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Abstract

This thesis aims to optimize one of the bottlenecks in the workflow of medical laborato-
ries. We build on top of the data analysis performed in [1] while using the same data to
create an efficient solution to the batching problem of the centrifuge. Unlike the existing
approaches, we also consider an element of uncertainty on the release times of the samples,
which stems from the workflow. Firstly, we investigate the state-of-the-art literature in
the field of scheduling under uncertainty. Afterwards, we analyze and formally define our
problem. Then, we examine the most promising approaches and based on the insights
gained; we propose a proactive schedule generating model, whose robustness might be
adjusted. Later, we incorporate this model into a proactive-reactive framework. Subse-
quently, we demonstrate the computational tractability of this approach, and explain its
behavior in small instances of the problem. Finally, we run a simulation emulating the real
processes in the laboratory. We conclude that by increasing the level of robustness of the
proactive schedule, we get worse average in the total turnaround time of some samples,
but with considerably decreased variance.

Keywords: scheduling, uncertainty, robustness, centrifuge

Abstrakt

Ćılem této práce je optimalizace jednoho z úzkých hrdel pracovńıho postupu zdravotnické
laboratoře. Budeme navazovat na datovou analýzu provedenou v [1], přičemž tato data
také použijeme k vytvořeńı efektivńıho řešeńı problému obsazeńı dávek na odstředivce.
Na rozd́ıl od předchoźıch př́ıstup̊u budeme uvažovat vliv neurčitosti na čas uvolněńı jed-
notlivých vzork̊u, který prameńı z pracovńıho postupu. Nejdř́ıve provedeme rešerši ne-
jaktuálněǰśı literatury v oboru rozvrhováńı s neurčitost́ı. Poté zanalyzujeme a formálně
zadefinujeme náš problém. Dále prozkoumáme nejnadějněǰśı př́ıstupy řešeńı. Na základě
źıskaných poznatk̊u navrhneme model schopný vytvořeńı proaktvńıho rozvrhu, jehož ro-
bustnost jsme schopni ovládat. Potom jej využijeme k vytvořeńı proaktivně-reaktivńıho
řešeńı celého problému, načež experimentálně ověř́ıme, že je rychle vypočitatelné. Chováńı
rozvrhovaćıho modelu je posléze osvětleno na malých instanćıch problému. V posledńı řadě
provád́ıme experiment, jehož ćılem je věrně replikovat procesy v laboratoři. Docháźıme k
závěru, že zvyšováńım robustnosti proaktivńıho rozvrhu dojde ke zhoršeńı pr̊uměrné doby
odbavováńı, ale zároveň také k podstatnému sńıžeńı jej́ıho rozptylu.

Kĺıčová slova: rozvrhováńı, neurčitost, robustnost, odstředivka
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Chapter 1

Introduction

The goal of this thesis is to investigate one of the bottlenecks in the workflow of medi-
cal laboratories. Based on this analysis, we propose a scheduling framework which will
reduce the time from sample collection until the results are available, which is known as
turnaround time (TAT). This work aims to build on top of the analysis of anonymized data
from Královské Vinohrady University Hospital, which was performed by Karel Gavenčiak
[1]. In his thesis, he gives a detailed description of the laboratory workflow and also ana-
lyzes real data from their laboratory. He then proposes several improvements for another
bottleneck, the medical analyzer, that performs the tests on the samples of biological
material. However, most of the blood samples, which are the most often tested type of
organic material, cannot be tested straight away as they come into the laboratory. They
need to be prepared first. That is where our thesis comes in; we will be looking at ways to
improve the first step in the process, the batching of samples into the centrifuge, which is
a relatively standard optimization problem. However, unlike the existing approaches, we
attempt to address an element of uncertainty on the release times of the samples, which
stems from the way the material is delivered into the laboratory.

Firstly, we begin with an introduction and then examine state of the art literature in the
fields relevant to this problem: scheduling under uncertainty and laboratory scheduling.
In Chapter 2, we describe the setting we are modelling and formally declare our scheduling
problem. In the subsequent Chapter 3, we discuss the advantages and disadvantages of
the application of different methods of robust optimization on our problem. Following this
analysis, we propose our own robust formulation of the problem. Afterwards, in Chapter 4,
we evaluate this approach both on small synthetic instances as well as larger datasets and
discuss its performance. Finally, concluding remarks are presented in Chapter 5.

1.1 Literature overview

The use of optimization in a hospital environment has a long history. Starting with the
Nurse scheduling problem [2] in the seventies, researchers have since focused on optimizing
many parts of the hospital, such as schedules of operating rooms [3], the effectiveness of
intensive care units [4] and resident schedules [5]. We intend to contribute to this extensive
field of research. In this work, we will focus on scheduling in a biochemical laboratory,
and we will propose a solution which will speed up the sample evaluation process while
providing a schedule which is to some degree protected against an unexpectedly delayed
release of a task.

The main area of related works which we need to cover is scheduling under uncertainty.
This field studies scheduling problems, where the input data are not precisely known and
may be subject to change. Firstly, we will discuss the possible approaches towards the
uncertainty, whether to plan for it in advance or react to it when it happens. Afterwards,
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Chapter 1. Introduction

we will examine the possible ways of generating the schedules and how to improve or
repair them when they become suboptimal or infeasible due to the uncertainty. At last,
we will survey the areas of laboratory scheduling, which might give us some insights when
it comes to problems in a hospital setting.

1.1.1 Scheduling under uncertainty

When scheduling processes which are subject to uncertainty, it is very likely that as time
progresses, the uncertainty manifests and reveals additional information. How these new
realizations are taken into account divides the literature into several groups.

The authors in [6] discuss the three main categories: completely reactive scheduling,
proactive scheduling and proactive-reactive scheduling. Completely reactive scheduling is
used, when very little is known about the uncertainty, which prevents us from planning
ahead. It requires constant knowledge about the problem domain in order to act quickly
once the uncertainty is realized. On the other hand, proactive scheduling tries to build
schedules, which are, to some degree, protected against possible realizations of the uncer-
tainty. These methods can be used only when some information about the uncertainty is
known when generating the schedule. The balance in between is represented by proactive-
reactive scheduling, which builds a predictive schedule based on the known information
about the uncertainty and later uses a reactive algorithm which modifies the schedule
according to the revealed information.

To correctly choose which one of these approaches will be used is a decisive step, which
must be analyzed thoroughly. Several factors need to be weighed in, such as the time it
takes to react to the realization of the uncertainty and how often is a reaction needed.
However, to cite the article [6] word for word “A scheduling system that is able to deal
with uncertainty is very likely to employ both proactive and reactive scheduling”. It is
practically impossible even for proactive schedules to take into account all the possible
realizations of uncertainty. Some degree of schedule modification will always be necessary
to schedule long term processes. This reactive step might be elementary such as rerunning
the scheduling algorithm with the updated data, or much more complex using a specific
algorithm which repairs or improves the schedule.

In our work, we will focus on proactive scheduling, mainly because we have a lot of
anonymized data, which will give us the possibility to analyze the uncertainty. However, as
mentioned, when a sample arrives later than our proactive method expects, or when a new
sample is registered, we will need to react, this will make our approach a proactive-reactive
one.

Another important decision is how to generate the schedule. This can be done in a
plethora of ways; a great overview is provided by [7]. The authors show a motivating
example and then demonstrate how uncertainties may be modelled as well as discuss the
ideas behind the methods which are used to create a schedule. A majority of proactive
approaches use linear programming (LP), which will be our method of choice as well,
mainly because it is capable of handling our computationally difficult problem while giving
us truly optimal solutions. Moreover, LP is well suited for the structure of our task and
most widely researched in the literature concerning our problem. The fields using LP in
proactive scheduling that will be relevant the most to us and that we are going to examine
next are robust optimization, stochastic programming and bilevel optimization.

