
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Online Adaptive Control Using Neural
Networks

Jan Švrčina

Supervisor: Ing. Teymur Azayev
Field of study: Cybernetics and Robotics
August 2020

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

474447Personal ID number:Švrčina JanStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and RoboticsStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Online Adaptive Control Using Neural Networks

Bachelor’s thesis title in Czech:

Adaptivní řízení pomocí neuronových sítí

Guidelines:
The environment in which a system controller is deployed often changes due to inaccurate modeling, parameter drift or
external disturbances. One way to counter this is to design a robust controller which works for a variety of system parameters.
Another way is to adapt the controller on the fly. The advantage of the latter approach is the potential to handle larger
system parameter deviations and a superior performance in the long term.
The student is expected to learn an adaptive neural network control policy using reinforcement learning. The neural network
has to be a temporal model which can adapt to system changes by observing the recent episode history. The student can
either use an existing state of the art implementation or provide his/her own. The method will be tested on a simple system
such as an inverted pendulum and demonstrated in simulation. The results should be compared with several classical
controllers such as linear control, MPC or H-inf.

Bibliography / sources:
[1] F.L. Lewis and D. Vrabie, “Reinforcement learning and adaptive dynamic programming for feedback control,” IEEE
Circuits & Systems Magazine, Invited Feature Article, pp. 32-50, Third Quarter 2009.
[2] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov , Proximal Policy Optimization Algorithms,
arxiv

Name and workplace of bachelor’s thesis supervisor:

Ing. Teymur Azayev, Vision for Robotics and Autonomous Systems, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 14.08.2020Date of bachelor’s thesis assignment: 07.01.2020

Assignment valid until: 30.09.2021

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
doc. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Teymur Azayev
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

iv

Acknowledgements

I thank theCTU for being such a good
alma mater, my supervisor Ing. Teymur
Azayev, for the provided consultations,
materials and information and my
mother, for lifelong support.

Děkuji ČVUT, že mi je tak dobrou
alma mater, svému vedoucímu Ing.
Teymurovi Azayevovi, za poskytné
konzultace, materiály a informace, a své
mamince, za celoživotní podporu.

Declaration

I declare that I have written the submitted
work independently and that I have listed
all the used literature.

In Prague, 14. August 2020

Prohlašuji, že jsem předloženou práci
vypracoval samostatně, a že jsem uvedl
veškerou použitou literaturu.

V Praze, 14. srpna 2020

v

Abstract

The online adaptive control of parameter
varying systems is a persisting problem
in the field of control engineering. Param-
eter varying systems are dynamic systems,
whose properties depend on unobservable
variables, unknown to the controller. Clas-
sic control methods often fail on this task,
as they are too inaccurate or too com-
putationally demanding. Deep reinforce-
ment learning [1] offers away of acquir-
ing fast online-adaptive policies, very
closely approximating the optimal pol-
icy. It becomes even more useful, when
the dimensionality of the system, such as
in robotic manipulation, becomes too big
for classic methods to handle. This the-
sis demonstrates the adaptability of neu-
ral network policies [2] in the control of
parameter varying systems, on its simula-
tion of a non-linear system. It also bench-
marks these policies against three fully
non-linear MPC controllers, which should
achieve almost optimal behaviour in this
setting. In addition, an LSTM network es-
timator [3] of the unobservable variables
is created and used in the control policy.

Keywords: adaptive control, neural
networks, reinforcement learning

Supervisor: Ing. Teymur Azayev
ČVUT v Praze
Fakulta elektrotechnická
Katedra kybernetiky
Karlovo náměstí 13
121 35 Praha 2

Abstrakt

Online adaptivní řízení systémů s pro-
měnlivými parametry je přetrvávající pro-
blém v odvětví řídící techniky. Systémy
s proměnlivými parametry jsou dynamické
systémy, jejichž vlastnosti jsou závislé
na nepozorovatelné proměnné, neznámé
pro řídící systém. Klasické řídící metody
často selhávají na tomto problému, pro-
tože jsou buď příliš nepřesné, nebo příliš
výpočetně náročné. Hluboké posilované
učení [1] nabízí způsob jak získat rych-
lou adaptivní kontrolní strategii, která se
blíží strategii optimální. Hluboké posilo-
vané učení je ještě užitečnější, pokud je di-
menzionalita systému pro klasické metody
příliš velká, například u robotické mani-
pulace. Tato práce demonstruje adapti-
vitu neuronových sítí [2] v řízení systémů
s proměnlivými parametry, na vlastní si-
mulaci nelineárního systému. Také porov-
nává tyto strategie s třemi plně nelineár-
ními MPC kontrolery, které by v tomto
úkolu měly dosahovat téměř optimálního
chování. Navíc je také vytvořena LSTM síť
[3] odhadující tyto nepozorovatelné pro-
měnné, která je poté použita v řídící stra-
tegii.

Klíčová slova: adaptivní řízení,
neuronové sítě, posilované učení

Překlad názvu: Adaptivní řízení
pomocí neuronových sítí

vi

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Goals . 2

1.3 Completion plan 2

1.3.1 Steps . 2

1.3.2 Expected results 3

1.4 Thesis structure 3

1.5 Theory . 4

1.5.1 State-space model 4

1.5.2 Markov decision process 4

1.5.3 Parameter identification and
parameter drift 5

1.5.4 Partially Observed Markov
Decision Process 6

2 Literature review 9

2.1 Development of adaptive control . 9

2.2 Online adaptive control and
identification . 9

2.3 Comparison of neural networks
with classic control methods 10

3 Neural networks and
reinforcement learning 11

3.1 Neural networks 11

3.1.1 Feed-forward network 11

3.1.2 Neural network training 13

3.1.3 Recurrent network 14

3.2 Reinforcement learning 16

3.2.1 Basics . 17

3.2.2 Optimal policies and value
functions . 19

3.2.3 Methods for finite state and
action space 19

3.2.4 Deep reinforcement learning . 20

4 Classical control 23

4.1 Basics . 23

4.2 State-space model 23

4.2.1 Discretization 24

4.3 Controller and estimator design . 24

vii

4.3.1 Model predictive control 24

4.3.2 Moving horizon estimation . . 25

5 Environment 27

5.1 Formulation 27

5.2 Mathematical model 28

5.3 Simulation 30

5.4 Reward function 31

6 Experiments 33

6.1 MPC controller 33

6.2 Neural network policies 34

6.2.1 Feed-forward network policy . 34

6.2.2 Recurrent neural network
policy . 36

6.3 Length estimator 36

7 Results 37

7.1 Policy performance 37

7.1.1 Evaluation method 37

7.1.2 Comparison 38

7.2 Estimation 40

7.2.1 Evaluation metrics 40

7.2.2 Performance 40

8 Discussion 43

8.1 Neural network policies 43

8.2 Comparison with MPC 44

8.3 Estimation 44

8.4 Future work 44

9 Conclusion 45

A Bibliography 47

B Notation table 53

viii

Figures

1.1 Dampener dynamics 6

3.1 Activation functions 12

3.2 Computation graph for 3 layer
network . 13

3.3 Computation graph for 3 layer
network with recurrent architecture 15

3.4 LSTM cell diagram 16

5.1 Cartpole model 28

5.2 Screenshot of the environment
simulation . 30

6.1 Feed-forward network policy
diagram . 34

6.2 Estimator example 36

7.1 Neural network policy performance
comparison . 39

7.2 MPC and NN policy performance
comparison . 39

7.3 Mean absolute and relative error of
the estimator with respect to time
step . 41

7.4 Mean absolute and relative error of
the estimator with respect to length 41

7.5 Mean threshold step for absolute
and relative error of the estimator
with respect to length 42

ix

Tables

7.1 Policies comparison 38

7.2 Estimator performance 40

B.1 Notation table - part 1 53

B.2 Notation table - part 2 54

x

Chapter 1

Introduction

1.1 Motivation

Neural networks [4] and reinforcement learning [1] have proven very capable
in solving problematic tasks in control engineering, such as robotic manipu-
lation [5] [6], as well as non-linear control [7] and system identification [8].
Classical control theory approaches often struggle in these tasks, because
methods based on a linearized model are too inaccurate and those based
on non-linear models are too computationally demanding for real-time ap-
plications. Neural networks are accurate even on non-linear systems and are
computationally efficient, even applicable to embedded systems [4].

Deep reinforcement learning [1] shows great promise in robust and adaptive
control of parameter varying systems. Parameter varying systems are dynamic
systems, whose properties depend on unobservable variables, unknown to the
controller. There are 2 existing approaches to control these systems. The first
one is a robust control approach, which aims to create a controller that works
ideally on all, but usually onmost variances of the system, without any infor-
mation about the unobservable variables. The second is an adaptive control
approach, where the unobservable variables are treated as latent variables
and thus their values can be estimated. Directly solving these tasks usually
requires a solution of a large numerical optimization problem, which is compu-
tationally infeasible for online control. Classical approximative methods, like
extended Kalman filter, often fail, because their initial guess is too far off and
the estimator cannot correct itself. This is where deep reinforcement learning
is very useful since it can learn a very good approximation of the optimal

1

1. Introduction
solution, which is computed much faster than the direct solution.

1.2 Goals

The goal of this thesis is to compare a neural network control approach
with amodel predictive control approach for controlling a parameter varying
dynamic system and to create a neural network to estimate this varying pa-
rameter and use this information in the control policy. Neural networks should
prove more adaptable to incomplete information setups and also be much
faster. Neural networks will also be compared among themselves, to see how
additional information improves their performance. All this is demonstrated
in a simple non-linear environment, where theMPC is computationally feasible
and should be very close to the optimal policy.

1.3 Completion plan

This section outlines the plan to complete the thesis specification and goal.
In addition, the expected results are presented.

1.3.1 Steps

Environment. The first step is to create an environment onwhich all methods
and policies could be tested and evaluated. For this thesis, the cart-pole swing-
up task has been chosen, as it is non-linear, its dimensionality is feasible
for the creation of a good mathematical model, and whose dynamics change
significantly depending on the current state and system parameters.

