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Abstract

The Minimum Eccentricity Shortest Path Problem consists in finding
a shortest path with minimum eccentricity in a given graph. The problem
is known to be NP-complete and W[2]-hard with respect to the minimum
eccentricity. In this thesis, we present FPT algorithms for the problem pa-
rameterized by the maximum leaf number, neighborhood diversity, twin cover,
distance to cluster, and the combination of distance to disjoint paths with the
minimum eccentricity. In addition, we present an experimental evaluation of
the last algorithm, which we have implemented.

Keywords graph theory, minimum eccentricity shortest path, parameter-
ized complexity, fixed-parameter tractable
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Abstrakt

Problém Nejkratší Cesty s Minimální Excentricitou spočívá v na-
lezení takové nejkratší cesty v daném grafu, jejíž excentricita je minimální.
O problému je známo, že je NP-úplný a W[2]-těžký vzhledem k minimální
excentricitě. V práci představujeme FPT algoritmy pro tento problém pa-
rametrizované velikostí ”maximum leaf number“, ”neighborhood diversity“,

”twin cover“, ”distance to cluster“ a kombinací ”distance to disjoint paths“
s minimální excentricitou. Dále představujeme experimentální vyhodnocení
posledního z algoritmů, který jsme také naimplementovali.

Klíčová slova teorie grafů, nejkratší cesta s minimální excentricitou, para-
metrizovaná složitost, parametrizovaný algoritmus
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Chapter 1
Introduction

The Minimum Eccentricity Shortest Path (MESP) problem asks, given
a graph, to find a shortest path with minimum eccentricity—a shortest path
whose distance to all other vertices in the graph is minimal. This shortest path
may be viewed as the “most accessible”, and as such, may find applications
in communication networks, transportation planning, water resource manage-
ment, and fluid transportation [1]. Furthermore, the MESP can be used to
obtain the best to date approximation for a minimum distortion embedding
of a graph into the line [1].

The problem was first introduced by Dragan and Leitert [1]. They showed
that it is NP-hard on general graphs and constructed a slice-wise polyno-
mial (XP) algorithm, which finds a shortest path with eccentricity at most k
in a graph with n vertices and m edges in O(n2k+2m) time. They also
presented a linear-time algorithm that solves the MESP problem for trees.
Additionally, they developed a 2-approximation, a 3-approximation, and an
8-approximation algorithm that runs in O(n3) time, O(nm) time, and O(m)
time, respectively. Birmelé, Montgolfier, and Planche [2] further improved the
8-approximation to a 3-approximation, which still runs in linear time. Dragan

Figure 1.1: Example of a path with eccentricity 2. The path is highlighted in
red, the vertices at distance 2 from the path are highlighted in blue.

1



1. Introduction

and Leitert [3] showed that the MESP problem can be solved in linear time
for distance-hereditary graphs (generalizing the previous result for trees) and
in polynomial time for chordal graphs and dually chordal graphs. Later, they
proved [4] that the problem is NP-hard even for bipartite planar graphs with
maximum degree 3, and W[2]-hard with respect to the minimum eccentricity
for general graphs. Furthermore, they showed that in a graph with a shortest
path of eccentricity k, a minimum k-dominating set can be found in nO(k)

time. Birmelé et al. [5] presented a generalization of the MESP problem by
decomposing a graph into subgraphs with bounded shortest-path eccentric-
ity, the hub-laminar decomposition, which is motivated by DNA assembly in
biology.

Our contribution The goal of this thesis is to develop parameterized algo-
rithms for the MESP problem with respect to various structural parameters of
the graph. We introduce parameterized algorithms with respect to the max-
imum leaf number, neighborhood diversity, twin cover, distance to cluster,
and distance to disjoint paths combined with the minimum eccentricity. In
addition, we present an implementation of one of the algorithms and provide
an experimental evaluation.

