
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

BACHELOR THESIS
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moral support and encuragement to continue. Also, I would like to thank all the members
of the Chronorobotics Labratory for creating such a unique environment where we can
learn from each other. The work was partially supported by the Czech Science Foundation
project 17-27006Y.



Abstrakt

Tato práce představuje metody pro rozpoznáváńı referenčńıch značek
vhodné pro exterńı a palubńı lokalizaci založenou na obraze, a rovněž
zavád́ı nový systém pro lokalizaci značek. Nově popsaná referenčńı
značka je schopná určeńı plných 6 stupň̊u volnosti, unikátńı identifikace a
zpracováńı v reálném čase. Tento typ dostupných značek spolu s běžnou
kamerou ćıĺı k přijet́ı robotickou komunitou jako náhrada za současné
drahé lokalizačńı systémy. V práci také porovnáváme představenou
značku s nejpopulárněǰśımi současnými značkami z hlediska jejich kval-
ity určeńı pozice a orientace. Jelikož kvalita metod záviśı na schopnosti
přesně určit pozici, orientaci a ID, navrhli jsme kritéria pro testováńı
chyby jak pozice, tak i orientace založená na reálných aplikaćı v oborech
mobilńı a rojové robotiky. Za t́ımto účelem jsme vyvinuli umělé prostřed́ı
založené na simulaci s třemi r̊uznými scénáři společně se systémem au-
tomatického testováńı a vyhodnoceńı. Abychom źıskali povědomı́, jak
se metody chovaj́ı v reálných podmı́nkách, otestovali jsme je rovněž na
datasetu s robotickým rojem.

Abstract

This thesis presents fiducial markers suitable for vision-based external
and ego-localisation, as well as it introduces a new fiducial marker lo-
calisation system. The newly described marker is capable of the full 6
degrees of freedom estimation, unique identification and real-time eval-
uation. This kind of low-cost markers combined with an off-the-shelf
camera aims to be accepted by the robotic community as a substitution
of the current high-end expensive localisation systems. In the thesis, we
also compare the fiducial marker with the most popular state-of-the-
art methods in terms of pose estimation quality. As the quality of the
methods depends on the ability to determine the pose and ID precisely,
we proposed a set of criteria for testing both the position and orienta-
tion error based on real-world applications in fields of mobile and swarm
robotics. For this purpose, an artificial simulation-based environment
with three different scenarios was developed together with an automated
testing and evaluation framework. To obtain knowledge about how the
methods behave under real-world conditions, we also tested them on a
swarm dataset.
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1. INTRODUCTION

1 Introduction

In the current world, the robotics has developed into a ubiquitous and well-established
field. It happened mainly thanks to the cut in prices of resources, better accessibility,
and also significant improvements in the manufacturing process and overall miniaturisa-
tion. The field ranges from heavy industrial manipulators over consumable retail robots to
robots which are intended to mimic the behaviour of insects. As it might be concluded,
each of the robotic areas requires robots to possess a particular set of skills depending on
their purpose and the environment they operate. Although there are attempts to make
robots fully sustainable and autonomous, we are not there yet. The robots usually oper-
ate in controlled environments, and the operators oversee them; thus, it does not support
deployment straight out of the box or high robot acceptance by society.

Once robots are moving freely in an environment, they have to be able to navigate to
their destination. However, for this purpose, they also have to know where they are within
the operational space either if it is an office or outdoor field. The robots can get lost and
fall into a malfunction or unpredictable state without having this kind of knowledge of
their surrounding. So, they must have some sensors to perceive what is around them and
based on that, try to determine the position and orientation in the space.

The camera is one of the most popular devices for accessing the necessary understanding
of the environment. Therefore, there exist many methods of transforming the camera image
frame into useful information about objects and their positions. One can either try to find
any naturally occurring objects and estimate their positions, look for significant pixel
patches in the image, or detect unique patterns. The fiducial markers, which this thesis
is based on, are those unique patterns with specific properties, which are added to an
environment to provide accessible and reliable sources for localisation. Their applications
can be found in diverse fields like logistic warehouses, augmented reality, multi-robot and
swarm robotics, and even evaluation of experiments where they can provide the position
of the robot as ground truth. They are so popular because they are affordable and usually
require only an off-the-shelf camera and a printer.

Unfortunately, several drawbacks are affecting the overall performance and use cases.
Every camera has a naturally occurring noise and limited resolution; also every material,
which the marker is made from, reflects the light differently. Thus, we have to ask how
reliable the markers are and what is their precision because they may produce inconsistent
results under varying illumination. Each marker localisation system addresses those in its
specific manner and with different success; therefore, the motivation for this thesis is to
evaluate those subjects.

The goal of this thesis is to improve an already existing fiducial marker positioning
system, so it would also allow the full 6 degrees of freedom estimation of multiple markers.
The marker should be capable of reliable and stable pattern detection, identification and
pose estimation over a wide range of camera angles and lighting conditions. Current systems
either support those aspects partially or not at all. Therefore, the marker and the algorithm

1



1. INTRODUCTION

has to be analysed for additional information, which could introduce the missing pieces for a
fully working localisation system. However, we have to ensure to maintain the performance
and keep it comparable with the other commonly used fiducials. Thus, thorough testing
and evaluation on clear and also noisy images are needed, in order to verify the marker’s
position between the most popular ones.

The thesis is composed of four main chapters. We start with an introduction to the state-
of-the-art techniques used for localisation and mapping in robotics. The focus is mostly on
vision-based localisation methods suitable for external and or ego-localisation, which we
further expand on the systems that do not need any expensive pieces of equipment other
than a printer and a camera. The second chapter is then elaborating on one selected fiducial,
and we present several modifications which introduce a possibility of estimation the full
six degrees of freedom and more stable marker identification. On top of that, we integrate
the system with the Robot Operating System (ROS) [2], which involves a unified way of
communication and a graphical interface for the users and developers. Following section
then describes real-world and three simulated scenarios allowing automated and repeatable
measurements generation of the most popular fiducial markers. In the last chapter, we
evaluate the methods on those datasets and provide a comparison of their performance
under various conditions.

2



2. STATE-OF-THE-ART IN LOCALISATION AND MAPPING

2 State-of-the-art in localisation and mapping

The ability of mobile robots to autonomously move and operate requires particular
knowledge and understanding of an environment. To reliably perform tasks in the opera-
tional space, the robots have to be able to navigate and or localise. The navigation problem
is to plan and drive to given positions or along a given path. The robots also need to be pro-
vided with an abstract representation of surrounding, a map, to be able to plan. However,
they also have to localise to know their position concerning the goal or along a given route.
For localisation, they have to evaluate the incoming sensory data and estimate position
and orientation within a specific frame. Once the localisation and mapping problems are
addressed together, it is called the Simultaneous localisation and mapping (SLAM). As the
robots operate, the sensors provide by nature uncertain and also inaccurate information,
which raises a problem of correct data processing. Thus, it is beneficial to count with the
imprecision and develop a way of noise cancellation; otherwise, it might lead to incorrect
maps, localisation, or path planning.

2.1 Localisation

Localisation is a process of determining the current position and orientation of a robot
from sensory data. It is necessary especially when the robot has to move not only along a
given path, but its goal is changing on the fly. Localisation methods split into two groups
based on the reference frame - relative or absolute [3, 4]. Further, robotics also differentiates
between ego-localisation, when a sensor is on a robot, and external localisation where a
sensor is off the robot.

2.1.1 Relative localisation

Relative localisation, also dead-reckoning, is estimating the robot’s relative position and
orientation to its starting pose. It relies on the previous pose assumption and the onboard
sensory data change, which the robot uses for determining where and how much it moved.
This approach implies the possibility of error accumulation over time, and so it is necessary
to perform adjustments and error corrections along with the movement. As the sensors are
on the robot, the ego-localisation is considered as part of the relative localisation. In general,
relative localisation is more efficient than the absolut one in terms of memory and time
requirements.

Odometry

Odometry employs the data from motion sensors, mainly magnetic or optical encoders,
for the position estimation. Encoders signalise how much wheels, belts or other moving
parts revolved in a specific fixed time. Thus, knowing the dimensions of them, the assumed

3



2. STATE-OF-THE-ART IN LOCALISATION AND MAPPING

travelled distance by the wheel or belt can be calculated. Therefore, the position is then ob-
tained through the integration of velocity from encoders. This integration results in drift.
The error accumulates over time and a driven distance due to the incremental discrete
estimation. Thus, it is not reliable nor precise from a long-term and long-distance per-
spective, particularly in uncertain environments. Nevertheless, it is accessible and widely
spread thanks to the simplicity and low cost, mainly as their motors usually include en-
coders. Despite the erroneous characteristics in long-term, odometry provides a practical
and precise localisation in the short-term perspective. In [5], the odometry is combined
with camera-based position estimation, which corrects the position and orientation when
a known object is observed.

Figure 1: Combined kit of accelerometer and gyroscope

Inertial localisation

Inertial localisation involves gyroscopes and accelerometer sensors which provide an
acceleration contrary to the velocity in odometry. Inertial sensors are better in orientation
estimation than the odometry sensors because they directly measure a rotation contrary to
the estimation from the driven path of individual wheels. The low-cost localisation system
based only on inertial sensors is presented in [6]. However, there is a drift growing with
time caused by two integrations to calculate the position which produces the quadratic
error, the main disadvantage of those. Both sensors are nowadays produced as a single
chip as in Figure 1.

Accelerometers measure the linear acceleration of a robot in multiple directions. They
are sensitive to any disruption in the horizon, which results in false measurement as of the
influence of the gravitational force. Thus, in a rugged environment, the sensor has to be
isolated from unexpected bounces and tilt changes. Also, if the robot moves or turns slowly,
it is hard to separate the data from noise.

Gyroscopes provide the angular acceleration which integrates to the angle estimation.
They are often combined with the odometry to enrich the position estimation with reliable
orientation. The downsides are larger dimensions, which ensure reliable and noise-isolated
data; thus, it might be a restriction for smaller robots. Gyroscopes are also affected by the
centrifugal and Coriolis forces, and therefore at fast turning, the sensor loses its precision.