Robust optimization

In this context, the word ”robustness” means the extent to which the feasibility and the
objective function value are susceptible to perturbations in the realizations of the uncertain
parameters. The smaller the effect of changes in realizations, the more ”robust” is the

2



Chapter 1. Introduction

solution said to be. However, this protection almost always comes at a cost. In order
to be prepared against the possible realizations of the uncertainty, one must assume bad
outcomes, which will typically perform worse than the deterministic optimum.

The important aspect of this approach is that no assumptions about the distributions
of the uncertainties are made. Instead, so-called ”uncertainty sets” are considered. We
are then looking for a solution that is feasible for every realization from the uncertainty
set.

Paper [8] provides a great introduction to the practical ways of robust optimization
and describes the two main ways to solve such problems; the first is to transform the
problem into its ”robust counterpart”. Based on the original problem and the uncertainty
set, hard constraints are added into the deterministic model in order to assure feasibility
for realizations in the uncertainty set. The reformulated problem is then solved by the
appropriate method such as LP, conic programming, or other, depending on the type of
uncertainty set used. An example of this approach in practice is [9], where researchers use
this approach to optimize the portfolio problem and provide us with numerical results.

The second method is called the adversarial approach, which is useful when we are
unable to transform the problem into its robust counterpart, or when it is computationally
demanding. An application of this approach can be seen in [10], where researchers use it
to compute optimal basestock level based on uncertain demand. They use a finite set of
realizations of the uncertain variables for a given constraint, so-called scenarios. Then, a
min-max approach is used, the optimization problem is solved and then evaluated for the
worst possible outcome of the uncertainty. If it is considered good enough, it is proclaimed
as the solution. If not, the worst outcome of the uncertainty is added into the model, and
the solution recalculated. This is repeated until a robust enough solution is acquired.

One of the important properties of robust optimization is the balance between the value
of the criterion and the probability that the model will become unfeasible or strongly sub-
optimal. The first works in this field considered only strict feasibility for every realization
in the uncertainty set; an example is [11]. However, these models tend to be very con-
servative and more recently, scientists have found ways, to control the equilibrium. This
is researched in [12], where the authors allow control of the robustness on the level of
individual constraints while introducing little computational overhead.

Article [13] focuses precisely on this trade-off between robustness and objective function
value. The authors define a metric of the robustness of their model, called stability radius.
Subsequently, they transform their single-objective scheduling problem into a bi-objective
one, where the second objective is maximizing the stability radius. They then proceed to
plot the Pareto frontier of their problem, which directly visualizes the relationship between
optimality and robustness.

Stochastic programming

The main idea of these methods is that the probability distribution behind the uncertainty
is either known or can be estimated, which makes it possible to introduce stochastic
variables directly into the optimization model. The optimization is then performed with
respect to the expected value of such variables.

However, analytical approaches are usually intractable in these cases. Instead, the
random variables are discretized with real, or synthetically generated data based on the
distribution, which are called scenarios. These methods yield standard LP models, which
aim to optimize the expected value over all the scenarios and to some degree, enforce
feasibility over them.

This leads to a technique known as sample average approximation (SAA). This ap-
proach is used by the researchers in [14] to schedule elective surgery procedures in a
hospital. Firstly, several independent scenarios are sampled from the distributions we
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Chapter 1. Introduction

believe are governing the uncertainty. For each of these, a data-based model is solved to
obtain a candidate solution. The mean and variance of objective values of these solutions
are calculated and serve as an estimate of the true objective value. Based on this, the
optimality gap is estimated for each of the candidate solutions, and one of them is chosen.

A possible drawback of this approach is that the data need to be included in the model,
which yields a large number of constraints and variables. In order to get precise results,
larger sample sizes need to be considered, thereby making the model more computationally
demanding. Authors in [14] report computation times from one to twenty minutes for a
problem concerning 203 patients. This seems to be too demanding for our problem.

Stochastic programming is also very often used to solve problems, which include two,
or even more, stage decision process. The focus of the decisions made in the first stage is
to optimize the expected value of the possible second stage decisions, which are performed
after the uncertainty is revealed. This approach, together with SAA is used in [15] to
design a supply chain network under uncertainty. Another illustrative example of these
methods is [16], where the authors describe a two-stage approach towards operating room
scheduling, which is subject to stochastic demand when an emergency occurs as well as
deterministic planned surgery.

Bilevel optimization

This area studies situations, where there is one problem nested in another. A classic
example of this is the toll setting problem, where in order for the government to know how
much toll they will collect from the highway network, they need to calculate whether the
optimal route for each traveller, given his constraints and toll price, uses the toll roads.
Article [17] describes the formulation of this problem as well as provides an overview of
the applications.

This method is used to address uncertainty via the min-max approach. A subproblem
with the opposite objective is inserted into the main problem. The feasible region of the
inner problem is only allowed to deviate from the feasible solutions of the outer problem
to some predefined degree. These formulations then provide results, which have the best
worst-case when considering the allowed deviations. This approach is used in [18], where
the researchers aim to find a flow which has maximal remaining value after a given number
of edges is removed from the graph.

Other methods

Of the rest of the methods used in proactive scheduling, distributionally robust optimization
certainly deserves mention. This approach studies problems, where the uncertainty follows
a certain distribution, which itself is subject to uncertainty. Since this is not our case,
we have not investigated this area further. For a deeper explanation, see [19]. Another
such field is fuzzy programming. These approaches are based on fuzzy mathematics, an
extension of set theory and logic. Simple yes or no concepts such as truth and false and
membership in a set are extended to the interval between zero and one, which allows for
some novel applications in scheduling and optimization, but we consider them beyond the
scope of this thesis. An example and starting point for further reading is the article [20],
which describes a fuzzy approach to optimization of water resources usage.

Lastly, the field of sensitivity analysis studies how the uncertainties in the input affect
the output of a given problem; it is useful for identifying which parameters of the model
need to be carefully examined and which, even though uncertain, affect the output very
little for nearly all of their realizations. However, few studies which focus on scheduling
have been performed.
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Chapter 1. Introduction

Reactive scheduling

As mentioned, no scheduling system can work in the long run without containing a reactive
part. A deeper overview of the current state of literature in this field can be seen in
[21], where the authors also come up with their own proactive-reactive approach for the
resource-constrained project scheduling problem. As this area is not the primary focus of
our work, for the reactive part, simply running our proactive schedule generating model
again with updated inputs will suffice.

1.1.2 Laboratory scheduling

Since no other work so far has focused primarily on scheduling of the centrifuge, the related
works in this field serve mostly as a way to familiarize ourselves with the environment
where our problem is located.

In the thesis [22], the author focuses on the very same objective as we do, reducing
turnaround time (TAT). The work explains the processes in a histopathology laboratory
in great detail, and based on them puts several improvement techniques into practice in a
hospital in Sweden, while measuring their effectivity. However, this thesis is written from
more of a management and healthcare point of view, rather than a mathematical one.

Paper [23] gives insight into the preanalytic process, which is not our primary focus,
but makes the interesting point that it is the phase, where most errors are made.

Another interesting recent article is [24], where the authors consider a very similar
parallel batch scheduling problem with an online system. However, their focus is on the
analyzers, not the centrifuge. They employ heuristics to obtain their schedules for models
both with unbounded and bounded capacities and provide proof that their results lie
within a given multiple of the optimal value of the offline version.

Article [25] gives a glimpse at where the field might look like in the future. Researchers
study optimal schedules of mixture preparation for microfluidic biochips, devices which are
able to integrate some functions of biochemical analyzers into a single integrated circuit.
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Chapter 2

Problem Statement

In this chapter, we are going to familiarize ourselves with the environment our problem is
set in as well as formally define the problem we will address.

In our thesis, we focus on optimizing the schedule of a medical laboratory, a place
whose main function is to analyze samples received from various parts of the hospital and
test them to provide key results for aiding the diagnostic process, selecting the appropriate
treatment and prevention of disease.

