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Abstrakt

Tato práce zkoumá problém rozptylu světla světlem ve standardńım modelu
částicové fyziky a v jeho rozš́ı̌reńı, které předpověděli R. Peccei a H. Quinn.
Pomoćı Monte Carlo simulaćı porovnává fotony zp̊usobenou produkci pár̊u
lepton̊u s produkćı hypotetické částice podobné axionu, která by rozptyl světla
světlem mohla zp̊usobovat. Dále využ́ıvá neparametrický Bayesovský př́ıstup,
konkrétně Gaussovský proces, k modelováńı pozad́ı založeného na hmotnosti
roztř́ı̌stěných foton̊u z ultraperiferálńıch koliźı pozorované při experimentu
ALTAS. Model byl následně použit na zakomponováńı simulovaného signálu
reprezentuj́ıćı produkci částice podobné axionu, pro kterou byla dále určena
pravděpodobnost jej́ı detekce detektorem AFP.

Kĺıčová slova částicová fyzika, simulace, analýza dat, vizualizace dat, re-
gresńı analýza, Gaussovský proces
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Abstract

This thesis deals with the study of light-by-light scattering in the Standard
Model of particle physics and in its extension predicted by Peccei–Quinn the-
ory. It compares photon induced lepton pair productions with the hypothetical
axion-like particle production, which could mediate light-by-light scattering,
based on Monte Carlo simulations. Furthermore, it applies non-parametric
Bayesian approach, the Gaussian Process, to model smooth background based
on the invariant mass of scattered diphotons observed in ultraperipheral col-
lisions with the ATLAS experiment. The estimated background is then used
with simulated signal injection representing production of axion-like particle
to determine the detection probability.

Keywords particle physics, simulation, data analysis, data visualisation,
regression analysis, Gaussian Process
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Chapter 1
Introduction

One of the most significant technological accomplishments in recent history
is the construction of Large Hadron Collider at CERN, that is capable of
accelerating particles almost up to the speed of light, and subsequently cause
them to collide, releasing immense amounts of energy enabling scientists to
observe interactions that can help us understand the deep structure of space
and time.

When two cars on the road collide, their kinetic energy needs to go some-
where, which leads to chassis deformation, shattering of windows and worrying
sounds of metals bending. The same applies on particle level, but instead of
shattering windows, the protons that are being collided scatter into quarks
and gluons from which they are made of. This high energy process sometimes
leads to creation of a new particle that only exists for a very brief period of
time before it decays into other particles. This poses a problem of how to
observe such particle. One of the options, which was for example applied in
search for the Higgs boson, is to detect the particles into which the new par-
ticle decays. For this purpose, the ATLAS detector was installed at CERN
that gathers properties of particles produced in proton collisions. Because the
protons during the experiment collide approximately 600 million times per
second, the amount of obtained data is very extensive. This information is
then thoroughly analysed, and events, that meet a certain requirement, could
indicate an observation of new physics. One of the approaches is to detect
high energy photon pairs, which are emitted in every interaction at the LHC.
Even though a photon itself is massless, the emitted pair can obtain invariant
mass from the newly formed particle that was created in the proton collision
and later decayed into the said photons, meaning that the invariant mass of
the diphoton is the same as the mass of the produced particle. The invariant
mass distribution of the photons often follows a smooth falling line. How-
ever, if conditions necessary for creating a new particle are met, a deviation
from the smooth line would appear signifying increased number of events at
particular mass caused by a particle production.
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1. Introduction

In order to be able to recognise these “bumps”, this smooth falling line
needs to be modelled as precisely as possible. If it is not modelled correctly it
can lead to false assumption of new physics discovery or lessen the importance
of a deviation.

1.1 Purpose and structure of the thesis

In 2017 the ATLAS Forward Proton detector took large scale data from
proton-proton collisions, including attributes of scattered diphotons. This
thesis deals with the problem of estimating diphoton invariant mass distri-
bution by using regression analysis methods, more precisely the widely used
non-linear curve fitting algorithms and the Gaussian Process, powerful ma-
chine learning tool that is becoming a frequent method in particle physics.
The purpose of this modelling is to then inject a signal signifying a hypothet-
ical axion-like particle production that could be mediated by emitted photons
in proton collisions and determine its observational probability and detection
sensitivity. The results can then be applied in conducting an experiment that
could lead to an axion discovery and therefore answer open questions in par-
ticle physics.

Chapter 2 introduces concepts and terms of particle physics that are re-
quired for understanding the work of this thesis. It is followed by Chapter
3 that describes the applied regression methods, the Levenberg–Marquardt
algorithm and the Gaussian Process. Chapter 4 explains conducted simulator
runs of event generator, that was used for determining the di�erences between
photon induced production of axions and lepton pairs, which is closely related
process that has already been observed. The results were then provided for
higher precision external simulations and its outcomes were applied in regres-
sion analysis of the diphoton invariant mass distribution measured by the 2017
ATLAS experiment in Chapter 5.
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Chapter 2
Preliminaries

In this chapter, the basic physics principles required for understanding the
topic of this thesis are laid out. It starts with a brief introduction of the
particles from the Standard Model of particle physics that are present in the
following analysis and a set of processes in which they occur. Furthermore,
it introduces the hypothetical axion-like particle and methods that could lead
to its discovery.

2.1 Particles

A system defining the fundamental forces, particles and their interactions is
encapsulated into the Standard Model of particle physics, which describes the
building blocks of our universe. For the observation purposes of this thesis, it
is necessary to introduce five particles [1] from the model.

Proton Particle with one unit of electric charge and with mass of ap-
proximately one dalton.

Electron Particle with one unit of negative electric charge and much lower
mass than proton.

Heavy-ion Particle heavier than proton with one or more units of electric
charge.

Photon Quantum of electromagnetic radiation, and elementary particle
with no electric charge and zero mass.

Muon Particle similar to the electron with one unit of negative electric
charge, but with greater mass.

3



2. Preliminaries

2.2 Ultraperipheral collisions

One of the specific kinds of interactions that particle physics explores, is an in-
teraction where particles do not collide head-on, but get so close to each other
(into the so-called interaction range) they interact through their electromag-
netic fields made out of a cloud of virtual photons [2]. When these photons
have high energy, they can decay into single particle or particle-antiparticle
pair during the interaction. However, the newly produced particles can then
quickly annihilate and produce two new photons, which is a very rare pro-
cess called light-by-light scattering. This process is forbidden according to the
classical theory of electrodynamics, and its evidence was di�cult to find for
decades, yet it was attained with the ATLAS detector at the Large Hydron
Collider (LHC) in heavy-ion collisions. The ATLAS Collaboration reported [3]
in Nature Physics in 2017 thirteen event candidates found in data recorded in
2015. At the Rencontres de Moriond conference in 2019, the ATLAS Collabo-
ration reported [4] observation of 3.6 times more events in the 2018 heavy-ion
run of the LHC compared to the previous run1.

The analysis in this thesis explores the light-by-light scattering (also de-
noted as ““ æ ““ where ““ is the photon pair) by comparing it to closely
related particle-antiparticle pair productions, in which they do not decay into
photons. More specifically, an electron-positron pair production ““ æ e+e≠

and a muon-antimuon pair production ““ æ µ+µ≠. Moreover, it focuses on
predicting a hypothetical axion-like particle production, that is introduced in
the following Section 2.3, which might be formed in this photon interaction
and cause light-by-light as well.

The interest of recently proposed search methods is to observe the photon
interactions in proton ultraperipheral collisions at CERN, where the photon
pair is detected in the central detector and the intact protons, that are bent
out of the beam, are tagged with the forward proton detectors at the LHC [5],
which are placed symmetrically with the distance of 205 and 217 meters with
respect to the interaction point. The tagging is based on observing protons
that lost a fraction of their original momentum in the photon exchange, as the
detectors are able to capture protons with relative energy loss between 2% and
10%. The energy loss of the protons is defined as ›AFP = �E/E, where �E is
the amount of energy lost in the interaction, and E is the initial energy of the
beam proton. Two types of tagging are considered, single tag and double tag.
The single tag means that at least one of the two beam protons was detected
with relative energy loss in the specific range and similarly, the double tag
denotes detecting both beam protons.

Before experiments can be conducted, the probability of a process needs to
be calculated to outline the observation prediction. This probability is defined
as cross section ‡̂ and is dependent on various conditions, such as the energy

1Evidence for light-by-light was also reported before in experiments at lower energy.
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2.2. Ultraperipheral collisions

of the colliding particles or the angle under which they interact. The cross
section multiplied by the luminosity L, the quantity that measures the ability
of a particle accelerator to produce the required number of interactions, and
the detector e�ciency Á, gives a numerical estimate of an interaction rate N

as

N = ‡̂ · L · Á. (2.1)

Apart from observing the event itself, various particle properties need to
be considered. First of all, the particle energy E, calculated from its three-
dimensional momentum (px, py, pz) and mass m, where speed of light is set to
c = 1, as

p =
Ò

p2
x + p2

y + p2
z, (2.2)

E =
Ò

m2 + p2. (2.3)

When calculating the invariant mass mp of the pair produced in photon
interaction, whether it is the photon-photon pair, the electron-positron pair
or the muon-antimuon pair, the energies of individual particles E1, E2 and
their respective momentum p1, p2 are required as

mp =
Ò

(E1 + E2)2 + (p1 + p2)2. (2.4)

Even though photon is a massless particle, the invariant mass of the dipho-
ton pair can reach high values depending on energy and momentum of its
components.

