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Abstract
This work is focused on the calibration of
tactile sensor positions on a robot body.
We are working with an artificial skin
consisting of triangular modules mounted
on a humanoid robot Nao. This project
builds on a previous work which provided
a kinematic model of the robot with skin
and performed several calibrations using
the self-touch method. The purpose now
is to improve the accuracy of estimated
skin elements’ position by adding a single-
point end effector to one of the kinematic
chains in self-touch configurations and by
providing a model of the skin using 3D
surface reconstruction from photographs.
The single-point end effector improved the
estimated positions when combined with
the existing datasets consisting of configu-
rations with two touching skin parts. The
3D reconstruction process provided very
accurate mutual positions of the tactile
sensors and significantly reduced the num-
ber of parameters needed to be optimized.

Keywords: artificial skin, calibration,
tactile sensors, self-touch, robot
kinematics, forward kinematics, 3D
surface reconstruction, robot body shape,
Nao, Humanoid robots

Supervisor: Mgr. Matěj Hoffmann,
Ph.D.

Abstrakt
Tato práce se zabývá kalibrací pozice tak-
tilních senzorů na těle robota. Pracuje
s umělou kůží sestávající z trojúhelníko-
vých buněk, nasazenou na humanoidního
robota Nao. Tento projekt navazuje na
předchozí práci, jež poskytla kinematický
model robota i s kůží a v rámci níž bylo
provedeno několik kalibrací pomocí sebe-
dotykových konfigurací. Cílem nyní je zvý-
šit přesnost odhadu pozic prvků umělé
kůže přidáním bodového koncového efek-
toru na jeden z kinematických řetězců
a vytvořením modelu kůže pomocí 3D
rekonstrukce z fotografií. V kombinaci s
existujícími datasety sestávajících z do-
teků dvou částí kůže přidání dotekových
konfigurací s bodovým koncovým efekto-
rem zlepšilo odhad parametrů. Proces 3D
rekonstrukce poskytl velmi přesný model
pozic taktilních senzorů, čímž výrazně sní-
žil počet parametrů, jež je nutné optima-
lizovat.

Klíčová slova: umělá kůže, kalibrace,
taktilní senzory, sebedotyk, kinematika
robota, přímá kinematika, 3D
rekonstrukce povrchu, tvar těla robota,
Nao, Humanoidní roboti

Překlad názvu: Kalibrace robotické
kůže humanoidního robota: porovnání a
kombinace “sebedotykových” konfigurací
a 3D rekonstrukce z fotografií
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Chapter 1

Introduction

1.1 Motivation

Sense of touch is one of the useful features for collaborative robots. It is typically
realized using tactile sensors scattered around the robot body, forming an artificial
skin. As the skin is usually added manually to the robot, there’s a lot of uncertainty
in the position of its elements w.r.t. the robot body. Furthermore the sensors tend to
wear out often, therefore it is desirable for the artificial skin to be easily replaceable
and its position to be updated in the software after the replacement. These problems
can be solved by calibration.

The tactile sensors in the artificial skins are usually organized into bigger units
such as modules (or cells)—typically triangular or hexagonal—and patches. In
our case we are working with a skin consisting of triangular modules, which was
originally used on iCub [10], imported onto a Nao robot. Given a 2D model of the
skin patches and robot body dimensions provided by the manufacturer, we need to
get a 3D model of the skin attached to the robot body, particularly the positions of
the tactile sensors as accurate as possible.

Previous self-touch skin calibrations performed on Nao robot, where configurations
of two skin parts touching were used, brought promising results. We believed the
result could be improved, firstly by adding a single-point end effector to one of the
chains touching, and secondly by providing an accurate layout of the individual tactile
sensors by making a 3D model of the skin parts using 3D surface reconstruction.

1.2 Goals

The goals of this thesis:
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1. Introduction ...........................................1. Calibration using 3D reconstruction. Collect images of Nao robot with exposed skin using an external camera. Reconstruct 3D shapes of the robot skin and retrieve coordinates of tactile
elements from the model. Combine the results with available information about the skin and existing
calibrations..2. Calibration using self-touch configurations. Collect data from the artificial skin in self-touch configurations with an
added end effector. Perform the skin spatial calibration

1.3 Related work

In the past few years, several approaches to robot kinematic calibration have been
presented, using various sensors and devices. In 2011, Del Prete et al. [7] used
force/torque sensors for measuring the applied force in the area of activated tactile
sensors and estimating the contact point as the intersection of the force axis. Another
tool commonly used in calibration is a camera, either external or mounted on the
robot’s body. They are typically used in combination with other sensors such as
accelerometers [13] or tactile sensors from artificial skin [3], [17] with a purpose to
reconstruct a 3D model of the body part and skin patch.

To remove the necessity of using external tools or additional sensors (as some
robot platforms may not provide them and their installation could be expensive) a
method using data from tactile sensors and robot’s joints only has been introduced
[15]. This method—known as self-touch—takes measured activations from the skin
and joint coordinates as input and estimates the positions of given links through
forward kinematics. The self-touch configurations can be produced either manually
or, better, autonomously, which however requires determining the contact points by
inverse kinematics and very careful planning of the configurations to avoid unwanted
collisions (described in [15]).

