Bc. Yosufi Mohammad Fayez

Spread footing verification

Input data

Project

Task : Preliminary design of shallow foundation

Part : Centric spread footing

Customer: CTU

Author : Bc. Yosufi Mohammad Fayez

Date : 20.12.2019

Settings

Standard - safety factors

Materials and standards

Concrete structures: EN 1992-1-1 (EC2)

Coefficients EN 1992-1-1: standard

Settlement

Analysis method: Analysis using oedometric modulus

Restriction of influence zone : by percentage of Sigma,Or

Coeff. of restriction of influence zone: 10,0 [%]

Spread Footing

Analysis for drained conditions: Standard approach

Analysis of uplift: Standard Allowable eccentricity: 0,333

Verification methodology: Safety factors (ASD)

Safety factors							
Permanent design situation							
Safety factor for vertical bearing capacity : $SF_v = 1,50$ [–]							

Safety factors						
Permanent design situation						
Safety factor for sliding resistance : SF _h = 1,50 [–]						

Basic soil parameters

No.	Name	Pattern	Фef [°]	c _{ef} [kPa]	γ [kN/m³]	γsu [kN/m³]	δ [°]
1	Poorly graded sand (SP), medium dense	0000	33,50	0,00	18,50	8,50	
2	Well graded gravel (GW), medium dense		38,50	0,00	21,00	11,00	

All soils are considered as cohesionless for at rest pressure analysis.

Soil parameters

Poorly graded sand (SP), medium dense

Well graded gravel (GW), medium dense

Unit weight : $\gamma = 21,00 \text{ kN/m}^3$ Angle of internal friction : $\phi_{ef} = 38,50 \text{ }^{\circ}$ Cohesion of soil : $\phi_{ef} = 0,00 \text{ kPa}$ Oedometric modulus : $\phi_{ef} = 0,00 \text{ kPa}$ Saturated unit weight : $\phi_{ef} = 0,00 \text{ kPa}$ $\phi_{ef} = 0,00 \text{$

Foundation

Foundation type: centric spread footing

Unit weight of soil above foundation = 20,00 kN/m³

Geometry of structure

Foundation type: centric spread footing

Spread footing length x = 2,00 mSpread footing width y = 2,00 m

Column width in the direction of x $c_x = 0.30$ m Column width in the direction of y $c_y = 0.30$ m Spread footing volume = 4.00 m³

Material of structure

Unit weight γ = 23,00 kN/m³

Analysis of concrete structures carried out according to the standard EN 1992-1-1 (EC2).

Concrete: C 30/37

Cylinder compressive strength $f_{ck} = 30,00 \text{ MPa}$ Tensile strength $f_{ctm} = 2,90 \text{ MPa}$ Elasticity modulus $E_{cm} = 33000,00 \text{ MPa}$

Longitudinal steel: B500

Yield strength $f_{vk} = 500,00 \text{ MPa}$

Transverse steel: B500

Yield strength $f_{vk} = 500,00 \text{ MPa}$

Geological profile and assigned soils

Position information

Terrain elevation = 4,40 m

Geological profile and assigned soils

	000	cological profile and assigned sons						
	No.	Thickness of layer t [m]	Depth z [m]	Altitude [m]	Assigned soil	Pattern		
1 4,40 0,00		0,00 4,40	4,40 0,00	Poorly graded sand (SP), medium dense				
	2	-	4,40 ∞	0,00	Well graded gravel (GW), medium dense			

Load

No. Load		oad	Name	Туре	N	M _x	M _y	H _X	H _y
	new	change	133333	. 7100	[kN]	[kNm]	[kNm]	[kN]	[kN]
1	Yes		Load No. 1	Design	2004,74	10,00	10,00	5,00	3,00
2	Yes		Load No. 1 - service	Service	1431,96	7,14	7,14	3,57	2,14

Ground water table

The ground water table is at a depth of 12,00 m from the original terrain.

!

Global settings

Type of analysis: analysis for drained conditions

Settings of the stage of construction

Design situation : permanent

Verification No. 1

Load case verification

Name	e _x [m]	e _y [m]	σ [kPa]	R _d [kPa]	Utilization [%]	Is satisfactory
Load No. 1	0,00	-0,01	528,72	890,81	89,03	Yes

Analysis carried out with automatic selection of the most unfavourable load cases.