The angle property of a particle relative to the beam axis denoted by ◊ is
defined with particle energy E and z component of its three-momentum as

◊ = arccos
3

pz

E

4
. (2.5)

In particle physics, pseudorapidity denoted by ÷ is used instead of ◊

÷ = ≠ ln
3

tan
3

◊

2

44
. (2.6)

The rapidity y is calculated with particle energy E and z component of
its three-momentum as

y = 1
2 ln

3
E û pz

E ± pz

4
. (2.7)
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2. Preliminaries

Same as for the beam protons, the relative energy loss › can be calculated
for the produced particles. The formula is based on the collision energy

Ô
s,

particles mass m and pseudorapidity ÷. Specifically for produced photon-
photon pair the formula can be altered by replacing the pseudorapidity ÷ with
the rapidity y, because photon is a massless particle

› = m
Ô

s
· e±÷. (2.8)

Moving particles can be traced with a Cartesian coordinate system for a three-
dimensional space where X-axis points upwards while Z-axis follows the beam
trajectory. The point of origin of the reference system is the interaction point.
The side with positive values Z is defined as A-side, whereas the side with
negative values of Z is defined as C-side. Therefore two values of relative
energy loss › for the pair are calculated, one for the particle on the A-side and
one for the particle on the C-side.

When the particles of a produced pair are scattered, their momentum
perpendicular to the beam line can be measured. This transverse momentum
pT is defined by x and y components of their three-momentum as

pT =
Ò

p2
x + p2

y. (2.9)

Furthermore, the measure of degree to which the paths of the scattered
particles deviate from being coplanar, i.e. contained in single geometric plane,
is defined as acoplanarity. It is denoted with x and y components of the three-
momentum of the scattered particles together with their momentum p as

A = 1 ≠
|„|

fi
, (2.10)

where

„ = arccos
3

px1px2 + py1py2

p1p2

4
. (2.11)

The physics analysis requirement on acoplanarity for the ““ æ ““ process is
to be less than 0.01.

2.3 Axion-like particle

An axion is a hypothetical particle, which has not been observed, yet it is a
good candidate for explaining dark matter and could resolve current problems
in quantum chromodynamics. The proposal of an axion particle is based on
the idea by Peccei and Quinn [6] to explain conservation laws in physics. It

6



2.3. Axion-like particle

is estimated that the particle is produced in ultraperipheral collisions dur-
ing a photon-photon interaction the same way as the electron-positron pair
e+e≠ and the muon-antimuon pair µ+µ≠, and then decays into a new pair
of photons inducing the light-by-light scattering. The search for the particle
can be conducted at the LHC, where it is possible to observe collisions with
heavy-ions and protons. The heavy-ions can constrain ALP mass only to the
range from 10 GeV to about 100 GeV [7]. To probe higher masses up to 2 TeV,
which can increase the detection probability, the proton-proton collisions need
to be explored. This was claimed as result of detailed study of possibilities re-
garding the axion-like particle search [8] presented by Baldenegroa, Fichetb et
al., which determined that the search for an axion produced via light-by-light
scattering at the LHC can be competitive in mass range between 0.5 TeV and
2 TeV in proton collisions, as it o�ers the highest observational sensitivity.

2.3.1 Searching for axion

One of the most important aspects of a search for a new particle is to know
where to look. As particles produced in photon interaction have short life-
time, observing them is very challenging. However, the ATLAS detector can
perceive photons that are produced in every proton collision at the LHC and
as the photons, into which a newly created particle decays, inherit its mass,
the properties of the particles can then be reconstructed upon their detection.

Usually, the invariant mass distribution of observed photons follows a
smooth falling line called background, as the photons with higher invariant
mass are more di�cult to observe. This helps physicists to predict the be-
haviour of the photons excluding the production of a new particle. If the
requirements necessary for creating such particle, for example an axion, are
met, the number of events in which the photons inherited its mass will create
a peak called signal in otherwise smooth distribution. This peak deviating
from the background could signify an observation of new physics.

Observed data from an experiment is often not so smooth and it slightly
varies from the predicted background. In order to claim a discovery the devi-
ation needs to be significant enough, which reduces the probability that the
divergence is just a statistical accident. The significance of the deviations is
measured in standard deviation ‡ and if it exceeds 5‡ in an experiment, a
discovery could be claimed. The 5‡ significance means that the probability of
it being just an accident is 1 in 3.5 million.

7



2. Preliminaries

Figure 2.1: Left: Feynman diagram of light-by-light scattering in ultraperipheral
proton collision. Right: Feynman diagram of ALP mediated light-by-light scattering
in ultraperipheral proton collision.

Figure 2.2: Left: Feynman diagram of muon-antimuon pair production from emitted
photons in ultraperipheral proton collision. Right: Feynman diagram of electron-
positron pair production from emitted photons in ultraperipheral proton collision.
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Chapter 3
Regression analysis

Machine learning considers three di�erent approaches to training: reinforce-
ment learning, supervised learning and unsupervised learning. The reinforce-
ment learning focuses on predicting certain outputs based on an environment
in which a learning agent is set. Its guesses then receive a feedback based on
how good they are, and therefore it forms its abilities by trial and error. Con-
trarily the task of supervised learning is described as learning by an example
as data feeded into a model consists of input-output pairs, from which the
abilities of a model are inferred. The unsupervised learning is characterised
by its objective which is a search for patterns and connections between data
points without any previous labels. Two main problems in supervised learning
are classification and regression. Classification focuses on outputting discrete
values, whereas in regression the main interest is in predicting continuous val-
ues. The latter problem corresponds to the present experiment analysis and
smooth distribution modelling in the following Chapter 5, as it poses a prob-
lem of a search for relationship between dependent and independent variables,
i.e. number of events and diphoton invariant mass.

This chapter serves as a guide and series of explanations of the methods
used in the modelling. It starts with a description of the curve fitting problem
in Section 3.1, which is one of the most frequent approaches to regression
analysis. Then it proceeds with the exposition of methods that solve such
problem, namely the gradient descent, the Gauss-Newton algorithm and its
extension, the Levenberg–Marquardt algorithm, in Subsections 3.1.1, 3.1.2
and 3.1.3, respectively.

Furthermore, it introduces the Bayesian inference in Section 3.2 and its use
in obtaining predictions conditioned on observed data. On this foundation, the
non-parametric Bayesian method used in regression analysis called Gaussian
Process is explored in Section 3.3. This framework is gaining in popularity
and becoming a frequent modelling method in particle physics and was used
as the main methodology for diphoton invariant mass background modelling
described later in this thesis.
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3. Regression analysis

3.1 Curve fitting

Regression analysis is a statistical expertise that approximates a connection
between dependent and independent variables. Suppose an observed point y
at location [x1, x2, . . . , xn]€ and a task of finding values w = [w0, w1, . . . , wn]€,
so the value y can be estimated by a linear function as

y(x, w) = w
€

x, (3.1)

where x = [1, x1, x2, . . . , xn]€. The parameters w, also known as weights,
define the relationship between the depended and independent variables. To
increase the flexibility of the model a di�erent function, such as polynomial,
can be considered as well.

To fit the function to locations X = [x1, x2, . . . , xm]€ and observed values
Y = [y1, y2, . . . , ym]€, the parameters need to be optimised using a learning
method based on minimising or maximising a certain mathematical criterion.
It is highly probable that the estimated function will not duplicate the mea-
sured observations, as the function returns only an approximation of yi. One
of the frequently used optimisation methods focusing on minimising the resid-
uals denoted as

ri(w) = yi ≠ y(xi, w) (3.2)

is the least squares method [9]. Its objective is to find such parameters w

that the scaled sum of squared residuals is minimised over the whole set of
observed points

„(w) = 1
2

mÿ

i=1

(ri(w))2. (3.3)

The minimum of „(w) can then be found by using the following optimisation
methods.

3.1.1 Gradient descent

The gradient descent is an optimisation algorithm for finding a local minimum
of a di�erentiable function. It takes the advantage of a gradient, which is a
vector-valued function Òf : Rm

æ Rm. The elements of the gradient are
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3.1. Curve fitting

partial derivatives of a function f denoted as

Òf(w) =

S

WWWWU

ˆf
ˆw0

...
ˆf

ˆwn

T

XXXXV
. (3.4)

The gradient represents a direction and a rate of fastest increase and it is a
tangent vector in respect to the plane that goes through the point for which
the function f is evaluated. If a function has an extreme in a certain point,
then its gradient at that point is equal to zero. In case of the least squares
function 3.3 the gradient is denoted as [10]

Ò„(w) = ˆ„(w)
ˆw

= ˆ

ˆw

1
2

mÿ

i=1

(ri(w))2 =
mÿ

i=1

ri(w)Òri(w) = (J(w))€
r(w),

(3.5)

where r(w) = [r1(w), . . . , rm(w)]€ and

J(w) =
C

ˆri

ˆwj

D

i=1,...,m; j=0,...,n

=

S

WWWWU

(Òr1(w))€

(Òr2(w))€

...
(Òrm(w))€

T

XXXXV
, (3.6)

the optimum can be found solving the normal equation

Ò„(w) = (J(w))€
r(w) = 0, (3.7)

and therefore in case of a linear function f , it poses a problem of solving a
series of linear equations. In case of finding a minimum of a non-linear function
an iterative approach needs to be considered [11], where the parameters w are
updated in each iteration by making steps in the opposite direction of the
gradient as

w
(k+1) = w

(k)
≠ –(J(w(k)))€

r(w(k)), (3.8)

where – is a learning rate that can depend on k, which is the iteration index.
The iteration stops when a termination condition is satisfied. Such condition
can be maximum number of iterations or when the improvement drops under
a certain threshold.

Gradient descent is a simple and intuitive way of searching for a minimum,
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3. Regression analysis

but su�ers from convergence problems [12] as it is not resistant to gentle
gradients, where the algorithm takes only small steps and becomes extremely
slow. Assuming a surface in form of a valley (such as the Rosenbrock function
[13]), the algorithm will quickly descent from the walls of the valley, but then
will do exceptionally small steps in the direction of the valley.