Scientifically speaking, what a layman would call a ”test”, falls into the field of pathol-
ogy [26], a branch of medicine which looks into the causes and effects of diseases and
injuries, with the focus being on diseases in this case. Nowadays, there is a wide variety
of materials that can be tested and tests that can be performed, which has led to a great
degree of specialization in this field. The two main subdivisions are anatomic pathology,
which focuses on the testing of tissue samples and clinical pathology, which analyzes bodily
fluids. This area is further divided into:

• Clinical microbiology, which investigates infectious diseases, which can be caused by
viruses, bacteria, fungi, parasites or prions. It studies how these infectious agents
attack the body and how to diagnose, treat and prevent them.

• Chemical pathology, also called clinical biochemistry, focuses on diagnostics based on
the testing of bodily fluids, mainly blood. It has grown from using simple chemical
reactions to test various components of blood to specialized laboratories which can
perform up to 700 different tests.

• Molecular genetics, whose main interest is to study the genetic code of an individual
to detect possible risk factors and future diseases and to help choose the appropriate
treatment.

• Hematology, which studies diseases directly linked to blood, such as blood cancers
or bleeding disorders, as well as preparation and storage of blood to be used in
transfusions.

As is often the case in medicine, all of these branches are closely related to each other,
and certain procedures might be categorized under more than one of these subdivisions.
In practice, medical laboratories range from smaller ones specializing in only a few testing
methods, as is the case of reproductive clinics, or much larger institutions found in hos-
pitals, which may even have several subdepartments where each is responsible for its own
set of testing methods.

This is also the case of Královské Vinohrady University Hospital, whose Institue of
Medical Laboratory Diagnostics consists of five departments. They have provided Karel
Gavenčiak, the author of [1], with real anonymized data from their laboratory. As he
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Chapter 2. Problem Statement

describes in his thesis, their Clinical Biochemistry department is the one with one of the
strictest requirements in terms of speed and quality of the testing, which is the reason why
its data was analyzed. In our work, the insights Gavenčiak gained by performing his data
analysis will be crucial for understanding the uncertainty we are addressing. Moreover,
they will define the computation speed requirements of our approaches.

2.1 Laboratory workflow

Providing medical professionals and patients with fast and reliable test results is an im-
portant part of every health care facility. However, it is a complex process which has to
take into account several factors such as the locations where the samples are collected,
means of transport, the testing equipment itself, personal resources and cost-effectiveness.

In this section. we are going to describe this process to show what will be the focus
of our work. As previously mentioned, for a more detailed description of the laboratory
workflow see [1], in which the author also performs thorough data analysis as well as comes
up with possible speedups for a specific biochemical analyzer machine.

transport

uncertainty

rq

centrifuge

tc, ccap

preanalysis + analysis

r0
q

sample taken

sq cq

Figure 2.1: Simplified schema of the workflow

The very first step in this process is taken by a doctor, who decides based on the
patient’s symptoms and history, to perform a specific set of tests, which would then help
with the diagnostic process. He fills out a testing request either in paper form or in an
electronic system.

Next, as seen in Fig. 2.1, the sample has to be taken from the patient. This moment
is represented by time r0

q . In our data, we only have records associated with blood sam-
ples, which are always taken from the patients by nurses somewhere inside the hospital.
However, other bodily fluids might be brought by the patients into the hospital anytime.

The samples then need to be transported to the laboratory for processing, which may
be done by a person, who takes a larger group of samples in a bag or via a pneumatic
tube system if there is one. A pneumatic tube system usually takes less than five minutes
to deliver the sample to the laboratory and is usually able to send individual samples.
Whereas when a member of staff is required to carry the samples, he usually performs
only a few trips per day, transporting a large number of tubes at a time. The time when
the sample arrives in the laboratory is represented by rq.

It is this part of the workflow, as seen in Fig. 2.1, which creates the uncertainty we will
attempt to model. When the sample is taken, the laboratory is notified via its information
system. However, it takes some time for the sample to reach the laboratory. During the
transport, delays may occur due to a wide variety of human factors: a sample might be
forgotten, the staff likes to load the pneumatic tube capsule with more samples at a time
or perhaps the person transporting the samples was needed to perform a different task.

Luckily, the data we received from the Clinical Biochemistry Department of the In-
stitute of Laboratory Diagnostics contains precisely these times, that is when the sample
was taken from the patient and when it reached the laboratory.

7



Chapter 2. Problem Statement

Figure 2.2: Sample transportations times for a given department

A specific example of the transport times during one month is shown in the following
histograms in Fig. 2.2, and Fig. 2.3, the data is taken from samples originating from the
same department of the hospital, whose transport times are likely to be linked.

Figure 2.3: Transportation times without outliers

As we can observe, there are some outliers; these are of little importance to us as
they are most likely the result of some human errors while working with the system. It
is improbable, although possible that the samples were simply forgotten. When we plot a
histogram of the data without outliers, we can see that the transportation times for this
department can be estimated by a normal distribution with a mean of approximately 2700
seconds. We can also conclude that nearly all of the samples from this department were
delivered by the time 5000 seconds have passed. Based on thorough analysis, samples from
other departments also follow their own normal distributions, which is a key fact, which
later allows us to model the uncertainty straightforwardly.

Once in the laboratory, a majority of the tubes have to go to the centrifuge, as seen
in Fig. 2.1, where they are spun at high speed to separate the blood serum, the part used
for most of the tests, from the clot. These machines usually take in batches of several test
tubes, commonly 5 or 10, and the whole process typically takes 10-15 minutes. The latter
parts of the testing process are unlikely to cause any significant delays, but if a tube is not
assigned to the current batch, it will have to wait at least 10 minutes for the next one, or
half that on average, if there are two centrifuges. This is the core of our problem and the
process which we will be attempting to analyze and speed up.

The next step is called ”preanalysis”, see Fig. 2.1, and consists of simple manual labor
tasks, such as pipetting a part of a sample into an empty test tube in order to duplicate it,
lid removal and barcodes labelling. Some tubes, due to their physical build or test method
requirements, skip this stage.
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Chapter 2. Problem Statement

Finally, the samples enter the biochemical analyzer, in which they visit the chambers,
where the specific chemical reaction needed to perform the desired test takes place, see
Fig. 2.1. Only a tiny amount from the sample is used for each reaction, so there is always
enough blood to perform all the necessary tests. This is the part of the process that has
been thoroughly analyzed in [1].

Once the analyzer has finished, the laboratory personnel is notified and has to verify
that the result is correct. All tests also require verification by a doctor. This is the final
step of the whole process, after which the results are uploaded into the hospital system
and may be viewed by the prescribing physician.

The laboratory staff which has provided us with the data performs this process on an
average of 800 samples per day on workdays and 550 samples on weekends [1]. On these
samples, the laboratory performs an average of 10800 tests per day. However, the load on
the laboratory is not distributed evenly throughout the day, as can be seen in the following
Fig. 2.4.

Figure 2.4: Usage of the laboratory

A peak which occurs during the morning hours is clearly visible. Fewer new samples
are then received later throughout the day. The peak is even more pronounced during
the weekend. The reason for this is that the data shown is only for the statim priority
samples, which will be described in the following section. However, samples with less
priority than these are not processed during the weekends, which forces the doctors who
would like to know the results on the same day to issue a sample of higher priority than
they normally would during the weekday. The overall load on the laboratory is very similar
to the Fig. 2.4, with the morning peak, because this is the time most samples are taken
by the nurses.

2.2 Scheduling problem

In the following section, we will attempt to formalize our problem and then describe it
using Graham’s notation.