4



2. STATE-OF-THE-ART IN LOCALISATION AND MAPPING

2.1.2 Absolute localisation

Absolute localisation, also the kidnapped-robot problem, is directly determining the
position and orientation of the robot within a global reference frame. It establishes the pose
without any information about its previous state. Thus, there is no error accumulation over
time as the pose estimation is established newly whenever the robot localises; therefore,
occasional errors in the past do not have any influence on the current estimation. Absolute
localisation can be either external or ego-localisation. Ego-localisation, in this case, requires
a new understanding of the reference frame to localise correctly, contrary to the external
localisation when sensors can monitor the whole environment.

Figure 2: Personal magnetic compass Figure 3: One of the several GPS satellites

Compasses

Compasses are ego-localisation sensors which measure the heading of the robot. It is
particularly significant for localisation and navigation because a slight offset in the angle
can result in a sizeable lateral error. Therefore, they are often used in mobile robotics
to support orientation estimation as in [7]. However, they cannot be used for position
estimation as they measure only the angle off the pole direction. The common disadvantage
of magnetic compasses is the magnetic field itself as it can deform by steel constructions,
power lines, or natural magnetic anomalies. Thus, it is not suitable for indoor applications.
In mobile robotics, the variation of a magnetic compass, the fluxgate compass, is popular
because of its low price and the lack of moving parts which makes it less fragile.

Global positioning system

Global positioning system (GPS) consists of several satellites on the orbit emitting high-
frequency signal with encoded information of their current position. The standard precision
is around 15 meters depending on the number of visible satellites. It can be improved to
the accuracy of centimetres using differential GPS (DGPS), which provides local location
correction through fixed reference stations. The benefit is the lack of additional equipment

5
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other than a sensor on a robot, so it is convenient for portable outdoor platforms. The GPS
application is limited to exteriors only as the signal is not strong enough to be received
inside buildings or underground [8].

Landmark localisation

Landmarks are significant and detectable objects which easily distinguish from the oth-
ers. Usually, they have known characteristics as a geometric shape, emitted signal, or high
contrast colours and patterns. Landmarks are recognisable through the robot sensors, and
their relative position to the robot is often possible to estimate. They can be divided based
on the origin, natural or artificial, or based on energy activity, active or passive.

Natural landmarks are objects, not necessarily with origin in nature, which were
initially not meant to support localisation. However, they form such features that are
easily noticeable like the window edges or in general any corners. These features have
specific contrast and spatial disposition that the robot can rely on and localise by them.
Landmarks extracted from a camera image are typical passive natural landmarks, called
simply features [9, 10]. They benefit from the fact that the environment does not have to
be enhanced and controlled in advance the robot deployment. This benefit can also be a
disadvantage when dynamic changes happen like rain or snow. Detecting natural landmarks
is computationally more demanding, and thus it may limit the robot from performing other
tasks.

Artificial landmarks are made with the purpose of localisation, and they are inten-
tionally added to the environment, which often has a lack of natural ones. They have a
priori known characteristics which make them easy to detect and calculate their position
and orientation relative to a sensor. In the case of active artificial landmarks, they are
called beacons. They can emit light or transmit any radio or sound signal as in [11]. The
passive ones vary significantly in their shapes, colours or materials because they are simpler
to produce and set up as the lack of energy source. The artificial landmarks are robust and
reliable relative to the natural ones. Simple barcodes, retroreflective targets, or infrared
beacons are examples of those landmarks.

Figure 4: FAST feature for corner detection Figure 5: Ultrasonic beacons
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2. STATE-OF-THE-ART IN LOCALISATION AND MAPPING

Landmark localisation is principally based on the comparison of the landmarks at known
positions with the current landmarks observed by the sensors [12]. The precision and de-
tectability of landmarks decrease with increasing distance and angle under which the sensor
observes them. Therefore, it is often combined with the odometry to overcome situations
when landmarks are not visible with enough certainty. There are two basic ways how to
localise in space using landmarks [13]. Trilateration is measuring the robot position us-
ing only the distances from landmarks. Triangulation is using the angles relative to the
longitudinal axis to estimate the position.

External localisation systems

External localisation systems provide a reliable and precise estimation of the absolute
position within a given operational frame. They are widely spread in the mobile robotics,
especially for assessing the ground truth of position or closed-loop robot control. For a
reliable system, high precision and speed of measurement are necessary; however, expensive
and closed-source hardware and software are often unavoidable. The possible issue might
also be in low scalability for multi-robot systems or swarm robotics.

Vicon is a high-end optical passive motion capture system used for 3D position estima-
tion [14]. It consists of a set of retroreflective markers which are tracked by high-resolution
infrared cameras. Each camera captures synchronised images and computes the 2D posi-
tion of the reflected targets. Once the overlapping points are detected, the 3D position of
them is calculated using triangulation. Although initially developed for gait analysis, it be-
came popular in robotics, biomechanical or augmented reality field because of its precision
and flexibility [15]. However, it cannot be easily deployed in the exteriors because of the
naturally occurring reflections of infrared light corrupting the infrared tracking.

OptiTrack is a framework for motion capture providing 3D positional data through
a passive optical system [16]. As the Vicon system, the OptiTrack system requires mul-
tiple high-speed synchronised cameras to cover the operational field. The tracked objects
are equipped with retroreflective targets which reflects the infrared light emitted by the
cameras. The 3D position of the markers is obtained via triangulation. There are cases
similar to the Vicon when even the deployment in indoors is not possible because of the
use of infrared sensors which are commonly utilised in swarm robotics. In [17], the authors
state that the OptiTrack, despite its low-cost, is comparable to the Vicon system, and it
is suitable for applications with a bit lower requirements to precision.

Phoenix represents an optical active motion capture system based on the LED markers
providing a 3D position information [18]. The hardware components are similar to the
mentioned optical passive systems; however, the critical difference is in the markers which
actively emit light. Optical active systems do not require any supporting strobes or infrared
light, unlike the passive systems. Thus, there is not a problem with the tracking cameras
facing and blinding each other. The disadvantage of the active approach is the need to
power supply the markers, which requires charging wires and batteries.

7
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Figure 6: Vicon/OptiTrack markers Figure 7: Phoenix markers with control unit

Fiducial markers

Fiducial markers are observable artificial objects in an image which can be used for
measurement or serve as a point of reference. In robotics, the markers are engaged in
localisation, navigation, and tracking using a camera either for ego-localisation or exter-
nal localisation. The most popular fiducials are typically planar black-and-white tags with
known shape and dimensions. Thus, machine vision techniques can estimate their relative
position and or orientation to the camera. Thanks to their planar nature, they can be
variously placed on walls, floors or other robots to enrich the environment with artificial
passive landmarks. Therefore, many applications can be found like to support robot Handle
(Figure 8) by Boston Dynamics [19] or help while the docking phase of robot Linda (Fig-
ure 9) developed during STRANDS project [20]. Their deployment in distance estimation
between autonomous vehicles is thoroughly examined in [21].

AprilTag is a fiducial of a square proportion with identification encoded within. It
provides a full 6 degrees of freedom localisation [22]. The detection core at first detects
all line segments in the image and searches for those which form a rectangular shape,
leading to low false negatives, yet high false-positive rate. Thus, several restrictions on the
outer and inner areas of the pattern are applied to reduce the number of objects to process
further. The inner area is sampled for white and black pixels, then thresholded to provide a
2D binary code. The coding system produces lexicographic encoding with a highly scalable
number of possible tags, also with a flexible false positive rate robustness. The fiducial
system is capable of detecting, identifying and localising the marker even when partially
covered when using an appropriate coding system parameters. In [23], the improved version
of AprilTag is presented introducing non-square markers with the possibility to include
non-marker related content inside the inner encoding area.

ArUco is a square-based fiducial marker incorporating binary matrix identification
encoded in its inner area [24]. The detection core performs similarly to the mentioned one
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Figure 8: AprilTag markers as package and
rack labels for warehouse robot

Figure 9: WhyCon markers as letter o in the
“Robot station” sign to support docking into
a charging station

in AprilTag. Thus, there is an edge detector on the thresholded grey-scale image whose
output is processed to form rectangular objects. However, it does not include such line
segments detection, and so contrary to the AprilTag, the ArUco is not capable of dealing
with occlusion. Instead, the authors solve this problem by using a marker board, which
consists of multiple smaller markers which can be detected to substitute the occluded
ones. The authors later present a modification of this fiducial system detection core which
provides faster detection by using temporal marker information from a previously observed
image sequence [25]. In general, the square-based markers have the drawback of the variable
estimation time as in [21], which might cause unexpected delays in processing.

(a) AprilTag (b) ArUco

Figure 10: Square-based fiducial markers for vision-based localisation

WhyCon outlines a real-time, low-cost visual localisation system based on black-and-
white roundel markers [26]. The marker is in the form of two concentric circles with known
diameters where the outer circle is black, and the inner one is white. The system provides
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only 5 degrees of freedom, meaning it is not able to estimate the rotation around its surface
normal. However, in situations when one does not care about the orientation and needs only
the 3D position, WhyCon serves well and provides the precision in the order of millimetres.
The performance of this system is significant because it can track several thousands of tags
in the time of a few milliseconds. The main advantage of WhyCon is low memory and
computational requirements. Due to the WhyCon’s popularity, there are systems which
build on top of it and address the missing orientation problem - WhyCode and SwarmCon.

WhyCode is a localisation system which builds on top of WhyCon system, and thus
it is an enhanced circular marker [27, 28]. Therefore, it features similar robustness, pre-
cision, and performance as the WhyCon mentioned before. The WhyCode adds a unique
and distinguishable identification and an estimation of the rotation around the marker’s
surface normal vector. It provides the full 6 degrees of freedom while maintaining its low
computational requirements. The identification is achieved through a scalable circular bar-
code on the inside of the outer black circle. The barcode is the Necklace binary code which
is rotationally invariant; thus based on the rotation of the code, the surface rotational
angle is recovered. However, the encoding system reduces in the possible detectable and
identifiable angles and distances due to the possible lack of visibility of the encoded bits.