3.1.2 The Gauss-Newton algorithm

To solve the issue of the gradient descent method an additional information
about the function is needed. This is achieved by using the Newton’s method
for optimisation, that iteratively approximates the curvature [14] of the sur-
face by fitting a paraboloid to an analysed point, and then proceeds to the
minimum of that paraboloid. The recursive formula for Newton’s method to
find a minimum [15] of function f based on parameters w is denoted as

w
(k+1) = w

(k)
≠ (Ò2f(w(k)))≠1

Òf(w(k)), (3.9)

where Ò
2f(w(k)) is the Hessian matrix with second partial derviatives of f

denoted as

Ò
2f(w) = Hf (w) =

S

WWWWWWWWWU

ˆ2f
ˆw2

0

ˆ2f
ˆw0ˆw1

· · ·
ˆ2f

ˆw0ˆwn

ˆ2f
ˆw1ˆw0

ˆ2f
ˆp2

1
· · ·

ˆ2f
ˆw1ˆwn

...
... . . . ...

ˆ2f
ˆwnˆw0

ˆ2f
ˆwnˆw1

· · ·
ˆ2f
ˆw2

n

T

XXXXXXXXXV

. (3.10)

The Hessian matrix of the scaled sum of squared residuals 3.3 is then denoted
as [16]

H„(w) =
mÿ

i=1

Òri(w)(Òri(w))€ +
mÿ

i=1

ri(w)(Ò2ri(w))€ (3.11)

= (J(w))€
J(w) +

mÿ

i=1

ri(w)(Ò2ri(w))€. (3.12)

The recursive formula 3.9 can be applied to the least squares problem using
the already obtained gradient 3.7 as

w
(k+1) = w

(k)
≠ (H„(w(k)))≠1(J(w(k)))€

r(w(k)). (3.13)
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3.1. Curve fitting

The Gauss-Newton optimisation method, a specific version of the Newton ap-
proach for minimising the least squares function 3.3, approximates the Hessian
matrix as Hf (w) ¥ (J(w))€

J(w) by eliminating its second term [17]. This
choice is appropriate near the solution, because the residuals are becoming
negligible [18], and therefore it influences the Hessian matrix in an insignifi-
cant way. It also means that the computationally complex process of finding
the second derivatives is not required. The recursive formula then becomes

w
(k+1) = w

(k)
≠ ((J(w(k)))€

J(w(k)))≠1(J(w(k)))€
r(w(k)). (3.14)

The Gauss-Newton optimisation brings good results and converges faster then
the gradient descent if the initial guess is near an extreme, but otherwise
behaves rather wildly [19].

3.1.3 The Levenberg–Marquardt algorithm

A complementary combination of the gradient descent and the Gauss-Newton
methods is o�ered by the Levenberg–Marquardt algorithm [20, 21]. It in-
corporates the process of updating the parameters by making steps in the
steepest-descent direction from the gradient descent, and also the approxi-
mation of a paraboloid near an optimum to increase the convergence from
the Gauss-Newton algorithm [22]. The iterative algorithm introduces a non-
negative damping parameter ⁄ that controls which method will be used in a
following iteration as

w
(k+1) = w

(k)
≠ ((J(w(k)))€

J(w(k)) + ⁄I)≠1(J(w(k)))€
r(w(k)), (3.15)

where I is the identity matrix.
High values of ⁄ outweigh the term (J(w))€

J(w), and therefore the al-
gorithm behaves as the gradient descent. On the opposite, low values of ⁄
substantially increase the significance of the term and push the Gauss-Newton
approach in the forefront [23]. The selection of the damping parameter ⁄ sig-
nificantly influences the behaviour of the algorithm, and therefore it is crucial
to set certain rules that can be followed and lead to optimal results. Starting
with higher values is a robust strategy that ensures that „(w(k+1)) < „(w(k))
(especially for su�ciently large values) causing the descent in the steepest di-
rection [24]. Depending on the size of �w

(k) = w
(k+1)

≠ w
(k), the parameter

⁄ can be altered to increase the importance of the Gauss-Newton step in the
search for an optimum. Once the set of parameters starts changing slowly, ⁄
is reduced by a factor of 1/‹, where ‹ > 1 is the Marquardt parameter. If the
reduction results in an unsuccessful step, ⁄ is increased by ‹ [25].

The Levenberg–Marquardt algorithm implemented in the SciPy package
[26] was used for purposes of this thesis.
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3. Regression analysis

3.2 Bayesian learning

Approaches described in the previous Section 3.1 deal only with scalar values,
they do not take any subjective belief in the initial values into account and
also lack the probability in the modelled results. These requirements are met
by the Bayesian inference, a learning method that updates previous beliefs
based on observed data.

This statistical concept deals with a prior expert knowledge about certain
quantities that are determined before any data on which a model can learn has
been seen. With this prior knowledge defined as probability distributions a
likelihood of how well the quantities define the observed data can be obtained.
Using the Bayesian inference, the prior knowledge can be updated based on the
seen data and turned into posterior probability distributions. The Bayesian
inference [27] is defined as

posterior = prior ◊ likelihood
marginal likelihood. (3.16)

Assuming observed data D and a parameter Ê of some parametric model,
with prior probability distribution p(Ê), the likelihood of the data given the pa-
rameter is denoted as p(D|Ê). Furthermore, the marginal likelihood evaluates
the model evidence and guarantees that the posterior is a valid probability,
and is denoted as

p(D) =
⁄

p(D|Ê)p(Ê) dÊ. (3.17)

Therefore the posterior distribution of parameter Ê is defined as

p(Ê|D) = p(Ê)p(D|Ê)
p(D) . (3.18)

Since the posterior is a probability distribution, the result is not a single
value, but rather a confidence in the value Ê. Once new data is observed, pos-
terior becomes prior and using the Bayesian inference it is once more updated
to become posterior again. The posterior can be used to predict unseen data
D̂ as well by averaging over all the possible values of Ê as

p(D̂|D) =
⁄

p(D̂|Ê)p(Ê|D) dÊ. (3.19)

When compared to the approaches described in Section 3.1 it shows a
strong contrast as instead of returning a fixed set of predictions the Bayesian
approach returns a set of probability distributions expressing the confidence in
each prediction. Even though the formula of Bayesian inference seems rather
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3.3. Gaussian Process

simple the computational process can be very demanding for more complex
models [28].

3.3 Gaussian Process

The methods described so far are build on a priori defined functional form
and optimisation of its parameters. The choice of a functional form is crucial
for describing the data and often ad-hoc solutions have no connection to the
area in which they are being used. Assuming the problem is mapped to
a completely unknown function and there is little or no information about
the functional form, the fitting depends on assumptions. The parametric
functions also lack the pliability needed for observations in particle physics,
and therefore a finer and more flexible way of describing the data needs to be
considered.

The Gaussian Process [29] does not use a fixed parametric function to
describe the data, but instead it lets the data to pick the functional form
itself, and therefore it is a powerful tool in terms of machine learning. The
process is formally defined as an infinite collection of random functions, where
any finite subset of which creates a joint Gaussian distribution.

The Gaussian distribution of a set of n random functions indexed by a
set of indices X = [x1, x2, . . . , xn]€ is specified by a mean vector µ and a
covariance matrix � as

f = [f(x1), f(x2), . . . , f(xn)]€ ≥ N (µ, �), (3.20)

whereas the Gaussian Process is completely defined by a mean function

m(X) = E[f(X)] (3.21)

and a covariance function

k(X, X Õ) = E[(f(X) ≠ m(X))(f(X Õ
≠ m(X Õ))] (3.22)

as

f ≥ GP(m(X), k(X, X Õ)). (3.23)

Therefore the Gaussian Process can be described as a Gaussian distribution
with an infinitely long mean vector and an infinite by infinite covariance ma-
trix. The mean function describes the mathematical expectation of a function
f at an input x and usually, for model simplicity, is set to zero m(x) = 0.
The result of the Gaussian Process depends heavily on the covariance func-
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3. Regression analysis

tion [30], but in regions with missing data the predictions will fall towards
the mean, therefore the choice of a particular mean function is justified when
there is an estimation or observation of how the distribution should behave.
For purposes of this thesis, the function used for predicting photon-related
backgrounds [31] was selected as the mean function

m(x) = p0 ◊ Â(x)p1+p2 log Â(x)
◊

Q

a1 ≠
1

1 + e
Â(x)≠p3

p4

R

b , (3.24)

where (p0, p1, p2, p3, p4) are free parameters defined during the fit of the data
(for example with the Levenberg–Marquardt method as described in Subsec-
tion 3.1.3 above) and Â(x) = xÔ

s
is based on the centre-of-mass collision energy

Ô
s.

The covariance function evaluates each pair of arguments x and x
Õ to R

and creates a covariance matrix describing the influence of points on each
other. It is important to note that the covariance function is only specified
by the input locations and not by the observed values. For purposes of this
thesis the kernel k(x, x

Õ) has to represent the physics behind the experiment
in an intuitive way, where the mass resolution is not constant and is captured
by a linear dependence. This varying length scale defined as l(x) = bx + c is
described by the Gibbs kernel [32] as

k(x, xÕ) = A

Û
2l(x)l(xÕ)

l(x)2 + l(xÕ)2
e

≠(x≠xÕ)2
l(x)2+l(xÕ)2 , (3.25)

where only scalar inputs are considered for simplicity of the exposition. The
initial hyperparameters (A, b, c) are defined during the fit of the data as de-
scribed below in Subsection 3.3.2. This approach was successfully applied in
smooth background modelling and search for dijet resonances at the Large
Hadron Collider [33], therefore it creates a strong foundation for purposes of
this thesis.

Based on the defined mean and covariance functions, the Gaussian Process
model can sample prior function values. To obtain the posterior values, the
model needs to conditioned on training data using the Bayesian inference.