Appropriate calibration methods may vary with the robot platform used. A very
suitable subject for most of the approaches mentioned above is the iCub robot (used
in [7], [15] and [17]), as it’s equipped with force/torque sensors, accelerometers,
artificial skin and cameras, too. The Nao robot used in [16] and in this work has
been additionally equipped with the same artificial skin mounted on removable
plastic parts (more details in Chapter Materials and Methods).

2



Chapter 2

Materials and Methods

2.1 NAO robot and artificial skin

The hardware consists of NAO humanoid robot made by Aldebaran Robotics, version
H25 [4], extended by the artificial skin—a system of tactile sensors (taxels) placed on
triangle-shaped flexible printed circuit boards (FPCB) developed by Maiolino et al.
[10]. These triangles are assembled into patches, which are mounted on custom-made
plastic holders and attached to the robot’s body parts - head, torso and hands. The
signals from patches are processed by a microcontroller situated on robot’s back.
[16] Figure 2.1 shows the proportions of the original NAO robot and figure 2.2 shows
the robot with mounted skin.

The radius of an individual taxel is 2.2 mm. Within this work, some additional
measurements of the triangle cell were taken: edge length, triangle height, distance
between the middle taxel and edge and distance between the neighbouring taxels.
All these proportions are marked in Figure 2.3.

2.2 Additional end effector

In addition for this work, a metal finger-like end effector has been attached to each
of the hands. When performing the self-touch calibration in [16] , there was always
a larger area of taxels activated. The aim now is to be able to activate fewer (1-3)
taxels at a time in order to achieve better accuracy.

We had several parts available to assemble end effectors of different length and
thickness. (See Figure 2.4.) After testing several combinations the shortest finger—
made from the 10mm mount and 20mm tip—had the best reach to the skin parts
and the thinnest tip had the best accuracy. The final finger shape mounted on Nao’s
hand is depicted in Figure 2.5.

3



2. Materials and Methods ....................................

Figure 2.1: Proportions of NAO H25 from Aldebaran website [4].

Figure 2.2: NAO with mounted skin: with and without protective layer.
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.................................... 2.2. Additional end effector

Figure 2.3: Triangle cell proportions obtained through manual measurements with a
digital caliper.

Figure 2.4: Available parts for the end effector and their lengths. In the end the mounts
from left and the tip from bottom right were used.
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2. Materials and Methods ....................................

Figure 2.5: Photograph of the final shape of the finger mounted on Nao’s hand.

2.3 Mathematical model of the robot

Geometry of a robot consists of links and joints. Each two neighbouring links
are connected by a joint, which determines their mutual position, represented by
translation vector L and rotation matrix R, which together form a transformation
matrix T i−1

i from link i to link i-1. This matrix is dependent on the joint coordinate
(extension in case of sliding joint, angle in case of rotational joint).

L =

xy
x


R ∈ R3×3

T i−1
i =

[
R L

0 0 0 1

]

2.3.1 Forward kinematics and Denavit Hartenberg notation

In forward kinematics problem we determine the position of the end effector w.r.t. the
base frame P 0, with knowledge of the joint coordinates. The solution is achieved by
substitution of the joint coordinates in the transformation matrices T i−1

i , i = 1, ..., n
and multiplying the end effector position in its local frame Pn (typically the last
joint) by the matrices:

P 0 = T 0
1 T

1
2 ...T

n−1
n Pn
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............................... 2.3. Mathematical model of the robot

Denavit-Hartenberg (DH) notation introduced by Jacques Denavit and Richard
Hartenberg in 1955 [9] provides a way to determine a transformation matrix between
two frames by only four parameters (compared to the other ways which use six or
more parameters, e.g. translation vector to the reference point and Euler angles).

Parameters used in DH notation:

. d – offset along previous z axis to the common normal

. θ – angle about previous z, from old x to new x

. a – length of the common normal

. α – angle about common normal, from old z to new z

The transformation matrix from link i to link i-1 is then represented as:

T i−1
i =


cos θi − sin θi cosαi sin θi sinαi ai cos θi

sin θi cos θi cosαi − cos θi sinαi ai sin θi

0 sinαi cosαi di

0 0 0 1

 , (2.1)

NAO’s DH parameters calculated from official NAO H25 dimensions have been
provided by [16]. Apart from the coordinate frames assigned to each joint, several
have been assigned to the skin parts:

.mount – transformation to the plastic mount from the last joint

. patches – transformation to each patch from the mount (patch is a subset of
triangles with common port, each skin part has two patches)

. triangles – transformation to individual triangles from the respective patch

. taxels – transformation to individual taxels from the respective triangle

Relations of the skin frames are depicted in Figure 2.6. Another frame has been
set for the mounted fingers—transformation from the last joint to the fingertip.
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2. Materials and Methods ....................................

Last
joint

Plastic
mount

Patch 1

Patch 2

Triangle
1

Triangle
n

Triangle
m

Triangle
j

.
Figure 2.6: Schematics of hierarchy of links and frames related to the artificial skin.
Figure from [16]

2.3.2 Optimization problem formulation

The aim is to optimize the positions of the skin elements, i.e. mounts, patches,
triangles and taxels in their local frame (according to the relations stated above).
The position is expressed either by DH parameters or 6D transformation (translation
vector (x, y, z) and Euler angles (α, β, γ)). Therefore the vector we are estimating
looks either like this:

φ = {[a1, . . . , aN ], [d1, . . . , dN ], [α1, . . . , αN ], [θ1, . . . , θN ]}

or like this:

φ = {[x1, . . . , xN ], [y1, . . . , yN ], [z1, . . . , zN ], [α1, . . . , αN ], [β1, . . . , βN ], [γ1, . . . , γN ]}

where N is the number of calibrated links (skin elements).