Benchmark controller. The next step is to create a controller based on classic
control engineering methods. The fully non-linear version of model predictive
control (MPC) has been chosen, as it performs well on non-linear systems
and the required mathematical model of the system is available. The MPC
controller optionally takes information about the parameters of themodel.

2

................................... 1.4. Thesis structure

Neural networks. Multiple neural network architectures are created and then
trained using reinforcement learning algorithms. All networks except for one
are feed-forward, they differ in their inputs. The first input option is simply the
current observation and trained only on fixed parameters. The second option
is the current observation with information about the parameters (ground
truth or estimation). The third option is a recent history of observations
and actions. Last option is a recurrent network with input composed of the
current observation, the last action and the reward, inspired by [9].

Estimator. A recurrent neural network is created to estimate the parameters
of the system. This estimator is then used as information for controllers, which
utilize parameter information. Controllers with information from the estimator
and controllers with ground truth information are then compared.

1.3.2 Expected results

It is expected that the performance ofNN would be slightly worse theMPC
controller with ground truth information about the parameters, however,
theNN would outperform theMPC in the limit cases of the parameter variance
with only partial information (estimation or no information at all). It was
also expected that theNN with estimator would outperform the other NNs
(excluding the one with ground truth parameter information), as it was given
additional information in the training phase.

1.4 Thesis structure

This thesis is divided into 9 chapters. In chapter 1 there is amotivation,
goal, completion plan and thesis structure and in section 1.5 basic theory
is described, formalizing the solved problems. Chapter 2 is a literature
review, describing related work. Chapter 3 is the introduction to neural
networks (section 3.1) and the introduction to reinforcement learning and
used deep reinforcement learning methods (section 3.2). Chapter 5 describes
the environment and thus describes the demonstrative problem onwhich all
methods will be tested. Chapter 6 describes the details of method imple-
mentations. Chapter 7 presents the results of the thesis and in chapter 8 are
these results discussed. Finally, chapter 9 outlines the completion of the thesis
specification and subjectively evaluates the thesis.

3

1. Introduction
1.5 Theory

1.5.1 State-space model

State-space model is used to describe dynamic systems, whose dynamics can
be represented by a function of its states and actions (inputs).
Definition 1.1. State-space model in discrete time t is defined by (S,A,O, f, g),
S is a set of states, s ∈ S, A is a set of actions (inputs), a ∈ A, O is a set of
observations (outputs), o ∈ O, f : S × A 7→ S is a dynamics function and
g : S × A 7→ O is an observation function [10]. Equations describing this
model are then

st+1 = f(st, at) (1.1)
ot = g(st, at) (1.2)

Optionally, this model can be extended by the introduction of disturbance
d ∈ D and noise n ∈ N , which are uncontrollable and often random variables.
The model equations are then

st+1 = f(st, at, dt) (1.3)

ot = g(st, at, nt) (1.4)

This representation allows us tomodel a large variety of dynamic system
or at least approximate them, as continuous-time systems can be discretized.

1.5.2 Markov decision process

State-space model, with condition ot = st can be formalized into aMarkov
decision process, allowing to evaluate the performance of the selected actions.
Definition 1.2. [1, p. 46] Discrete-time Markov decision process (MDP) is
defined by (S,A, T,R, h, γ), where S is set of states s ∈ S, A is a set of actions
a ∈ A, T is a transition model T (st, at, st+1) : P[st+1 | st, at], R : S ×A 7→ R
is a reward function where, reward rt = R(st, at−1) is gained by a transition
from st−1 to st, by taking action at−1, h ∈ N∪ {∞} is a planning horizon and
γ ∈ [0, 1] is a discount factor (if h =∞ then γ 6= 1). The transition model T
must have aMarkov property, that the transition probability is only based
on the current state and action, equation 1.5.

P[st+1 | st, at] = P[st+1 | st, at, st−1, at−1, . . . , s1, a0, s0] (1.5)

4

....................................... 1.5. Theory

Remark. For a finite set of S andA the transition model T is directly a function
T : S×A×S 7→ [0, 1], giving the exact probability distribution of the transition,
however, for infinite sets the definition becomes much more complicated,
unnecessarily for the purpose of this thesis.
Remark. The definition of MDPs can differ slightly. The main differences
are in the definition of the reward function R, as towhat arguments are used.
In some definitions, the only the state st is an argument of the reward function
so rt = R(st). In other definitions also the initial state st−1 is an argument,
besides the final state st and action at−1, so rt = R(st, at−1, st−1).

Policy. With given MDP, the goal is to find a policy π which maximizes its
value function V π for every state s ∈ S. Because of Markov property of T ,
the only information the policy needs for selection of action at is the current
state st.

V π(st) = E[
h−1∑
k=0

γkrt+k+1 | at+k = π(st+k)] (1.6)

1.5.3 Parameter identification and parameter drift

In most practical uses, it is impossible to get the exact dynamics function f
in def. 1.1 or transition model T in def. 1.2, so it is necessary to take this
information into account and do not blindly rely on our approximation of
the real model. For example, if we have a drone, for which we can measure
its lift force relatively accurately and we want to design a controller that
functions both for when the drone has a camera attached to it and when it has
not. If we can identify how much weight the drone has to lift, the controller
will be better. This is a problem of parameter identification. If the drone
could drop the camera, then theweight would change during the flight and
it would be a problem of parameter drift. Another example of parameter
drift is the damping coefficient in dampeners. Because of material fatigue,
the dampener becomes more and more plastic over time and its dynamics
(damping coefficient ζ) can change drastically, as shown in figure 1.1. Another
example of a parameter drift problem is the docking of a space shuttle
into a refuelling station, as described in [11]. The problem is that during
the refuelling procedure, the mass of the shuttle, besides other parameters,
changes and the controller might not be able to compensate.

5

1. Introduction

0 2 4 6 8 10 12
time t [s]

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

am
pl

it
ud

e
x

[-
]

Dampener dynamics

critical ζ = 1

sub-critical ζ = 0.5

sub-critical ζ = 0.25

Figure 1.1: Dampener dynamics

1.5.4 Partially Observed Markov Decision Process

To deal with the problem of parameter drift or identification, the partially ob-
served Markov decision process (POMDP) is defined, which is a generalization
of MDP (def. 1.2), where the state s is not fully observable.
Definition 1.3. [12] Discrete-time partially observed Markov decision process
is defined by (S,A,O, T,Ω, R, h, γ), where S is set of states s ∈ S, A is a set
of actions a ∈ A, O is a set of observations o ∈ O, T is a transition model
with probability distribution P[st+1 | st, at], Ω is an observation model with
probability distribution P[ot | st, at−1], R : S ×A 7→ R is a reward function
where, reward rt = R(st, at−1) is gained by a transition from st−1 to st by
taking action at−1, h ∈ N ∪ {∞} is a planning horizon and γ ∈ [0, 1] is
a discount factor (if h = ∞ then γ 6= 1). The transition model T must, as
inMDP, have theMarkov property (def. 1.2).

Policy. Similarly, as inMPD, the goal is to find a policy π which maximizes
its value function V π. However, unlike in the case of MDP, the policy π
in POMDP requires a full history of observations {oi}ti=0 and actions {ai}t−1

i=0
to select an optimal action at.

V π({oi}ti=0, {ai}t−1
i=0) = E[

h−1∑
k=0

γkrt+k+1 | at+k = π({oi}t+ki=0 , {ai}
t+k−1
i=0)] (1.7)

POMDPs are a formalization of the parameter identification and parameter
drift problems, the parameters of themodel are the unobservable hidden states
of thePOMDP. To put this definition into an example of the drone, state s is

6

....................................... 1.5. Theory

the drone’s velocity and weight, the observation o is only its velocity, the action
a is the rotors control inputs and our goal is to put the drone to a standstill.
If the policy only uses the current observation of velocity, the control input
might be too high for a lighter drone or too low for a heavier drone. However,
if we use the history of the observations and actions, the policy can estimate
the hidden state, theweight, and adjust the control accordingly.

7

8

Chapter 2

Literature review

2.1 Development of adaptive control

One of the first articles that are trying to optimally control stochastic sys-
tem using algorithms and not analytical solutions is Dynamic programming
and stochastic control processes by Richard Bellman [13]. The use of a
neural network to control or identify dynamic systems has been proposed
in Identification and control of dynamical systems using neural networks
[14] and Stable adaptive neural control scheme for nonlinear systems [15].
amultiple model approach was proposed inAdaptive control using multiple
models [16]. a robust controller for a multiple-input multiple-output system
based on a neural network approximator was proposed inRobust Adaptive
Control of Feedback Linearizable MIMO Nonlinear Systems With Prescribed
Performance [17].

2.2 Online adaptive control and identification

Similarly to this thesis, online adaptive control and identification of dynamic
systems using neural networks is discussed in Preparing for the Unknown:
Learning a Universal Policy with Online System Identification [18], where
information from an estimator of the hidden parameters is used in the control
policy. Recurrent neural network architecture for this task is proposed

9

2. Literature review
in Adaptive Guidance and Integrated Navigation with Reinforcement Meta-
Learning [19].

2.3 Comparison of neural networks with classic
control methods

One of themain goals of this thesis is the comparison of deep reinforcement
learning with classic controllers. Similar subjects are discussed inAdaptive con-
trol for non-linear systems using artificial neural network and its application
applied on inverted pendulum [20] and Artificial Neural Networks, Adaptive
and Classical Control for FTC of Linear Parameters Varying Systems [21].

10

Chapter 3

Neural networks and reinforcement
learning

3.1 Neural networks

The use of neural networks (artificial neural networks) and deep learning
has been a prominent approach in the field of artificial intelligence and with
the increase in computation power and availability of data, it has found
success in a large variety of problems. Most of the information in this chapter
comes from [2]. The main reason neural networks are used is that they are
powerful function approximators, certain neural network architectures even
have the property of universal function approximator [22], further discussed
in section 3.1.1. Recurrent neural network architectures, described in section
3.1.3, besides their use on sequences, are also Turing complete [23].