3.3.1 Regression with Gaussian Process

Assuming the Gaussian Process is used in regression and there is a function
f that given an input x returns a scalar value. Furthermore, there are noisy
observations Y = [y1, y2, ..., yn]€ at input locations X = [x1, x2, ..., xn]€. The
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3.3. Gaussian Process

prior functional values at inputs X are denoted as

p(f |X) = GP(m(X), k(X, X Õ)) (3.26)

and the objective is to find a posterior distribution p(f |X, Y ) of the functional
values given the observed data. When working with real data, the observed
values are often corrupted by a noise and therefore this needs to be quantified.
Assuming the noise ‘ ≥ N (0, ‡2) follows a Gaussian distribution, set of noisy
targets Y is then described as

Y = f(X) + ‘. (3.27)

As the targets Y and function values f come from the same model, they
create a joint Gaussian distribution denoted as

S

U
Y

f

T

V ≥ N

Q

a

S

U
m(X)

m(X)

T

V ,

S

U
K(X, X) + ‡2

I K(X, X)

K(X, X) K(X, X)

T

V

R

b , (3.28)

where K(X, X)i,j = k(xi, xj) and I is the identity matrix. By condition-
ing the multivariate Gaussian distribution, the posterior distribution of the
functional values is obtained as [29]

p(f |X, Y ) = N (E[p(f |X, Y )],V[p(f |X, Y )]) , (3.29)

where

E[p(f |X, Y )] = m(X) ≠ K(K + ‡2
I)≠1(Y ≠ m(X)), (3.30)

V[p(f |X, Y )] = K ≠ K(K + ‡2
I)≠1K (3.31)

and K = K(X, X).
Regression problems are not based only on input locations X of the ob-

served data, but include predictions of functional values at new input locations
Xú as well. This is achieved by the same approach of relying on Gaussian con-
ditioning, because the values that need to be obtained are from the same model
as the observed ones

S

U
Y

f
ú

T

V ≥ N

Q

a

S

U
m(X)

m(Xú)

T

V ,

S

U
K(X, X) + ‡2

I K(X, Xú)

K(Xú, X) K(Xú, Xú)

T

V

R

b . (3.32)

The posterior distribution p(fú
|X, Y, Xú) of the functional values on new lo-
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3. Regression analysis

cations Xú is obtained as

p(fú
|X, Y, Xú) = N (E[p(fú

|X, Y, Xú)],V[p(fú
|X, Y, Xú)]) , (3.33)

where

E[p(fú
|X, Y, Xú)] = m(Xú) ≠ K(Xú, X)(K(X, X) + ‡2

I)≠1(Y ≠ m(X)),
(3.34)

V[p(fú
|X, Y, Xú)] = K(Xú, Xú) ≠ K(Xú, X)(K(X, X) + ‡2

I)≠1K(X, Xú),
(3.35)

and the covariance matrices are defined as

K(Xú, X)i,j = k(xú
i , xj), K(X, Xú)i,j = k(xi, x

ú
j ),

K(Xú, Xú)i,j = k(xú
i , x

ú
j ).

Notice that the predicted distributions are noise free as they are related only
to functional values f

ú. To make predictions for Y ú at locations Xú, the
covariance matrix K(Xú, Xú) needs to be altered to include the Gaussian
representation of the noise as K(Xú, Xú) + ‡2

I.

3.3.2 Learning with Gaussian Process

The previous section describes the process of fitting the data into a model
that is already optimised. Recalling the mean function 3.24 and the covari-
ance function 3.25, there are sets of hyperparameters that need to be found
in order for the Gaussian Process to work. To make the Gaussian Process
fully Bayesian a prior on the hyperparameters Ê can be set and using the
inference the posterior distribution of the functional values can be obtained
while averaging over the set of hyperparameters Ê as

p(f |X, Y ) =
⁄

p(f |X, Y, Ê)p(Ê) dÊ. (3.36)

However, because of the fact that mean and covariance functions are often
complex, solving the integral can be very computationally demanding. To
solve this, a non-Bayesian approach for parameter optimisation is considered
by maximising the likelihood p(Y |X, Ê) of the observed data given the model.
This likelihood is obtained by averaging over the distribution of functional
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3.3. Gaussian Process

Figure 3.1: An example of randomly sampled functional values from a Gaussian
Process. For exposition purposes, this particular model uses simple mean function
m(x) = 0 and radial basis function as kernel k(x, x

Õ) = exp
1

≠
(x≠xÕ)2

2l2

2
, where l is a

free parameter. The functional forms are not conditioned on any data.

Figure 3.2: Assuming four observed values at input locations x
ú = [1, 4, 5, 8]€ the

Gaussian Process from Figure 3.1 can then be conditioned and create posterior pre-
dictions. Those observations are represented by the black dots, the blue line is the
altered mean and the grey area represents the 2‡ uncertainty. The sampled functional
forms are then based on the newly observed data points.
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3. Regression analysis

values f as

p(Y |X, Ê) =
⁄

p(Y |X, Ê, f)p(f |X, Ê) df , (3.37)

where p(Y |X, Ê, f) is the likelihood of the data given the functional values
f and p(f |X, Ê) is the prior distribution on the functional values f . The
explicit form of the integral can be obtained since the distributions from f

are Gaussian, as well as the assumed noise. The log marginal likelihood is
then defined as

log p(Y |X, Ê) = ≠
1
2Y €

• K≠1Y• ≠
1
2 log |K| ≠

n

2 log 2fi, (3.38)

where K = K(X, X) + ‡2
I, Y• = Y ≠ m(x),

≠
1
2Y €

• K≠1Y•
is the measure of how well the current model
explains the dependent variable,

≠
1
2 log |K| is the model complexity penalization term,

≠
n

2 log 2fi is a normalization constant [34].

The objective is then to maximise it using an optimisation method such
as the gradient ascent, which requires an initial set of hyperparameters. A
common practice in Gaussian Process research is to randomly sample initial
hyperparameters from an uniform distribution using a prior knowledge [35, 36],
proceed with the optimisation, and then compare their respective likelihoods.
The best result is then selected [37].

Optimising the values by maximising the likelihood often leads to a local
extreme, because finding the global extreme is rather di�cult as the likelihood
surface can be highly multimodal. Every extreme that is found corresponds to
one potential interpretation of the model, and therefore multiple optimisation
runs are recommended to get the best possible estimate.

3.3.3 Implementation of Gaussian Process

The information from preceding sections gives the basics needed for the model
creation. As stated in the previous sections the hyperparameters Êm of the
mean function and the hyperparameters Êc of the covariance function need to
be optimised to maximize the log marginal likelihood. For purposes of this the-
sis the Minuit interface [38] was used to minimise the negative log marginal
likelihood 3.38. The interface searches for a minimum in an user-defined func-
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3.3. Gaussian Process

tion, hence the minimised function needs to be negative log marginal likeli-
hood. As described in Subsection 3.3.2, multiple runs of the hyperparameter
search were initiated. The initial values were randomly generated in each run
from a predefined uniform distribution, and then optimised to find a local
minimum. The most promising result was then selected and used in the mod-
elling in Chapter 5. The model implementation shown below uses Cholesky
decomposition of covariance matrix K(X, X) + ‡2

‘ I which is the most com-
putationally demanding process of the modelling with O(n3) operations and
storage complexity O(n2), where n is the number of elements in X.

1: input: X (input), Y (observed values), k (covariance function),
m (mean function), ‡2 (variance), Xú (input for prediction)

2: L := cholesky(K(X, X) + ‡2
I)

3: – := L€
\ (L \ (Y ≠ m(X)))

4: Y ú := m(Xú) + K(X, Xú)€
–

5: v := L \ K(X, Xú)
6: V[Y ú] := K(Xú, Xú) ≠ v

€
v

7: log p(Y |X) := ≠
1

2
(Y ≠ m(X))€

– ≠ �i log Lii ≠
n
2

log 2fi
8: return: f

ú (mean), V[fú] (variance), log p(Y |X) (LML)

Algorithm 5.1: The following implementation [29] returns the predicted distribu-
tions based on observed values Y at input locations X and the log marginal likelihood.
It works with already optimised hyperparameters for mean and covariance functions.
The required matrix inversion is computed using the Cholesky factorization, as it is
fast, numerically extremely stable and able to solve linear systems with symmetric
positive definite coe�cient matrix.
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Chapter 4
Simulation

This chapter introduces the Monte Carlo event generator SuperChic-3 that is
used for simulating production processes in proton and heavy-ion collisions and
was applied for purposes of this thesis, as the productions of photon-photon,
electron-positron, muon-antimuon pairs and axion-like particle were simu-
lated. The first section introduces the generator together with an overview of
its control file that defines the required initial parameters of the simulation.
It also describes the output file that contains information about simulated
events.

The second section shows analysis of the simulated events. It begins with
measurements of proton tagging probabilities for each simulated production
process, as defined in Section 2.2, and their corresponding cross sections. Fur-
thermore, the properties of the generated particles are explored and the dif-
ferences between lepton pair productions and axion production are analysed.
A validation webpage summarising the observations from the simulations was
published on the central scientific results page of the ATLAS Collaboration in
the internal section for the members of the collaboration.

4.1 SuperChic-3

Monte Carlo event generators are integration tools that are essential for ex-
perimental analysis as they provide estimations of the experiment outcome by
simulating the final states of high-energy collisions [39]. The generators use
Monte Carlo method that relies on a class of computational algorithms which
are based on repeated random sampling from a set of probability distributions.
The generators are able to compute the kinematics of a process and calculate
the properties of the present particles. The main objective of the generator
is to produce detailed events as if they were observed by a perfect detector.
All aspects of the events are simulated which provides high comparability to
the real data. Fortran based Monte Carlo event generator SuperChic-3 [40]
was used for the purposes of this thesis, as it provides numerical results of
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4. Simulation

Table 4.1: Overview of the PDG particle codes used for analysis of the output file.

PDG code Particle
2012 proton
22 photon
13 muon
11 electron
93 parton system in independent fragmentation
90 intermediate pseudoparticle

the processes based on the Standard Model of particle physics and the model
predicting the existence of an axion–like particle as well.