The objective function to be optimized is:

φ∗ = argminφ

M∑
m=1
||pr

m − pe
m(φ,Θm)||2 (2.2)

where M is the number of activations in the dataset, pr
m is the real position of the

contact point w.r.t. base frame and pe
m is the estimated contact point calculated

from given parameters φ and joint coordinates Θm using forward kinematics. As we
do not have access to the real contact point positions, we need to make an alternative
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............................... 2.3. Mathematical model of the robot

solution. We need to take one of the touching links as reference (that means in our
case either the fingertip or the touched taxel).

The first chains to be optimized in this work are the mounted fingers, i.e. position
of the fingertip w.r.t. the last joint (in the calibration framework referred to as
rightEE and leftEE). In this case only the translation is needed, not the orientation,
so the function looks as follows:

p∗
f = argminpf

M∑
m=1
||pr

m − pe
m(pf ,Θm)||2 (2.3)

where M is the number of activations in the dataset, pr
m is the activated position

on the reference body part and pe
m is the estimated end effector position calculated

from given fingertip coordinates pf and joint coordinates Θm.

After the fingers’ positions are calibrated, they will be used as reference to calibrate
the skin parts. The function then changes to:

φ∗ = argminφ

M∑
m=1
||pf

m(Θm)− pe
m(φ,Θm)||2 (2.4)

where M is the number of activations in the dataset, pf
m is the position of

the fingertip w.r.t base frame calculated from joint coordinates Θm and pe
m is

the estimated contact point on the skin part from given parameters φ and joint
coordinates Θm.

When using 3D reconstruction we expect to get relatively accurate positions of
individual taxels, which shall be used as reference.

2.3.3 Optimization algorithm used

We are solving a non-linear least squares problem. For this purpose we used Matlab’s
function lsqnonlin from Optimization toolbox, which performs the optimization using
either Levenberg-Marquardt or Trust region reflective algorithm [11]. It provides
several options to customize the optimization, such as defining the criterion func-
tion or adjusting iterations limit, function tolerance or bounds for the optimized
parameters.
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Chapter 3

Processing data from 3D reconstruction

This chapter describes the steps of obtaining the dataset from 3D reconstruction,
starting with photographs and ending with a point cloud of tactile sensors’ positions.
The whole process is illustrated in Figure 3.3.

3.1 Photographs of the robot with exposed skin

The initial input for this method consists of photographs of the robot taken from
different viewpoints by an external camera. The photos have been taken outside in
order to get satisfactory light conditions—evenly distributed light, without glares.
Behind the robot, we placed a poster so the background would be more diverse.
The surface layers of the artificial skin were removed for the photographing so the
individual tactile sensors are visible.

For successful 3D reconstruction, the shots needed to be very close to each
other. Each point should be on at least three neighbouring pictures. We made
three semicircles around the robot with the camera, having approximately 10◦

spacing between each two shots. The placement of the cameras can be seen in the
reconstructed sparse1 model in Figure 3.1.

Since it was impossible to capture all the skin parts in one posture of the robot
(the arm skin part is placed all around the arm’s circuit), three series of photos were
made, each for a different posture, consisting of 125, 78 and 57 photos, respectively.
The individual postures are depicted in Figure 3.2. This way we got at least one
piece of position data for each taxel.

1Sparse model is an inter-step in the process of 3D reconstruction, consisting of calculated points
and camera views.

11



3. Processing data from 3D reconstruction .............................

Figure 3.1: Sparse model of Nao, with camera positions used to take individual pho-
tographs marked in red.

Figure 3.2: Posture of the robot in dataset 1, 2 and 3

3.2 3D models

The photos were processed in Meshroom and turned into a 3D model (in Figure 3.3
marked as step 1). “Meshroom is a free, open-source 3D reconstruction software based
on the AliceVision framework. AliceVision is a Photogrammetric Computer Vision
Framework which provides 3D Reconstruction and Camera Tracking algorithms.” [6]

12



......................................... 3.2. 3D models

Meshroom

M
es
hl
ab

M
at
la
b

Photos of Nao with
exposed skin

Textured
3D model

Taxels as 3D point cloud

Taxels as picked points

Taxels in adjusted
coordinate systems

Figure 3.3: 3D reconstruction pipeline: from photographs to 3D point cloud of taxels
used in calibration.
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3. Processing data from 3D reconstruction .............................
Meshroom performs the reconstruction in several steps (nodes). The reconstruction

steps used in this work are listed below. For more detailed descriptions of the steps
see chapter Node Reference in Meshroom manual [6]...1. CameraInit - loads images’ metadata, extracts camera parameters and generates

viewpoints..2. FeatureExtraction - extracts features from images and the features’ descriptors..3. ImageMatching - determines which images should match to each other (i.e.
which contain the same areas of the scene)..4. FeatureMatching - finds the correspondence between the images from feature
descriptors..5. StructureFromMotion - reconstructs 3D points from the images..6. PrepareDenseScene - undistorts the images..7. DepthMap - retrieves the depth value for each pixel..8. DepthMapFilter - resolves inconsistencies in depth maps..9. Meshing - generates mesh—a dense geometric surface—from the depth maps...10. MeshFiltering - excludes unwanted elements from the mesh...11. Texturing - creates texture files and projects the texture on the mesh

3.3 Taxel coordinates

3.3.1 Picking points

To get the taxel positions, the textured model was imported to Meshlab, a tool for
3D modelling. This program has a feature called pick points, which enables to select
points on the surface of a model and save their 3D coordinates into a file. The taxel
centers were manually picked according to the texture (in Figure 3.3 step 2). The
output of this process was a .pp file containing properties of each selected point -
their 3D coordinates and their given names, corresponding to their ID within the
patch.