In our problem, a task will be equivalent to one test tube passing through the centrifuge.
The set of all tasks is T . Each q ∈ T was taken at the time r0

q and arrives at the laboratory
at time r̃q, which is an unknown parameter. In our problem, the work on a task starts in
the moment sq, when it is assigned to a batch inside the centrifuge and starts spinning.
The work on a task is completed at cq, when it has exited the centrifuge. In our work,
we do not consider the time it takes to perform the upcoming analysis, because the time
a sample spends waiting on the centrifuge and then inside has negligible influence on the
duration of the rest of its analytic process. This means that we can focus only on the
optimization of this part of the workflow.

In our model, for the sake of simplicity, we will consider only one centrifuge. The
centrifuge has capacity ccap and its running time is tc. The test tubes enter the centrifuge
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Chapter 2. Problem Statement

in batches. The set of all batches is B. Each b ∈ B has a start time scb and contains at
most ccap tubes.

One of the most important factors when working in a biochemical laboratory is pri-
oritization, some tests are performed as a part of a routine checkup, whereas others are
needed when treating a patient who is currently in life-threatening condition. In our prob-
lem, we will follow the setting of an actual laboratory, that we are trying to emulate. We
will consider three levels of priority, called routine, statim and vital.

Routine samples are the least prioritized ones; these are the only type, that is not
processed during weekends and holidays. According to [1], in our data, they represent
about 54% of the samples tested. The other two types are processed continuously. Statim
priority level is used when the test results are needed the same day. The laboratory sets
even higher standards, its performance goal is to analyze 80% of these samples within 60
minutes of their arrival into the laboratory and 98.5% samples within 120 minutes after
arrival. These samples form around 45% of the laboratory load. The last and the most
prioritized sample type is vital, which is used for the most urgent tests, usually for patients
who are in life-threatening situations. These samples have the highest priority, but are
seldom used, as the circumstances which justify their usage are rare. They make up less
than 1% of all total volume tested.

In order to take these priorities into account in our problem, we will multiply the
contribution of each sample to the objective function by a constant wq, which will be
dependent on the priority level of the given sample. One for routine, two for statim and
four for vital.

We have one machine that processes the tasks. The times r̃q are subject to uncertainty.
Our objective is to minimize the total weighted turn around time, sometimes called total
flow time or total lead time, which is defined as the difference between completion and
release times. Our problem type in Graham’s notation is:

1|r̃q, batch|
∑
q∈T

wq(cq − r0
q) (2.1)
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Proposed solutions

In this chapter, we first examine how the uncertainty can be modelled. Afterwards, we
propose a simple integer linear programming (ILP) model, which can schedule determin-
istic instances of our problem. We then add proactivity to this method with the help of
state of the art approaches while discussing their possibilities and drawbacks. Finally, the
reactive component of the solution is presented. As mentioned in Chapter 1, we focus
on the methods used to generate the proactive schedule, while keeping the reactive part
reasonably simple.

3.1 Modelling the uncertainty

The first step of addressing our problem is to decide how to use the knowledge we have
gained so far to model the uncertainty. We are looking for an approach that adds very
little complexity while providing a reasonable level of protection. Based on our literature
review, three methods seem to be viable: replacing the uncertainty with estimated values,
constructing uncertainty sets and a flow-based representation.

The simplest and most straightforward approach is to remove the uncertainty from
the model altogether. Our unknown release times would be replaced by values we expect
the samples to arrive. The advantage of this is that the uncertainty adds no overhead
at all to the model. However, if what we have guessed is too optimistic, our model can
often become infeasible, forcing a reaction. On the other hand, if our estimates are too
pessimistic, suboptimal plans will be generated.

In our case, we might make use of the data and base our estimates on the fact presented
in Chapter 2, where we explain that the transport and thereby arrival time of each request
seems to be following a normal distribution: r ∼ N (µ, σ2). We can then define the
probability that the sample will arrive that we want to consider in our model. The quantile
function of the given distribution can then give us the needed estimates. Of course, by
using higher probabilities, our model will be more robust, but the values of the quantile
function will be higher.

The uncertainty set approach builds on the assumption that the realizations of the
uncertainty are constrained to some closed set; in our case, an interval is sufficient, i. e.:
r̃q ∈ [rq − r̂q, rq + r̂q]. However, similarly to removing the uncertainty, setting hard
constraints on the uncertainty might create a schedule which will become infeasible often.

The final discussed approach is based on flows. Our problem may be viewed as a
generalized assignment problem, where one batch can be assigned to multiple requests
based on its capacity. We can then create a network for this problem, which contains the
source, the sink and a bipartite graph, where one side corresponds to the tubes T and the
other to the batches B. This graph is depicted in Fig. 3.1.
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Figure 3.1:
Graph representation of our problem

The source connects to all the nodes representing the samples, which are then con-
nected to the batches only if the given sample can be put into the given batch. That is only
when its release time is later than the start time of the given batch. However, for reasons
described later, the graph has to be defined before we attempt to calculate a solution. This
forces us to assume that the centrifuge runs with no pauses in between batches. In this
model, the approach to uncertainty is slightly different from the two previously discussed.
When a sample arrives later than expected, an edge of the graph becomes unusable. This
means that by looking for solutions which retain satisfying objective function value even in
the worst case, when some number of edges is removed from the graph, we obtain robust
solutions.

3.2 Schedule generation

The key part of designing a solution to our problem, which can run continuously is the
generation of the schedule. In our work, we focus on building a schedule which includes
protection against the uncertainty, called proactive or robust schedule. In this section, we
examine several state-of-the-art approaches based on the models of uncertainty we have
discussed and then use their ideas in generating our own proactive schedule.

3.2.1 Deterministic approach

The most direct approach for solving uncertain problems is to ignore the uncertainty.
By solving the non-robust version, we get a glimpse at what would the real optimum
look like under perfect conditions, when we would know the realization of the uncertainty
beforehand. The downside of using this approach in practice is that even the slightest
difference from what we are expecting can make the results suboptimal or infeasible.
Upon analysis of the problem, we have come up with the following model to serve as a
deterministic baseline.

The objective is straightforward; as mentioned previously, we minimize the turnaround
time (TAT) weighted by the priorities of the samples wq. Constraint (1) defines the
completion time as the sum of start time and the duration of the centrifuge. Constraint
(2) assures that the start of work on a sample will be scheduled after it is released.
Constraints (3) and (4) bind the start time of the sample to the start time of the batch it
has been assigned. Constraint (5) defines that a batch may only start after the previous
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one has finished. Constraints (6) specify that each sample has to be assigned to a batch,
whereas constraint (7) ensures that the batch capacity will not be violated. Constraint
(8) specifies that a sample is either assigned to a given batch or not. This is necessary
because the nature of this model does not guarantee integral results if we used standard LP
without integrality constraints. The final constraint (9) states that we want our timeline
to start from zero.

min
∑
q∈T

wq(cq − r0
q)

s. t. cq = sq + tc ∀q ∈ T (1)

sq ≥ rq ∀q ∈ T (2)

sq ≥ scb −M(1− xqb) ∀q ∈ T , ∀b ∈ B (3)

sq ≤ scb +M(1− xqb) ∀q ∈ T , ∀b ∈ B (4)

scb+1 ≥ scb + tc ∀b ∈ B \ {|B|} (5)∑
b∈B

xqb = 1 ∀q ∈ T (6)

∑
q∈T

xqb ≤ ccap ∀b ∈ B (7)

xqb ∈ {0, 1} ∀q ∈ T , ∀b ∈ B (8)

rq, sq, cq, s
c
b ≥ 0 ∀q ∈ T (9)

Figure 3.2: The deterministic model

3.2.2 Stability radius

A relatively simple approach to protecting against uncertainty is to define a metric of how
robust a given schedule is. For this, we define the stability radius Q of a schedule as the
minimal difference between a task’s start and release times, that is:

Q = min
q∈T

(sq − rq)

The idea behind this is, that when we have a schedule with a stability radius of Q, we
know that each task starts at least Q time units after we expect its delivery into the lab,
which protects us against any number of delays smaller than Q.