Outline In Chapter 2, we provide necessary notations and formal defini-
tions that will be used throughout the thesis. Next, in Chapter 3, we describe
parameterized algorithms with respect to the maximum leaf number, neigh-
borhood diversity, twin cover, distance to cluster, and distance to disjoint
paths combined with the minimum eccentricity. In Chapter 4, we describe
the implementation of the distance to disjoint paths parameterized algorithm
and show various benchmarks. Finally, in Chapter 5, we summarize our con-
tributions and discuss possible future work.
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Chapter 2
Preliminaries

We consider finite, connected, unweighted, undirected, loopless graphs without
multiple edges. Graph G = (V, E) is a pair of a set of vertices V and a set
of edges E. An edge is a set of vertices of size 2. We denote n = |V | and
m = |E|.

We denote an ordered sequence of elements s = (s1, . . . , s|s|). For two
sequences s = (s1, . . . , s|s|), t = (t1, . . . , t|t|) we denote their concatenation

s ⌢ t = (s1, . . . , s|s|, t1, . . . , t|t|).

A path is a sequence of vertices such that every two consecutive vertices
in the sequence are connected by an edge. The length of a path P from vertex
u ∈ V to v ∈ V is the number of edges in it, i.e., |P |−1. The distance dG(u, v)
between two vertices u, v ∈ V is the length of the shortest path between u
and v.

The distance between a vertex u ∈ V and a set of vertices S ⊆ V is
dG(u, S) = mins∈S dG(u, s). The eccentricity of a vertex v ∈ V is defined as
eccG(v) = maxu∈V dG(u, v). The eccentricity of a set S ⊆ V is eccG(S) =
maxu∈V dG(u, S).

For a path P , we denote V (P ) ⊆ V the set of vertices that are in P .
However, we simply use P instead of V (P ) if it is clear from the context that
we are dealing with a set of vertices. For example, dG(u, P ) = dG(u, V (P ))
and eccG(P ) = eccG(V (P )).

For vertex u ∈ V we denote degG(u) the degree of u, NG(u) the open
neighborhood of u and NG[u] the closed neighborhood of u. We denote
N i

G[u] = {v ∈ V | dG(u, v) ≤ i} the set of vertices at distance at most i
from u. We denote G[S] the induced subgraph of G on vertices S ⊆ V . We
denote G \ S = G[V \ S].

3



2. Preliminaries

In this thesis, we focus on the following problem.

Definition 1 (Minimum Eccentricity Shortest Path Problem). For
a given graph G, and an eccentricity k ∈ N, decide whether there exists a
shortest path P in G such that eccG(P ) ≤ k.

Observation 1. Given a graph G and a path P in G, the value of eccG(P )
may be calculated in O(n + m) time.

Proof. Perform a breadth-first search (BFS) starting in all vertices from P
with their distance set to 0. The distance of the last-discovered vertex is the
eccentricity of the path.

The following is known about the complexity of the problem.

Theorem 1 (Dragan, Leitert [1]). The MESP problem is NP-complete.

Theorem 2 (Dragan, Leitert [4]). The MESP problem is W[2]-hard with
respect to the eccentricity k.

In this thesis, we focus on parameterized algorithms for the MESP prob-
lem, i.e., algorithms that run in polynomial time for any graph with a fixed
value of a certain parameter.

Definition 2. An algorithm with input x is called fixed-parameter tractable
(FPT) with respect to a parameter p if it runs in f(p) · |x|O(1) time for some
computable function f .

Definition 3. An algorithm with input x is called slice-wise polynomial (XP)
with respect to a parameter p if it runs in |x|f(p) time for some computable
function f .

In this thesis, we present FPT algorithms for the MESP problem with
respect to several different structural parameters. First, we define a property
that will be useful for defining neighborhood diversity and twin cover.

Definition 4. Let u, v be two vertices of a graph G. We say u and v are twins
if NG(u) \ {v} = NG(v) \ {u}.

Now we define all the parameters for which we show FPT algorithms in
Chapter 3.

Definition 5 (Maximum leaf number). The maximum leaf number of a
graph G is the maximum number of leaves in a spanning tree of G.

Definition 6 (Neighborhood diversity). For a graph G, the neighborhood
diversity is the minimum number d ∈ N such that the vertices of G can be
partitioned into d disjoint sets C1, . . . , Cd, such that for each i ∈ {1, . . . , d}
every two vertices u, v ∈ Ci are twins.

4



Definition 7 (Vertex cover). For a graph G = (V, E), a vertex cover is a
vertex subset X ⊆ V such that for every edge {u, v} ∈ E : u ∈ X ∨ v ∈ X.
The vertex cover number is the size of the smallest vertex cover.