Figure 3.4: Screenshot from picking points in Meshlab

14



...................................... 3.3. Taxel coordinates

3.3.2 Point transformation

Further processing has been performed in Matlab. First, the coordinates and IDs
of the points were extracted from the .pp file into a .mat array (we created the
read_picked_points.m script for this purpose). Afterwards we needed to move the
coordinate system to the correct place. The original models had their coordinate
systems generated by Meshroom and so our retrieved taxel coordinates were w.r.t.
these systems. However, for using them in the calibration, we needed their coordinates
related to a coordinate system with known position due to the robot. Furthermore,
their origin needed to be on the robot’s surface in order to obtain its coordinates in
the original model in Meshlab (the pick points feature works only for points on the
reconstructed surface), so we could not choose a joint.

The coordinate systems were chosen as follows:

. head: forehead camera as origin, z axis oriented to the top. torso: chest button as origin, z axis oriented to the top. hands: taxel 3 (center of triangle with index 0)

The x axis is always perpendicular to the skin surface, oriented outside the robot.
For better clarity see Figure 3.5.

Figure 3.5: Coordinate systems chosen as relation for taxel positions: camera on the
head, button on the torso and taxel 3 on the hands.

15



3. Processing data from 3D reconstruction .............................
Since the camera and the button are not on the same level as the skin surface—see

figure 3.6—we used the pick points function in Meshlab to select 8 points from their
circuit and the center (i.e. the coordinate system origin) was calculated as their
mean.

Figure 3.6: Camera (left) and button (right) 3D profiles.

By placing the newly chosen coordinate system into the 3D model of a skin
part, we could determine the transformation matrix from the original coordinate
system to the new coordinate system. The transformation is performed by the
transformation.m script in following steps:..1. Load taxel IDs and coordinates of the chosen skin part from .pp file using

read_picked_points.m function...2. In case of head and torso load the circuit points from .pp file and compute their
mean, i.e. the center of the camera/button, which will be the new origin. In
case of arms the coordinates of taxel 3 are taken...3. Move the points (taxels) into the new origin (by subtracting the new origin’s
coordinates from the points’ coordinates)...4. Determine the new axis by following steps:. pick z vector (position of a chosen taxel above the origin). pick y vector (position of a chosen taxel to the right from the origin). calculate x as cross product of z and y. recalculate z as cross product of x and y (to ensure the axis are all

perpendicular). normalize the vectors..5. assemble the vectors into matrix

A = [x y z]..6. multiply the taxels’ coordinates by the inversion of A

16



...................................... 3.3. Taxel coordinates

The skin models in new coordinate systems are shown in figure 3.7.

Figure 3.7: Transformed models of skin with axes: head (left) and torso (right).

3.3.3 Scaling

The last property remaining to be changed is the scale. Besides the coordinate
system, the 3D model from Meshroom has its own arbitrary scale, which is different
from reality. Therefore, we needed to adjust the scale so the distances in the model
correspond to the real distances in metres. The scaling coefficient was determined
from the mean neighbouring taxel distance: From the measurements described
in Section 2.1 and depicted in Figure 2.3 we know that the distance between two
neighboring taxels is 6.50mm. For each dataset we took several pairs of neighbouring
points in the model and computed their distance. The mean of these distances was
then used to compute the scaling coefficient:

k = dA/dr

where dA is the computed average distance in the model and dr is the real distance.

17



3. Processing data from 3D reconstruction .............................
3.3.4 Codes and output files

Photographs and 3D models

The outputs from 3D reconstruction are saved in data/3D_reconstruction folder on
Google drive. That includes:

. Photographs of Nao with exposed skin – photos_17_12_2019/session[i], i =
1, 2, 3. Textured mesh files and picked points – /meshroom_reconstruction/dataset[i],
i = 1, 2, 3

Matlab functions and scripts

All functions for processing the reconstructed points can be found in /3D_reconstruction/dense_reconstruction
folder. That includes:

. read_picked_points.m. transformation.m. scale_from_taxel_dist.m. hands_assemble.m. parsing_for_calibration.m. make_calib_points.m

Matlab outputs

The outputs from Matlab processing are saved in the same folder in /outputs. That
includes:

.Mat arrays (4xN, where N is the number of collected points) with taxel coordi-
nates transformed to the required frames – /scaled and /not_scaled. Taxel coordinates parsed into the format required by the calibration frame-
work (384x6 array, taxels ordered by index) – /parsed_for_calib/scaled and
/parsed_for_calib/not_scaled. Final datasets in /parsed_for_calib as [part]_3Drec.mat

18



Chapter 4

Processing data from self-touch configurations

The dataset for this method consists of the skin activations and joint coordinates.
The activations are performed manually by navigating the robot’s arm to touch a
selected taxel with the end effector (example depicted in Figure 4.1). Each time a
touch is detected, the software collects data about the activated taxel and reads the
joint coordinates. These together form an element of the dataset. Because the skin
output comes from a different platform than the output from joints, the data has to
be collected separately and united additionally by a custom-made software.