SwarmCon marker extends the WhyCon system by introducing the angle estimation
around the surface normal and distinguishability of markers [29]. The concentric circles are
replaced by ellipses which allow obtaining the heading from the rotation of the ellipse co-
vertices. However, this approach is possible only when the marker plane is perpendicular to
the camera axis. The unique identification of individual markers is achievable by combining
differently scaled and rotated concentric ellipses. There is also an additional build-in feature
allowing automatic calibration and transformation to the swarm arena coordinate system.

(a) WhyCon (b) WhyCode (c) SwarmCon

Figure 11: Roundel-based fiducial markers for vision-based localisation

2.2 Mapping

Mapping is done by robots to capture their surrounding and transform it into maps,
an abstract representation of the operational environment. Thus, having the landmarks
mentioned above in the environment, the robots can use them to build a map and to
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localise in it, which is particularly essential for ego-localisation. The robots use sensory
information, which is usually additionally filtered and evaluated to achieve robustness and
reliability, to describe the environment. Maps can be created in two ways. On the one
hand, we can prepare the maps by ourselves and provide them to robots, or on the other
hand, they can be created by robots. When the robots are building the maps, they either
autonomously move and explore on their own, or they are teleoperated. In both cases,
the environment is at first unknown to them. In general, maps form two basic categories,
metric and topological, depending on the way the sensory data are abstracted [30].

2.2.1 Metric maps

In metric representation, the map description is stored as coordinates [31, 32]. Thus, all
the objects, points of interest, and obstacles are represented by their positions within the
map coordinate space. Therefore, multiple sensors can be incorporated because a robot
only needs to know how to transform the data to the map metrically. Another benefit is
the human-readability and verifiability of the stored representation. However, the disad-
vantages of this approach are the sensitivity to the noise or miscalibration of sensors. Also,
metric maps can be memory demanding, which depends on information stored - free space,
occupied space, objects properties.

Occupancy grids represent the environment in a discrete way, divided uniformly into
cells. Each cell contains information describing the area it covers. This method requires
many memory resources, yet it is a straightforward representation and easy to implement.

Geometric maps models the environment as a combination of geometric primitives.
These maps can be seen as a more abstract occupancy grid by joining cells with the same
descriptive information. They are less memory demanding, but they are harder to create
because the sensory data need an interpretation to form a geometric shape. Also, they are
not so detailed because they represent more substantial and more significant areas.

Landmark maps contain only the descriptions and positions of landmarks. They are
very memory efficient and easy to create. The disadvantage of such maps is the need of
having a controlled environment without landmark changes. There might also be redun-
dancy in supplemental information when multiple same markers are connected to the same
location.

2.2.2 Topological maps

Topological maps are better in the abstraction as they are modelling the world as a
graph [33, 34]. The different places are represented as the graph nodes, and the edges are
the connections in between them. As the nodes contain descriptive data, the maps are less
detailed because it would require the creation of additional nodes and edges, and thus leads
to higher memory and computational requirements. The benefit is that there is no need
for metric transformations of sensory data into the global representation. Thus, a node can
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only contain the relative representation of a place which, however, raises a need for proper
detecting places. In the case of erroneous place recognition, this may lead to failure in
localisation and navigation, especially in places without robust distinguishable descriptive
elements.

Figure 12: Occupancy grid map Figure 13: Topological map

2.2.3 Hybrid maps

The combination of multiple types of maps, mainly metric and topological, forms hy-
brid maps [35]. They are popular because they reduce the drawbacks of individual map
categories. Topological maps can form the high-level representation, thus benefiting from
the abstraction, while the lower-level can use the metric maps to maintain the precision.
These maps are useful when there is a high chance of mistaking the places, and thus falsely
localisation within the map.

2.3 Simultaneous localisation and mapping

Simultaneous localisation and mapping (SLAM) is a well-known challenging problem in
robotics. It describes a situation when a robot has to create a representation of an unknown
environment while estimating its location in it. The main issue, apart from proper simul-
taneous processing, is the correct treating of the uncertainty of the robot’s position and
creating a map based on sensory information which is often noisy. Therefore, to represent
the sensory observations and to model the robot motion, probabilistic methods or filters
are applied to reduce the noise by creating hypothesises of the actual state. The most
popular methods for estimating the SLAM state are extended Kalman filters and particle
filters [36].
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Extended Kalman filters

Extended Kalman filter (EKF) creates a model of the uncertainty of the robot position
and representation of the map by the normal distribution. Assuming the position estima-
tion is uncertain; therefore, even the estimation of the measured data within the map is not
absolute. Thus, the EKF-based SLAMs are favoured in applications where the map can be
build from precise measurements. The problem of the EKF algorithms is their quadratic
complexity concerning the landmarks on the map, which restricts large-scale maps. The
map size can be resolved by breaking the map into sub-maps which are processed individ-
ually. EKF SLAM is typically incorporated in feature-based applications [37, 38].

Particle filters

The uncertainty of the robot and feature positions are expressed as individual particles
forming a probability density. As the density function models the position, there can be
multiple hypotheses of the robot position at the same time. Depending on the observed
data, the positions of particles are reassessed and reweighted based on their likelihood of
appearance. The amount of particles highly grows as there have to be multiple particles
per landmark to has high likelihood. Therefore, particle filters are applicable mainly for
localisation and not for building a map. The solution to the particle filters and their
modification to lower memory complexity presents FastSLAM [39].

(a) extended Kalman filter
(b) Particle filter

Figure 14: Robot position estimation by SLAM filters [1]

2.3.1 Visual SLAM

The solution to the SLAM problem through cameras only has been thoroughly addressed
by many authors, mainly because the camera is often affordable and straightforward sensor
to handle. However, the sensory information is challenging to process correctly in order to
obtain enough data for SLAM underlying algorithms. Since the camera produces visual
data only, those approaches are called visual SLAM (vSLAM) techniques. Based on how
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the image is processed, there are two main categories of vSLAM - feature-based and direct
methods [40, 41].

MonoSLAM

Monocular SLAM (MonoSLAM) is a feature-based SLAM using the SIFT descriptors,
and it represents the first visual SLAM technique presented in [42]. The mapping ini-
tialises by observing a known object with a defined global coordinate system. The extended
Kalman filter is the underlying 3D position estimation algorithm. The disadvantage of this
method is a massive growth of the computational requirements concerning the size of the
operational area. The problem of estimating the depth of the features solves a feature track-
ing in multiple consecutive frames. However, the tracking leads to another issue where the
camera movement has to be slow enough to ensure successful tracking. It can be partially
overcome by increasing the camera capture speed; however, such modification results in an
explosion of map size and cannot be processed in real-time.

LSD-SLAM

Large-Scale Direct Monocular SLAM (LSD-SLAM) is a real-time direct monocular vi-
sual SLAM which does not work with extracted image features [43]. This methods directly
incorporates the image intensities for all the aspects - mapping, tracking, localisation. Com-
pared to feature-based SLAMs, this method uses the image as a whole; thus, it benefits
from all information and not only a few high-contrast patches. As the authors present
a modified direct image alignment, the LSD-SLAM reduces the problem of scale-drift in
large environments. The depth in the map is estimated from many per-pixel stereo com-
parisons. It results in more precise and stable localisation and 3D reconstruction in sparse
and low-textured environments. The LSD-SLAM was extended to stereo [44] and omnidi-
rectional [45] cameras.

ORB-SLAM

ORB-SLAM is a versatile and scalable monocular SLAM system based on visual ORB
features [46]. The ORB features are fast binary descriptors based on the BRIEF features,
but they are noise-resistant and also rotation invariant. They also allow real-time perfor-
mance even without GPUs. The co-visibility graph is used for map representation which
allows operating in large environments because the localisation is done only in a local co-
visible area. The loop closure is done through a spanning tree of a graph, which reduces
the graph size to process, and thus the error distribution along the loop is faster. In [47],
the ORB-SLAM2 is presented, which is an improvement of this method. It enables the
application of not just monocular camera, but also stereo and depth cameras. So it solves
the problem like the scale drift of the map or trajectory tracking. Another improvement is
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a lightweight operation mode which provides only localisation without mapping. Thus an
already created map can be reused without creating a new one every time.

UcoSLAM

UcoSLAM combines the natural and artificial landmark localisation to overcome the
volatility and repetitions of natural landmarks which are used by most of the vSLAMs [48].
The authors use the square-based ArUco fiducial as an artificial landmark to support the
localisation and map building in repetitive environments. The system can use only the
marker, keypoint features, or a combination of them; thus, it maintains the versatility of
the traditional approaches. The markers support the determination of the map scale as
their dimensions are a priory known. In terms of the features, UcoSLAM is designed to
incorporate any type of image descriptors.
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3 Fiducial marker modifications

This chapter describes the selected fiducial markers, their improvements and extensions,
which are the goal of this thesis. There are many popular markers to choose from as we
introduced before. The markers examined further are WhyCon and WhyCode systems
as they offer tracking, localisation and maintain high-speed performance even with poor
quality cameras. The selected methods applications vary from accurate and real-time lo-
calisation to post-processing a robotic experiment where is a need for precise and low-cost
ground-truth.

WhyCon and the further evolved WhyCode fiducials are open-source vision-based local-
isation systems with millimetre accuracy which needs only a simple web camera to detect
and localise up to thousands of markers per image frame. Even though nowadays robot
hardware is more and more powerful, those markers maintain the original purpose of being
lightweight and thus are noticeably less computationally demanding than the square-based
markers, ArUco and AprilTag. They share a common core which is thoroughly explained
in [26], while in [49], there is described a modification for embedded systems. The fast de-
tection of the black-and-white pattern is performed using flood-fill segmentation, reusing
the previously calculated characteristics and on-demand thresholding, which allows pro-
cessing only the found segment instead of the whole image. As the system performs the
detection phase, the pattern segment undergoes a sequence of tests whether it complies
with the updated pattern characteristics which speed up the process by immediately drop-
ping the unsuitable pattern candidates. Another benefit of remembering the characteristics
is tracking the marker to speed up the detection because it can be assumed that the change
in position of the fiducial is not significant between individual frames. Therefore, the sys-
tem performance is increased by looking for the roundel at the previous location, and so
processing less image area.