3.1.1 Feed-forward network

As described in [2, ch. 6], feed-forward neural network is a function y =
f(x) = f(x|w) with input x ∈ Rn, output y ∈ Rm and learn-able parameters
w ∈ Rk. The phrases deep learning and neural network are used, because
inmost cases, the function f is composed of many functions (layers) f(x) =
fn(fn−1(. . . f2(f1(x)) . . .)).

11

3. Neural networks and reinforcement learning........................
The most common layer is and affine transformation with activation func-

tion fi(x) = fi(x |W,b) = φ(Wx + b), where weight matrix W and bias
vector b are learn-able and φ is an element-wise activation function. The
activation is necessary, because otherwise, multi-layer network would only be
a composition of affine transformations, which is also an affine transforma-
tion. The most commonly used activation functions are hyperbolic tangent
φ(x) = tanh(x), sigmoid function φ(x) = 1/(1 + e−x) and rectified linear unit
(ReLU) φ(x) = max(0, x) [24], graphs in figure 3.1.

−3 −2 −1 0 1 2 3
input x

−1

0

1

2

3

ou
tp

ut
φ

(x
)

Activation functions

tanh

sigmoid

ReLU

Figure 3.1: Activation functions

Proof. Composition of affine transformations f1 : Rn 7→ Rk and f2 : Rk 7→
Rm, is an affine transformation f : Rn 7→ Rm. Since f1(x) = W1x + b1 and
f2(y) = W2y + b2, then composition f2(f1(x)) = W2(W1x + b1) + b2 =
Wx+b, where W = W2W1 and b = W2b1 +b2. For a composition of more
then two transformations, induction can be used to prove this property.

Universal function approximator. Such network can be used as a universal
function approximator [22], which means that the networks parameters w can
be learned so that a sufficiently large network f : X 7→ Y can approximate
any function f∗ : X 7→ Y, where X ⊆ Rn and Y ⊆ Rm.

12

................................... 3.1. Neural networks

3.1.2 Neural network training

The parameters w of the network f(x|w) can be learned using the back-
propagation algorithm, where the gradient, with respect tow, of the loss
function L is calculated and an optimization algorithm is used tominimize
the loss function. The loss function is designed specifically for the task (prob-
lem) which the neural network is solving.

Back-propagation. Back-propagation is away of propagating the gradient
from the loss function to the weights of the network. to visualize the computation
a computation graph is introduced [25]. For example, the computation graph
for 3 layer neural network f(x|w) = f3(f2(f1(x|w1)|w2)|w3) is in figure 3.2.
First, the forward pass is calculated, then the backward pass, propagating

f1 f2 f3 Lx

w1 w2 w2

Figure 3.2: Computation graph for 3 layer network

the gradient, is calculated using the chain rule.

∂L

∂w3
= ∂L

∂f3

∂f3
∂f2

∂f2
∂f1

∂f1
∂w1

(3.1)

∂L

∂w2
= ∂L

∂f3

∂f3
∂f2

∂f2
∂w2

(3.2)

∂L

∂w3
= ∂L

∂f3

∂f3
∂w3

(3.3)

Optimization algorithms. With the ability to calculate the gradient ∇wL =
(∂L∂w)T a gradient descend algorithms are used tominimize the loss. The most
simple one is classic gradient descend wt+1 ← wt − α∇wL(wt), with step
size α > 0. However, to speed up the learning process more sophisticated
algorithms such as SGD or Adam optimizer are used.

Stochastic gradient descent. SGD or stochastic gradient descent [26] uses
the idea of momentum m, starting at m0 = 0, which speeds up the convergence

13

3. Neural networks and reinforcement learning........................
to the minimum. It has 2 hyper-parameters, step size (learning rate) α > 0,
and momentum coefficient µ ∈ [0, 1].

mt ← µmt−1 − α∇wL(wt−1)
wt ← wt−1 + vt

(3.4)

The momentum prevents the "oscillation" of theweights in each update, mean-
ing theweight go back and forth with very small changes.

Adam optimizer. Adam optimizer [27] uses momentum, like SGD, and
adaptability, which means normalizing the update element-wise for each
dimension with is estimation from history. It has 4 hyper-parameters, step
size (learning rate) α > 0, and momentum decay rates β1, β2 ∈ [0, 1), both
starting at 0, and numeric stability constant ε, positive but close to 0. It
calculates first and second-order moment estimates m and v, calculates their
unbiased versions m̂ and v̂, and uses the unbiased first-order momentum
m̂, element-wise normalized by the square root of the unbiased second-order
momentum v̂, as an update. All operations on vectors are element-wise.

gt ← ∇wL(wt−1)
mt ← β1mt−1 + (1− β1)gt
vt ← β1vt−1 + (1− β1)g2

t

m̂t ←mt/(1− βt1)
v̂t ←mt/(1− βt2)
wt ← wt−1 − α m̂t/(

√
v̂t + ε)

(3.5)

The adaptability improves the speed of the convergence, because when the loss
function has a small gradient, it speeds up, and when loss function has a big
gradient it slows down, preventing overshoot.

Loss function. As said, the loss function is designed specifically for each task.
For simple regression f∗(x) ' y, dataset {(xi,yi)}ni=1, themean square error
is used L = 1

n

∑n
i=1 ||f(x)−y||2. For classification, dataset {(xi, yi)}ni=1, where

xi is feature vector and yi is label of the class, the network returns p ∈ [0, 1]m
(m is the number of classes) the probability of towhich class the feature vector
x belongs, the cross entropy loss is used L = − 1

n

∑n
i=1 log(pyi) [24].

3.1.3 Recurrent network

Recurrent network (RNN) is no longer only a function, but it has some
memory (state) which is saved in each pass of the network [2, ch. 10]. This

14

................................... 3.1. Neural networks

is useful when the input and/or output is a sequence with varying length.
It can be described as a state-space model, with the initial state s0. For
example if we extend 3 layer network such that layers f1 and f2 are recurrent,
the computation graph of this network is in figure 3.3.
In training RNNs the issue of exploding or vanishing gradient occurs [28].

f1 f2 f3 y1x1

w1 w2 w3

f1 f2 f3 y2x2

w1 w2 w3

f1 f2 f3 y3x3

w1 w2 w3

s1,0 s2,0

Figure 3.3: Computation graph for 3 layer network with recurrent architecture

Since the calculation of the state is based also on itself and theweights, if
theweights are small the gradient vanishes and the update of theweights is
almost non-existent, but if theweights are too big, the gradient explodes and
the update is too large. To solve this issue a long short-term memory (LSTM)
architecture is introduced.

Long short-term memory. LSTM architecture [3] [29], uses memory cells
and gate units to keep information over long periods of time. LSTM can be
described using equations 3.6, where σ is the sigmoid function, ◦ is element-
wise product, ⊕ is vector concatenation, a ⊕ b = [aT bT]T , xt ∈ Rn is input,
ft ∈ Rm is forget gate vector, it ∈ Rm is input gate vector, ot ∈ Rm output
gate vector, c̄t ∈ Rm is long-term input, ct ∈ Rm is the long-term state
and ht ∈ Rm is the short-term state and also the output vector. Weight
matrices Wf , Wi, Wo, Wc ∈ Rm×n+m and bias vectors bf , bi, bo, bc ∈ Rm
are learnable. Diagram of the LSTM cell in figure 3.4.

15

3. Neural networks and reinforcement learning........................

ft = σ(Wf (xt ⊕ ht−1) + bf)
it = σ(Wi(xt ⊕ ht−1) + bi)
ot = σ(Wo(xt ⊕ ht−1) + bo)
c̄t = tanh(Wc(xt ⊕ ht−1) + bc)
ct = ft ◦ ct−1 + it ◦ c̄t
ht = ot ◦ tanh(ct)

(3.6)

⊕
ht−1

ct−1

xt

σ

ft it

σ

c̄t

tanh

ot

σ

◦

+◦

◦

ht

ct

ht

Figure 3.4: LSTM cell diagram

3.2 Reinforcement learning

Reinforcement learning is a framework of methods used approximately solve
MDPs (def. 1.2 and POMDPs 1.3, as their exact solutions are computationally
infeasible. Most information regarding this section was acquired from [1].

16

................................ 3.2. Reinforcement learning

3.2.1 Basics

The basics of reinforcement learning systems [1, p. 6] are environment,
reward, policy (agent), episode and value function.

Environment. The concept of environment is defining thewhole problem,
which the reinforcement algorithm is trying to solve. It can vary from a chess
or computer game to a stock market or a flying plane. The environment follow
its rules, described by its states in its possible state space s ∈ S, actions
in possible action space a ∈ S and optionally observations in observation
space o ∈ O. For example, for a chess game the state is the current position of
pieces and action is moving a piece, for a stock market, the current state are
current prices, amounts owned by all brokers and the capital available and
the action is buying or selling a certain amount of stocks and for a flying plane
the state is the position, velocity, weight, amount of fuel, etc. and the action
is the control inputs to the motors, ailerons, rudder and elevators.

Reward. Reward r ∈ R is a numerical value which measures how good
the taken action is and the current state is, or possibly how good a transition
from a previous state to the current one is, usually described by a reward func-
tion rt = R(st, at−1) or rt = R(st, at−1, st−1). It is sent by the environment
and its design is part of the problem definition, as different rewards designs
result in different optimal behaviours.

Policy. Policy π (sometimes called agent) defines the behaviour, the actions
a taken in the environment. It may be a function based on current observation,
history of observations and actions, a fixed sequence of actions, a model with
memory or completely random variable. Often, and specifically in the deep
reinforcement learning section of this thesis (3.2.4), stochastic policy π(a | s) =
π(s, a) is used, which is a function returning probability of action a for
discrete A or probability density of action a for continuous A while in state s.
Practically, for continuous action space A, the policy returns µ and possibly
σ (sometimes σ is fixed) and the actions in training are sampled from normal
distribution with mean µ and variance σ2, a ∼ N (µ, σ2) in training and a = µ
in testing.