Figure 4.1: Example of a self-touch configuration where left finger touches the torso skin.

19



4. Processing data from self-touch configurations ..........................
4.1 Reading skin data

As mentioned in chapter 2.1, the data from skin patches is collected by a micro-
controller on Nao’s back. The communication between this board and computer is
provided by YARP (Yet Another Robot Platform) [12]. It provides tools for easier
control of multiple external devices.

YARP tools used in this work:

. yarpserver - a name server, which translates the IP addresses and ports we
read from to names. yarprobotinterface - starts all the devices required by a robot. yarpmanager - a utility for running and managing multiple programs on different
devices, in this work used for connecting to the skin ports and visualisation of
the skin patches

Further processing of the data is provided by iCub’s skinManager [8]. This
software takes the received raw data and performs a heat compensation, making
the values independent on the temperature. Additionally it provides the option of
following adjustments:

. binarization - Instead of 0-255 format, the taxel values come as either activated
(100) or not activated (0). Binarization was set to ‘False’ in this work.. reversing data - from range 0-255 to range 255-0. computing centers of pressure (COP) from the positions of neighbouring ac-
tivated taxels (maximum neighbour distance can be set as maxNeighbourDist
parameter). include index of the skin part in each activation

To work properly the skinManager needs the configuration file skinManAllNao.ini
and text files with taxel positions.

Output of the skinManger is skinContactList—a file which instead of raw data
provides more detail about each activation:

. center of pressure (COP) - computed as weighted mean of activated taxels. taxelList - a list of all activated taxels. skinPart - index of the activated skin part (optional). pressure - average output of activated taxels
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................................. 4.2. Reading data from the joints

4.2 Reading data from the joints

The codes safeMotion.py, yarpConnector.py and dataParse.py mentioned below
have been accessed in code-nao-skin-control gitlab repository [1].

The joints are being read through the safeMotion.py class which mainly serves
to set the safe boundaries for robot’s movement [14] and contains also a method
for reading the joint coordinates. The robot’s data is accessed through NAOqi
framework. NAOqi is the main software running on the robot and NAOqi framework
is used to program the robot.[5]

4.3 Skin and joint data unification

The data collection is performed by yarpConnector.py script, which communi-
cates with skinManager to retrieve the data from skin—skinContactList—and uses
safeMotion.py for reading the joint coordinates. As parameters it accepts the
names of parts which will be touching/touched and should be read from. In [16] it
is always two skin parts touching. In our case, as one of the chains touching is the
fingertip, only one skin part is being read.

4.4 Parsing data for Matlab

Because the optimization framework is implemented in Matlab, the data retrieved
by yarpConnector.py need to be parsed so Matlab script can read them. For
parsing the data from self-touch with finger we used the parseFinger function from
dataParse.py script. The output is a .mat file containing N cells—N is the number
of activations in the dataset—where each cell contains a struct with IDs of activated
taxels and an array with all the joint coordinates from the upper body.

4.5 Optimization in Matlab

For optimization, we used functions from the multirobot kinematic optimization
framework from code-calib-multirobot gitlab repository [2]. The important functions
used in this work are:

. /Robots/Nao/loadNAO.m - loading function which creates structure of the robot
and sets the default parameters
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4. Processing data from self-touch configurations ..........................
. /Configs/optimizationConfig.m - sets the optimization parameters, such as

algorithm used, function tolerance, maximum iterations, number of repetitions,
etc.. /Robots/Nao/loadDatasetNao.m - loads the datasets based on the optimization
settings. /Utils/loadDHfromMat.m - loads DH parameters from a .mat file, serves to
set previously calibrated values as initial instead of the default parameters. /runCalibration.m - the main function, prepares the robot structure and
dataset, runs the calibration, evaluates and saves the results, using the functions
above

4.5.1 Calibration parameters

The following parameters need to be set before running the calibration:

. robot_fcn - name of the loading function. config_fcn - name of the function with optimization settings. approaches - used approaches, in our case ’selftouch’. chains - chains to be calibrated. jointTypes - which parts should be calibrated — joint/mount/triangles/taxels
(more parts at once can be chosen). dataset_fcn - name of the function for loading the datasets. dataset_params - names of datasets used. folder - where to save the results. saveInfo - when set to 1, results are saved. load DHfunc - name of the function to load DH. loadDHfolder - folder with DH to load

The output of runCalibration.m includes updated DH parameters, performed
corrections, individual and mean errors and info about the calibration settings
used. The optimization framework also includes scripts for visualising the robot’s
configurations with activated taxels, plotting the deviations between contact points
and other useful functions for presenting the calibration results.
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Chapter 5

Results

This chapter presents the point clouds retrieved from 3D reconstruction, datasets
collected by self-touch configurations, results of their use in the calibration and their
comparison with previous calibrations.

5.1 3D Reconstruction datasets

In summary we collected three series of photos and turned them into three point
clouds—these form the datasets from 3D reconstruction, they are further referred to
as datasets 1, 2 and 3.

Links to all inter-step and final outputs provided in Section 3.3.4.