The program is operated through input file input.DAT found in the Su-
perChic’s directory and consists of a set of adjustable parameters defining the
simulated process. By running init executable found in the bin directory,
files controlling the simulation based on the parameters from the input file are
created. They are then used in the subsequent execution of file superchic

responsible for the simulation, generating events related to the proir settings.
The information about the generated events outputted by SuperChic-3 is

stored in Les Houches Event File (LHEF) format, which consists of two blocks.
The first one covers initialisation information, most importantly beam iden-
tities (i.e. colliding particles) and its energies, and the probability density
function sets on which the simulated events are based. The second block con-
tains information about each generated event. The most significant informa-
tion for the following analysis is the number of particles present in the event,
their three-momentum, energy and mass. For each event the output file labels
present particles with the Particle Data Group (PDG) particle codes [41] and
for purposes of this thesis the knowledge of six PDG codes, that are shown in
Table 4.1, labeling photons, electrons, muons and axions is required. (In the
present analysis the parton system in independent fragmentation labeled with
code 93 represents generated diphoton, muon-antimuon and electron-positron
pair, and the intermediate pseudoparticle with code 90 labels the axion–like
particle.)

4.1.1 Events simulation

The initial focus of the work with the generator was directed on cross sec-
tion calculations of the ““ æ ““ process in the Standard Model of particle
physics. For this purpose, SuperChic’s input file set to light-by-light scatter-
ing in heavy-ion collisions at the CMS collision energy

Ô
s = 5.02 TeV was

imported and validated. As a first cross check of the SuperChic implementa-
tion, the results from the generator were compared with the results from Ref.
[4], which describes the observation of the light-by-light scattering process in
heavy-ion collisions. The cross section calculated by SuperChic is 49.98 nb,
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4.1. SuperChic-3

Table 4.2: Summary of used set of SuperChic parameters with their descriptions and
assigned values.

Setting Description Value
nev The number of events. 10000
rts The CMS collision energy in GeV. 13000
beam The type of the beam. ’prot’
ymin Cut on the minimal central system rapidity. -2.4
ymax Cut on the maximal central system rapidity. 2.4
mmin Cut on the minimal mass of the object in GeV. 6
mmax Cut on the maximal mass of the object in GeV. 500
ptamin Cut on the minimal transverse momentum of pro-

duced particle a.
3.0

ptbmin Cut on the minimal transverse momentum of pro-
duced particle b.

3.0

etaamin Cut on the minimal ◊ of the produced particle a. -2.4
etabmin Cut on the minimal ◊ of the produced particle b. -2.4
etaamax Cut on the maximal ◊ of the produced particle a. 2.4
etabmax Cut on the maximal ◊ of the produced particle b. 2.4
PDFname ’MMHT2014lo68cl’

Table 4.3: Overview of the simulated productions and their respective process num-
bers defined by SuperChic’s proc parameter.

proc Process description
56 Two-photon induced electron-positron pair e+e≠ production.
57 Two-photon induced muon-antimuon pair µ+µ≠ production.
59 The production of photon pairs ““ in the ““ æ ““ process.
68 Axion-like particle production.

and the reference states cross section of 50±5 nb, where the uncertainty comes
from limited knowledge of the nuclear form-factors, i.e. the scattering angle
and the related initial photon fluxes (the number of photons per second per
unit area) [42]. The high comparability of the results proved correct setting
of the simulator.

With the confirmed integrity of SuperChic-3 implementation, the following
objective was oriented on two-photon induced productions of ““, e+e≠, µ+µ≠

pairs and the axion-like particle in proton collisions with collision energy
Ô

s =
13 TeV. The simulator setting that was used for every simulation run is shown
in Table 4.2 and the used proc parameters defining the generated processes
are shown in Table 4.3. For the axion–like particle production two additional
parameters are present, the ALP mass mapl defined in GeV and the ALP
coupling parameter gax defined in GeV-1. The parameters were set to 1000
GeV and 0.001 GeV-1, respectively.
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4.2 Simulation analysis

Following the generator runs, the data from output files were extracted using
a simple text file parser, whose functionality is based on LHEF file structure
described in Section 4.1. For each production process the proton tagging
probabilities were calculated and are shown in Subsection 4.2.1. Moreover,
the analysis of properties of produced particles, that were defined in Section
2.2, is shown in Subsection 4.2.2.

4.2.1 Observation probability

When two beam protons interact, they lose a fraction of their energy. If they
do not dissociate into a low mass state and their lost energy is within the range
2% to 10%, they can be tagged by the ATLAS Forward Proton (AFP) detec-
tor. Based on the simulation results, the predicted relative energy loss of the
protons was calculated for each process together with the tagging probabilities
as number of events meeting the tagging requirement divided by number of
total simulated events. Based on the results, the tagging expectation for pro-
ductions of photon pairs and lepton pairs in Standard Model is very low, with
the highest estimation being 0.34%. For the axion–like particle production,
the probability of tagging at least one of the protons is nearly 92%, signifi-
cantly surpassing the observation probabilities of the lepton pair productions.
To explore how proton tagging possibility changes with increasing transverse
momentum, a di�erent cut was set requiring it to be 10 GeV instead of 3
GeV, as initially defined in Table 4.2. Slight rise in the probabilities came at
the cost of significant cross section decrease for the lepton pair productions.
For the axion-like particle model the cut did not show any deviation from the
previous values. The tagging probabilities for each production process based
on the cut on transverse momentum are shown in Tables 4.4 and 4.5, and the
cross sections of the processes are shown in Table 4.6. The overview of the
relative energy loss of the beam protons is shown in Figure 4.1.

4.2.2 Data exploration

Apart from the tagging probabilities, multiple properties of particles present
in the events such as energy, invariant mass and relative energy loss were
explored. Analysing the energy distributions, which are shown in Figure 4.2,
it is clear that produced photons, electrons and muons from the Standard
Model follow a very similar pattern, where in majority of events the pairs
obtain energy of approximately 10 GeV. The distributions then keep falling
up to 100 GeV, which is the highest energy the pairs obtained in the simulation.
On the contrary, the produced axion-like particle obtains much higher energy
up to 2.5 TeV.
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Table 4.4: Overview of the ATLAS Forward Proton detector tagging probabilities of
the two beam protons given in per cent (%). The relative energy losses of the two
respective protons are denoted as ›1 and ›2. If the energy loss is in range between
2% and 10%, it is considered in and therefore tagged by the detector. The values
correspond to 3 TeV transverse momentum cut on produced particles and the photons,
into which axion dissociates.

Prod. ›1 in · ›2 out ›1 out · ›2 in ›1 in ‚ ›2 in ›1 in · ›2 in
““ 0.17 ± 0.04 0.16 ± 0.04 0.34 ± 0.06 0.01 ± 0.01

ALP 34.25 ± 0.47 33.25 ± 0.47 91.82 ± 0.27 24.36 ± 0.43
e+e≠ 0.24 ± 0.07 0.08 ± 0.04 0.16 ± 0.06 0 ± 0
µ+µ≠ 0.15 ± 0.04 0.12 ± 0.04 0.27 ± 0.06 0 ± 0

Table 4.5: Overview of the ATLAS Forward Proton detector tagging probabilities of
the two beam protons given in per cent (%). The relative energy losses of the two
respective protons are denoted as ›1 and ›2. If the energy loss is in range between 2%
and 10%, it is considered in and therefore tagged by the detector. The values corre-
spond to 10 TeV transverse momentum cut on produced particles and the photons,
into which axion dissociates.

Prod. ›1 in · ›2 out ›1 out · ›2 in ›1 in ‚ ›2 in ›1 in · ›2 in
““ 1.18 ± 0.11 1.48 ± 0.12 2.75 ± 0.16 0.09 ± 0.03

ALP 34.25 ± 0.47 33.25 ± 0.47 91.82 ± 0.27 24.36 ± 0.43
e+e≠ 2.55 ± 0.16 2.61 ± 0.16 5.24 ± 0.22 0.08 ± 0.03
µ+µ≠ 1.29 ± 0.11 1.46 ± 0.12 2.77 ± 0.16 0.02 ± 0.01

Table 4.6: Overview of cross sections calculated by the SuperChic generator with the
dependency on transverse momentum pT cut applied on produced particles.

Production 3 GeV pT cut 10 GeV pT cut
““ 7.2327 ± 0.0276 fb 0.4643 ± 0.0019 fb

ALP 6.0821 ± 0.0276 fb 6.0821 ± 0.0276 fb
e+e≠ 18.9427 ± 0.0908 pb 1.0236 ± 0.0042 pb
µ+µ≠ 18.9250 ± 0.0907 pb 1.0240 ± 0.0045 pb
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4. Simulation

The same applies for the invariant mass distributions shown in Figure 4.3,
where the photon, electron and muon pairs from the Standard Model show
a very similar behaviour. Because the mass of simulated axion was set to 1
TeV, the distribution peaks at the corresponding mass, resembling the normal
distribution, and therefore strongly di�ers from the former projections.

Lastly, from the analysis of the relative energy loss shown in Figure 4.4 it
is clear that the two-photon induced photons and leptons from the Standard
Model lose significantly less energy than the photons into which the axion-
like particle decays. It was observed that the energy loss of photons in axion
production spans over tenths of the original energy, while on the contrary in
the Standard Model the loss is lower by a factor of ten. It is important to note
that the relative energy loss of beam protons shown in Figure 4.1 correlates
with the relative energy loss of the produced particles.

4.2.3 Axion production variations

Further analysis was focused specifically on the axion-like particle production.
It was oriented on determining the influence of axion mass on the acoplanarity
of photons into which it decays and on the proton tagging probabilities. More-
over the impact of the coupling constant on the shape of diphoton invariant
mass distribution was explored.

For the first objective, axion productions at masses ranging from 200 GeV
to 1000 GeV with 100 GeV increments were simulated, where 5000 events
were produced in each run. As expected, higher ALP masses result in lower
acoplanarity values as shown in Figure 4.5. The highest observed acoplanarity
was 0.008 for events in which an axion with mass of 200 GeV was produced.
Therefore the conclusion of the analysis is that all generated events met the
light-by-light physics analysis requirement for photon pair acoplanarity to be
less than 0.01 regardless the ALP mass in range from 200 GeV to 1000 GeV
and that by probing higher masses the requirement will still be met.