Episode. Episode is a sequence of states, actions and rewards, it is one run of
the environment, for example, one game, one flight. The environment should

17

3. Neural networks and reinforcement learning........................
have a defined starting state s0 distribution and usually a terminal state or
states sT (T is the terminal time) after which the episode ends.

E = {S0, A0, R1, S1, A1, R2 . . . , ST−1, AT−1, RT ST } (3.7)

All variables St, At, Rt are random and are generated by the environment and
policy (defined by theMDP or POMDP formalization of the environment).
Also expected discounted gain Gt for each time step can be defined, where
discount factor γ ∈ [0, 1] is defined, which is used because immediate re-
ward should be preferred over the future reward. Naturally expected gain
in the terminal state is zero, GT = 0.

Gt =
T−t−1∑
k=0

γkRt+k+1

gt =
T−t−1∑
k=0

γkrt+k+1

(3.8)

Value function. Value function V π(s) [1, p. 58] measures how good a policy
π is long term. Its definition is the same as inMDP (def. 1.2) or POMDP (def.
1.3), V π(st) is the expected discounted gain when taking actions according
to the policy π given current state st.

V π(st) = E[Gt |St = st] (3.9)

Action-value function. Action-value function Qπ(s, a) [1, p. 58] is similar
to a value function V π(s), but the next action a is also taken as an argument.

Qπ(st, at) = E[Gt |St = st, At = at] (3.10)

Advantage function. Advantage functionDπ(s, a) measures how good a next
action a is given s.

Dπ(st, at) = Q(st, at)− V (st) (3.11)

The advantage function makes sense only for stochastic policies, since for
deterministic policies ∀sDπ(s, a) = 0, because action a is directly given by
state s and Q(s, a) = V (s).
Remark. Usually, an advantage function Dπ is denoted by Aπ or simply A,
but this notation is in conflict with the notation of random variable of action
At.

18

................................ 3.2. Reinforcement learning

3.2.2 Optimal policies and value functions

Optimal policy π∗ [1, p. 62] is a policy which maximizes its value function
V π∗ = V ∗ for all states s ∈ S and its action-value function Qπ∗ = Q∗ for all
states s ∈ S and actions a ∈ A. Multiple policies might be optimal, but they
all share an optimal value function V ∗ and optimal action-value function Q∗.

V ∗(s) = max
π

V π(s)

Q∗(s, a) = max
π

Qπ(s, a)
(3.12)

There are certain interesting equations regarding these functions.

Q∗(s, a) = E[Rt+1 + γV ∗(St+1) |St = s,At = a] (3.13)

V ∗(s) = max
a∈A

Q∗(s, a) =

= max
a∈A

E[Gt |St = s,At = a] =

= max
a∈A

E[Rt+1 + γGt+1 |St = s,At = a] =

= max
a∈A

E[Rt+1 + γV ∗(St+1) |St = s,At = a]

(3.14)

Q∗(s, a) = E[Gt |St = s,At = a] =
= E[Rt+1 + γmax

a′∈A
Q∗(St+1, a

′) |St = s,At = a] (3.15)

These equations (3.14 and 3.15) are called Bellman optimality equations [1,
p. 63]. If the probability distributions of the transitions were known, it would
be possible to find the policy π∗ directly using these equations, unfortunately,
inmost cases, the distribution is not known, or the direct computation of
the policy is infeasible.

3.2.3 Methods for finite state and action space

There exists a number of methods for solving problems with finite state space
S and finite action space A. They are based on the fact that policy π, value
function V π and action-value function Qπ can be represented as a look-up
table and iteratively improve the values until they converge toπ∗, V ∗ and Q∗.
Naive methods based on value function estimation, policy and value iteration,
are described in chapter 4 of [1], Monte-Carlo search based methods in chapter
5 of [1] and temporal difference methods, such as Q-learning, in chapter 6 of
[1]. All of these methods, even in their improved versions, fail when the state
space S and/or action space A is not only infinite but just simply too big
to search fully.

19

3. Neural networks and reinforcement learning........................
3.2.4 Deep reinforcement learning

For infinite or even continuous state spaces S and action spaces A approximate
solution methods are necessary [1, p. 195]. They transform the problem
of finding π∗, V ∗ and Q∗ to finding the parameters w of a function which
approximates them, so π∗(s) ≈ π(s |w) = πw(s), V ∗(s) ≈ V (s |w) = Vw(s)
and Q∗(s, a) ≈ Q(s, a |w) = Qw(s, a). This is where NNs come into the
picture, a parametrized function used as an approximator is their key use.
Since the goal of this thesis is to control environments with continuous state
and action spaces, policy gradient methods are used [1, p. 321].
Remark. By convention, in reinforcement learning, the goal is tomaximize
the objective J = J(w), to use the gradient descend methods the loss L = −J .
Also, all gradients are calculated with respect to parameters w so ∇ = ∇w.

REINFORCE. As introduced in [30], theREINFORCE algorithm updates
the using objective

J(w) = Êt[Gt ln(πw(At |St))] (3.16)

where Êt denotes the empirical average over a finite batch of samples [31].
In practice, the policy is updated after each episode, or possibly multiple
episodes N , the objective gradient is calculated using equation 3.17, where
index n denotes towhich episode the terminal time Tn, gain gt,n, state st,n
and action at,n belongs.

∇J(w) = 1
n

N∑
n=1

Tn−1∑
t=0

gt,n∇ ln(πw(at,n|st,n)) (3.17)

Advantage function estimation. Since the values of gain Gt might vary
greatly, and is usually biased, its is better to calculate an advantage estimation
D̂t, with realization d̂t, and use it in the calculation of the policy gradient.
to calculate the estimation, a value function estimator Vw(s) is necessary. This
is called the actor-critic method, where the policy πw is the actor and value
function Vw is the critic, and both are learned simultaneously,. The parameters
w might be partially shared because the information in some of the layers
might be useful for both policy and value function. The value function Vw
updated by using a square error loss LV (eq. 3.18) scaled by β > 0, which
is included in the objective. The updated policy objective Jπ is in equation
3.20 and the policy gradient ∇Jπ calculation is in equation 3.21. The policy
objective Lπ and the value loss LV are then combined to create thewhole
objective J and its gradient calculation ∇J

LV (w) = Êt[(Vw(St)−Gt)2] (3.18)

20

................................ 3.2. Reinforcement learning

∇LV (w) = 2
N

N∑
n=1

Tn−1∑
t=0

d̂t,n(Vw(st)− gt)∇Vw(st) (3.19)

Jπ(w) = Êt[D̂t ln(πw(At |St))] (3.20)

∇Jπ(w) = 1
N

N∑
n=1

Tn−1∑
t=0

d̂t,n∇ ln(πw(at,n|st,n)) (3.21)

J(w) = Jπ(w)− βLV (w) (3.22)

∇J(w) = ∇Jπ(w)− β∇LV (w) (3.23)

To there are many possible ways to calculate the advantage estimate D̂t [32].
The first is the gain with baseline D̂BL

t .

D̂BL
t = Gt − Vw(St) (3.24)

The second is temporal difference.

D̂TD
t = δt = Rt+1 + γVw(St+1)− Vw(St) (3.25)

The third option is generalized advantage estimator (GAE) D̂GAE(λ)
t , which

is a combination of the first two estimations, parametrized by factor λ ∈ [0, 1]
[32].

D̂
GAE(λ)
t =

T−t−1∑
k=0

(λγ)kδt+k (3.26)

Interesting fact for GAE is that D̂GAE(0)
t = D̂TD

t = δt and D̂GAE(1)
t = D̂BL

t

[32].

Policy entropy. To assure that the policy πw will remain exploring, the entropy
term JH is added to the objective, scaled by βH > 0, to promote higher entropy
policies, further discussed in [33]. Entropy for state s of stochastic policy π is
denoted H(π(· | s)).

JH(w) = Êt[H(πw(· |St))] (3.27)

J(w) = Jπ(w)− βLV (w) + βHJH(w) (3.28)

Proximal policy optimization. Another problem in actor-critic methods is
that using one set of episodes for multiple optimization steps might lead to
destructively large policy updates [31]. To be able to reuse the set of episodes
for multiple optimization steps in one update a proximal policy optimiza-
tion (PPO) [31], which is an improvement of trust region policy optimiza-
tion (TRPO) [34], is introduced. Both PPO and TRPO put a limit on how
much a policy πw can change compared to the policy before the update πwold

,
themain advantage of PPO, compared toTRPO, is that the optimization task
is unbounded. At the beginning of each update, the parameters w are saved

21

3. Neural networks and reinforcement learning........................
so wold ← w, and the ratio of change of policy ρt(w) (in the original paper
[31] it is denoted r(θ), where θ are parameters).

ρt(w) = πw(At |St)
πwold

(At |St)
(3.29)

The policy objective of thePPO, without the value function update, is then
in equation

Jπ(w) = Êt[min(D̂tρt(w), D̂t clip(ρt(w), 1− ε, 1 + ε))] (3.30)

The clipping of the policy change ratio assures that update of the policy will
not be too big. For a positive D̂t, it assures that action probability will not
rise too much, however, it can be lowered without limits if an even better
action is found, on the other hand for a negative D̂t, it assures that the action
probability will not drop too much, as it would remove it from exploration
completely, but it can be raised without limits if an even worse action is
found.

22

Chapter 4

Classical control

This chapter about the basics in control theory. The first part includes
the definition of the state-space model and discretization. The second focus
onmodel predictive control design and moving horizon estimation.

4.1 Basics

4.2 State-space model

The state-space model definition in the introduction has a very general set
of states S, actions A and observations O. In this chapter, all of these sets
a vector space, S = Rn, A = Rm and O = Rk, with possible lower or upper
bounds. The introduction definition is only for discrete-time system, however,
control theory is applicable also on continuous-time system. It also differs
in notation, as states are denoted x(t), actions u(t) and outputs (observations)
y(t), where t is time (discrete or continuous). Time derivations are denoted
dx(t)

dt = ẋ(t).
Definition 4.1. Continuous-time state-space model is defined by dynamics
function f : Rn × Rm 7→ Rn and output function g : Rn × Rm 7→ Rk [35].