5.2 Outputs from 3D reconstruction

5.2.1 Results of scaling

As stated in Section 3.3.3, the scaling coefficient was calculated from distances of
chosen neighbouring taxel pairs. For verification of the accuracy, we visualized
the distance deviations, i.e. differences of each distance from the calculated mean
distance—depicted in figure 5.1. The mean error was 0.12 mm and the maximum
error was 0.5 mm.

5.2.2 Point clouds from scaled datasets

For the head and torso, all three datasets contained whole or almost whole skin
part, so we had 3 measured positions for each taxel to work with, whereas for arms
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5. Results ...........................................
there was always only part of the taxels—datasets 2 and 3 do not overlap at all and
dataset 1 overlaps slightly with each of them (visible in Figure 5.4). This meant 1)
we have only one measured position for most taxels, 2) some additional operations
were needed for uniting the datasets into one coordinate system, including coordinate
transformations to common points and afterwards to the target frame (with origin in
taxel 3, as defined in Section 3.3.2). This task was performed by hands_assemble.m
script.

After transformation (described in section 3.3.2) and scaling with the fixed coef-
ficients the three datasets were compared. In Figures 5.2 and 5.3 one can see the
distances between corresponding taxels in each dataset from their mean position. In
case of head and torso most of the deviations are only tenths of millimeters. Also
the visualisation of the point clouds (see figure 5.4 top) confirm that the difference
between the three datasets is insignificant. Based on that we can claim this method
provides very accurate mutual positions of the taxels and we can expect it will
contribute greatly to the skin calibration.

In case of arms the differences are bigger, which is apparently caused by errors
in transformations used for uniting the datasets (as described above). However the
maximum difference—2.7 mm—is still smaller than the error achieved in previous
calibration of NAO skin [16].

For the purposes of calibration one final point cloud was made by calculating the
mean from the three datasets. The results have been added to Robots/Nao/Dataset/Points
as .mat files, containing 3D translations to the taxels.

Figure 5.1: Deviations of real distances (6.50 mm) vs. reconstructed distances between
neighbouring taxels in datasets 1-3.
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................................ 5.2. Outputs from 3D reconstruction

Figure 5.2: Distances of each taxel from head and torso in datasets 1-3 from their mean
position (where the value is 0, the taxel is not included in the skin part).

Figure 5.3: Distances of taxels in dataset 1 common with dataset 2 or 3 from the
computed mean, for left arm (left) and right arm (right).

5.2.3 Possible errors and uncertainties

There was a slight inaccuracy when picking the points (described in section 3.3.1)—
this operation was done by hand, therefore sometimes the picked taxel center is not
exactly the center. But considering the small size of a taxel and high resolution of
the textured model this inaccuracy is mostly just tenths of millimeters. There are a
few isolated spaces where the error is slightly bigger (close to 1 mm) which is caused
by slightly damaged structure of the model in that area.

25



5. Results ...........................................

(a) : head
(b) : torso

(c) : left arm (d) : right arm

Figure 5.4: Visualisation of the scaled point clouds. Dataset 1 in red, dataset 2 in green,
dataset 3 in blue (when too close the colors get mixed).
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......................................5.3. Self-touch datasets

5.3 Self-touch datasets

Using self-touch configurations the following datasets were collected:

finger and part dataset size
right finger - torso 1818

right finger - left arm 1814
left finger - torso 825
left finger - head 893

left finger - right arm 908

Table 5.1: Collected datasets and their sizes (i.e. number of activations).

The .mat files with the datasets are saved in /Robots/Nao/Dataset/Datasets folder
in code-calib-multirobot directory [2].

Apart from these datasets we used the datasets provided by Lukáš Rustler in
previous work [16] with configurations of two skin parts touching:

parts touching dataset size
right arm - torso 1072
left arm - torso 810
right arm -head 670
left arm - head 599

Table 5.2: Datasets provided by [16].

5.4 Calibration using self-touch method only

First we needed to calibrate the position of the fingertip on both hands. As its
reference frame is located inside the arm, it was impossible to obtain its relative
position by measurements. The estimated position was therefore very inaccurate
(uncertainty could be a few centimeters).

As initial values we used the model calibrated by self-touch configurations provided
by [16]. From all the parts torso’s parameters showed up to be the most accurate, so
it can be assumed the best dataset for calibrating the finger was the one with torso
activations. Another idea was to calibrate the fingers by combined datasets from
two parts. We tried combining torso and the other arm as the arms had a bigger
and more reliable dataset than the head.

Afterwards the calibrated fingers were used as reference for calibrating the skin
parts. The chosen process was to first calibrate the mount and patches and then
calibrate the individual triangles.
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5. Results ...........................................
The calibrations performed and their results are stated below. The errors depicted

further in the graphs and mean errors stated in the tables are in accordance with
Equations 2.3 and 2.4 calculated as:

e = |pt
m − pf

m| (5.1)

where pt
m is the estimated position of the touched taxel and pf

m is the estimated
position of the fingertip, both calculated from joint coordinates using forward
kinematics.

The error graphs depict the error for each taxel in the dataset, distributed by
triangles they belong to.