In [27], the authors present a flexible encoding system that introduces unique identifi-
cation and an ability to estimate the rotation around the marker surface normal. The area
between the concentric circles is enhanced by a circular binary code which translates to
the marker ID. The code represents the Manchester-encoded Necklace binary pattern [50]
which we call teeth because of the resemblance. The rotational invariant characteristics
of the Necklace code allows obtaining the ID by reading the binary code and rotating it
around until the smallest value is reached. The resulting value then corresponds with the
marker ID. The angle is recovered from the required rotation of the binary code.

However, to achieve robust and reliable position and orientation of the markers, they
require additional modifications, mainly as the 3D orientation estimation is not addressed
at all. There is also unresolved ambiguity in the result calculation in the system core,
which causes significant and unpredictable changes affecting both the identification and
pose. Those issues have not been tackled since both of the markers were mainly used for
position estimation and identification under small-angle only. The missing features have
been thoroughly addressed by [21].
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Figure 15: Manchester-encoded Necklace ID overview. The binary string is unwrapped and
shifted to the lowest value matching a Necklace code. Based on the number of bit-shifts,
the rotation is recovered.

To make the methods truly competitive with others or even prioritised, they have to be
comfortable to users and developers in various situations. Therefore, both fiducials were
provided with an interface to the Robot Operating System (ROS) [2] framework in version
Melodic to unify the means of communication with other robotic software. Users also need
to visualise or debug their system output, so a new user interface (UI) is built using the
rqt plugin based on the Qt graphics framework [51].

3.1 Resolving ambiguity

Position estimation is based on the same core for both markers, and it begins once the
system detects an image segment which fulfils all the validity tests. Since the segment
area is even, the pattern centre is calculated as the mean of the segment pixel positions.
The area is also circular, or elliptical when under perspective, so we can calculate the
covariance matrix of it and apply the eigenvalue decomposition. Then, using the pinhole
camera model, the canonical camera coordinates of axes and centre are obtained from
the ellipse characteristics which allow us to express the characteristic ellipse equation of
the marker as XTQX = 0, where Q is the conic section of the segment border. Further
described in [52, 27], the marker surface unit normal vector n and position vector x are
calculated as below:

x = s3
r√
−λ0λ2

(
s1λ2q0

√
λ0 − λ1
λ0 − λ2

+ s2λ0q2

√
λ1 − λ2
λ0 − λ2

)
(1)

n = s1λ2q0

√
λ0 − λ1
λ0 − λ2

+ s2λ0q2

√
λ1 − λ2
λ0 − λ2

(2)
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where r is the outer circle radius, eigenvalue analysis of Q yeilds eigenvalues λ0 ≥ λ1 >
0 > λ2 and their respective eigenvectors q0,q1,q2, and s1, s2, s3 are unknown signs.

As the authors correctly assume, the marker is only detected when it is in the camera’s
field of view, thus the normal n faces to the camera centre and x lays in front of it.
Therefore, the following constrains on the vectors gives us two inequalities as:

nT

0
0
1

 < 0 (3)

xT

0
0
1

 > 0 (4)

Note, that only two out of the three undetermined signes can be solved from the equations.
This leads to two possible solutions x1,x2 and n1,n2, apart from the case of one solution
when λ0 = λ1. However, this ambiguity of solutions has been treated only partially in
the way of only applying the inequality constrain on the position vector. This approach
yields four different solutions from which one is arbitrarily chosen and together with the
sign uncertainty of the eigenvectors; it is unpredictable whether the correct solution was
chosen. The authors in [52] solve the ambiguity by incorporating additional information
about the observing camera position and orientation from an auxiliary sensor. However,
there is already enough information in the fiducials that we can use, but unfortunately, we
cannot use the same approach for both WhyCon and WhyCode as they are structurally
different. The differences in solutions are discussed separately for each marker.

3.1.1 WhyCon’s solution

The search for WhyCon’s correct estimation starts in the detection phase when the
pattern is found at first as one outer black roundel and then the inner white ellipse.
The outer one is used for the position estimation as described above. The white ellipse
is only meant for the validation together with the black circle in the testing of marker
characteristics like the area ratio of the segments, or their radii ratio is sufficient. Although
we calculate the centre and semiaxis of both parts, we proceed with just the outer one.

The inner white ellipse can provide us with additional information about the undergoing
perspective. Smaller objects are less affected by the camera perspective; therefore, the
inner centre pixel position does not shift as much. Thus, it can serve as the reference point
because it is closer to the real-world marker centre, which is the same for both due to the
co-centricity. We can then compare the ambiguous position vectors with the perspective
centre of the inner white circle. So, we calculate all possible vectors n and x solving the
inequality constrains. The outer centres are in the 3D canonical camera frame coordinates;
thus, we project them back to the 2D image coordinates using camera intrinsic matrix and
distortion parameters. Then, the results are two equally distanced points, from the original
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mean outer centre, in subpixel resolution. The centre closer to the inner one in the means
of Euclidean distance is our sought solution together with its corresponding unit surface
normal vector.

In Figure 16, there is a visualisation of the decision process described above. There are
both candidates, blue and green, for the marker centre, and their distance to the original
black segment centre is the same. The perspective effect on the inner and outer centres
is noticeable, and one can easily claim that the outer centre drifted more than the inner
one. When the Figures 16a 16b are compared, they represent the ambiguous pair as the
centres lay on the same line, and the markers are in the opposite orientation. It is clear
that the false solution for one is the correct for the second, and the only thing changed
in the constellation is the inner centre, displayed in red. Thus, the correct solution for the
position vector is genuinely closer to the inner centre. However, this approach is less precise
in situations when the marker plane is perpendicular, and the marker is located close to
the camera’s optical axis because the differences in the distance are less clear.

(a) θ = [0,−0.3, 0.5]rad (b) θ = [0, 0.3,−0.5]rad

Figure 16: Resolving ambiguity of WhyCon with 20 cm in diameter at canonical camera
coordinates [0.3, 0, 0]m and orientation in Euler angles. There are inner white center in red,
outer segment center in black, and both solution candidates in green and blue.

3.1.2 WhyCode’s solution

In this case, the ambiguity solution is not as straightforward as the WhyCon’s one
because not only two solutions have to be resolved but also the occasional misidentification
based on various illumination conditions. Even though it is tempting to apply the same
approach above and examine the inner area parameters provided by the detection core,
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we can use it only for the validation that the pattern has been detected correctly. The
reason is the presence of the Necklace encoding in between the black and white circles,
which causes the inner area is not round and centred correctly. Thus, we cannot rely on
the calculated white centre to be our reference. Although there are cases when we would
not notice any difference, it only happens when we set the number of bits to encode high
enough and observe under small angles. When using fewer bits for identification, the teeth
are more prominent, which causes the inner centre to shifts towards them as it is only
the mean of white pixel positions. We could start using more ID bits and consider it as a
solution; however, it would lower the detection range and restrict the reliability under high
observation angles.

Firstly, we have to deal with problematic binary code extraction under a different light.
The image brightness of the raw circular code is obtained with a simple sampling around the
marker centre. The original implementation processes the raw code by searching for bright-
ness gradient and smoothing it out. Then, the authors look for the strongest smoothed
signal position, which is assumed to be in the middle of the starting tooth from where the
code is evaluated by tooth-wide steps. Here comes the first ID detection problem because
the brightest point does not have to be in the tooth centre, and thus the whole processing
is shifted and may produce incorrect binary code.

This issue can be overcome by different processing of the samples. Instead of trying to
maintain the real nature of brightness raw signal, we can threshold it and get the binary
signal. The threshold is chosen as the average value. Then, we can look for teeth edges
directly and convert the signal into the Manchester-encoded Necklace code.

Now, the ambiguity can be examined as the signal evaluation is robust enough. We
follow the same steps as it would be regular WhyCon; thus, we calculate the two candidates
for position vector and transform them back in image coordinates. Instead of measuring
the distance to the white centre, we proceed as described above and sample around both
assumed centres to extract the binary signal of the circular code. The idea is that sampling
around the sought solution produces a signal with more equally spaced black-white edges
on the circle around it. Therefore, we project the edge positions onto a unit circle and
calculate their variation. We compare the variations, and the outer centre, which leads to
a lower value, is then considered as the correct one. The drawback is higher computational
requirements because the sampling, binarisation and Necklace decoding are calculated
twice. However, considering the original performance, the difference is not significant.

We can examine the ambiguity affecting both the position estimation and sampling
circle, as described in Figure 17. The influence of the binary encoding between the black
and white circles on the inner centre is visible in Figure 17b as it shifts towards the double
white tooth. It is even stronger when the teeth are more disproportioned. Therefore, the
decision is chosen based on the sampling circle, which under higher observation angle can
lay even outside the inner circle area. The markers in Figures 17a 17b are in the opposite
orientation, and therefore there represent the ambiguous pair. Based on the visualisation,
one can easily judge that the false solution for one is correct for the second. The decision
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criterion is shown in the Figure 18, where one solution produces inconsistent binary code
with unevenly sized bits compared to the other. However, there applies the same issue as in
the WhyCon’s case; thus in a perpendicular position close to the optical axis, the decision
criterion is less informative. A partial solution might be increasing the number of samples
which, on the other hand, slows overall pose estimation.