For determining the proton tagging probabilities, the set of simulated
events from acoplanarity exploration was extended by simulated events for
axion masses in range from 1000 GeV to 2000 GeV with 200 GeV increments.
The results are shown in Figure 4.6 and indicate that probability of tagging at
least one of the beam protons increases for productions of axions with masses
up to 1200 GeV and then it starts to decrease. For tagging both protons in
the same event, the probability reaches maximum at 600 GeV and then falls
to zero at 1400 GeV.

Furthermore, the dependency of axion mass distribution width on coupling
constant was explored. For this reason three di�erent coupling values were
selected, 0.001 GeV-1, 0.0005 GeV-1 and 0.00025 GeV-1. The results are shown
in Figure 4.5 and indicate relation between the axion mass distribution width
and the coupling constant, as with lower coupling, the width gets narrower
and peaks more sharply.
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Figure 4.1: Distributions of the relative energy loss of the beam protons for corre-
sponding production processes.

Figure 4.2: Energy distributions of the generated photon-photon pairs, electron-
positron pairs, muon-antimuon pairs and the axion-like particle.
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4. Simulation

Figure 4.3: Invariant mass distributions of the generated photon-photon pairs,
electron-positron pairs, muon-antimuon pairs from the Standard Model and the
photon-photon pairs into which axion-like particle decays.

Figure 4.4: Relative energy loss distributions of the generated photon-photon pairs,
electron-positron pairs, muon-antimuon pairs from the Standard Model and the
photon-photon pairs into which axion-like particle decays.
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4.2. Simulation analysis

Figure 4.5: Left: acoplanarity distributions based on the axion–like particle mass.
They show that regardless of the ALP mass, the acoplanarity satisfies the requirement
of being lower than 0.01 as stated in Section 2.3. Right: peak of the axion–like particle
mass distribution becomes sharper with smaller coupling parameter.

Figure 4.6: Proton tagging probabilities in axion–like particle production process
based on scatted diphoton invariant mass.

31





Chapter 5
Smooth background modelling

This chapter explores the application of regression methods, that were intro-
duced in preceding Chapter 3, on measurements obtained during the 2017 AT-
LAS experiment. It describes the process of modelling the diphoton invariant
mass background using the Levenberg-Marquardt curve fitting method and
the Gaussian Process for purposes of framework determination required for
an axion detection, and compares the performances of both approaches.

In the second part of the chapter estimation of an axion production at 1
TeV is injected into the model in form of simulated data that was externally
produced based on the results and parameters presented in Chapter 4. It
serves as a projection of possible signal that could be observed in conducted
experiment. However, as the search for an axion can be competitive in mass
range between 0.5 TeV and 2 TeV, as described in Section 2.3, and not just
at one constant mass, the whole spectrum is explored together with di�erent
detection strategies as well.

The end of the chapter discusses the di�erences between the two modelling
approaches and the obstacles that were recognized during the process.

5.1 Analysed experiment

For purposes of this thesis dataset with measurements taken from conducted
ATLAS experiment in 2017 containing information about events in which
scattered diphotons with invariant mass ranging from 0 TeV to 4 TeV were
detected in the central detector at the LHC was imported. The requirement
on diphoton acoplanarity, i.e. “blinding criteria”, A > 0.01 was applied on all
imported events for purpose of excluding potential events in which the axion
with mass higher than 0.2 TeV could be produced, as shown in Subsection
4.2.3.

The data was further partitioned based the observations from Subsection
4.2.2 that relative energy losses of beam protons and photon pairs are cor-
related in photon mediated productions. The detectors at the LHC can tag
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5. Smooth background modelling

Table 5.1: The number of imported events from the experiment dataset and the simu-
lation runs. For the measured data, it only includes events satisfying the acoplanarity
L > 0.01 cut and the corresponding matching strategies requirements.

Experiment Simulation
No AFP
matching

A or C
matching

A and C
matching

Base
level

Generator
level

Events 4,487,204 80,392 66 502,614 7,377

outgoing particles in both directions relative to the interaction point, i.e. A-
side and C-side. If the energy losses of scattered photon and deflected proton
are matched by the A-side, respectively C-side, detector, meaning that the
di�erence between them is less than 10%, it is considered as A-matching, re-
spectively C-matching. Therefore the derived detection strategies are A or C
matching and A and C matching, which selects events where the energy losses
are matched by at least one detector and events in which the energy losses are
matched by both detectors, respectively. Based on these matching strategies,
three subsets were extracted from the 2017 ATLAS data. The first subset
does not consider any matching (no AFP information used), the second in-
cludes events satisfying the A or C requirement and the third one corresponds
to the A and C matching. The latter two requirements significantly reduce
the number of observable events, and therefore increase the background mod-
elling di�culty, as the insu�cient data only partially describes the observed
behaviour. The invariant mass distributions of each subset are shown in Figure
5.1 and the numerical values are noted in Table 5.1.

Apart from the observed events externally simulated axion-like particle
production at mass of 1 TeV and with coupling parameter 1 TeV-1 was im-
ported. The simulated data consists of two parts. The first one includes “real
observations”, meaning it represents the process as if it would be observed by
a perfect detector. The second part was obtained by running a successive sim-
ulation replicating the function of the AFP detector on the data from the first
part using the AFP toolbox, which takes the reconstruction of the photons in
the ATLAS central detector into account. It also includes the uncertainties
on the reconstructed photons and therefore represents an estimation how the
process could be detected.

Diphoton mass distributions from the two simulated sets are shown in
Figure 5.2.

5.2 Background modelling

Using the extracted sets from the experiment dataset, three separate falling
backgrounds corresponding to each matching strategy were modelled using the
standard regression model based on parametric function 3.24 optimised using
the Levenberg-Marquardt method, and the Gaussian Process defined with
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5.2. Background modelling

Figure 5.1: Invariant mass distributions of the observed diphotons from 2017 ATLAS
experiment based on applied matching strategies together with the blinding criteria.
With increasing matching restriction, the number of events that can be analysed
decreases significantly.

Figure 5.2: Left: invariant mass distribution of externally generated diphotons into
which an axion dissociated, as it would be observed by a perfect detector. Right:
invariant mass distribution of diphotons as it would be seen by the AFP detector if
the externally simulated events would occur.
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Table 5.2: The number of events with diphoton invariant mass in range between 0.5
TeV and 2 TeV from the experiment dataset satisfying the acoplanarity L > 0.01 cut
and the corresponding matching strategies requirements.

No AFP
matching

A OR C
matching

A AND C
matching

Events 8,790 1,419 43

mean function 3.24 and covariance function 3.25. The former model represents
the most frequent approach to background modelling, and therefore it was used
for determining the precision of the GP model. Both frameworks are build on
the same function, hence the GP model can be think of as an extension of the
former model. As discussed in Section 2.3, the most interesting mass range in
which the search for an axion–like particle can take place is between 0.5 TeV
and 2 TeV. That being so, the backgrounds were not modelled on the whole
observed range of 4 TeV, but only on the bounded spectrum as the analysis of
lower and higher masses is not required. This reduced the number of analysed
events even further. The amounts of events in range between 0.5 TeV and 2
TeV with applied matching restrictions are shown in Table 5.2.

The precisions of modelled backgrounds were then compared. As shown
in Table 5.3 the metrics determining the goodness of fit were mean squared
error, mean absolute error, coe�cient of determination and maximum resid-
ual error. The biggest di�erence between the models is in the background for
events not restricted by any matching requirement. It also o�ers the high-
est number of events which leads to the most accurate representation of the
diphoton behaviour. Comparing the scores of both fits, the Gaussian Pro-
cess achieves better performance than the simple fit in every metric, apart
from mean absolute error for background corresponding to A and C match-
ing. From the visual representation of the backgrounds shown in Figure 5.3
it can be seen that the simple function fit is much smoother and does not
vary. On the contrary the GP is much more sensitive to the variability of
the data and therefore takes the physics behind the experiment into account,
which o�ers an important advantage for calculations that are based on the
background model. This flexibility is reduced in modelled backgrounds for
A or C and A and C matching sets as the statistics is much lower than in
the former set. The hyperparameters of the covariance function of the model
could be set in a way that the background would follow the data more closely,
but that would result in complex, and more importantly, overfitted model that
would introduce nonphysical structures. Because of the positive outcome of
the regression analysis based on Gaussian Process, its results were used in the
following sections as the main background estimations.
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Figure 5.3: Comparison between the Gaussian Process fit and the simple function fit
on diphoton mass range from 500 GeV to 2000 GeV. On each row are distributions
for di�erent data sets extracted from 2017 ATLAS experiment measurements. The
sets corresponding to no AFP matching, A or C matching, and A and C matching are
ordered from top to bottom. The plots on the left show the low mass distributions on
logarithmic scale (with the exception for the A and C matching plot) and the plots
on the right show high mass distributions on linear scale. The error bars represent
68% confidence level in corresponding observation.
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Table 5.3: Overview of the goodness of fit metrics for the Gaussian Process fit and
the mean function fit for each matching subset.