Computed weight of spread footing G = 92,00 kNComputed weight of overburden Z = 0,00 kN

Vertical bearing capacity check

Shape of contact stress: rectangle

Most unfavorable load case No. 1. (Load No. 1)

Parameters of slip surface below foundation:

Depth of slip surface $z_{sp} = 3,80 \text{ m}$ Length of slip surface $l_{sp} = 12,52 \text{ m}$

Design bearing capacity of found.soil $R_d = 890.81 \text{ kPa}$ Extreme contact stress $\sigma = 528.72 \text{ kPa}$

Factor of safety = 1,68 > 1,50

Bearing capacity in the vertical direction is SATISFACTORY

Verification of load eccentricity

Max. eccentricity in direction of base length $e_x = 0.001 < 0.333$ Max. eccentricity in direction of base width $e_y = 0.003 < 0.333$ Max. overall eccentricity $e_t = 0.003 < 0.333$

Eccentricity of load is SATISFACTORY

Horizontal bearing capacity check

Most unfavorable load case No. 1. (Load No. 1) Earth resistance: at rest Design magnitude of earth resistance $S_{pd} = 0.00$ kN Horizontal bearing capacity $R_{dh} = 1667.82$ kN Extreme horizontal force H = 5.83 kN

Factor of safety = 286,03 > 1,50

Bearing capacity in the horizontal direction is SATISFACTORY

Bearing capacity of foundation is SATISFACTORY

Verification No. 1

Settlement and rotation of foundation - input data

Analysis carried out with automatic selection of the most unfavourable load cases. Analysis carried out with accounting for coefficient κ_1 (influence of foundation depth). Stress at the footing bottom considered from the finished grade.

Computed weight of spread footing G = 92,00 kN Computed weight of overburden Z = 0.00 kN

Settlement of mid point of edge x - 1 = 1,3 mm

Settlement of mid point of edge x - 2 = 1,3 mm

Settlement of mid point of edge y - 1 = 1,3 mm Settlement of mid point of edge y - 2 = 1,3 mm

Settlement of foundation center point = 2,1 mm

Settlement of characteristic point = 1,5 mm

(1-max.compressed edge; 2-min.compressed edge)

Settlement and rotation of foundation - results

Foundation stiffness:

Computed weighted average modulus of deformation $E_{def} = 319,95 \text{ MPa}$ Foundation in the longitudinal direction is rigid (k=12,89) Foundation in the direction of width is rigid (k=12,89)

Verification of load eccentricity

Max. eccentricity in direction of base length $e_x = 0.001 < 0.333$ Max. eccentricity in direction of base width $e_v = 0.003 < 0.333$ $e_t = 0.003 < 0.333$ Max. overall eccentricity

Eccentricity of load is SATISFACTORY

Overall settlement and rotation of foundation:

Foundation settlement = 1,5 mm

Depth of influence zone = 5,69 m

Rotation in direction of x = 0,004 (tan*1000); (2,3E-04 $^{\circ}$) Rotation in direction of y = 0,010 (tan*1000); (5,9E-04 $^{\circ}$)

Dimensioning No. 1

Analysis carried out with automatic selection of the most unfavourable load cases.

Verification of longitudinal reinforcement of foundation in the direction of x

6 prof. 25,0 mm, cover 50,0 mm Cross-section width = 2,00 m Cross-section depth = 1,00 m

Reinforcement ratio ρ = 0,16 % > 0,15 % = ρ_{min} Position of neutral axis x = 0,04 m < 0,58 m = x_{max} Ultimate moment M_{Rd} = 1180,01 kNm > 363,96 kNm = M_{Ed}

Cross-section is SATISFACTORY.

Verification of longitudinal reinforcement of foundation in the direction of y

6 prof. 25,0 mm, cover 50,0 mm Cross-section width = 2,00 m Cross-section depth = 1,00 m

Reinforcement ratio ρ = 0,16 % > 0,15 % = ρ_{min} Position of neutral axis x = 0,04 m < 0,58 m = x_{max} Ultimate moment M_{Rd} = 1180,01 kNm > 366,93 kNm = M_{Ed}

Cross-section is SATISFACTORY.

Spread footing for punching shear failure check

Shear reinforcement of critical cross section

2 prof. 10,0 mm Angle of slope = 45,00°

Column normal force = 2004,74 kN

Maximum resistance at the column perimeter

Force transferred into found. soil = 45,11 kN Force transferred by shear strength of foundation Considered column perimeter $u_0 = 1,20 \text{ m}$ Shear resistance at the column perimeter $v_{Ed,max} = 1,81 \text{ MPa}$ Resistance at the column perimeter $v_{Rd,max} = 4,22 \text{ MPa}$

Critical section with shear reinforcement

Force transferred into found. soil = 672,83 kN Force transferred by shear strength of foundation = 1331,91 kN Distance of section from the column = 0,47 m Section perimeter u = 0,47 m Shear stress at section v_{Ed} = 0,35 MPa Reinforced section shear resistance v_{Rd,cs} = 1,36 MPa

 $v_{Ed} < v_{Rd,cs} \Rightarrow$ SECTION IS SATISFACTORY

Spread footing for punching shear is SATISFACTORY