(a) θ = [0,−0.3, 0.5]rad (b) θ = [0, 0.3,−0.5]rad

Figure 17: Resolving ambiguity of WhyCode with 20 cm in diameter at canonical camera
coordinates [0.3, 0, 0]m and orientation in Euler angles. There are inner center in red, outer
segment center in black, and both solution candidates in green and blue together with the
encoding sampling circle for WhyCode teeth.
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Figure 18: Binarized brightness signal of the solution candidates in Figure 17a
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3.2 ROS interface

Integration with the ROS framework is done using the version Melodic and program-
ming language C++. The schematic interface implementation overview is in Figure 19.
The system is formed from two ROS packages communicating with each other - rqt whycon
as user interface and whycon as WhyCon/WhyCode backend. The backend is designed to
be just a wrapper around the library. The input callback functions take a standard frame
buffer and camera intrinsic and distortion parameters and output a newly defined message
MarkerArray with an array of descriptions of all detected markers. Apart from the men-
tioned inputs, the ROS wrapper introduces optional control inputs for the action servers
within the system which are used for specifying the graphical output, user-defined coordi-
nate system or path to the configuration file. We chose the service approach because of the
one-to-one communication nature and the ability to send feedback back to the users in case
of errors. Having that, we can fully control the system with either the ROS command-line
tool rosservice or through buttons in the UI which is based on the rqt image view [53] in
version 0.4.13, see Figure 20. The core codebase had to be rewritten, in order to be easily
separated from the UI and ROS, and so the library could run independently with different
wrappers. Also, we had to implement a new way of calculating the orientation, which we
decided to represent in quaternions as these are natural angle representation in ROS.

Figure 19: WhyCon/WhyCode simplified system diagram in ROS

The whole system is meant to be easily used by newcomers and at the same time, offer
high user-configuration for advanced users. Therefore, the threshold parameters for seg-
ment validity tests are possible to change from the default values. There are two options
to achieve it; one can adjust the values on-the-fly through the dynamic reconfigure server
or modify the default values directly in the configuration file. It is possible to dynami-
cally scale the diameter, set how many markers to look for, and toggle whether to start
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identification of the ID. The user can also comfortably input a path to custom coordinate
system calibration files or save a screenshot. Other settings which are unchangeable during
the runtime are available at the program start-up either temporally as a command-line
argument or persistently in the launch file.

Figure 20: WhyCode’s rqt based user interface

3.2.1 Quaternion from the surface normal vector

Once the means of data exchange within the framework were established, we had to
incorporate the conventions for units and data representations. Thus, to express the orien-
tation of the marker, we decided to use the quaternions to avoid unnecessary conversions.
Quaternions are widespread across many fields as in robotics where they can represent the
rotation and orientation in the 3D space [54]. They are also implementation-wise beneficial
compared to the rotational matrices because they are more numerically stable and are
formed by only four elements as they extend the complex numbers. However, for better
user interpretation of the resulting marker’s pose, the quaternion is also converted to the
Euler angles.

The output quaternion is obtained from the surface normal vector n and the rotational
angle calculated from the encoded ID in two steps. In the case of WhyCon, we do not have
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the ID, so we perform only the first step, which is results only in partial orientation. The
quaternion is calculated through the axis-angle representation. Firstly, we need to know
the axis of revolution which is obtained as the cross-product between the optical axis - null
rotation - and the surface normal unit vector n.

z′ =

0
0
1

× n (5)

The angle of revolution is then the angle between n and z′ and as they are unit vectors,
we can omit the division by their norms

θ = − arccos(
(
0, 0, 1

)
· n) (6)

Thus, the first quaternion can be now formed

q1 =


z′1 · sin(θ/2) i
z′2 · sin(θ/2) j
z′3 · sin(θ/2) k

cos(θ/2)

 (7)

The second one q2 is obtained similarly, where θ is the rotational angle from encoded
ID, and the axis of revolution is the marker surface normal n. Then, the final orientation
is composed as:

q = q2 ◦ q1 =


q2wq1x + q2xq1w + q2yq1z − q2zq1y i
q2wq1y − q2xq1z + q2yq1w + q2zq1x j
q2wq1z + q2xq1y − q2yq1x + q2zq1w k
q2wq1w − q2xq1x − q2yq1y − q2zq1z

 (8)

where ◦ is the Hamilton product which is based on the distributive law and the product
of the basis elements as above, qw denotes to the real part, and qx, qy, qz are the imaginary
parts.
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4 Datasets

To compare the modified methods with the other fiducials, they were evaluated on both
real-world and artificial simulation-based datasets. All the markers achieve a high and up to
millimetre precision, and some of them were primarily designed to provide a ground-truth
for mobile robot experiments. Therefore, the problem araised as many other ground-truth
systems provides similar accuracy. Thus, the simulated artificial environment was built
to verify the functional and reliable aspects of the localisation in a scalable and noise-
free environment. However, the methods were also evaluated on the real-world dataset
to demonstrate their actual performance under a naturally occurring noise and imperfect
image frames.

4.1 Real-world dataset

The real-world dataset represents the external localisation application of the markers
in swarm robotics for providing the low-cost ground-truth system. This application of the
fiducials is popular [55, 56, 57] as the swarms can then operate in various conditions without
the need of setting up complex localisation systems of multiple cameras and synchronisation
units. Also, their sensors do not interfere with the infrared light emitted by the localisation
systems. The swarm arena in the dataset is captured by an off-the-shelf USB camera
recording approximately 2.5 m above the arena. MONA platform [58] is used to simulate
a swarm as it is a small open-source, open-hardware, and affordable platform for research
and education. It is based on the microcontroller ATmega 328, which is the same as in
Arduino Mini/Pro; thus, there is enormous compatibility of libraries and sensors.

The robots are equipped with a board on top with four fiducials, AprilTag, ArUco, Why-
Code, and SwarmCon in the corners as in Figure 21. All the markers have the same size
of 4 cm and have been generated with their reasonably small set of IDs. Thus, SwarmCon
generated 3 × 3 unique ellipses, ArUco binary matrix IDs are from the 4 × 4 dictionary,
WhyCode markers have 6-bit encoding, and AprilTag identifies markers with 16h5 ID set.
The video stream has the resolution of 1920× 1080 and a frame rate of approximately 30
frames per second due to occasional frame dropping while saving the stream. The Vicon lo-
calisation system obtains the ground-truth measurements as it can provide a submillimeter
precision.

Two different datasets were created based on the mentioned set up, MONA 1 and
MONA 3. Dataset MONA 1 contains only one robot moving around the arena centre while
it holds markers with ID 1. The video length is one minute and seven seconds, consisting
of 2016 frames. The second one added other two robots with IDs 2 in the left and 9 in the
right part of the arena. The dataset is a bit longer with 2062 frames and a minute and
eight seconds.
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(a) MONA 1 dataset (b) MONA 3 dataset

Figure 21: Sample frames from the real-world datasets of swarm arena

4.2 Artificial dataset

The artificial dataset was made in the Gazebo [59] simulator framework because it
provides a precise and reliable environment simulation with high ROS integration. The
framework offers a sophisticated physics engine, user-friendly interface, high modularity
and easy-to-use premade packages. We created three testing worlds to evaluate localisation
scenarios - ego-localisation, 2D external localisation and 3D external localisation. The sim-
ulation environment is controlled by central coordinator ROS nodes, which can repeatedly
run individual scenarios of marker position and orientation, and they provide the synthetic
camera image with stable parameters. This node initiates the whole testing framework and
then sequentially send commands to the Gazebo action server to change either the camera
or marker position. The camera is set up with default parameters and without any added
noise and distortion for stable measurements. The fiducials are sized to have the same
width varying depending on the scenario.

The Gazebo words settings are based on the default empty world with a few modifica-
tions. The RGBA ambient light value was increased to the maximum value in order to allow
uniform illumination and to evaluate markers without the aspect of undergoing different
light conditions. Also, to make the simulated environment stable, the gravity force param-
eters were zeroed, so the camera or the markers do not slide away after displacement. The
camera is represented as a model with added standard sensor plugin gazebo ros camera and
resolution of 1920 × 1080. Individual markers are added to the world through the visual
parameter of a simple box-sized model. The markers were generated to provide enough
unique variants to cover all the simulator scenarios; thus, we need a total of 28 markers.
So for AprilTag we chosen the 16h5 ID family of 30 markers, ArUco IDs are from the
4× 4 dictionary of 50 markers, and WhyCode markers were generated with 8-bit encoding
resulting in 30 unique markers.
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4.2.1 3D external localisation scenario

The environment layout is simple as there are only a camera and one marker present,
see Figure 22. The marker size is 20 cm×20 cm as it is approximately the size one can print
on an A4 paper; thus, the simulation and the results are more comfortable to imagine and
interpret. The camera is arbitrarily positioned at the origin of the coordinate system. The
marker is then randomly placed in the field of view as needed. The random distribution
of displacement is uniform and ranges in the distance from 3 m to 5 m, the vertical axis
from −1.5 m to 1.5 m, and in the horizontal axis from −1.5 m to 1.5 m. The orientation of
the marker varies similarly; thus, the rotation around the marker surface normal goes from
0 rad to 2π rad. In terms of the rotation around the two other axes, we can choose between
small and large angles; therefore the both angles are either from the interval [−π/6, π/6]
rad or from [−π/3,−π/6] ∪ [π/6, π/3] rad respectively. This scenario allows us to test the
fiducial markers at various positions and even extreme angles which would be difficult in
the real world because it would require expensive hardware to provide the ground-truth.

(a) (b)

Figure 22: 3D external localisation simulator of WhyCode where (a) is the simulator models
layout and (b) is the image produced by the camera sensor.

4.2.2 Ego-localisation scenario

The purpose of this scenario is to test the fiducial marker usefulness for the 2D onboard
localisation of a mobile robot. It has been inspired by a project with Synergy Logistics
Ltd., which is a UK-based warehouse and logistic company. They requested an absolute
onboard localisation system based on fiducial markers placed around the whole warehouse.
The reason why one could consider this application of the markers is their uniqueness in the
environment compared to the racks or concrete walls. The traditional SLAM methods based
on the extracted image features or lidar point clouds are powerless in an environment with
such repetitive and plain characteristics causing unexpected loops and feature mismatching.
The project outcome was a ROS-based system that can perform absolute localisation by
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fitting the observed markers to a global map and then fusing the visual odometry with the
wheel odometry by the extended Kalman filter.