At first glance, this might seem sound. However, the times rq are still only estimates,
so this approach is identical to the deterministic approach with the guesses incremented by
Q. To increment the expected release times, of course, produces a more robust schedule,
but at the cost of worse objective value. Such a realization, where all the samples would
be very late rarely happens, which is why we would like to develop a model, which would
retain most of this worst-case robustness while giving more optimal solutions.

3.2.3 Bertsimas, Sim robust counterpart

The idea of worst-case robustness has been studied for quite some time. The first notable
approach is from 1973 by Soyster [11], whose approach has since become known as Soyster’s
method. In his work, he considers column-wise uncertainty on the constraint matrix. He
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defines convex sets Kj , which contain the possible realizations of columns Aj of matrix
A. He considers the following model:

max cTx

s. t.
n∑

j=1
Ajxj≤ b ∀Aj ∈ Kj , ∀j

x ≥ 0

(3.2)

The first constraint describes this worst-case robustness; it must hold for every possible
combination of one column from each uncertainty set. The author then defines matrix

Ā, āij = sup
Aj∈Kj

Aij

and proves that the program (3.2) is equivalent to the following one:

max cTx

s. t. Āx ≤ b

x ≥ 0

Using this model in practice is elementary, the worst case of the uncertainty has to
be established, and that is all that needs to be done. However, the drawback of this
method is that it is over-conservative. To be protected against all considered realizations,
a lot has to be ceded in terms of the optimal value. This has lead researchers to come
up with methods, which would be able to precisely control the balance between these two
objectives, which go against each other.

One such example is [12]. In this article, the authors propose a model which introduces
very little computational complexity while allowing the control of the robustness on the
level of individual constraints. Another promising property of this approach is that it is
suitable for adding robustness to ILP models. However, as will be described later, due to
the structure of our problem, this approach becomes identical with the previously discussed
deterministic model. We are going to explain why that is the case. Let us will follow
the author’s derivation of the model. Firstly, they consider the nominal (deterministic)
problem:

max cTx

s. t. Ax ≤ b

l ≤ x ≤ u

The researchers consider interval uncertainties, but prove, that even when the realiza-
tions are outside this interval, the model still gives good results. Ji is defined to be the
set of coefficients aij , j ∈ Ji which are subject to uncertainty. A symmetric distribution
with mean equal to the nominal value is assumed, our data follow this assumption. For-
mally, the realization ãij , j ∈ Ji takes values in the interval [aij − âij , aij + âij ]. For every
constraint with uncertain parameters, a parameter Γi ∈ [0, |Ji|] is introduced. This pa-
rameter allows us to control the level of robustness we want the model to have. However,
as previously mentioned, more robustness inevitably leads to less optimistic results.

In order to ensure the feasibility of the model, the authors define βi(x
∗,Γi) as the

protection needed to insert into constraint i to be feasible for all possible realizations,
which leads us to the altered model.
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max cTx

s. t.
∑
j
aijxj + βi(x

∗,Γi) ≤ bi ∀i

l ≤ x ≤ u

(3.3)

The authors define their parameter Γi as the maximum sum of deviations
|ãij−aij |

âij
from

the nominal values, that can co-occur for the model to guarantee feasibility. This means
that the protection can be expressed as:

βi(x
∗,Γi) = max

{Si∪ti|Si⊆Ji,|S|=bΓic,ti∈Ji\Si}

∑
j∈Si

âij |x∗|+ (Γi − bΓic)âit|x∗|

 (3.4)

It can be seen, but the authors also provide a simple proof, that this protection is
equal to the objective function of the following linear program:

max
∑
j∈Ji

âij |x∗j |zij

s. t.
∑
j∈Ji

zij ≤ Γi

0 ≤ zij ≤ 1 ∀j ∈ Ji

(3.5)

However, in our case, where the only constraints in the deterministic model affected
by uncertainty are (2), the uncertainty concerns only the constant on the right-hand side.
We can fix this by introducing a dummy variable, whose value will be constrained to 1
and multiplying it by the uncertain constant, instead of constraint (2) we would add

sq − rqyq ≥ 0 ∀q ∈ T
yq = 1 ∀q ∈ T .

The authors of the article then transform the model needed to calculate the protection
(3.5) into its dual form. By strong duality, its objective function optimal value remains
unchanged, still equal to the protection needed to be inserted into the constraint (3.4).
Then they discuss the properties of the dual formulation and the original model (3.3),
to prove, that they can incorporate this dual into the original problem to provide the
necessary protection.

However, in our problem things simplify a bit more. By adding the dummy variable,
whose value is constrained to one, we can replace the value of |x∗j | by one and given that
we have only one uncertain parameter; the protection calculating model simplifies to:

max r̂qzi1

s. t. zi1 ≤ Γi

0 ≤ zi1≤ 1

(3.6)

Which is trivial, and gives the necessary protection of r̂q for Γi > 1 and Γir̂q for
Γi ≤ 1. This formulation would give us the same results as removing the uncertainty and
guessing the release time, the only difference being that the guess is defined formally via
the parameters aij , âij and Γi.

The main reason we believed that this method could be beneficial for our problem is
by using the approach described in [27], where the authors sum some of the constraints
with one uncertain parameter to obtain an aggregate constraint, which is redundant but
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allows them to control the robustness in a more sensibly. The dual variables from the ag-
gregate constraint also need to be redistributed back to the constraints with one uncertain
parameter in order to ensure feasibility.

However, in our case, even when adding such an aggregate constraint, the structure of
our problem dictates, that when a sample is assigned to a batch, then that batch cannot
start sooner than rq + min(Γ, 1)r̂q. This means that for any number and combination
of aggregate constraints this formulation will be equivalent to the deterministic model
with release times estimated as rq + min(Γq, 1)r̂q, where Γq is the Γ corresponding to the
aggregate constraint in which request q is placed.

It seems that this approach is unfortunately not suited for our problem, where some
variables are forced to the maximum of others, which are subject to uncertainty, which is
precisely our case, where times sq are forced to the maximum of all rq that are assigned
to it.

3.2.4 k-edges attack

This approach provides a slightly different perspective from the previous ones, we try to
model the uncertainty based on the graph in Fig. 3.1. As mentioned, for this approach to
work, we need to assume that the centrifuge runs continuously. Each edge has a cost equal
to the waiting time of the sample before it is assigned to the batch. If we considered the
deterministic version of this problem, we would search for the minimum cost flow, which
saturates all the edges going out from the source.

With the uncertainty, our problem changes. We still need to find a flow with a rate
equal to the number of requests, i.e. we want to schedule all of them. However, when
a sample arrives later than the start time of a batch, it cannot be assigned to it, the
corresponding edge from the graph in Fig. 3.1 becomes unusable. Therefore, we will be
looking for a flow, which is to some degree immune to a removal of a given number of
edges; a flow which has the best worst-case cost after removing all possible combinations
of k edges. We can think of this as a problem with a nested subproblem which too has a
subproblem nested in it.

In article [18], the authors solve a very similar problem, instead of minimum cost flow,
they consider the maximum flow problem. Their approach is to transform the innermost
problem into its dual form and then incorporate it into the middle problem, leading to a
bilevel formulation. In our work, we will try to emulate their approach.

Formally, in the innermost level of our problem, we receive the initial flow fij and set
S of the removed edges. We define its characteristic function χS(x), which returns one

when x ∈ S and zero otherwise. Let ηfS be the minimum cost assignment of samples to
batches in the uncertain graph, with the initial flow f , from which the edges in S were
removed. This assignment must use the flow f on the edges which remained, but it must
add flow to assign the samples, whose saturated edges were removed.