5.4.1 Finger calibration

Right finger calibration

datasets et[mm] erA[mm] eA[mm]
torso 7.7 18.7 13.5

torso and left Arm 11.0 17.0 14.0

Table 5.3: Results of right finger calibration. et...mean error on torso dataset, erA...mean
error on left arm dataset, eA...mean error on both datasets

Left finger calibration

datasets et[mm] elA[mm] eA[mm]
torso 12.1 22.0 17.2

torso and left Arm 16.6 15.0 15.9

Table 5.4: Results of left finger calibration. et...mean error on torso dataset, elA...mean
error on right arm dataset, eA...mean error on both datasets
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............................ 5.4. Calibration using self-touch method only

Error distribution for calibrated fingers

(a) : left finger - torso (b) : left finger - right arm

(c) : right finger - torso (d) : right finger - left arm

Figure 5.5: Distribution of distances between paired taxels for finger calibration.

Figure 5.6: Visualization of calibrated fingers.
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5. Results ...........................................
5.4.2 Skin parts calibration

Torso from right finger

Chains optimized erF [mm]
mount and patches 6.7

triangles 6.3

Table 5.5: Results of torso calibration from right finger. erF ...mean error on right finger
dataset.

Torso from both fingers

Chains optimized erF elF [mm]
mount and patches 7.2 12.3

triangles 6.4 11.1

Table 5.6: Results of torso calibration from both fingers. erF ...mean error on right
finger dataset, elF ...mean error on left finger dataset.

Left arm from right finger

Chains optimized erF [mm]
mount and patches 11.7

triangles 10.3
...mean error on right finger dataset.

Table 5.7: Results of left arm calibration from right finger. erF

Right arm from left finger

Chains optimized elF [mm]
mount and patches 10.5

triangles 9.4
...mean error on left finger dataset.

Table 5.8: Results of right arm calibration from left finger. elF
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................... 5.5. Calibration using self-touch and data from 3D reconstruction

5.4.3 Summary

Resulting parameters of fingers vs. initial estimated parameters

finger x y z x0 y0 z0
left finger -0.0074 -0.0860 0.0604 0 -0.06 0.06
right finger 0.0092 -0.0967 0.0643 0 -0.06 0.06

Table 5.9: Calibrated parameters of the fingers (x, y, z) in comparation with estimated
parameters (x0, y0, z0)

Error distribution for calibrated parts from the fingers

(a) : torso - right finger (b) : torso - both fingers,
error on left finger

(c) : torso - both fingers,
error on right finger

(d) : left arm - right finger (e) : right arm - left finger

Figure 5.7: Error distribution for calibrated parts from the fingers.

5.5 Calibration using self-touch and data from 3D
reconstruction

As the triangle and taxel positions are very well determined by the point clouds from
3D reconstruction (as stated in Section 5.2.2), there was no need to calibrate them,
so the only calibrated chains were the mounts—more precisely we were calibrating
the transformation from the the last joint’s frame to the frame of the taxel point
cloud. In case of left arm we added also the patches to the calibration, as the
uncertainty from assembling the datasets was bigger (see Figure 5.3) and could be
fixed by the calibration.
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5. Results ...........................................
In previous calibrations performed by [16] the torso showed up to be the easiest

part to calibrate and the most reliable source for the calibration of other parts,
therefore we chose to calibrate torso’s mount first simultanously with the right arm.
As its initial position was right in the y axis and α and γ angles, we optimized only
x and z position and β angle. Afterwards the fingers were calibrated from the torso.
Then the arms and finally the head. To test the reliability of the calibrated fingers
we chose to try calibrating the arms from the torso only and then from the torso
and finger and compare the results. For the head we tried the calibration from arms
only and from arms and left finger. The details of all performed calibrations and
their results are stated below.

With each calibration all the settings used are stated. Meaning of the parameters
explained in Section 4.5.1. The errors are depicted the same way as in Section 5.4.

Common settings for all calibrations:

. robot_fcn: loadNAO. config_fcn: optimizationConfig. approaches: selftouch. dataset_fcn: loadDatasetNao. loadDHfunc: loadDHfromMat. loadDHargs: {}

5.5.1 Torso and right arm simultaneously

Settings:

. chains: torso, rightArm. jointTypes: mount. dataset_params: rightArm_torso. folder: 3Drec_torso. loadDHfolder: ’ ’
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................... 5.5. Calibration using self-touch and data from 3D reconstruction

Results

Figure 5.8: Distribution of distances between paired taxels. – torso and right arm

Figure 5.9: Visualization of the calibrated torso and right arm.

5.5.2 Fingers from torso

Settings:

. chains: rightFinger. jointTypes: joint. dataset_params: torso_rightFinger. folder: 3Drec_rF. loadDHfolder: 3Drec_torso

. chains: leftFinger. jointTypes: joint. dataset_params: torso_leftFinger. folder: 3Drec_lF. loadDHfolder: 3Drec_rF
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5. Results ...........................................
Results

Figure 5.10: Distribution of distances between paired taxels. – left finger and torso,
right finger and torso

Figure 5.11: Visualization of calibrated fingers.