Definition 8 (Twin cover). For a graph G = (V, E), a twin cover is a vertex
subset X ⊆ V such that for every edge {u, v} ∈ E either

(a) u ∈ X ∨ v ∈ X, or

(b) u and v are twins.

The twin cover number is the size of the smallest twin cover.

Definition 9 (Distance to cluster). For a graph G = (V, E), a modulator to
cluster is a vertex subset X ⊆ V such that G \ X is a vertex-disjoint union
of cliques. The distance to cluster is the size of the smallest modulator to
cluster.

Definition 10 (Distance to disjoint paths). For a graph G = (V, E) a mod-
ulator to disjoint paths is a vertex subset X ⊆ V , such that G \ X is a
vertex-disjoint union of paths. The distance to disjoint paths is the size of the
smallest modulator to disjoint paths.

5





Chapter 3
Parameterized Algorithms

In this chapter, we present several FPT algorithms for the MESP problem.
In Section 3.1, we present an algorithm parameterized by the maximum leaf
number. In Section 3.2, we present an algorithm parameterized by the neigh-
borhood diversity. In Section 3.3 we define the Constrained Set Cover
(CSC) problem and present an algorithm to solve it. Then we show an FPT
algorithm for the MESP problem on bipartite graphs parameterized by the
size of one partition by reducing the MESP problem to the CSC problem. In
Section 3.4, we generalize the algorithm to allow edges in the parameterized
partition and thus show an FPT algorithm parameterized by the vertex cover.
In Section 3.5, we show that, in fact, the same algorithm also works correctly
with the twin cover parameter. In Section 3.6, we further generalize the algo-
rithm and make it parameterized by the distance to cluster. In Section 3.7,
we present an FPT algorithm parameterized by the distance to disjoint paths
and the minimum eccentricity, combined. Again, this algorithm depends on
the solution of the CSC problem.

3.1 Maximum Leaf Number
In this section, we present an FPT algorithm for the MESP problem param-
eterized by the maximum leaf number. We use the following lemma to find a
smaller graph in which the problem can be solved by brute-force.

Lemma 1 (Bouland [6]). If the maximum leaf number of a graph G is equal
to ℓ, then G is a subdivision of a graph G̃ = (C, Ẽ), such that C ⊆ V and
|C| = O(ℓ).

Observation 2. Let G = (V, E) be a graph with maximum leaf number ℓ.
Then, G̃ is easy to obtain by contracting all degree 2 vertices as long as they
are not part of a triangle.

7



3. Parameterized Algorithms

Our algorithm will, in fact, rely not on the maximum leaf number, but on
the set C of vertices from G̃ instead. Thanks to Lemma 1, we know that the
size of C is linear with respect to the maximum leaf number. The definition of
FPT does not put any limitations on the time complexity with respect to the
size of the parameter. In particular, this means we may “guess” the subset
of vertices from C, which appear on the desired path by trying all possible
combinations. Also, we may “guess” the order in which these vertices should
appear on the path by trying all possible permutations.

Definition 11. Suppose that a shortest path P with eccG(P ) ≤ k exists. Let
s, t ∈ V be the endpoints of P . We denote Ĉ = C ∪ {s, t}, L = P ∩ Ĉ and
π = (π1, . . . , π|L|) the permutation/order of vertices from L in which they
appear on P .

Now, we observe that given the correct subset and order of vertices from C,
the shortest path with eccentricity at most k is easy to find, if it exists.

Lemma 2. Between each πi, πi+1 there is exactly one path such that it does
not contain any vertices from Ĉ other than πi and πi+1.

Proof. The part of P between πi and πi+1 does not contain any other vertices
from Ĉ, otherwise there would have to be some πj ∈ π between πi and πi+1.
As shown in Figure 3.1, no other such path between πi and πi+1 exists because
G̃ is not a multigraph.

Corollary 1. If π is known in advance, the path P can be found in linear
time.