The second level represents the worst-case uncertainty. It attempts to find the set S
with the worst value of ηfS given the initial flow fij . The upper level aims to find the
best initial flow among all the feasible flows. At last, the whole problem can be formally
described as: f∗ ∈ argmin

f∈F
max

S,S⊆E,|S|=k
ηfS

To find this optimal initial flow, we have to start from the bottom. Let us consider the
innermost problem. In order to simplify our approach, we can ignore the source and sink
and focus only on the bipartite graph in between them. A linear program which calculates
the value of ηfS is presented in Fig. 3.3. Constraint (1) declares that each sample will be
assigned. Constraint (2) assures, that batch capacity will not be violated. Constraints
(3) and (4) define the new flow behavior. On removed edges, it is zero, whereas on the
edges that remained, the flow cannot be removed if present, but it may be added, to
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compensate for an edge which was carrying flow and was removed. The final constraint
(5) is redundant, based on the fact, that the original flow is between zero and one and so
is χS(x), we only use it to for the construction of the dual problem. The constraint matrix
of this problem is totally unimodular, which means that our results will always be integer
even without strictly enforcing them.

min
∑

(i,j)∈E

cijf
′
ij

s. t.
∑

(i,j)∈E

f ′ij = 1 ∀i ∈ Q (1)

∑
(i,j)∈E

f ′ij ≤ ccap ∀j ∈ B (2)

f ′ij ≤ 1− χS((i, j)) ∀(i, j) ∈ E (3)

f ′ij ≥ (1− χS((i, j)))fij ∀(i, j) ∈ E (4)

f ′ij ≥ 0 ∀(i, j) ∈ E (5)

Figure 3.3: Minimum cost assignment

The next step is to incorporate this problem into the middle layer max
S,S⊆E,|S|=k

ηfS . This

can be done by transforming the model in Fig. 3.3 which calculates ηfS into its dual form,
which is shown in Fig. 3.4.

max
∑
i∈Q

αi +
∑
j∈B

ccapβj +
∑

(i,j)∈E

(1− χS((i, j)))γij +
∑

(i,j)∈E

(1− χS((i, j)))fijδij

s. t. αi + βj + γij + δij ≤ ccap ∀(i, j) ∈ E (4)

αi ∈ R ∀i ∈ Q (5)

βi ≤ 0 ∀j ∈ B (6)

γij ≤ 0, δij ≥ 0 ∀(i, j) ∈ E (7)

Figure 3.4: Dual of the inner minimum cost assignment

At the innermost level, both χS(x) and fij are constant, but to include this model into
the middle one, where χS(x) is not constant, we first need to linearize the multiplications
χS((i, j))γij and χS((i, j))γij . We can do this by replacing the products with a new
variable, which we then force to the result of the multiplication with additional constraints.
Instead of χS((i, j))γij and χS((i, j))γij we would use εij and θij respectively and add the
constraints in Fig. 3.5.
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εij ≤ γij ∀(i, j) ∈ E (8)

εij ≤ χS((i, j)) ∀(i, j) ∈ E (9)

εij ≥ 0 ∀(i, j) ∈ E (10)

θij ≤ δij ∀(i, j) ∈ E (11)

θij ≤ χS((i, j)) ∀(i, j) ∈ E (12)

θij ≥ 0 ∀(i, j) ∈ E (13)

Figure 3.5: Constraints linearizing the multiplications

We can now construct the middle problem, with the innermost one incorporated into
it.

max
∑
i∈Q

αi +
∑
j∈B

ccapβj +
∑

(i,j)∈E

γij −
∑

(i,j)∈E

εij +
∑

(i,j)∈E

fijδij−
∑

(i,j)∈E

fijθij

s. t. (4)− (13)∑
(i,j)∈E

χS((i, j)) = k (14)

χS((i, j)) ∈ 0, 1 ∀(i, j) ∈ E (15)

Figure 3.6: The middle problem

Now, only the last step remains, constructing a bilevel problem, where the upper level
selects a feasible flow which goes against the objective of the inner model in Fig. 3.6.
However, the constraint (15) makes the inner problem an integer linear programming
one. This area of bilevel optimization is called bilevel mixed-integer linear programming
(BMILP) and is very difficult to solve. Although some approaches exist, such as [28],
we consider beyond the scope of this thesis. Even though the idea behind this approach
seems to be valid, the lack of a freely available BMILP solver makes the use of this method
impossible.

3.3 Our approach

In this section, based on the knowledge described above, we propose a proactive-reactive
scheduling framework, which provides a solution to our problem. Firstly, we compare
the advantages and drawbacks of the methods of schedule generation discussed in this
chapter in order to formulate our final proactive model. Afterwards, we define the reactive
component of our framework, which handles all the possible manifestations of uncertainty
in our model by reacting to them accordingly.

3.3.1 Proactive part

Considering the limitations of the approaches described in this chapter, mainly the com-
putational intractability of the k-edges attack method and stochastic programming for-
mulation; and the inapplicability of the Bertsimas, Sim approach, we have decided to use
a modified deterministic approach to generate the schedule.
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Due to a large number of integer variables, |T ||B|, only an approach which adds little
or no overhead to the deterministic model can provide the schedules quickly enough.
However, even though our model is relatively simple, integer linear programming with
this number of decision variables is computationally demanding for an average computer.
We have conducted a series of experiments measuring the time our ILP solver needed to
return optimal solutions for various sample sizes. Results can be seen in Chapter 4.

Because the laboratory receives the most considerable amount of samples in the morn-
ing hours, a few dozen of them might have to be kept waiting, while the centrifuge is
running continuously. This could make the process of scheduling the next batches very
demanding. However, a large proportion of these samples are either routine or have been
taken very recently. When the laboratory is working at full capacity, no complicated al-
gorithm is needed, as we would only load the centrifuge with the most priority samples
first because those contribute to the objective function the most. With this in mind, we
decided to limit the number of samples used in the calculation of the optimal schedule.
We will call these considered samples and represent them by symbol T ′.

These samples, which we are taking into account in our model, can either be already
physically present in the laboratory or on their way in transport with their exact arrival
time unknown. We will refer to these groups as available samples and expected samples,
symbolically A and E respectively.

Since the available samples are present, they are ready to be scheduled into a batch,
but the question of how to estimate the release times of the expected samples remains. In
this work, we have chosen to estimate the release time based on the fact, that it follows a
normal distribution, whose mean and variance can be sampled from our data. This means
that for each q ∈ T , we will be able to sample Nq(µq, σ

2
q ), from the previous realizations

of samples from the given department. Then, we will calculate our estimated value of rq
as the value of the quantile function for parameter Γq ∈ (0, 1), that is:

rq = Φ−1
Nq

(Γq) (3.11)

The parameters Γq allow us to define the degree of robustness we would like our model
to have for each sample. However, fine-tuning the robustness of different types of samples
is not our focus. Instead, we would like to examine how our model behaves for different
parameters Γ, each of which will be applied to all the samples.

Based on these decisions, we propose an ILP model generating proactive schedules in
Fig. 3.7. Constraint (1) remains the same as in the deterministic model in Fig. 3.2. It is
not necessary to provide the optimal schedules, as the time it takes to process each sample
is constant, and the optimal solution would remain the same if we subtracted tc from the
contribution of each sample to the objective. However, we need it to provide a comparison
in results between models with different parameters, as we focus mainly on TAT as the
performance indicator. Constraints (2) and (3) define the availability of the samples; work
on the available samples might start immediately, whereas the expected samples’ arrival
time is estimated as described in Eq. (3.11). Constraints (4) and (5) remain the same as
in Fig. 3.2 and force the start time of the sample to be equal to the start time of the batch
it has been assigned. Constraint (6) states, that if there is a batch currently running, then
the first batch of the new schedule has to be started after it has finished. Constraints (7)
define this for the rest of the batches. Constraints (8) - (11) are unchanged from Fig. 3.2
and serve, in ascending order, to ensure, that every sample is scheduled; to ensure, that
the batch capacity is not violated; to declare the decision variables as integer and to make
our current timeline centered around zero. The final constraint (12) explains that we are
limiting the number of samples considered when calculating the optimal schedule.
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min
∑
q∈T ′

wq(cq − r0
q)

s. t. cq = sq + tc ∀q ∈ T ′ (1)

sq ≥ Φ−1
Nq

(Γq) ∀q ∈ E (2)

sq ≥ 0 ∀q ∈ A (3)

sq ≥ scb −M(1− xqb) ∀q ∈ T ′,∀b ∈ B (4)

sq ≤ scb +M(1− xqb) ∀q ∈ T ′,∀b ∈ B (5)

sc0 ≥ sc−1 + tc if ∃sc−1 (6)

scb+1 ≥ scb + tc ∀b ∈ B \ {|B|} (7)∑
b∈B

xqb = 1 ∀q ∈ T ′ (8)