5.5.3 Right arm from torso

Settings:

. chains: rightArm. jointTypes: mount. dataset_params: rightArm_torso. folder: 3Drec_rA. loadDHfolder: 3Drec_lF
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................... 5.5. Calibration using self-touch and data from 3D reconstruction

Results

Figure 5.12: Distribution of distances between paired taxels. – right arm and torso

5.5.4 Right arm from torso and left finger

Settings:

. chains: rightArm. jointTypes: mount. dataset_params: rightArm_torso, rightArm_leftFinger. folder: 3Drec_rA_wlF. loadDHfolder: 3Drec_rA

Results

Figure 5.13: Distribution of distances between paired taxels. – right arm and torso,
right arm and left finger
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5. Results ...........................................
5.5.5 Left arm from torso

Settings:

. chains: leftArm. jointTypes: mount, patch. dataset_params: leftArm_torso. folder: 3Drec_lA. loadDHfolder: 3Drec_rA

Results

Figure 5.14: Distribution of distances between paired taxels. – left arm and torso

5.5.6 Left arm from torso and right finger

Settings:

. chains: leftArm. jointTypes: mount, patch. dataset_params: leftArm_torso, leftArm_rightFinger. folder: 3Drec_lA_wrF. loadDHfolder: 3Drec_rA_wlF
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................... 5.5. Calibration using self-touch and data from 3D reconstruction

Results

Figure 5.15: Distribution of distances between paired taxels. – left arm and torso,
left arm and right finger

Figure 5.16: Visualization of arms calibrated from torso only (left) and from torso and
finger (right).

5.5.7 Head from both arms

Settings:

. chains: head. jointTypes: mount. dataset_params: rightArm_head, leftArm_head. folder: 3Drec_head. loadDHfolder: 3Drec_lA_wrF
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5. Results ...........................................
Results

Figure 5.17: Distribution of distances between paired taxels. – left arm and head,
right arm and head

5.5.8 Head from both arms and left finger

Settings:

. chains:. jointTypes:. dataset_params:. folder:. loadDHfolder:

Results

Figure 5.18: Distribution of distances between paired taxels. – left arm and head,
right arm and head, left finger and head
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................... 5.5. Calibration using self-touch and data from 3D reconstruction

Figure 5.19: Visualization of head calibrated from arms only (left) and from arms and
left finger (right).

5.5.9 Summary

The following table shows the calibrated parameters of all optimized chains and
their mean error in the used dataset.

calibed part link x [m] y [m] z [m] α [rad] β [rad] γ [rad] e [mm]
torso mount 0.0532 0 0.0503 0 0.1430 0 10.0

right finger joint 0.0093 -0.0892 0.0749 - - - 11.0
left finger joint -0.0123 -0.0901 0.0791 - - - 19.2

right arm 1* mount -0.0305 -0.0202 -0.0171 -0.3170 1.6118 2.0885 8.6
right arm 2* mount -0.0208 -0.0499 -0.0226 -0.6320 1.8892 1.7480 18.9
left arm 1* mount 0.0317 -0.0569 -0.0255 1.3983 0.6037 -0.3249 7.8

patch 1 0.0050 -0.0024 -0.0019 -0.1378 0.1723 -0.0170 -
patch 2 -0.0755 0.0320 -0.0145 0.0276 -0.1027 0.0894 -

left arm 2* mount 0.0221 -0.0846 -0.0235 1.1929 0.8124 -0.4777 15.5
patch 1 -0.0009 0.0055 -0.0037 -0.1278 0.0164 -0.1089 -
patch 2 -0.0674 0.0238 -0.0165 0.1473 -0.0598 0.1050 -

head 1* mount 0.0692 -0.0499 0.0025 1.5708 0 0 10.5
head 2* mount 0.0678 -0.0458 -0.0014 1.5708 0 0 14.3

Table 5.10: Final position parameters x, y, z, α, β, γ of calibrated parts and mean error
in their used dataset e. * 1 indicates calibration without finger, 2 with finger.
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Chapter 6

Discussion, conclusion and future work

We developed a system to retrieve positions of tactile sensors on a robot from a
series of photographs. Previously, the positions of individual triangles and taxels in
the local frames were only estimated in the beginning and needed to be calibrated
as well. The 3D reconstruction provided mutual positions of individual taxels so
accurately (error < 0.5 mm) that their layout can be kept and only mounts need to
be calibrated. This reduces the number of calibrated parameters to 6 · 1 instead of
6 · 375 (1 mount, 2 patches, 32 triangles, 320 taxels).

The uncertainty of taxel position was slightly bigger in case of the arms because
of the necessity of several transformations to unite the retrieved point clouds. This
could be fixed in the future by collecting more point clouds for the arms, for example a
series of photos capturing the arm only all around its perimeter. Then the assembling
part would be skipped and the taxel positions as accurate as for torso and head.

A small error in the scaling could occur as the scaling coefficient was calculated
from the mean of taxel distances. A better approach in the future could be adding
the scaling coefficient as a parameter in the calibration and have it optimized.

We also tried to improve the self-touch calibration by adding a single-point end
effector—finger—on each arm to achieve better accuracy in the datasets. The number
of activated taxels was much smaller than in the previous work [16] (mostly 1-3
taxels). However, the errors in calibration using the finger are considerably bigger
than the errors without using the finger—in case of arms twice as big. The errors
might be caused by bad activations when collecting the dataset—the arms are not
easy to manipulate in a way to prevent some accidental touches and finger slipping
on the skin surface. However the visualization of calibrated arms speaks in favor
of using the finger—notice Figure 5.19, the right arm is clearly better placed after
calibration using left finger. In case of head, the resulting position almost does not
change when adding the dataset from left finger to the datasets from both arms.
Apparently, despite the enormous errors on the datasets, the fingers got quite well
calibrated after all.
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6. Discussion, conclusion and future work..............................
The left arm and left finger calibration had always worse results than right arm

and right finger. This could be because of the smaller datasets size. Collecting more
data for left arm and left finger should be tried.
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