ẋ(t) = f(x(t),u(t))
y(t) = g(x(t),u(t))

(4.1)

23

4. Classical control
Definition 4.2. Discrete-time state-space model is defined by dynamics func-
tion f : Rn × Rm × Z 7→ Rn and output function g : Rn × Rm 7→ Rk [35].

x(t+ 1) = f(x(t),u(t))
y(t) = g(x(t),u(t))

(4.2)

Remark. Definitions 4.1 and 4.2 assume that the systems are time invariant.
In some definitions of the state-space models, functions f and g are time
dependent, but time can be represented as an uncontrollable and unobservable
state.

4.2.1 Discretization

Contiguous-time system can be discretized by using theEuler method [36],
which is a first-order approximation. It is causal, which means that the next
state is only affected by the previous states, it also introduces aminimal
delay caused by discretization. The principle is dx(t)

dt ≈
∆x(t)

∆t , where ∆t is
the discretization step.

dx(t)
dt = f(x(t),u(t)) ≈ ∆x(t)

∆t = x(t+ 1)− x(t)
∆t = f(x(t),u(t)) (4.3)

Then the equation is rearranged into a discrete-time state-space model

x(t+ 1) = f̂(x(t),u(t), t) = x(t) + ∆f(x(t),u(t)) (4.4)

There are a lot more discretization methods, described in chapter 8 Digital
control in [35], all of them trading off between accuracy (higher-order methods),
computational complexity and introduced delay.

4.3 Controller and estimator design

4.3.1 Model predictive control

Model predictive control (MPC) [37] is a feed-back control method used
to control discrete or discretized systems. It is based on an optimization al-
gorithm which looks h steps ahead to "predict" where the system will be.
In practice it requires a solution of a constrained optimization problem, using
the dynamic function f , assumed time-invariant, given initial state x0, (assum-
ing state is fully observable, y = x), and a loss function L, the optimization

24

............................ 4.3. Controller and estimator design

variables are the sequence of states {xi}hi=1 and actions {ui}h−1
i=0 . Optionally

upper bu,s, bu,a and/or lower bounds bl,s, bl,a are added on states and actions,
xt = x(t), ut = u(t).

min
{xi}h

i=1, {ui}h−1
i=0

L({xi}hi=0, {ui}h−1
i=0)

subject to
xt+1 = f(xt,ut), t ∈ {1, . . . , h}
bu,s ≥ xt ≥ bl,s, t ∈ {1, . . . , h}
bu,a ≥ ut ≥ bl,a, t ∈ {0, . . . , h− 1}

(4.5)

The loss function is usually composed of 3 terms. Lagrange term L1 for all
time steps except last, Meyer term for the final state xh and action difference
penalization defined by positive semi-definite matrix R ∈ Rm×m [38]. The
first action u0 is then used as the output of the controller.

L =
h−1∑
t=0

L1(xt,ut) + L2(xh) +
h−2∑
t=0

uTt R ut (4.6)

4.3.2 Moving horizon estimation

Moving horizon estimation (MHE) is a method for estimating the unobserved
or noisy states of the system [39] when the dynamics function f and observation
function g, dependent only on the state x, are known and time-invariant. Given
the history of observations {yi}hi=0 and actions {ui}h−1

i=0 . The estimations of
the states {x̂i}hi=1 are gained by optimizing the following task, equation 4.7,
P ∈ Rn×n, Q ∈ Rn×n are positive semi-definite matrices.

min
{x̂i}h

i=0

h∑
t=0

∆ŷTt P∆ŷt +
h−1∑
t=0

∆x̂Tt Q∆x̂t

∆ŷt =yt − g(x̂t)
∆x̂t =x̂t+1 − f(x̂t,ut)

(4.7)

The performance of the estimator greatly depends on the choice of P and Q.
If the states x have big disturbances and the observation y is exact, then P
should be relatively bigger, however, if the states x suffer from low disturbance
and the observation y is noisy, then Q should be relatively bigger.

In practice observations {yi}hi=0 and actions {ui}h−1
i=0 are only a temporal

history of the system with fixed length h, as further history is unnecessary
and would only slow down the computation.

25

26

Chapter 5

Environment

For the environment, onwhich all policies (controllers) have been tested and
evaluated, the cart-pole swing-up task has been chosen. It is non-linear,
low dimensional, its dynamics change greatly depending on the current state
and parameters of the system. These proprieties were crucial, as the low
dimensionality allowed us to create a good mathematical model and thus
a good MPC controller and dynamics variability were necessary to demonstrate
the adaptability of the controllers.

5.1 Formulation

The formulation of the task is this, in normal gravitational field g = 9.81 m/s2,
a moving cart on a rail with weight mc = 1 kg has attached a pendulum
with weight mp = 0.2 kg and length l ∈ [0.05 m, 1.95 m]. The observation
of the environment consists of the position x ∈ [−5 m, 5 m] and velocity ẋ
inm/s of the cart, and the angle θ in rad and angular velocity θ̇ in rad/s
of the pendulum, the upward position is θ = 0 rad. The goal is tomove
the system from the initial position x ∈ [−4 m, 4 m], ẋ = 0 m/s, θ = π rad,
θ̇ = 0 rad/s to the final position x ∈ 0 m, ẋ = 0 m/s, θ = 0 rad, θ̇ = 0 rad/s
using input control a ∈ [−1, 1], where force Fa = 50 N a is applied on the cart.
Also dampening force Fd = −b ẋ (dampening coefficient b = 0.1 kg/s) is
applied on the card and input noise an ∼ N(0, 0.022) is added to input control
(N(µ, σ2) is a normal distribution with mean µ and variance σ2).
Remark. Further in this thesis, the units are omitted and assumed to be

27

5. Environment

mc

mp

θ

x

Fa −Fd

Figure 5.1: Cartpole model

the ones in the formulation of the system.

5.2 Mathematical model

To create themathematical model, the approach of Lagrange equations has
been used [40]. Firstly, the equations for potential and kinetic energies were
formulated. Secondly. theEuler-Lagrange equations were derived. Lastly,
the state-space model has been created.
Remark. During thewhole creation of themathematical model, even thought
the parameter l varies, it was assumed to be fixed in time.

Potential and kinetic energies. To calculate these energies, the expression
of the absolute positions xp, yp and velocities ẋp, ẏp of the pendulum were
necessary (y is the height inwhich the pendulum is relative to the rail).[

xp
yp

]
=
[
x
0

]
+
[
−l sin(θ)
l cos(θ)

]
=
[
x− l sin(θ)
l cos(θ)

]
(5.1)

To calculate the velocities, equation 5.1 was simply differentiated by time, x
and θ are time dependant.[

ẋp
ẏp

]
= d

dt

[
xp
yp

]
=
[
ẋ
0

]
+
[
−l cos(θ)θ̇
−l sin(θ)θ̇

]
=
[
ẋ− l cos(θ)θ̇
−l sin(θ)θ̇

]
(5.2)

The potential energy of the system V has only one element, the gravitation
potential of the pendulum Vp, since the cart’s height is fixed by the rail.

V = Vp = gmpyp = gmpl cos(θ). (5.3)

28

................................. 5.2. Mathematical model

The kinetic energy of the system T has two components, the kinetic energy of
the cart Tc, and the kinetic energy of the pendulum Tp.

Tc = 1
2mcẋ

2 (5.4)

Tp = 1
2mp(ẋ2

p + ẏ2
p) = 1

2mp((ẋ− l cos(θ)θ̇)2 + (−l sin(θ)θ̇)2) =

= 1
2mp(ẋ2 − 2lẋ cos(θ)θ̇ + l2θ̇2)

(5.5)

T = Tc + Tp = 1
2(mc +mp)ẋ2 + 1

2mpl
2θ̇2 −mplẋ cos(θ)θ̇ (5.6)

Remark 5.1. Since the pendulum was assumed to be a point of mass, the rotational
kinetic energy was omitted.

Euler-Lagrange equations. Using the potential (eq. 5.3) and kinetic energies
(eq. 5.6), the Lagrangian L is defined.

L = T − V = 1
2(mc +mp)ẋ2 + 1

2mpl
2θ̇2 −mplẋ cos(θ)θ̇ − gmpl cos(θ) (5.7)

The Euler-Lagrange equation for x and θ are then

d
dt
∂L

∂ẋ
− ∂L

∂x
= Fa + Fd (5.8)

d
dt
∂L

∂θ̇
− ∂L

∂θ
= 0 (5.9)

First, the derivations for x were calculated

d
dt
∂L

∂ẋ
= d

dt
(
(mc +mp)ẋ−mpl cos(θ)θ̇

)
=

= (mc +mp)ẍ+mpl sin(θ)θ̇2 −mpl cos(θ)θ̈
(5.10)

∂L

∂x
= 0 (5.11)

then for θ

d
dt
∂L

∂θ̇
= d

dt
(
mpl

2θ̇ −mplẋ cos(θ)
)

=

= mpl
2θ̈ −mplẍ cos(θ) +mplẋ sin(θ)θ̇

(5.12)

∂L

∂θ
= mplẋ sin(θ)θ̇ + gmpl sin(θ) (5.13)

and then combined into theEuler-Lagrange equations

(mc +mp)ẍ+mpl sin(θ)θ̇2 −mpl cos(θ)θ̈ = −bẋ+ Fa (5.14)

mpl
2θ̈ −mplẍ cos(θ)− gmpl sin(θ) = 0 (5.15)

29

5. Environment
State-space model. Equations 5.14 and 5.15 are then combined to create
a continuous-time state-space model.

d
dt


x
ẋ
θ

θ̇

 =


ẋ

−mpl sin(θ)θ̇2+gmp cos(θ) sin(θ)−bẋ+Fa

mc+mp−mp cos(θ)2

θ̇
−mpl cos(θ) sin(θ)θ̇2−bẋ cos(θ)+gmp sin(θ)+gmc sin(θ)+cos(θ)Fa

l(mc+mp−mp cos(θ)2)


(5.16)

5.3 Simulation

For the simulation of this physical system, the library PyBullet was used
[41]. It was encapsulated into aPython [42] class, which has the properties of
anOpen AI Gym [43] environment, which has become a standard in the field
of reinforcement learning. Besides constructor, this class has two main
methods, reset, which resets the environment to the initial condition and
returns the initial observation, and step, which takes action as an argument,
moves the simulation one step forward and returns the new observation, reward
and information whether the episode has ended.