∑
q∈T ′

xqb ≤ ccap ∀b ∈ B (9)

xqb ∈ {0, 1} ∀q ∈ T ′,∀b ∈ B (10)

rq, cq, s
c
b ≥ 0 ∀q ∈ T ′ (11)

|T ′| ≤ rmax (12)

Figure 3.7: Proactive schedule generating model

3.3.2 Reactive part

A proactive schedule is an essential part of the optimization of long-term processes, but as
was discussed mainly in Chapter 1, it is rarely enough. So is the case with our problem,
where we have to take into account several events, which will adversely affect our current
schedule and require an appropriate reaction. The whole process is summed up in the
flowchart in Fig. 3.8. When a schedule is generated, it remains unchanged, until one of
four events which we are going to describe prompts a reaction.

First such possibility is that a sample arrives into the laboratory. When this happens,
it is marked as arrived so that we know that it is ready to be assigned into a batch
immediately. Another disruption which is fairly simple to handle is when a sample should
have arrived according to our estimate, but it has not yet done so. In this case, we
simply reestimate its arrival time, by incrementing the current value of its parameter Γq

by 1
2(1 − Γq). Similarly, when a new sample is registered in the laboratory information

system, its expected arrival time is estimated based on the default value of the parameter
Γ. and stored in the model.

The last event which prompts a reaction is the planned start of a batch. When this
happens, we need to make sure that all the samples that are planned to go into the batch
are present. If not, the batch was waiting on the last sample(s), and it was late. In this
case, we first reestimate the release time of the late sample and ignore the start of the
batch. We do this because it is unclear what to do since the problem domain has changed
due to the late sample. If all the samples are present, we simply start the batch and
remove the samples it has been assigned from the model.

On all four of these occasions, the problem domain is changed. This means that the
optimal schedule might have changed as well. In order to make sure that we are taking
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the best possible course of action, we need to rerun the scheduling model. As mentioned
in Chapter 3, we consider only a predefined number of samples which are the most likely
to influence the sum of weighted TATs when calculating a schedule. This is done to ensure
the computational feasibility of our approach.

Schedule is
generated

Wait until
one of the

following happens

Reschedule
if needed

A sample
arrives into

the laboratory
A sample is late

New sample is
registered in the
laboratory system

A batch should
be started

Mark it as arrived
Reestimate its
arrival time

Add its expected

arrival time

into the model

Start the batch

Identify the con-
sidered samples

Figure 3.8: Flowchart of the proactive reactive scheduling framework

The considered samples T ′ ⊆ (A ∪ E) consist of the arrived and expected samples.
A sample is added to expected samples when it is registered in the laboratory system,
and its arrival time is estimated. When a sample actually arrives, it is removed from the
expected samples and added into the arrived samples. We reconstruct the set T ′ before
each rescheduling from the first rmax members of the set A ∪ E which we strictly order
according to the operator ≺ defined as follows: a ≺ b if a is of higher priority than b, i. e.
vital has the highest priority, and statim has a higher priority than routine. If there are
two samples of the same priority, then a ≺ b if a has arrived and b has not. If this is not
enough to determine the order, then a ≺ b if r0

a < r0
b . Finally, if these three conditions

cannot define the order of two samples, the one with smaller ID takes precedence. If
an event has changed the problem domain, but the set T ′ has not changed after being
reconstructed, then rescheduling is not needed.
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Results

In this chapter, we present the numerical results of our approach. Firstly, we discuss the
runtime of the schedule generating ILP model. Afterwards, we describe the behavior of
our model on small scale synthetic instances, where we can observe it nicely. Finally, we
present the results of an experiment based on one day in a medical laboratory.

4.1 Computation time

To evaluate the speed of our model, we have used the Matlab R2019a program with the
YALMIP toolbox [29] with Gurobi version 9.0.0. We have run the model described later
100 times on random data for each scenario and measured the time it took to solve it
to optimality. We provide the mean (µ), standard deviation (σ) and the maximum of
these times (max) in seconds. All the experiments have been performed on an Intel Core
i5-8250U.

In each of the scenarios with defined |T |, |B| and ccap, we generate samples with
expectations of arrival times distributed uniformly in the interval [0, |T |], the sample
taken timers r0

q are defined as rq− t, where t is taken from a uniform distribution between

[0, 1
2 |T |]. The centrifuge running time is defined as |T ||B| . This setup ensures that the

samples are neither far apart nor close together, which would make scheduling them easy.
Priorities are also generated randomly based on the data analysis (1% vital, 45% statim
and 54% routine).

scenario |T | [-] |B| [-] ccap [-] µ[s] σ[s] max[s]

1 5 2 3 0.32 0.08 1.09

2 10 3 4 0.45 0.03 0.57

3 10 4 3 0.50 0.05 0.81

4 15 4 4 1.00 0.65 4.66

5 15 2 8 0.49 0.04 0.65

6 20 5 4 24.10 42.04 292.74

7 20 3 7 1.71 0.83 5.12

8 30 3 10 6.07 4.86 28.24

9 30 6 5 958.26 1302.12 3853.94

10 50 5 10 ? ? ?

Table 4.1: Running times of our model

In scenario 10 in Table 4.1, during the evaluation of the first model, the solver managed
to get to around 10% duality gap after 5500 seconds, after this point it was able to make
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very little progress, a model of this size is just intractable for an average computer in a
reasonable time limit.

As can be observed in Table 4.1, the models which contain more samples need more
time to be solved to optimality, as one would expect. However, it is intriguing too see
the influence of the number of batches on the runtime. This is best seen in the drastic
difference between scenarios 6 and 7. We have decided to investigate this further, by
focusing only on the case, where we are considering 20 samples:

scenario |T | [-] |B| [-] ccap [-] µ[s] σ[s] max[s]

1 20 2 10 0.59 0.06 0.72

2 20 3 7 1.39 0.88 4.91

3 20 4 5 4.23 4.26 31.56

6 20 5 4 24.10 42.04 292.74

5 20 6 4 9.37 11.15 68.51

6 20 7 3 135.54 379.33 2221.73

9 20 10 2 697.36 512.58 7953.29

10 20 20 1 890.69 907.40 4905.70

Table 4.2: Running times of our model

It can be observed in Table 4.2 that increasing the number of batches greatly in-
creases the time needed to solve the model to optimality. To use our model continuously
throughout the day, we will have to limit the number of batches and requests it considers.
However, scheduling only three or four batches ahead is more than enough in practice. As
this corresponds to approximately 40-60 minutes of laboratory runtime.

4.2 Small instances

The behavior of the schedule generating algorithm might be best illustrated by optimal
schedules of a small instance for different values of parameter Γ.

To create the schedules shown in Fig. 4.1, we have defined |T | = 7, |B| = 3, ccap = 3
and tc = 5. Routine samples are shown in green, statim and vital in orange and red,
respectively. All samples have been taken and are in transport. The times they were
taken as well as their expected arrival time distribution parameters are shown in the
following Table 4.3.