To perform the ego-localisation tests, we created a testing square arena with a cam-
era and markers on the border walls as in Figure 23. The dimension of the arena is
19.6 m × 19.6 m. There are 28 markers, seven on each wall, equally spaced by 3 m, and
their size is 50 cm in diameter. This scenario is for testing the kidnapped-robot problem by
randomly changing the robot planar position and orientation within the arena. The robot
then observes the markers at different position and orientation, and it has to localise itself
in a given map using standard methods. The markers are matched by their IDs to create
the correspondence pairs. The robot is reduced only into the camera sensor because there
is no reason to simulate the whole robot in this scenario. The random position is uniformly
distributed from −8 m to 8 m along both planar axes. The rotation around the vertical axis
goes also uniformly from −π rad to π rad.

(a) (b)

Figure 23: Ego-localisation overview where (a) is the simulator of ArUco models layout
and (b) is the application of WhyCode in a warehouse at Synergy Logistics Ltd. where the
markers are placed on the ground along the racks.

4.2.3 2D external localisation scenario

The 2D external localisation scenario is simulated as a planar multi-robot swarm, see
Figure 24, where the markers are meant to provide the pose of the robots as ground truth.
This scenario is similar to the real-world one; thus, we can evaluate the method perfor-
mances on image frames without any noise or distortion, and the markers can achieve
the best theoretical precision. As it is often in mobile swarm robotics, we estimate the
two-dimensional position and heading of the robots only. In the simulator, there are seven
fiducials representing the actual robots and their size is the same as in the 3D external
localisation scenario, 20 cm. The markers are positioned randomly with a uniform distri-
bution in a non-overlapping way over the arena. The actual movement of the robots is not
simulated continuously. They are instead placed in a grid with 50 cm cells in order to avoid
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any possible interaction between the markers. The dimensions are 9 m × 5 m and all the
markers in the same perpendicular plane at the distance of 5 m. They are also randomly
rotated around their surface normal axes by the angle in the range from −π rad to π rad.
The camera is centred above [0, 0] position of the robot plane, so it can evenly observe the
operational space.

(a) (b)

Figure 24: 2D external localisation overview where (a) is the simulator of AprilTag models
layout and (b) is the application of WhyCon to track AMiR microrobot platforms [60] in
robotic swarm.
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5 Experiments

In this chapter, we evaluate the introduced fiducial marker methods on both real-world
and artificial datasets for their quality of robustness and localisation. While localising by
a real camera, there is always noise present, and we have to rely on that the camera has
been calibrated properly and the environment does not change in a way to affect the lens
characteristics. There is also a marker deformation by the motion blur or non-uniform
illumination conditions. All of those aspects add their effect on the produced image frame,
which is then processed by the fiducial marker methods. Therefore, we assume the results
will differ between the simulator and real-world.

In order to determine the quality of localisation methods and compare them with each
other, we established the following criteria. We start with the real-world dataset, on which
we firstly examine the detection reliability of the methods mentioned above. Other two more
tests are done on the swarm dataset, 2D and 3D position errors. The artificial dataset
scenarios are all tested in two ways, position and orientation errors. The 3D external
localisation scenario is evaluated in the full 6 degrees of freedom as it provides a synthetic
way to test many random poses. The 2D external localisation scenario tests only the planar
position and orientation error. Then, we test the ability to maintain the planarity of data,
so we compare how is the distance estimation precise. The last two criteria are related to
the ego-localisation of a mobile robot; thus, we observe the 2D position and yaw error of
the camera. Those criteria are mainly influenced by real robotic and experiment-evaluation
applications. Since there are many measurements obtained from each dataset, it might not
be clear which method is better; and therefore, we compare the results also by statistical
testing.

5.1 Statistical evaluation

Student’s t-test is applied for testing whether the resulting mean errors of one marker
differ significantly from the results of the others. To make it possible for the t-test to be
used, we have to assume that the tested samples have a normal distribution; however, we
cannot be sure. In that case, we apply the central limit theorem as an unknown distribution
approximates the normal distribution with an increasing number of samples. We use sample
sets large enough with varying size from over 2000 to 3000 samples depending on the
tested criteria. We test the paired samples t-test where the random variable represents the
localisation errors associated with the same image frame.

The paired samples t-test can be transformed into the one-sample t-test. We need to
lable samples from one group as ui and from the second group as vi, then we can construct
a new random variable xi = ui− vi with the mean value of µ = 0. Testing statistics is then
calculated as

T =
X̄ − µ0

S

√
n, (9)
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where X̄ is the sample mean value of the random variable X, S is its sample standard
deviation, µ0 is the mean value of the normal distribution and n is the size of the sample
set. The null hypothesis is that the mean value of the normal distribution of this random
variable is equal to zero when testing on two-sided confidence interval. It is rejected if the
sample mean differs from zero a lot, resulting in considering the paired distributions does
not have equal means. We may also test on the one-sided confidence interval; thus, the null
hypothesis is H0 : µu ≤ µv, which, when rejected, can provide an ordering of the measured
mean values. All the tests were done with the confidence level set to α = 5%.

In the experiments, we also statistically test the mean errors of orientation estimations.
However, the mean and standard deviation cannot be calculated regularly as in terms of
position because the angles are circular quantities. Thus, the directional statistics approach
has to be applied [61]. The sample mean angle θ̄ is calculated as

θ̄ = arctan2

(
1

n

n∑
i=1

cos θi,
1

n

n∑
i=1

sin θi

)
, (10)

where n is the number of samples, and θi is the small-angle difference between the measured
angle samples. The sample standard deviation is obtained as

S =
√
−2 lnR

R =

∥∥∥∥∥ 1

n

n∑
j=1

(cos θj + i sin θj)

∥∥∥∥∥ , (11)

where the the small angle θj is represented as a unit complex number, and R is the length
of the resulting vector.

5.2 Data generation

All experiment measurements are generated on Linux operating system Ubuntu 18.04.4
LTS with Hardware Enablement stack enabled, thus running with kernel 5.4. The ROS
framework is used in distribution Melodic which applies on all dependent packages which
were upgraded before conducting the experiments. The artificial dataset simulator Gazebo
is in the version 9.0.0. All the codes required for experiments are written in C++11 and
compiled with standardly used optimisation flag -O2. AprilTag and ArUco are used in their
open-source implementations in computer vision library OpenCV 3.4.10 as it is the most
up to date version supported in the ROS. They run with default parameters apart from the
minMarkerPerimeterRate, which is set to 0.005 to lower the minimum number of marker
perimeter pixels to be considered for detection. It then allows detecting square markers
even when they are placed far away from the camera. The same applies to WhyCode; it is
linked to the same version of OpenCV, and the parameter minSize is set to 10.

Hardware set up is simple laptop Dell Latitude E7250 with processor Intel Core i5-
5300U, 16 GB RAM, and 256 GB mSATA SSD. It turned out this set up was a little
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limiting in terms of the number of available cores because each ROS node is at least one
process, and thus it would be more efficient to run on more cores. Since the simulator was
run with graphical interface turned off, there was no significant limitation from the GPU
point.

5.3 Real-world tests

In those tests, we let the methods to perform external localisation of moving robots as
they can substitute for high-end localisation devices. All the methods were provided with
the same 2016 frames (MONA 1) or 2062 frames (MONA 3), camera parameters and the
size of the marker. However, the Vicon system, which measures the ground truth, provides
measurements at a higher frequency, approximately three times more than the camera
frame rate. This issue occurs to be shared in high precision systems, and as of that, we at
first had to match the ground truth with the frames. It was done by aligning the beginning
and the end of the data with the video stream, then we iterated over the video frames and
assigned them the closest Vicon measurements. In order to make the data comparable, we
also have to reduce the number of samples, so there will be corresponding pairs for each
video frame. Having data correspondence, we could evaluate the results using the criteria
below.

Firstly, we examined if the methods are capable of providing a measurement for every
frame and if not, then what is the number of dropped frames. This primary criterion was
chosen because, for the applications of providing the ground truth, one needs a stable and
robust method which can measure continuously throughout the experiment. Together with
the continuity, the number of outliers is another vital parameter to look at, because in
case of high outlier rate, we might rather consider dropping the uncertain frames instead
of providing a misleading measurement. To determine the outliers, we evaluated the data
manually, see Figure 25.

Based on the results in Table 1, we can say about dataset MONA 1 that SwarmCon
provides the most stable results. In terms of square fiducials, ArUco dropped more than
four times fewer frames and produced fewer outliers than AprilTag. The roundel mark-
ers, compared to the rectangular ones, can measure across more frames continuously, and
the difference is by order of magnitude. WhyCode benefits from the roundel shape in the
dropped-frame criterion; however, due to the nature of encoding the ID, it cannot out-
perform SwarmCon because the teeth are not visible enough. Also, we have to conclude
that the dataset MONA 3 is unfortunately not suitable for thorough testing as the square
markers are not able to produce stable and continuous measurements. AprilTag performs
especially poorly because it cannot detect all three moving robots in more than 16 frames.
Almost half of the data had to be dropped in case of ArUco from the same reason. After
examination of the video stream, we assume that the different illumination in MONA 3
dataset caused more challenging conditions for edge detection and following steps in the
square marker methods. Thus, we proceed to the next criteria only with the MONA 1;
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otherwise, we would not have enough measurements for statistical tests.

MONA 1 MONA 3
Dropped frames Outliers Dropped frames

AprilTag 621 1 2046
Aruco 149 2 976
WhyCode 14 1 265
SwarmCon 0 0 4

Table 1: Evaluation of detection reliability on the real-world dataset
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Figure 25: Outlier evaluation on the real-world dataset. Points are displayed in canonical
camera coordinates where x is the right-left axis, y is the down-up axis, and z is the
distance of the image plane. The correct data are displayed in blue and outliers in red.