No AFP matching
Metric Gaussian Process fit Standard curve fit
MAE 3.5747 3.8682
MSE 42.4946 47.5192
R2 0.9971 0.9968
Max. residual error 42.8861 47.7941

A or C matching
Metric Gaussian Process fit Standard curve fit
MAE 1.6344 1.6785
MSE 9.0584 9.1406
R2 0.9733 0.9731
Max. residual error 13.7326 13.9640

A and C matching
Metric Gaussian Process fit Standard curve fit
MAE 0.2661 0.2595
MSE 0.2509 0.2510
R2 0.4645 0.4643
Max. residual error 1.7756 1.7849

5.3 Signal injection

After the regression analysis, the externally simulated signal indicating dipho-
ton invariant mass peak caused by hypothetical axion-like particle production
was injected into the no AFP matching model by placing it on top of the back-
ground. Because the number of generated signal events exceeds the data from
the ATLAS experiment, the signal had to be scaled in order for the peak to
match the expected 5‡ significance. Since the simulation was based on axion
production with mass of 1 TeV, the number of events needed to be observed
on top of the background at that particular bin to reach 5‡ significance was
calculated using the Poisson statistics formula for continuous values as

h = F ≠1(1 ≠ –/2; ⁄ + 1), (5.1)

where F ≠1 is the inverse quantile function of a gamma distribution with scale
parameter 1, – is the upper bound of confidence level equal to 5‡, which is
approximately 99.99994%, and ⁄ is the estimated number of events in corre-
sponding bin based on the background. The signal distributions were then
scaled by parameter p = h/n1, where n1 is the number of simulated events
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5.3. Signal injection

Figure 5.4: Signal injections into the modelled no AFP matching background in range
0.8 TeV to 1.2 TeV based on observational model. The significance of the peak caused
by simulated axion-like particle production is shown under the background projection
together with deviations of the measured data from the background.

inside the bin at 1 TeV. The scaled signals placed on top of the background
are shown in Figure 5.4.

Furthermore, regression analysis of the scaled signal based on ATLAS
detector simulation was performed using Gaussian Process defined with simple
mean function m(x) = 0 and radial basis function

k(x, x
Õ) = m exp

A

≠
(x ≠ x

Õ)2

2l2

B

(5.2)

as covariance function, where m is free parameter and l defines fixed length
scale. Since the resulting fit that is shown in Figure 5.5 strongly resembles
normal distribution, its corresponding standard deviation was calculated using
full width at half maximum (FWHM), that determines the width of values
higher than half of the maximum and is related to standard deviation ‡ as

FWHM = 2
Ô

2 ln 2‡. (5.3)

The obtained result was 10.6 GeV which supports the presented binned anal-
ysis based on bin width of 10 GeV.
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5.4 Observation sensitivity

So far the projections were made with an assumption of an axion production at
1 TeV. However, it is possible that the process could be occurring at di�erent
mass, and therefore it is necessary to explore these options as well. Staying
at a sensitive range of 0.5 TeV to 2 TeV, it is required to calculate how many
events are needed to be observed in each bin anywhere on the distribution
to reach significant deviation on all three backgrounds. For this purpose two
significances were considered, 5‡ as in Section 5.3 and 2‡ corresponding to
upper bound of 95.44% confidence level. Therefore six sets of values come from
this stage, as for the three backgrounds two di�erent sets of events representing
signal at each bin are calculated using equation 5.1.

Next, the cross sections of assumed signal events were calculated using
equation 2.1 with luminosity set to 32 fb≠1 and selection e�ciency to 100%.
For the results relative to background for A or C matching upper and lower
68% and 95% confidence limit bands were determined using equations 5.1 and
5.4, respectively, and projected in Figure 5.6.

hÕ = F ≠1(–/2; ⁄) (5.4)

Determining the observational sensitivity is also based on the strength of
ALP coupling to photons. As observed from the SuperChic-3 simulations from
Subsection 4.2.3, with lower coupling the invariant mass distribution of the
diphotons, into which created axions decay, becomes narrower and therefore
for the same production rate creates higher peak with increased significance in
relation to the background. This leads to escalated sensitivity, i.e. probability
of detection, because it means that lower production rate is required in order
to observe significant deviation. Therefore determining the coupling, i.e. the
axion production rate, that would cause observation of the assumed signal

Figure 5.5: Signal fit based on ATLAS detector simulation modelled with Gaussian
Process.
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Figure 5.6: Cross section projections of events needed to reach deviation from the
background with 2‡ and 5‡ significances over the whole analysed range and with
applied matching restrictions. For signal events based on background for A or C
matching 68% and 95% confidence limit bands are projected.

with the e�ciencies of the detectors taken into account is an important part
of the analysis. For assumed signal events corresponding to each 10 GeV
bin in range 0.5 TeV to 2 TeV on all three backgrounds, the coupling f≠1

was calculated using the proton tagging e�ciencies from Subsection 4.2.3 and
photon detection e�ciency that was externally determined by the ATLAS
central detector simulation as 0.7377. The f≠1 values were then obtained as

g =
Û

‡̂lim

‡̂sim

, (5.5)

f≠1 = g

4, (5.6)

where ‡̂lim is the cross section for assumed signal events calculated with de-
tector e�ciencies denoted above and luminosity set to 32 fb≠1, and ‡̂sim is the
cross section calculated by SuperChic-3 for an axion production at respective
mass with 1 TeV-1 coupling. The results are projected in Figure 5.7 and sig-
nify that di�erent matching strategies need to be applied based on axion mass
and are the following: A and C matching for low masses up to 800 GeV, A
or C matching for higher masses up to approximately 1.6 TeV and no AFP
matching for the highest masses.

5.4.1 Alternative sensitivity

The analysis was repeated with di�erent three region of logical functions.
The matching strategies correspond to logical NOR, XOR and AND. These
regions unlike the ones described before do not have any common events,
and therefore they can be combined into one smooth sensitivity curve. The
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Figure 5.7: Sensitivity projection on the ALP–photon coupling f≠1 and the diphoton
mass m““ plane based on applied matching restrictions.

Table 5.4: The number of events with diphoton invariant mass in range between 0.5
TeV and 2 TeV from the experiment dataset satisfying the acoplanarity L > 0.01 cut
and the corresponding alternative matching strategies requirements.

A NOR C
matching

A XOR C
matching

A AND C
matching

Events 7,371 1,376 43

number of events in range between 0.5 TeV and 2 TeV with applied matching
restrictions is shown in Table 5.4.

To obtain the smooth sensitivity curve an iterative approach was utilised.
Its purpose was to find such f≠1 values based on diphoton mass that would
correspond to production of events for which the combined probability of being
only statistical error above NOR, XOR and AND backgrounds would be 5%.
The combination is defined as

(1 ≠ CL) ¥ (1 ≠ CLNOR) · (1 ≠ CLXOR) · (1 ≠ CLAND), (5.7)

where CL is the confidence level equal to 95% and the remaining terms (1 ≠

CLNOR), (1 ≠ CLXOR) and (1 ≠ CLAND) match the probabilities that the
number of events produced with production rate f≠1 above corresponding
background happened randomly as statistical error. Therefore for obtaining
the smooth curve the process from Section 5.4 was reversed and instead of
calculating the number of events that would reach a certain significance, the
combined confidence of possibly produced events based on production rate
was determined. This approach was iteratively repeated with increasing f≠1

value until the requirement 5.7 was met for each analysed diphoton mass.
Apart from the smooth combined curve the sensitivity curves for each

alternative matching were obtained as well using the same approach as in
Section 5.4. The results are shown in Figure 5.8.
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Figure 5.8: Sensitivity projection on the ALP–photon coupling f≠1 and the diphoton
mass m““ plane based on applied alternative matching restrictions.

Figure 5.9: Red combined curve for 2‡ significance peaks imported into the
ALP–photon coupling f≠1 and the diphoton mass m““ plane from Ref. [8]. The
plot shows how the sensitivity curve matches the expected sensitive region for ax-
ion–like particle detection at the LHC.
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5.5 Discussion

One of the main problems in modelling using Gaussian Process is the estima-
tion of the prior set of hyperparameters, respectively determining the bounds
of uniform distributions from which they are sampled and later optimised. The
model had to be tested multiple times on di�erent sets of parameter bounds,
because the optimisation using Minuit would often run into the bounding
value, which indicates that a more likely model could be found with hyperpa-
rameters excluded by the bounds. However, since the background modelling
deals only with very limited dataset, the model is very prone to overfitting.
This problem was mainly occurring at high masses where the statistics is very
low and the prediction would include nonphysical structure in form of “waves”,
that would capture bins with few events in otherwise empty space. This issue
would be even more escalated in backgrounds that take matching strategies
into account. The problem can be solved by increasing length scale l(x) of the
Gibbs kernel. Although this would smooth out the predictions at low masses,
it could suppress the influence of the mean function and the model would not
follow the exponential form of the background, but fall into negative values.
For this reason multiple optimisation runs were performed to find the optimal
hyperparameter bounds.

Apart from the Gibbs kernel, two di�erent covariance functions were in-
spected. The radial basis function 5.2, that was used for signal modelling, was
not able to precisely model the background at the whole mass range, because
of its fixed length scale causing nonphysical structures. Another tested kernel
was augmented Gibbs kernel, that introduces two new free parameters a and
d and multiplies the standard version by term exp

1
d≠(x+x

Õ
)

2a

2
. The resulting

background did not follow a smooth line and included nonphysical fluctuations
as well and because of the increased number of hyperparameters, it was even
more prone to overfitting. Measuring its goodness of fit by the same metrics
as in Table 5.3, it achieved lower scores than the standard function fit, and
therefore was considered ill-suited for the task of background modelling. The
advantage of modelling with Gaussian Process becomes more apparent by in-
creasing the modelled mass range. This is shown in Figure 5.10, where the
background is modelled for a set of events unrestricted by matching strategies
at range 100 GeV to 4000 GeV. It is visibly apparent how especially at low
masses the function fit is much less suited for capturing the variances of the
background, as the prediction does not go through the observations, but stays
under them. This would cause low accuracy in deducing the number of events
needed for potential discovery of new physics. To achieve higher precision, the
background would have to be modelled in smaller steps. (This is the reason
why the function fit performs relatively well for mass range 0.5 TeV to 2 TeV.)
On the contrary, it shows the power of Gaussian Process as it manages to fix
the issue and even includes the “bump” around 3.5 TeV. Although it might be
a statistical error, it could also signify a production that would be otherwise
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5.5. Discussion

Figure 5.10: Comparison of background modelling results on wide mass range from
100 GeV to 4000 GeV.

left undetected. However, it also creates a dip at 3 TeV that is certainly in-
valid, because the number of observed events cannot be negative. This issue
would need to addressed in an analysis based in this particular mass range.