Figure 5.2: Screenshot of the environment simulation

Parameters. The simulation is discretized with the time step ∆t = 20 ms,
which is sufficient to get a good approximation of the real system. The max-
imum number of steps in an episode (one run of the simulation) is 300,
therefore themaximum time of the simulation is 6 s, when running in real-
time. The episode also ends when |xp| < 0.05, |ẋp| < 0.05, |θ| < 0.05 and

30

................................... 5.4. Reward function

|θ̇| < 0.05. This termination condition was chosen to speed up the simulation,
as the system, whose state is within these parameters, is sufficiently close
to the final position described in the formulation.

5.4 Reward function

The reward function for each step was chosen as following

rt =R(s = st, a = at−1) = 1
2(cos(θ)− 1)− 0.5 |xp|5 −

−0.01θ̇2 − 0.01ẋ2
p − 0.1a2 − 10(|x| > 4.95)

(5.17)

This reward function was constructed to promote fast moving of the pendulum
to the upward position (term 1

2(cos(θ)− 1)) and moving the pendulum above
the center of the rail (term−0.5 |xp|

5), while conserving energy used on the action
(term −0.1a2) and punishing undesired behaviours such as moving too fast
(term −0.01θ̇2 − 0.01ẋ2

p) or abusing the end of the rail (term −10(|x| > 4.95)).
This reward function is never positive to promote policies which reach the final
position as fast as possible.

31

32

Chapter 6

Experiments

6.1 MPC controller

Using aPython [42] library Do-MPC [38] anMPC controller has been created.
This library is suitable for this task, as it allows the creation of fully non-linear
system model with changing parameters and custom optimization objective.
It also saves the previous solution in each time step, so the optimizations
procedure has a "hot start", a good initial guess of the optimal values, which
speeds up the process. The MPC had a prediction horizon of h = 30, and its
objective C is defined in equation 6.1.

Cpos(t) = 1
2(1− cos(θ(t))) + 0.5

(
xp(t)

5

)2
+ 0.01θ̇(t)2 + 0.01ẋp(t)2

C = hCpos(h) +
h−1∑
t=1

Cpos(t) + 0.01
h−1∑
t=0

a(t)2 + 0.01
h−2∑
t=0

(a(t)− a(t+ 1))2

(6.1)

This objective is consistent with the environment reward function (section
5.4), as to get optimal behaviour, only replacing |xp| with x2

p, to improve
the optimization stability. The term (a(t)− a(t+ 1))2 was added to smooth
out the input a, preventing rapid changes. Two constraints were added, first
one was |x| < 4.95, to prevent the end of the rail penalization and second
|θ| < 2.5π to stabilize the numerical optimization algorithm, as it iterated
over all θ + 2kπ, k ∈ Z, which sometimes resulted in a fail of convergence.
Remark. Because of a bug in theDo-MPC library [38], the objective could
not depend on the varying parameter l, so the pendulum position xp(t) and

33

6. Experiments
velocity ẋp(t) is calculated under the assumption l = 1. Tomitigate the error,
an additional term 0.01x(h)2 was added to the objective C.

Three MPC controllers were evaluated, first one was MPC with fixed
length, mpc-fixed, which had no information about the length and assumed
l = 1. The second was MPC with length oracle, mpc-oracle, which had real
current length information. The third one was MPC with length estimation,
mpc-estim, with information from the length estimator, section 6.3.

6.2 Neural network policies

6.2.1 Feed-forward network policy

Feed-forward network with 3 different options as inputs has been created and
trained using PPO2 algorithm [31] with the deep reinforcement library Stable
Baselines [44].

Architecture. The network is a fully connected network with ReLU activation
function, diagram is in figure 6.1, the numbers indicate the numbers of neurons
in the layer. All model had the first layer of 64 neurons, except temporal history
model, which had the first layer of 256 neurons.

x

64/256

6416

V ππ

Figure 6.1: Feed-forward network policy diagram

34

................................ 6.2. Neural network policies

Input transformation. The inputs into the neural network should be within
the range [−1, 1], so a bijective transformation of coordinates has been created,
in according to this requirement, for theNN input x ∈ R5, equation 6.2.
The scaling factors for ẋ and θ̇ have been chosen empirically. The tanh
transformation of velocities allowed more precise control around ẋ ≈ 0 and
θ̇ ≈ 0.

x =


x/5

tanh(ẋ/2)
sin(θ)
cos(θ)

tanh(θ̇/4)

 (6.2)

Models. Five models were created using this architecture, they differed
in input and in training parameters of the environment. The first two models,
feed-forward with fixed length, ff-fixed, and feed-forward with random length,
ff-random, had x (equation 6.2) as an input. They differed in the training
procedure, as ff-fixed was trained only on setups where l = 1, all other models
have been trained on thewhole range l ∈ [0.05, 1.95].

The second two models had additional information about the length, so their
input x̂ ∈ R6 is x̂ = [xT l̂]T , where l̂ is the real current length, normalized
to range [−1, 1], for the benchmark model feed-forward with length oracle,
ff-oracle, and l̂ is the output of the length estimator (section 6.3) for themodel
feed-forward with length estimation, ff-estim.

The last model is feed-forward with temporal history, ff-hist, which is
an adaptive model whose input is the recent episode history of states and
actions. It is the only adaptive model which had no information about
the length during training or testing. The input of this model is amatrix
x̄ ∈ R7×128, as the history length is 128, and the inputs are x, the last action
and history tag, which denotes if the state is part of the episode history.

x̄t =

 0 . . . 0 x0 x1 . . . xt−1 xt
0 . . . 0 0 a0 . . . at−2 at−1
0 . . . 0 1 1 . . . 1 1

 , t < 128 (6.3)

x̄t =

 xt−127 xt−126 . . . xt−1 xt
at−128 at−127 . . . at−2 at−1

1 1 . . . 1 1

 , t ≥ 128 (6.4)

35

6. Experiments
6.2.2 Recurrent neural network policy

One recurrent neural network policy, rnn, has been created and trained
using PPO2 [31] in Stable Baselines library [44]. Because of the problem of
exploding gradient, policy and value function share no weights, as big spikes
in value function, destroyed previous prototype policies. Both policy and
value function were composed of one LSTM cell with 64-dimensional output.
The input to this policy x̃ is a state transformed for neural networks (eq.6.2)
xt, the last action at−1 and current reward rt, x̃t = [xT at−1, rt]T , a−1 = 0, as
inspired by [9].

6.3 Length estimator

The length estimator is anLSTM model in the deep learning library PyTorch
[45]. The input x̃ is a state transformed for neural networks (eq.6.2) xt
and the last action at−1, x̃t = [xT at−1]T , a−1 = 0. The architecture is sim-
ple, it is one LSTM cell, with output dimension 64, into a fully connected
layer outputting the length estimate y normalized to [−1, 1]. There are sep-
arate models for theMPC and feed-forward network, although theweights
of theMPC model were initialized by the feed-forward model to speed up
training. An example of estimation values during 4 episodes with different
lengths is in figure 6.2.

0 50 100 150 200 250 300
0.0

0.5

1.0

1.5

2.0

prediction l = 0.4

ground truth l = 0.4

prediction l = 0.8

ground truth l = 0.8

prediction l = 1.2

ground truth l = 1.2

prediction l = 1.6

ground truth l = 1.6

Estimator example

time step t

le
ng

th
l

or
le

ng
th

pr
ed

ic
ti

on
l̂

Figure 6.2: Estimator example

36

Chapter 7

Results

7.1 Policy performance

7.1.1 Evaluation method

Each policy (controller) was evaluated on a fixed set of scenarios. For every
combination of l ∈ Leval = {0.1, 0.2, . . . , 1.8, 1.9} and starting positions x0 ∈
Xeval = {−4,−3.6, . . . , 3.6, 4}, the simulation was run 10 times and mean of
cumulative rewards cr =

∑T
t=1 rt (T is the number of steps taken in the episode)

for each episode has been taken as themetric of performance. In addition,
during the evaluation, if the cumulative reward for the episode reached −500,
the episode was ended and considered failed, but the cumulative reward of
−500 was still used in themetric. The global metric M(π) of the policy
is the expected cumulative reward over the distribution of parameters and
starting states.

El,s0 [
T∑
t=1

Rt|π] ≈M(π) = 1
|Leval|

1
|Xeval|

1
10

∑
l∈Leval

∑
x∈Xeval

10∑
e=1

crπ,l,x0,e (7.1)

37

7. Results
7.1.2 Comparison

All policies were compared on the cart-pole swing-up environment and themetric
M(π) was calculated. Fail rate fr(π) (episode is failed when cumulative
reward ≤ −500) and the average time for time step calculation (step of
the environment and calculation of policy) δ̄t(π) were also calculated.

π M(π) [-] fr(π) [-] δ̄t(π) [ms]
ff-fixed -87.9 0.067 0.31
ff-random -110.3 0.032 0.30
ff-oracle -41.1 0.000 0.30
ff-estim -40.5 0.001 0.56
ff-hist -46.1 0.000 0.43
rnn -293.5 0.319 0.44
mpc-fixed -195.4 0.094 22.04
mpc-oracle -37.4 0.000 15.43
mpc-estim -37.4 0.000 15.62

Table 7.1: Policies comparison

Very important for policy evaluation, and mainly its evaluation of adapt-
ability, is its performance on a certain length. For this a graph of performance
on length M(π | l) is shown. Comparison of neural network policy perfor-
mances based on length l is in figure 7.1. Since ff-random and rnn policy
are far worse than other policies, they were omitted in further performance
comparisons. Performance of MPC compared with NNs, is in figure 7.2.