# priority r0
q µq σq

1 routine −1 1 3

2 statim −6 2 2

3 statim −12 4 1

4 routine −5 7 1

5 routine −7 8 5

6 vital −2 9 9

7 routine −2 12 0.7

Table 4.3: Synthetic data

In Fig. 4.1 we present optimal schedules for four different values of the parameter Γ.
We plot the expected release times of the samples, the times when the batches should
be started and the optimal assignment. We calculated the schedule for all values of
Γ ∈ { i

100}, i = 50, 51, .., 99 and decided to show these values, because they represent a
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change of assignment from the previously calculated schedule. The effect of robustness
can be clearly seen. The larger the values of Γ, the larger the results of the normal quantile
function and the later the samples are expected. This is visible the most on sample number
six; whose expected arrival time has a large standard deviation. We can also observe the
effect this sample has on the overall schedule. Because it contributes to the objective
the most, it is scheduled very soon after its arrival. In the schedules for Γ = 0.5 and
Γ = 0.75, the batch is scheduled immediately after its arrival. For the case of Γ = 0.61,
it is scheduled to wait shortly for sample seven. Finally, in the case of Γ = 0.81, it has to
wait until the centrifuge finishes the processing of the previous batch.

Γ = 0.5 Γ = 0.61

Γ = 0.75 Γ = 0.81

Figure 4.1: Proactive schedule for different values of Γ [30]

As mentioned throughout this thesis, greater robustness almost always leads to worse
objective function value. To investigate this, we have calculated the optimal objective
value of this instance for every Γ ∈ { i

100}, i = 50, 51, .., 99 and plotted the results in the
following Fig. 4.2.

It is clearly visible that the function plotted in Fig. 4.2 is non-decreasing. This can be
expected, as the quantile function of a normal distribution is increasing. For a greater Γ,
we get later expectations of the release times, which lead to schedules with worse objective
value.

However, the tradeoff is not constant. Up until around Γ = 0.8, we get a relatively
linear growth. For Γ = 0.8, our objective has worsened by about 25%, which seems
acceptable, considering the robustness this provides. After this point, the objective value
starts to worsen more noticeably, which makes the tradeoff for increased robustness less
attractive.
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Figure 4.2: The objective value based on the parameter Γ

4.3 Simulations

This final experiment aims to evaluate the overall effectiveness of our proactive-reactive
framework if it were deployed into an actual laboratory. We extracted the times r0

q when
the samples were taken and rq when they arrived into the laboratory from the data we have
been provided, and we have restricted these only to samples that have come throughout
one given afternoon.

This has been done based on the facts presented in Chapter 2, mainly in Fig. 2.4, where
we can see that during the morning peak hours, the centrifuge is working continuously and
scheduling it is not a complicated task, as we can load it with the most priority samples.
On the other hand, during the afternoon hours, when there arrives approximately one
sample per minute on average, it is much harder to decide, whether to start a batch or
keep waiting for a higher priority sample.

Based on the results presented in Table 4.1 and Table 4.2, we have decided to limit
the number of considered samples to 30. To stay true to the conditions in the laboratory,
we define ccap = 10 and tc = 600(s). In our experiment, we estimated the values µq and
σq from the rest of the data. Subsequently, we have run our scheduling framework on
50 instances with the same r0

q , but with the arrival times randomly sampled from their
respective distributions in each scenario.

To evaluate our schedules, we have defined two metrics, called robust price (RP) and
robust benefit (RB):

RPp(Γ) =
µp(Γ)− µp(0.5)

µp(0.5)

RBp(Γ) =
σp(0.5)− σp(Γ)

σp(0.5)

We define the RP for samples of priority p and robustness Γ as the relative difference
of their average TAT µp(Γ) over all the scenarios from the baseline determined by the
average TAT for Γ = 0.5. Similarly, RB of priority p and robustness Γ is defined as the
relative difference of the average TAT standard deviation σp(Γ) from the baseline TAT
standard deviation from Γ = 0.5. We provide the results for routine and statim samples in
the following table for five different values of Γ. We represent routine and statim priorities
by indices rut and st, respectively.

As can be seen in Table 4.4, the statim samples do not seem to be affected by the
change in the parameter Γ. This is probably because their higher priority can manifest
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even through different levels of robustness. However, the routine samples TAT average
and standard deviation change substantially. For larger values of Γ, we pay the robust
price in the form of worse average TAT.

Γ 0.5 0.6 0.7 0.8 0.9

µrut[s] 10747.2 11238.2 11982.8 12290.3 12514.4

σrut[s] 4386.5 3810.1 3606.7 3105.8 3082.8

RPrut[%] 0 4.6 11.5 14.4 16.5

RBrut[%] 0 13.1 17.8 29.2 29.7

µst[s] 7671.3 7613.1 7677.3 7772.3 7826.7

σst[s] 7471.9 7423.6 7410.0 7333.8 7352.9

RPst[%] 0 −0.8 0.1 1.31 2.0

RBst[%] 0 0.7 0.8 1.9 1.6

Table 4.4: Robustness price and benefit

However, we get the robust benefit of smaller variation of these times. Moreover, the
benefit-cost ratio seems to be favourable in our case, where we can decrease the TAT
standard deviation by 13% or 29% by increasing the average routine TAT by only 5%
or 14%, respectively. There were no vital samples in the data used for the experiments.
However, given their rarity, we do not consider them necessary to evaluate the overall
effectiveness of our approach.

One thing we would like to mention is that the laboratory goals mentioned in Chapter 2,
mainly that 98.5% of samples should be processed in 120 minutes, do not take into account
the time in transport, only the time spent in the laboratory. The statim samples in our
instances spent on average 5825.9 seconds in transport. We did not measure the times the
samples have spent in the laboratory, but it is likely, that these goals were fulfilled.
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Conclusion

In our thesis we build upon the previous data and workflow analysis of Karel Gavenčiak
[1] and continue the efforts in the field of optimization within hospital environment and
medical laboratories specifically. We also continue to make use of the data obtained by
the cooperation with the Institute of Medical Biochemistry and Laboratory Diagnostic of
the Královské Vinohrady University Hospital. The probelm we address is the batching of
blood samples into a machine known as the centrifuge, which is one of the bottlenecks of
the workflow needed to provide test results.

Firstly, we thoroughly examine the state-of-the-art methods used in literature to iden-
tify possible solutions. Afterwards, we describe the environment our problem is set in and
analyze the problem domain. This reveals that the problem is relatively computationally
demanding even when not considering the uncertainty, which makes certain approaches
non-viable.

With all this in mind, we examine several sophisticated methods which show potential
of providing proactive schedules, i.e., schedules which would be to some degree protected
against adverse realizations of the uncertainty. Unfortunately, it turns out that some of
these methods are either too computationally expensive or not suited for the structure of
our task.

This has led us to come up with our own robust schedule generating model, which
makes use of the data of previous realizations of the uncertainty while adding very little
computational overhead. Subsequently, we define the reactive part of our framework which
is responsible for calling the proactive schedule generating model when the problem domain
changes.

Thereafter, we demonstrate that our model is solvable to optimality for reasonably
large instances, which allows its use in practice. A behavior of our schedule generating
model is then described for different levels of robustness. Finally, we evaluate our frame-
work over a set of scenarios based on the actual data from the laboratory. We conclude that
a greater level of robustness does not affect the statim samples, but leads to an increase
in the average turnaround time of the routine samples, while considerably decreasing its
average variance.
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[8] Bram L. Gorissen, İhsan Yanıkoğlu, and Dick den Hertog. “A practical guide to
robust optimization”. In: Omega 53 (June 2015), pp. 124–137. doi: 10.1016/j.
omega.2014.12.006. url: https://doi.org/10.1016/j.omega.2014.12.006.

[9] Aharon Ben-Tal, Tamar Margalit, and Arkadi Nemirovski. “Robust Modeling of
Multi-Stage Portfolio Problems”. In: Applied Optimization. Springer US, 2000, pp. 303–
328. doi: 10.1007/978-1-4757-3216-0_12. url: https://www2.isye.gatech.
edu/~nemirovs/rob_portf.pdf.
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