Further, we focus on the ability to estimate the position in both 2D and 3D precisely.
Those two criteria are fundamental for the fiducial markers deployment as ground truth in
the experimental evaluation. We start with the 2D position localisation assuming Swarm-
Con will score the best as it did not drop a single measurement. Based on the p-value
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result in Table 2, we reject all the null hypotheses for 2D apart from testing WhyCode
with SwarmCode in both one-sided and two-sided tests. Therefore, we can make only a
partial assumption of how to sort the markers because µArUco > µAprilTag and they are
higher than in the case of roundel markers. However, we cannot claim anything about the
relation between the mean errors of WhyCode and SwarmCon.

In terms of the 3D position evaluation, we can make assumptions of the results based
on the 2D tests. We expect the roundel markers will outperform the square ones. However,
this was verified only for AprilTag and SwarmCon, but we cannot distinguish between
WhyCode and ArUco. Thus, SwarmCon marker outperformed the others in both the 2D
and 3D tests.

H0
p-value

2D 3D

µWhyCode = µAprilTag 0.00 0.00
µWhyCode = µArUco 0.00 0.93
µWhyCode = µSwarmCon 0.46 0.00
µAprilTag = µArUco 0.00 0.00
µAprilTag = µSwarmCon 0.00 0.00
µArUco = µSwarmCon 0.00 0.00

(a)

H0
p-value

2D 3D

µAprilTag ≤ µWhyCode 0.00 0.00
µArUco ≤ µWhyCode 0.00 0.46

µSwarmCon ≤ µWhyCode 0.77 0.99
µArUco ≤ µAprilTag 0.00 0.99

µAprilTag ≤ µSwarmCon 0.00 0.00
µArUco ≤ µSwarmCon 0.00 0.00

(b)

Table 2: Real-world dataset results of mean 2D and 3D position errors. Based on the
rejected hypotheses, the means can be in ascending order as (2D) {SwarmCon, WhyCode}
< AprilTag < ArUco and (3D) SwarmCon < {WhyCode, ArUco} < AprilTag.

5.4 3D external localisation

The 3D external localisation scenario can be considered as the synthetic testing of
estimating the position and orientation. We would not usually encounter such extreme
situations as were generated by the simulator, but we cannot neglect them in testing
because they can stress well the methods. The motivation to perform this experiment is
simple as it is the necessary examination of the overall marker system. The marker has to
at first detect the shape, then calculate the segment position, and also correctly decode
the identification within. Even though we consider only the position and orientation error,
all mention is reflected in how well the system can serve its general purpose. During the
experiment, we encountered an issue of the enormous simulated state space. The random
draws of orientation angles were set to cover the maximum range in the closer distance;
however, when the markers were further away, the detection was almost impossible. In
order to provide better inside of the orientation estimation, we split the experiment into
two parts which differ by the range of random angles. The small-angle test has boundary
values ±π/6 rad, while in the large-angle test the values are ±π/3 rad.
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To accurately compare quaternions, we have to choose a proper and easily explainable
criterion on them. In [62], the author presents several metrics for orientations in 3D.

Φ: S3 × S3 → R+

Φ(q1,q2) = arccos |q1 · q2|,
(12)

where S3 = {q ∈ R4|‖q‖2 = 1}, · is a dot product and since Φ has to be non-negative, we
restrict the range of values to [0, π/2] radians. Applying this metric on quaternions outputs
the smallest rotation angle required to get from one orientation to another.

Both the scenarios were tested on 3000 samples which were then filtered from the
misidentified or undetectable cases. Despite the consideration of all potential issues previ-
ously mentioned, all methods managed to provide estimation for each small-angle test. In
the large-angle test, we had to drop 348 records due to both reasons. Wrong ID decoding
happened to WhyCode in 3 tests. ArUco did not detect the marker in 66, AprilTag 72,
and WhyCode in 334 cases.

One could assume that WhyCode would produce worse results than the square markers
as it could not detect the marker in more cases. In terms of the position, it was naive
to claim that as based on Table 3. The position precision is in favour of WhyCode, see
Figure 26. We are even able to reject all the interval tests; thus, we can order the mean
error values ascendingly as WhyCode < ArUco < AprilTag. Those relations maintains for
bot large and small angle testing; thus, we can make further deductions. WhyCode’s ability
to reliably estimate the position better than the others is not tied to the observation angles.

In order to compare the angles between orientations, we have to apply the directional
statistics as described before. Once the mean angle is compared as in Table 4, we can
see the original assumption was not entirely wrong. During the small-angle test, Why-
Code achieved the smallest mean error allowing us to claim it is the most precise marker in
terms of orientation within the angle of observation between ±π/6 rad. The square markers
scored almost similarly, but now it is AprilTag which provides a better result than ArUco.
However, when the maximum angle was increased to ±π/3 rad, the results changed dras-
tically as in Figure 27. The orientation errors for the square markers are undecisive, and
they are also reaching very high errors, but their mean values maintain small. Even though
WhyCode has a lower maximum error, it cannot overweight the mean to be smaller as one
would not guess from the histogram. Thus, we can only partially order the fiducials by
precision as WhyCode lost its position to the AprilTag and ArUco.

5.5 2D external localisation

This test is similar to the real-world 2D position test because it is also focused on the
planar localisation ability. The difference from the real-world test is that we evaluate on
noise-free image frames, perfect intrinsic parameters and no distortions. Also, the markers
are not moving but being placed randomly, which affects the computational requirements
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Figure 26: Histograms of 3D external small-angle localisation errors with 5 cm bins for
position and 0.05 rad bins for angles. Vertical axis is in logarithmic scale of decadic base
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Figure 27: Histograms of 3D external large-angle localisation errors with 20 cm bins for
position and 0.1 rad bins for angles. Vertical axis is in logarithmic scale of decadic base

as some of the markers always process the whole image, and the others tend to track
the markers through frames to improve the detection time. The results will give us more
understanding if the fiducials are suitable for the applications of swarms or multi-robot
systems. Since one needs only a camera and printed paper marker, the fiducial markers are
especially useful for easy and portable ground-truth localisation system for evaluation of
experiments.

The simulated experiment was done over 3000 different planar positions and orientations
of seven markers. All the marker systems were able to perform successful detection and
provide pose estimation. However, as the testing framework is asynchronous, and we were
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H0
p-value

small large

µWhyCode = µAprilTag 0.00 0.00
µWhyCode = µArUco 0.00 0.00
µAprilTag = µArUco 0.00 0.03

(a)

H0
p-value

small large

µAprilTag ≤ µWhyCode 0.00 0.00
µArUco ≤ µWhyCode 0.00 0.00
µArUco ≤ µAprilTag 0.00 0.02

(b)

Table 3: 3D external localisation results of mean 3D position errors. Based on the rejected
hypotheses, the means can be in ascending order as WhyCode < ArUco < AprilTag for
both small and large angle of observation.

H0
p-value

small large

µWhyCode = µAprilTag 0.00 0.00
µWhyCode = µArUco 0.00 0.00
µAprilTag = µArUco 0.10 0.70

(a)

H0
p-value

small large

µAprilTag ≤ µWhyCode 0.00 0.99
µArUco ≤ µWhyCode 0.00 0.99
µArUco ≤ µAprilTag 0.05 0.65

(b)

Table 4: 3D external localisation results of mean orientation errors. Based on the rejected
hypotheses, the means can be in ascending order as (small angle) WhyCode < AprilTag
< ArUco and (large angle) {ArUco, AprilTag} < WhyCode.

able to change the pose of only one marker at the time, it happened that a few data samples
were incorrectly recorded with previous reference positions. So, it was necessary to verify
the data manually for such errors.

In this test, we simply omitted the third distance coordinate and only focused on the 2D
position error. Based on the previous results in the experiment on the real-world dataset,
we expect the differences between individual markers will be more visible, but still similar.
Thus, as summarised in Table 5, we can notice one change. This time, the mean error of
AprilTag is higher than the ArUco’s, which may be an effect of the noise-free generate
images and perfectly known camera parameters. WhyCode maintains the previous results
and has the smallest mean error.

In the angle measurements, we did not calculate the angle between orientations as in the
3D external localisation experiment, but we only considered the angle of revolution around
the surface normal. In the light of the 3D external localisation results, we may make an
assumption, that the WhyCode will not score well because the markers can be observed
under a higher angle than ±π/6 rad. We can see that the hypotheses about AprilTag and
ArUco are undecisive; however, they are about WhyCode, see Table 6. Contrary to what
we assumed, the WhyCode’s planar angle estimation turned out to be the most precise
than the others. As the square markers are based on a similar approach, it is not surprising
they achieve results so close to each other.

37



5. EXPERIMENTS

Distance error is another essential criterion determining how well the methods can main-
tain planarity of the measurements. The inspiration comes from an application in a swarm
and multi-robot systems, where the robots have to keep a certain distance from others
or keep a formation. To calculate the error, we took the absolute difference between the
estimated distance and the marker plane, which was 5 m away from the camera. In Table 5,
the null hypotheses of the mean equality were rejected together with the one-sided interval
test. Having such straight-forward results, we can order the fiducials from the smallest
mean distance error as WhyCode < ArUco < AprilTag.
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Figure 28: Histograms of 2D external localisation errors with 5 cm bins for position and
0.05 rad bins for angles. Vertical axis is in logarithmic scale of decadic base

H0
p-value

2D distance

µWhyCode = µAprilTag 0.00 0.00
µWhyCode = µArUco 0.00 0.00
µAprilTag = µArUco 0.00 0.00

(a)

H0
p-value

2D distance

µAprilTag ≤ µWhyCode 0.00 0.00
µArUco ≤ µWhyCode 0.00 0.00

µAprilTag ≤ µArUco 0.00 0.00

(b)

Table 5: 2D external localisation results of mean position errors. Based on the rejected
hypotheses, the means can be in ascending order as WhyCode < ArUco < AprilTag for
both 2D and distance.