38

.................................. 7.1. Policy performance

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
−400

−300

−200

−100

0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
−80

−70

−60

−50

−40

−30

Neural network policy comparison

length l

p
er

fo
rm

an
ce
M

(π
|l)

ff-fixed

ff-oracle

ff-estim

ff-hist

ff-random

rnn

Figure 7.1: Neural network policy performance comparison

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
−80

−70

−60

−50

−40

−30

ff-fixed

ff-oracle

ff-estim

ff-hist

mpc-fixed

mpc-oracle

mpc-estim

MPC and NN policy comparison

length l

p
er

fo
rm

an
ce
M

(π
|l)

Figure 7.2: MPC and NN policy performance comparison

39

7. Results
7.2 Estimation

7.2.1 Evaluation metrics

Four metrics were used for the evaluation of the estimator. First one is the
absolute error ε, second is the relative error η and third and fourth are
threshold steps τε and τη, after which all predictions in the episode have
absolute or relative error lower than threshold Eε = 0.05, Eη = 0.1. Ground
truth length is denoted l and predicted length at step t is l̂t. All these metrics
are measured on the same setting as policy performances, 10 times for each
length l ∈ Leval and starting position x0 ∈ Xeval.

εt = |l̂t − l| (7.2)

ηt = |l̂t − l|
l

= εt
l

(7.3)

τε = min
t∈{0,...,T}

{t | εt′ ≤ Eε, t′ ∈ {t+ 1, . . . , T}} (7.4)

τη = min
t∈{0,...,T}

{t | ηt′ ≤ Eη, t′ ∈ {t+ 1, . . . , T}} (7.5)

7.2.2 Performance

The table for mean absolute error ε̄(π), mean relative error η̄(π) and mean
threshold steps τ̄ε(π), τ̄η(π) is table 7.2. To see the estimation improvement

π ε̄(π) η̄(π) τ̄ε(π) τ̄η(π)
ff 0.028 0.049 39.5 30.5

mpc 0.025 0.060 26.8 30.6

Table 7.2: Estimator performance

over time, both absolute and relative errors are averaged for a fixed time step,
this relation is shown in figure 7.4. All 4 metrics are also averaged for a fixed
length, to see whether the estimator works over thewhole range of possible
lengths, these relations are shown in figures 7.4 and 7.5.

40

......................................7.2. Estimation

0 50 100 150 200 250 300
0.0

0.2

0.4

m
ea

n
ab

so
lu

te
er

ro
r
ε̄(
π
|t

)

0 50 100 150 200 250 300
0.00

0.25

0.50

0.75

1.00

m
ea

n
re

la
ti

ve
er

ro
r
η̄
(π
|t

)

Estimator mean abs. and rel. error with respect to time step

time step t

ff

mpc

Figure 7.3: Mean absolute and relative error of the estimator with respect to
time step

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.02

0.04

0.06

m
ea

n
ab

so
lu

te
er

ro
r
ε̄(
π
|l)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.0

0.2

0.4

m
ea

n
re

la
ti

ve
er

ro
r
η̄
(π
|l)

Estimator mean abs. and rel. error with respect to length

length l

ff

mpc

Figure 7.4: Mean absolute and relative error of the estimator with respect to
length

41

7. Results

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

50

100

150

m
ea

n
tr

.
st

ep
ab

s.
er

ro
r
τ̄ ε

(π
|l)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0

100

200

300

m
ea

n
tr

.
st

ep
re

l.
er

ro
r
τ̄ η

(π
|l)

Estimator threshold step with respect to length

length l

ff

mpc

Figure 7.5: Mean threshold step for absolute and relative error of the estimator
with respect to length

42

Chapter 8

Discussion

8.1 Neural network policies

Issues. Unfortunately, the rnn model was not successful, mainly because
RNNs are very sensitive to the choice of hyper-parameters and their training
takes a lot of computation time. The model ff-random also was unsuccessful,
because the unexplained variance caused big gradient spikes in learning and
thus the policy often diverged. Besides training, it was also key to find a good
transformation of the observations, suitable for NNs, and tune the action force
multiplier of the environment tomake it possible for the neural network to act
on the environment and still be precise in the control.

Performance. As shown in figure 7.1, models ff-oracle and ff-estim had
the best performance, because of the additional information about length.
Surprisingly ff-estim was slightly better, however, this could be caused by
additional training, as ff-estim required more training steps to account for
the uncertainty of the estimator. The performance of ff-hist was slightly
worse than that of ff-oracle and ff-estim, consistent with expectations, as
it had to use some time and energy for inferring the hidden state, before
maximizing the reward. Model ff-fixed, as expected, had good performance
near the assumed condition l = 1, but failed when it left the neighbourhood
of the assumption, and since ff-estim and ff-hist performed well even outside
the neighbourhood, it demonstrated the adaptability of neural network policies.

43

8. Discussion
8.2 Comparison with MPC

As shown in figure 7.2, MPC outperformed the neural network policies, how-
ever only slightly, and for the cost of much higher computation time (table
7.1). It can also be seen that ff-fixed outperformed mpc-fixed in the further
parts of the length range from l = 1, as the feature of neural networks is
their adaptability to unseen cases. Interestingly mpc-estim outperformed mpc-
oracle when l > 1.5, possibly because for longer l the dynamics of themodel
are slower and thus the prediction horizon is too small to get the optimal
behaviour and the estimation of shorter l could result in better performance.

8.3 Estimation

As seen in table 7.2 and figures 7.3, 7.4 and 7.5, both models have comparable
results, the feed-forward model performs slightly better on bigger lengths,
MPC on smaller lengths. Roughly after 30 time steps, the estimator has
relative error less than 10 %. The estimation of the length is sufficiently precise,
as the performance of ff-estim and mpc-estim are similar and sometimes even
better than their counterparts with ground truth information ff-oracle and
mpc-oracle (figure 7.1 and 7.2).

8.4 Future work

The most important extension of this work is to test the used methods on other
systems, possibly with more varying parameters, and to use them on real
models and not only simulations. With more computation power, it would
also be possible tomake a better hyper-parameter testing pipeline to speed-up
the training process. Additionally, it would be interesting to use and compare
other deep reinforcement learning algorithms, such as Hindsight Experience
Replay [46].

44

Chapter 9

Conclusion

Environment. An environment simulating a non-linear parameter varying
system has been created. Additionally, unified method of benchmarking
policies was created to compare both classic methods and deep reinforcement
learning policies.

Adaptability of neural networks policies. This thesis completed its specifica-
tion of demonstrating the adaptability of neural networks policies in the control
of parameter varying systems, on its simulation of a non-linear system. Un-
fortunately, the training of recurrent policy was unsuccessful, due to limited
resources.

Comparison with classic control. All neural network policies were com-
pared with 3 fully non-linear MPC controllers, which achieve almost optimal
behaviour in this setting.

Estimation. As an extension of the specification, an LSTM network estimator
of the hidden parameter was trained and its information was used in the control
policy.

Subjective evaluation. As the author of this thesis, the specification moti-
vated me to learn a lot about two key fields. First one was deep reinforcement
learning and the second was dynamic systems control. Deep reinforcement

45

9. Conclusion......................................
learning has a steep learning curve, as the algorithms are very complicated.
Fortunately an working implementation exists in the library Stable-Baselines
[44]. In the field of dynamic systems control, I expanded my knowledge with
information from optimal control theory, especially about the design of very
powerful MPC controllers.

46

Appendix A

Bibliography

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning; an
Introduction, 2nd ed. MIT Press, 2018. [Online]. Available:
http://www.incompleteideas.net/book/the-book.html

[2] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[3] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, pp. 1735–80, 12 1997.

[4] C. Greatwood and A. G. Richards, “Reinforcement learning and model
predictive control for robust embedded quadrotor guidance and control,”
Autonomous Robots, vol. 43, pp. 1681 – 1693, 2019.

[5] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning
for robotic manipulation with asynchronous off-policy updates,” 2016.

[6] O. Kilinc, Y. Hu, and G. Montana, “Reinforcement learning for robotic
manipulation using simulated locomotion demonstrations,” 2019.

[7] M. M. Noel and B. J. Pandian, “Control of a nonlinear liquid level
system using a new artificial neural network based reinforcement
learning approach,” Applied Soft Computing, vol. 23, pp. 444 – 451,
2014. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1568494614003111

[8] O. Ogunmolu, X. Gu, S. Jiang, and N. Gans, “Nonlinear systems identi-
fication using deep dynamic neural networks,” 2016.

47

http://www.incompleteideas.net/book/the-book.html
http://www.deeplearningbook.org
http://www.sciencedirect.com/science/article/pii/S1568494614003111
http://www.sciencedirect.com/science/article/pii/S1568494614003111

A. Bibliography.....................................
[9] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and

P. Abbeel, “Rl2: Fast reinforcement learning via slow reinforcement
learning,” 2016.

[10] Z. Chen and E. N. Brown, “State space model,” Scholarpedia, vol. 8,
no. 3, p. 30868, 2013, revision #189565.

[11] Z. Guang, Z. Heming, and B. Liang, “Attitude dynamics of spacecraft
with time-varying inertia during on-orbit refueling,” Journal of Guidance,
Control, and Dynamics, vol. 41, no. 8, pp. 1744–1754, 2018. [Online].
Available: https://doi.org/10.2514/1.G003474

[12] P. Poupart, Partially Observable Markov Decision Processes. Boston,
MA: Springer US, 2010, pp. 754–760. [Online]. Available: https:
//doi.org/10.1007/978-0-387-30164-8_629

[13] R. Bellman, “Dynamic programming and stochastic control processes,”
Information and Control, vol. 1, no. 3, pp. 228 – 239, 1958.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0019995858800030

[14] K. S. Narendra and K. Parthasarathy, “Identification and control of
dynamical systems using neural networks,” IEEE Transactions on Neural
Networks, vol. 1, no. 1, pp. 4–27, 1990.