45





Conclusion

The objective of this thesis was to apply an existing analysis framework in-
volved in detecting lepton production induced by photon interactions in pro-
ton ultraperipheral collisions at CERN on studying light-by-light scattering
caused by a hypothetical axion-like particle production and extend it by using
a machine learning algorithm that would increase its detection e�ciency.

The first part of the task was completed by initiating the SuperChic-3
event generator runs with focus on photon induced lepton pairs production
and production of axions with mass of 1 TeV. The results were then compared
observing much higher relative energy losses in beam protons, and photons
into which the axion decays, than in the lepton productions. Furthermore,
the simulations show correlated relationship between relative energy loss of
protons and relative energy loss of produced particles induced by emitted
photons in ultraperipheral collisions. Moreover, a relation between ALP cou-
pling strength and the width of its mass distribution was observed, as the
lower coupling causes the distribution to be narrower. The physics require-
ment for light-by-light observation on diphoton acoplanarity was tested for
axion masses in range from 200 GeV to 1000 GeV for all of which the re-
quirement was met. From analysis of the relative energy loss of simulated
beam protons, AFP detector tagging probabilities were estimated based on
production processes. For the axion production, the probabilities strongly ex-
ceeded those for lepton productions. The simulation analysis was published
on the central ATLAS Collaboration webpage and it provided a foundation
for external ATLAS detector simulations.

In the second part the problem of estimating the invariant mass distribu-
tion of scattered diphotons was addressed. Machine learning approach, the
Gaussian Process, was applied on data obtained from the 2017 ATLAS exper-
iment and its results were compared with the standard curve fitting method.
Three subsets were extracted from the dataset corresponding to three dif-
ferent proton and photon relative energy loss matching strategies. The first
one did not take any AFP information into account, the second one included
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Conclusion

events where the losses are matched on at least one side relative to the interac-
tion point, and the last subset applied the requirement for both sides. Based
on goodness of fit metrics, the Gaussian Process achieved higher scores and
therefore provided a better estimation of the backgrounds. It also included
the physics behind the diphoton behaviour which could not be achieved by
the standard curve fitting method.

Moreover, a simulated signal representing the axion-like particle produc-
tion at mass 1 TeV was injected into the model to project the hypothesis. This
showed a predicted shape and distribution of the events as if they would be
observed by the AFP detector.

The backgrounds were then used to estimate number of events needed
for an axion production observation on mass spectrum between 0.5 TeV and
2 TeV, which lead to determining the observational sensitivity for di�erent
matching strategies and showed that the most promising results could be
obtained by combining the proton and photon relative energy loss matching
strategies. For low masses up to 800 GeV the A-side and C-side matching
should be applied, for higher masses up to approximately 1.6 TeV the A-side
or C-side should be applied and for the highest masses no AFP matching could
be potentially the most promising approach.

48



Bibliography

[1] Basu D. K. Dictionary of Material Science and High Energy Physics, CRC
Press, January 2001, ISBN 0-8493-2889-6.

[2] Baltz A.; Baur G.; d’Enterria D.; et al. The physics of ultraperipheral
collisions at the LHC. Physics Reports, vol. 458, n. 1-3, March 2008, ISSN
0370-1573, doi: 10.1016/j.physrep.2007.12.001.

[3] Aaboud, M.; Aad G.; Abbott B. et al. Evidence for light-by-light scatter-
ing in heavy-ion collisions with the ATLAS detector at the LHC. Nature
Physics, Springer Science and Business Media LLC, vol. 13, n. 9, p. 852—
858, September 2017, ISSN 1745-2481, doi: 10.1038/nphys4208.

[4] ATLAS Collaboration. Observation of Light-by-Light Scattering in Ultra-
peripheral Pb + Pb Collisions with the ATLAS Detector. Physical Review
Letters, American Physical Society (APS), vol. 123, n. 5, July 2019, ISSN
1079-7114, doi: 10.1103/physrevlett.123.052001.

[5] Baldenegro C.; Hassani S.; Royon C.; Schoe�el L. Extending the constraint
for axion-like particles as resonances at the LHC and laser beam experi-
ments. Physics Letters B, Elsevier BV, vol. 795, p. 339-345, August 2019,
ISSN 0370-2693, doi: 10.1016/j.physletb.2019.06.029.

[6] Peccei R. D.; Quinn H. R. CP Conservation in the Presence of Pseudopar-
ticles. Physical Review Letters, American Physical Society, vol. 38, n. 25,
p. 1440-1443, June 1977, doi: 10.1103/PhysRevLett.38.1440.

[7] Knapen S.; Lin T.; Melia T. et al. Searching for axion-like particles
with ultra-peripheral heavy-ion collisions. Physical Review Letters, Amer-
ican Physical Society, vol. 118, n. 17, April 2017, doi: 10.1103/phys-
revlett.118.171801.

[8] C. Baldenegro, S. Fichet et al. Searching for axion-like particles with pro-
ton tagging at the LHC. Journal of High Energy Physics, Springer Science

49



Bibliography

and Business Media LLC, vol. 2018, n. 6, June 2018, ISSN 1029-8479, doi:
10.1007/jhep06(2018)131.

[9] Rawlings J.; Pantula S.; Dickey D. Applied Regression Analysis: A Re-
search Tool. Springer-Verlag New York, vol. 2, p. 3-6, 1998, ISBN 0-387-
98454-2.

[10] Oymak S.; Soltanolkotabi M. Overparameterized Nonlinear Learn-
ing: Gradient Descent Takes the Shortest Path? December 2018,
arXiv:1812.10004.

[11] Mehta P.; Wang C. et al. A high-bias, low-variance introduction to Ma-
chine Learning for physicists. May 2019, arXiv:1803.08823.

[12] Advances in Human Factors in Cybersecurity: Proceedings of the AHFE
2016 International Conference on Human Factors in Cybersecurity, July
27-31, 2016, Walt Disney World R•, Florida, USA. Springer, 2016, p. 418,
ISBN 978-3-319-41932-9.

[13] Zisserman A. Lecture B1 Optimization, Department of Engineer-
ing Science, University of Oxford, 2012, available at http://

www.robots.ox.ac.uk/˜az/lectures/b1/lect2.pdf.

[14] J. Martens. Deep learning via Hessian-free optimization. Proceedings of
the 27th International Conference on Machine Learning, Omnipress, p.
735—742, 2010, ISBN 978-1-60558-907-7.

[15] Agarwal N.; Bullins B.; Hazan E. Second-Order Stochastic Optimization
for Machine Learning in Linear Time. November 2017, arXiv:1602.03943.

[16] Dennis J.; Gay D.; Welsch R. An Adaptive Nonlinear Least-Squares
Algorithm. ACM Trans. Math. Softw., Association for Computing Ma-
chinery, vol. 7, n. 3, p. 348—368, September 1981, ISSN 0098-3500, doi:
10.1145/355958.355965.

[17] Gratton S.; Lawless A.; Nichols N. Approximate Gauss-Newton meth-
ods for nonlinear least squares problems. SIAM Journal on Opti-
mization, SIAM Publications, vol. 18, n. 1, p. 106–132, 2007, doi:
10.1137/050624935.

[18] Furmston T.; Lever G.; Barber D. Approximate Newton Methods
for Policy Search in Markov Decision Processes. J. Mach. Learn. Res.,
JMLR.org, vol. 17, n. 1, p. 8055—8105, January 2016, ISSN 1532-4435,
doi: 10.5555/2946645.3053508.

[19] Rebentrost P.; Schuld M.; Wossnig L.; Petruccione F.; Lloyd S. Quantum
gradient descent and Newton’s method for constrained polynomial optimiza-
tion. August 2019, arXiv:1612.01789.

50

https://arxiv.org/abs/1812.10004
https://arxiv.org/abs/1803.08823
http://www.robots.ox.ac.uk/~az/lectures/b1/lect2.pdf
http://www.robots.ox.ac.uk/~az/lectures/b1/lect2.pdf
http://www.robots.ox.ac.uk/~az/lectures/b1/lect2.pdf
http://www.robots.ox.ac.uk/~az/lectures/b1/lect2.pdf
https://arxiv.org/abs/1602.03943
https://arxiv.org/abs/1612.01789


Bibliography

[20] Levenberg K. A method for the solution of certain non-linear prob-
lems in least squares. Quarterly of Applied Mathematics, American Math-
ematical Society, vol. 2, p. 164-168, July 1944, ISSN 1552-4485, doi:
10.1090/qam/10666.

[21] Marquardt D. W. An Algorithm for Least-Squares Estimation of Nonlin-
ear Parameters. Journal of the Society for Industrial and Applied Mathe-
matics, Society for Industrial and Applied Mathematics, vol. 11, n. 2, p.
431—441, June 1963, ISSN 0368-4245, doi: 10.1137/0111030.

[22] Ahookhosh M.; Artacho F. J.; Fleming R. M.; Vuong P. T. Local con-
vergence of the Levenberg–Marquardt method under Hölder metric subreg-
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Appendix A
Acronyms

CERN Conseil Européen pour la recherche nucléaire

ATLAS A Toroidal LHC Apparatus

ALP Axion-like particle

AFP ATLAS Forward Proton
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Appendix B
Contents of enclosed SD card

readme.txt...................the file with SD card contents description
thesis.pdf..............................the thesis text in PDF format
thesis.................the directory of LATEX source codes of the thesis
implementation....................the directory of the implementation

AFP.......the directory with tools needed for the experiment analysis
notebooks..................the directory with Jupyter notebooks
src .............................. the directory with source codes
root..............................the directory with .ROOT files

simulation...........the directory with results from the simulations
LHEF......... the directory with simlation results in LHEF format
notebooks..................the directory with Jupyter notebooks
src .............................. the directory with source codes
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