5.6 Ego-localisation

In this experiment, we created a simplified testing environment of the randomly posi-
tioned camera and used the standard localisation methods to estimate the camera’s 2D
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H0 p-value

µWhyCode = µAprilTag 0.00
µWhyCode = µArUco 0.00
µAprilTag = µArUco 0.98

(a)

H0 p-value

µAprilTag ≤ µWhyCode 0.00
µArUco ≤ µWhyCode 0.00
µArUco ≤ µAprilTag 0.49

(b)

Table 6: 2D external localisation results of mean angle errors. Based on the rejected hy-
potheses, the means can be in ascending order as WhyCode < {ArUco, AprilTag}.

position and orientation. We performed 3000 random tests where 2767 were successful.
During the experiment, there were such positions of the camera where the methods could
not detect enough markers correctly, or they identified more markers with the same ID
resulting in wrong correspondence pairs and erroneous results. We decided to filter the
data in a way that would be possible in the localisation pipeline, thus tests with the same
multiple IDs or a higher reprojection error than 0.5 m were dropped. Most of the omit-
ted samples were produced by WhyCode, which was the only one producing duplicities or
wrong IDs in 83 cases. There was even a higher number of excluded tests in case of the re-
projection error which for WhyCode was 90 and ArUco 5 tests. The third case of dropping
the measurements was when the methods could not detect the markers, thus not providing
enough information for the localisation. This case happened to all of them, AprilTag and
ArUco behaved the same, and they failed in 55 samples each, while WhyCode scored a bit
better with 47 dropped samples.

In Table 7a, we can see all the null hypotheses testing if the mean errors are equal were
rejected. This observation is also possible to make based on the histograms of the position
errors in Figure 29. Therefore, the one-sided null hypotheses were tested as summarised
in Table 7b and based on the p-value results, we rejected them also. Thus, the mean error
values can be ascendingly sorted as WhyCode < AprilTag < ArUco.

To test the angle precision, we considered the error as the small angle between the
estimated and reference ones. We had to again apply the directional statistics as before.
The angle precision test outcomes are in Table 8, and the results turned out to be similar
to the position testing. Thus, it allows us to order the mean angle errors in ascending order
as WhyCode < AprilTag < ArUco.

Evaluating together the position and angle precision, we can conclude that WhyCode
performs better than the square fiducials and should be considered in ego-localisation ap-
plications. However, as we noted before, it also produced the most unusable measurements,
which included all three mentioned issues. So, even though it is more precise than the oth-
ers, the users have to be aware of such drawbacks, which can be addressed as we did. In
terms of the square markers, one would benefit from AprilTag because it produces less false
positives and has smaller errors than ArUco.
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H0 p-value

µWhyCode = µAprilTag 0.00
µWhyCode = µArUco 0.00
µAprilTag = µArUco 0.00

(a)

H0 p-value

µAprilTag ≤ µWhyCode 0.00
µArUco ≤ µWhyCode 0.00
µArUco ≤ µAprilTag 0.00

(b)

Table 7: Ego-localisation results of mean 2D position errors. Based on the rejected hy-
potheses, the means can be in ascending order as WhyCode < AprilTag < ArUco.

H0 p-value

µWhyCode = µAprilTag 0.00
µWhyCode = µArUco 0.00
µAprilTag = µArUco 0.00

(a)

H0 p-value

µAprilTag ≤ µWhyCode 0.00
µArUco ≤ µWhyCode 0.00
µArUco ≤ µAprilTag 0.00

(b)

Table 8: Ego-localisation results of mean angle errors. Based on the rejected hypotheses,
the means can be in ascending order as WhyCode < AprilTag < ArUco.

5.7 Experimental results summary and discussion

To provide the final decision on the best marker for both external and ego-localisation,
all measures tested above have to be considered 9. Relying only on one criterion can
lead to significant failures as in real-world applications, one is never truly sure about the
undergoing observation conditions. Thus, if a marker localisation system scores well in one
of the experiments, it may lose in another.
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Ascending order of the mean errors

Real-world reliability SwarmCon < WhyCode < ArUco < AprilTag
Real-world 2D position {SwarmCon, WhyCode} < AprilTag < ArUco
Real-world 3D position SwarmCon < {WhyCode, ArUco} < AprilTag
3D external position WhyCode < ArUco < AprilTag
3D external small-angle orientation WhyCode < AprilTag < ArUco
3D external large-angle orientation {ArUco < AprilTag} < WhyCode
2D external position WhyCode < ArUco < AprilTag
2D external orientation WhyCode < {ArUco, AprilTag}
Ego-localisation position WhyCode < AprilTag < ArUco
Ego-localisation orientation WhyCode < AprilTag < ArUco

Table 9: Results summary of all tested criteria. The differences of markers in curly brackets
are statisticaly insignificant on the confidence level α = 5%.

AprilTag outperformed ArUco in position and orientation when tested for 3D external
localisation under the small angle of observation. However, when the marker was at a
higher angle, the orientation estimation became more erroneous, and it only maintained its
performance in the position. This test was also the only one when it managed to provide
better results than WhyCode. AprilTag showed poor results in 2D external localisation
which might imply that in case of such restricted environment where we care only about
the 2D position and planar angle, so only partial information from the provided, it loses
its overall precision. Its position estimation strength was shown in the ego-localisation
experiment where the markers were not in the same distance, and thus, it could localise
the closer ones better than ArUco. The suitable application for it would be situations where
it is expected to observe the fiducials from various positions and higher angles.

ArUco followed mostly the results of AprilTag as they are both based on similar prin-
cipals. There were many situations when the difference between those two was not clear
like in the distance maintaining test or orientation both under the small and large angle.
It was also verified that ArUco produces a lower error when localising markers at higher
distances than AprilTag as in 2D external localisation. ArUco achieved more precise esti-
mations than WhyCode in large-angle 3D external localisation or real-world 3D position. It
seems it does not improve performance so much when the markers are closer to the camera
as in ego-localisation and 3D external localisation experiments it had the worst results.
Nevertheless, one should consider ArUco for extreme orientation estimation and possibly
deployments with lower camera quality similar in the real-world experiment.

WhyCode was able to determine the 2D and 3D position the best from all the tested
markers in the simulated scenarios. In the real-world test, it was beaten by SwarmCon
and scored similarly to ArUco, which might be because the way the ID is encoded into
the marker affects the segmentation. Despite the fact, WhyCode performed significantly
better in the real-world dataset by detecting the markers in frames when the square-based
systems did not. In terms of orientation, it cannot handle markers under higher angles of
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observations compared to the winning precision in small-angle test. The most important
issue one has to treat was the amount of the situations when misidentification happened,
or the marker was not detected at all, which might lead to unreliable localisation when not
addressed correctly.

Based on the evaluated and summarised criteria above for each marker, we managed
to enhance WhyCode so it can compete with the other fiducial localisation systems. Even
though its provided data might be erroneous or not continuous under extreme conditions, in
most cases, it outperformed the state-of-the-art methods and assumed from the graphs, it
even produced smaller maximum errors. Those aspects make WhyCode the best candidate
to take into account for external or ego-localisation.
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6 Conclusion

The purpose of this thesis was to introduce a new vision-based localisation system for the
full 6 degrees of freedom estimation, real-time image processing and stable identification of
multiple markers suitable for the external and ego-localisation. The system is based on the
widely used method WhyCode, which is a black-and-white roundel marker with a binary-
encoded ID within. The current state of the system does not perform well because of the
untreated ambiguity in solutions of position and orientation estimations, which becomes
more and more significant under higher observation angles. The mentioned uncertainty in
solutions also affects the ability to identify individual markers reliably. Also, the implemen-
tation relies on obsolete libraries and do not allow dynamically or automatically updatable
parameters like image resolution.

In order to solve the issues, the method was thoroughly examined to find sources of
errors and potential parts for extensions. The improved method is based on considering
both solution candidates and evaluation of their possible fitness to the pattern. We could
not apply the same ambiguity decision to WhyCode as well as its underlying WhyCon
algorithm. Thus, we had to develop two new criteria to determine which solution of the
estimated pose to chose as we wanted to maintain the compatibility with WhyCon. Those
introduced criteria improved the performance of the marker system in position estimation,
which was even before considerably precise, and especially in orientation, meaning the
marker is now able of the full 6 DOF pose estimation.

The system was not only enhanced as of precision, but also provided the extension to
the ROS framework to broaden the range of possible applications. During the process,
we eliminated the depreciated dependencies and transformed the codebase into a library
with a thin wrapper around it. Having the software prepared, we then created a simulated
environment able to run repetitively and automatically series of tests of three different
scenarios to verify the improved marker is comparable with the state-of-the-art fiducials.
To be able to assess the performance accurately, we also collected a real-world dataset of
robotic swarm carrying markers to verify the ground truth possibilities.

We evaluated the precision of the markers in the scenarios as mentioned earlier, focusing
on the individual aspects of each such as 2D external localisation or 3D orientation. Based
on the experimental results, it was showed that WhyCode could successfully outperform
the currently most popular markers in the majority of the proposed measures achieving
the goal of raising it to at least comparable state.

In future works, it would be beneficial for the ego-motion application to change the
segmentation method from the flood-fill search for each marker to one which can process
the whole image as in [49]. It would allow introducing a new criterion of computational time
as WhyCode is currently tracking the markers, so it is not comparable yet. Another issue is
the misidentification, which could be approached either from not providing any information
if not sure about the ID or, as it usually happens in extreme situations, one could set it
to unknown and still produce partially correct position without orientation, which would
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allow continuous tracking. From the user perspective, it is necessary to prepare the code
base for the upcoming ROS2 or consider it for release as OpenCV contributor module.
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[28] Jǐŕı Ulrich, Peter Lightbody, Aaron Weinstein, Filip Majer, and Tomáš Krajńık. Why-
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Appendix

CD Content

In Table 10, there are listed names of all root directories with content description.

Directory name Description

CosPhi SwarmCon marker system
marker msg unified ROS message for all the markers
rqt-whycon-ros rqt WhyCon/WhyCode interface
simulation description Gazebo simulator worlds and experiments coordinators
squares opencv OpenCV-based ROS ArUco and AprilTag marker systems
video publisher ROS interface for real-world dataset
whycon-ros ROS WhyCon/WhyCode marker system

Table 10: CD Content
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