangulated plane.
We have a mathematical equation:

Ax + b =y

When we know A and b for a triangle, if we give it point’s coordinates, we can calculate its height
very precisely. X in this case consists of coordinates and y is height returned. To explain it further A
is a matrix of size 1 x 2, we multiply it by our coordinates and add b to receive the final height. This
is used when we receive new coordinates from iteration in function £ind height.

Before we can call for £ind height it is necessary to look for new points to assign height to.

Input: List describing each line with indices of points and X and Y coordinates together for each line
Output: List of Ax + b = y for describing each triangle to return more precise height for future
intersections

11



3 with heights and direction:
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1l

1N s s s ds =
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]
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]
]
]
]
]
]
]

7.3.3 Intersections

The function quadratic direction is called by two functions first round and
next rounds. It is split for the ability to see the process more clearly. First round calls it for
randomly generated points, while next rounds calls it for new points found in the first round and
then reruns it step minus one time. As an improvement to the time computation, we added direction
from which was the point found. Since when the points were found by a horizontal intersection from
its origin, there is no need to search for horizontal intersections again. Quadratic direction
checks each line segment for possible intersections, there can be multiple with one line segment,
afterward, it looks if such point doesn’t already exist and if that is the case it gets added to the pool
of points. There are a few different types of possible intersections from a point to a line segment. The
easiest are the ones where either x or y coordinate is the same for both ends of the line segment. Then
we can set a new point’s coordinates, being x or y, as one of the points from the line segment and the
other from the points that were searching intersections. Another option is when the line segment is
scute to the pivot. In that case, we can use analytic geometry to count the slope or the segment and
plug it in the equation.

Input: All points in set and in list, information about lines and heights, storage for points in each
round, number of iterations to run (for next rounds, first round only does round 1)

Output: Found intersection and updated grid from them with updated lists and sets of point

7.3.4 Zero-sum game

When all new points are received we again use numpy to find all unique X and Y coordinates to create
a grid from, list of coordinates in a gridded space, using itertools.product(X, Y). Grid maker does

12



two things. Firstly, it assigns points to their triangles for them to be assigned a height using the
aforementioned £ind height. For triangles, we calculate c1, c2, c3 from out points, and then if all
are either non-negative or non-positive we have a point inside that triangle.

cl = (x2 - x1) * (yp - yl) - (y2 - yl) * (xp - x1)

c2 = (x3 - x2) * (yp - y2) - (y3 - y2) * (xp - x2)

c3 = (x1 - x3) * (yp - y3) - (yl - y3) * (xp - x3)°
Secondly, it computes a game for Alice and Bob and finds their preferred strategies. Dual
programming was supposed to be the easiest part, but it turned out that not all python libraries suite
this problem well. Firstly, we setup a 1inprog () library, where you only need to insert your values
into a function and you receive an output. After getting various nonsensical outputs and internet
searching we found this is not as robust as in its Matlab programming language counterpart. We
moved on to nashpy (), which was meant to be more stable with our examples. It held better, but we
could not test if there is something wrong or it is simply not enough. Lastly, we came across pulp ().
Pulp is the most stable out of the three, it is harder to set up but easier to illustrate. When we wanted
to put our dual program into a pulp problem, we need to do each part separately.

(x_names[:-1])) -

For our dual program we have a maximizing Alice, therefore we create LpProblem (“Alice”,
LpMaximize). In this style, we add more equations to the problem. We can use for cycle to help us
add Ax < 1x,and constraints. The last thing is to call solve () on our problem. The values printed
are for the strategies, which received more than 0 probability of being played.

6 https://www.w3resource.com/python-exercises/basic/python-basic-1-exercise-40.php
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As an example we also create probability graphs. Here is one example from the third round.

Input: Grid of points with all information for this iteration
Output: Mixed strategies for Alice and Bob in this iteration and visual output showing these values
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7.3.5 Point Storing
We have a dictionary for each round, where we store all the points from that round. As the last thing,
we use our grid to get a list of all points with their information about height and destination from

where they were created to see them all in one place.

Input: Coordinates current for iteration
Output: New dictionary key with all values stored
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7.3.6 Visual Output

Now all the steps are finished. The first thing on the list to be drawn is a probability distribution over
the possible strategies for each player side by side. The second thing is to show the viewer points
active in each round with a triangulated original picture in the background. Below are the first two
rounds.

Input: Triangulated space with dictionary with points in each iteration

Output: Triangulated space with grid points for each iteration

5 - &
4 ] ] ]
3
2
1{ & ®
4] - &
0 1 2 3 4 5
5 ° ° °
4 ] . ]
3
54
1 > [ ] »
] ° ]
0 ° ] ]
T T
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8 Conclusion

Our goal was to experimentally verify whether infinite two-player zero-sum games with payoff
functions, present in the form of piecewise affine functions have finite equilibria. While making an
experiment, we needed to find the best way to illustrate our zero-sum two-player game with
piecewise utility functions was with a square [0,1] x [0,1]. We soon realized we can use arrays and
indices in them as initial points. There were many options for deciding the points, we went with
pseudo-randomization of python’s NumPy library since it would be the one most beneficial for the
whole project. Next was to have triangles representing our piecewise functions. To do this, we used
the Delaunay function from the scipy library for triangulation. As we focused on solving the
game using linear programming, we needed to have a matrix. Entries for the matrix were
interpolated functions, we called them heights, of points. As a matrix needs to be rectangular and
we only had sparsely allocated points, we decided that each iteration of our game would consist of
finding intersections of points present currently and lines from triangles created in triangulation.
Then we created a grid using the Cartesian product of unique x, y coordinates of all points now. We
used interpolated functions of the previous point along with their coordinates to describe each
triangle in triangulation to give new points their height for the matrix to use in the game. Results of
which we wanted to see stabilize into a finite equilibrium while iterating over and over. We learned
that Python is not the greatest mathematical programming language and will rather choose Matlab
for similar problems since we needed to investigate which library was implemented the best way to
show the most stable results. Therefore, one iteration consists of finding intersection, creating a
grid, and computing a two-player zero-sum game with linear programming. After what we learned
from a theoretical background, we knew that if we observed a finite equilibrium of a zero-sum
game, we could use it for the initial point as well as it is the case for polynomial games.
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