[15] M. M. Polycarpou, “Stable adaptive neural control scheme for nonlinear
systems,” IEEE Transactions on Automatic Control, vol. 41, no. 3, pp.
447–451, 1996.

[16] K. S. Narendra and J. Balakrishnan, “Adaptive control using multiple
models,” IEEE Transactions on Automatic Control, vol. 42, no. 2, pp.
171–187, 1997.

[17] C. P. Bechlioulis and G. A. Rovithakis, “Robust adaptive control of feed-
back linearizable mimo nonlinear systems with prescribed performance,”
IEEE Transactions on Automatic Control, vol. 53, no. 9, pp. 2090–2099,
2008.

[18] W. Yu, J. Tan, C. K. Liu, and G. Turk, “Preparing for the unknown:
Learning a universal policy with online system identification,” 2017.

[19] B. Gaudet, R. Linares, and R. Furfaro, “Adaptive guidance and inte-
grated navigation with reinforcement meta-learning,” 04 2019.

[20] A. K. Singh and P. Gaur, “Adaptive control for non-linear systems
using artificial neural network and its application applied on inverted
pendulum,” in India International Conference on Power Electronics
2010 (IICPE2010), 2011, pp. 1–8.

48

https://doi.org/10.2514/1.G003474
https://doi.org/10.1007/978-0-387-30164-8_629
https://doi.org/10.1007/978-0-387-30164-8_629
http://www.sciencedirect.com/science/article/pii/S0019995858800030
http://www.sciencedirect.com/science/article/pii/S0019995858800030

..................................... A. Bibliography

[21] L. E. Garza-Castañón, R. Morales-Menendez, A. Favela-Contreras,
A. Raimondi, A. Vargas-Martínez, and V. Puig, “Artificial neural
networks, adaptive and classical control for ftc of linear parameters
varying systems,” IFAC Proceedings Volumes, vol. 44, no. 1, pp.
13 540 – 13 545, 2011, 18th IFAC World Congress. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S147466701645799X

[22] A. Kratsios, “The universal approximation property: Characterizations,
existence, and a canonical topology for deep-learning,” 2019.

[23] H. Siegelmann and E. Sontag, “On the computational power
of neural nets,” Journal of Computer and System Sciences,
vol. 50, no. 1, pp. 132 – 150, 1995. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0022000085710136

[24] K. Zimmermann, “Learning for vision V - Training and layers,” 2019,
accessed 4.8.2020. [Online]. Available: https://cw.fel.cvut.cz/b191/
_media/courses/b3b33vir/learning_for_vision_v_layers.pdf

[25] ——, “Learning for vision II - Neural networks,” 2019, accessed
4.8.2020. [Online]. Available: https://cw.fel.cvut.cz/b191/_media/
courses/b3b33vir/learning_for_vision_ii_neural_nets.pdf

[26] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance
of initialization and momentum in deep learning,” 30th International
Conference on Machine Learning, ICML 2013, pp. 1139–1147, 01 2013.

[27] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014.

[28] R. Grosse, “Intro to neural networks and machine learning, lecture 15:
Exploding and vanishing gradients,” 2017, accessed 4.8.2020.

[29] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to
forget: Continual prediction with lstm,” Neural Computation,
vol. 12, no. 10, pp. 2451–2471, 2000. [Online]. Available: https:
//doi.org/10.1162/089976600300015015

[30] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function approxima-
tion,” in Advances in neural information processing systems, 2000, pp.
1057–1063.

[31] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” 2017.

[32] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
2015.

49

http://www.sciencedirect.com/science/article/pii/S147466701645799X
http://www.sciencedirect.com/science/article/pii/S0022000085710136
https://cw.fel.cvut.cz/b191/_media/courses/b3b33vir/learning_for_vision_v_layers.pdf
https://cw.fel.cvut.cz/b191/_media/courses/b3b33vir/learning_for_vision_v_layers.pdf
https://cw.fel.cvut.cz/b191/_media/courses/b3b33vir/learning_for_vision_ii_neural_nets.pdf
https://cw.fel.cvut.cz/b191/_media/courses/b3b33vir/learning_for_vision_ii_neural_nets.pdf
https://doi.org/10.1162/089976600300015015
https://doi.org/10.1162/089976600300015015

A. Bibliography.....................................
[33] Z. Ahmed, N. L. Roux, M. Norouzi, and D. Schuurmans, “Understanding

the impact of entropy on policy optimization,” 2018.

[34] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust
region policy optimization,” 2015.

[35] G. F. Franklin, J. D. Powell, A. Emami-Naeini, and H. S. Sanjay, Feedback
control of dynamic systems, seventh, global ed. Boston: Pearson, 2015.

[36] Z. Hurák, “Introduction to numerical simulation,”
2018, accessed on 30. 7. 2020. [Online]. Avail-
able: https://moodle.fel.cvut.cz/pluginfile.php/210391/mod_resource/
content/4/msd_11_intro_to_numerical_simulation_of_ODE.pdf

[37] Grune, J. P. Pannek, Jurgen, and Lars, Nonlinear Model Predictive
Control: Theory and Algorithms, 2nd ed. Cham: Springer, 2016;2017;.

[38] S. Lucia, A. Tatulea-Codrean, C. Schoppmeyer, and S. Engell, “Rapid
development of modular and sustainable nonlinear model predictive
control solutions,” Control Engineering Practice, vol. 60, p. 51–62, 03
2017. [Online]. Available: https://www.do-mpc.com/

[39] C. V. Rao, J. B. Rawlings, and D. Q. Mayne, “Constrained state estima-
tion for nonlinear discrete-time systems: stability and moving horizon
approximations,” IEEE Transactions on Automatic Control, vol. 48,
no. 2, pp. 246–258, 2003.

[40] Z. Hurák, “Lagrange’s equations; intro to an energy-based
analytical modeling methodology,” 2018, accessed on 30. 7. 2020.
[Online]. Available: https://moodle.fel.cvut.cz/pluginfile.php/210341/
mod_resource/content/3/msd_6_intro_to_lagrange_technique.pdf

[41] E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning,” 2016. [Online].
Available: https://pybullet.org/

[42] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts
Valley, CA: CreateSpace, 2009.

[43] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016. [Online]. Available:
https://gym.openai.com/

[44] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore,
P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, and Y. Wu, “Stable baselines,” https://github.
com/hill-a/stable-baselines, 2018.

[45] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,

50

https://moodle.fel.cvut.cz/pluginfile.php/210391/mod_resource/content/4/msd_11_intro_to_numerical_simulation_of_ODE.pdf
https://moodle.fel.cvut.cz/pluginfile.php/210391/mod_resource/content/4/msd_11_intro_to_numerical_simulation_of_ODE.pdf
https://www.do-mpc.com/
https://moodle.fel.cvut.cz/pluginfile.php/210341/mod_resource/content/3/msd_6_intro_to_lagrange_technique.pdf
https://moodle.fel.cvut.cz/pluginfile.php/210341/mod_resource/content/3/msd_6_intro_to_lagrange_technique.pdf
https://pybullet.org/
https://gym.openai.com/
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines

..................................... A. Bibliography

L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc.,
2019, pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[46] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder,
B. McGrew, J. Tobin, P. Abbeel, and W. Zaremba, “Hindsight experience
replay,” 2017.

51

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

52

Appendix B

Notation table

symbol explanation
a ∈ Rn column vector of length n

A ∈ Rn×m matrix with n rows and m columns n
S state space
A action (input) space
O observation (output) space

st, s(t), xt, x(t) state in time t
at, a(t), ut, u(t) action (input) in time t
ot, o(t), yt, y(t) observation (output) in time t

rt reward in time t
gt discounted gain in time t

P[A|B] probability of A with prior B
E[A|B] expected value of A with prior B
Ê[A|B] empirical average of A with prior B
π policy

R(s, a) reward function
V π(s) value function for policy π
Qπ(s, a) action-value function for policy π
Dπ(s, a) advantage function for policy π

St random variable of state in time t
At random variable of action in time t
Ot random variable of observation in time t
Rt random variable of reward in time t
Gt random variable of discounted gain in time t
D̂t estimation of advantage in time t

Table B.1: Notation table - part 1

53

B. Notation table

w vector of parameters
f(x |w), fw(x) function f parametrized by w

∂f
∂w row vector (matrix) of partial derivatives of f wrt. w
∇wf column vector of partial derivatives of f wrt. w
L loss (minimized in optimization)
J objective (maximized in optimization)
ẋ time derivation of x

M(π) performance metric of policy π
M(π | l) performance metric of policy π on length l

ε absolute error
η relative error
τ threshold step

Table B.2: Notation table - part 2

54

	Introduction
	Motivation
	Goals
	Completion plan
	Steps
	Expected results

	Thesis structure
	Theory
	State-space model
	Markov decision process
	Parameter identification and parameter drift
	Partially Observed Markov Decision Process

	Literature review
	Development of adaptive control
	Online adaptive control and identification
	Comparison of neural networks with classic control methods

	Neural networks and reinforcement learning
	Neural networks
	Feed-forward network
	Neural network training
	Recurrent network

	Reinforcement learning
	Basics
	Optimal policies and value functions
	Methods for finite state and action space
	Deep reinforcement learning

	Classical control
	Basics
	State-space model
	Discretization

	Controller and estimator design
	Model predictive control
	Moving horizon estimation

	Environment
	Formulation
	Mathematical model
	Simulation
	Reward function

	Experiments
	MPC controller
	Neural network policies
	Feed-forward network policy
	Recurrent neural network policy

	Length estimator

	Results
	Policy performance
	Evaluation method
	Comparison

	Estimation
	Evaluation metrics
	Performance

	Discussion
	Neural network policies
	Comparison with MPC
	Estimation
	Future work

	Conclusion
	Bibliography
	Notation table