Proof. Find P by executing a BFS |L|−1 times, starting in each of π1, . . . , π|L|−1
and from each πi finding the shortest path to πi+1, ignoring all vertices from
Ĉ other than πi+1. While searching for the path between πi and πi+1, no
vertex from the path between πi+1 and πi+2 will be discovered because P is
a shortest path. Thus, in each BFS, all the vertices visited in the previous
BFSs may be ignored, resulting in the overall complexity O(n + m).

Now we present Algorithm 1. It simply iterates through all possible com-
binations of s and t, subsets L of Ĉ and their permutations π. For each of
them, it tries to construct the corresponding path.

Lemma 3. Algorithm 1 finds a path with eccentricity at most k, if one exists.
Otherwise, it reports that no such path exists.

Proof. If a shortest path P with eccG(P ) ≤ k exists, there is an iteration of the
foreach-loop on line 2 in which π̄ = π. Then, by Corollary 1, the algorithm
will find the path P̄ = P on line 3.

Because of the check on line 4, we can be sure that if the algorithm returns
a path, it is a shortest path with eccentricity at most k.

8



3.1. Maximum Leaf Number

πi πi+1 contracted to πi πi+1

π1 π2

contracted to

π2

π1

π1 π2

contracted to

π1 π2

Figure 3.1: Examples of situations from Lemma 2. On the left, we see a part
of the graph G with multiple paths between vertices πi and πi+1. On the
right, we see the corresponding part in G̃. Vertices from C are highlighted in
blue.

Algorithm 1: FPT Maximum Leaf Number
Input: Graph G = (V, E), set C ⊆ V .

1 foreach {s̄, t̄} ⊆ V, L̄ ⊆ C ∪ {s̄, t̄} do
2 foreach π̄ permutation of L with π̄1 = s̄, π̄|L̄| = t̄ do
3 Try to construct path P̄ from π̄1 through π̄2, . . . , π̄|L̄|−1 to π̄|L̄|

that does not contain any other vertices from C
4 if P̄ exists, dG(π̄1, π̄|L̄|) = |P̄ | − 1, and eccG(P̄ ) ≤ k then
5 return P̄

6 No shortest path with eccentricity at most k exists

9



3. Parameterized Algorithms

Lemma 4. Algorithm 1 can be implemented to run in O(2cc! ·n4) time where
c = |C|.

Proof. There are O(n2) combinations of {s̄, t̄} ⊆ V . For each of them, there
are O(2c) combinations of L̄ ⊆ C. For each L̄ there are O(c!) permutations
of π̄. Given π̄, path P̄ can be found in O(n+m) time, as shown in Corollary 1.
On line 4, the distance can be checked in O(n+m) time, and by Observation 1,
so can the eccentricity of P̄ .

3.2 Neighborhood Diversity
In this section, we present an FPT algorithm for the MESP problem param-
eterized by the neighborhood diversity.

Let G = (V, E) be a graph with neighborhood diversity d and C1, . . . , Cd

be the corresponding sets of vertices, as described in Definition 6. We start
by observing that there is a metagraph for G on d vertices, which keeps many
properties of G.

Observation 3. Every set of vertices Ci ∈ {C1, . . . , Cd} is either an indepen-
dent set or a clique.

Proof. Clearly, this holds if |Ci| ≤ 2. Suppose that |Ci| ≥ 3 and let {x, y, z} ⊆
Ci. We have {x, y} ∈ E if and only if {x, z} ∈ E because y and z are twins,
and {x, y} ∈ E if and only if {z, y} ∈ E because x and z are twins.

Observation 4. For each pair of sets Ci, Cj ∈ {C1, . . . , Cd}, there is either
a full bipartite subgraph between the vertices of Ci and Cj , or there are no
edges between the two sets.

Proof. Let u1, u2 ∈ Ci and v ∈ Cj . We have {u1, v} ∈ E if and only if
{u2, v} ∈ E because u1 and u2 are twins.

Definition 12. The metagraph of G is a graph GM = (VM , EM ) with VM =
{1, . . . , d}. An edge {i, j} is present in EM if and only if there is a complete
bipartite subgraph between Ci and Cj in G.

Lemma 5. If G is connected, then GM is also connected.

Proof. Let i, j ∈ VM , u ∈ Ci, v ∈ Cj and P some path from u to v in G. We
can construct a sequence PM of vertices from VM starting in i and ending
in j: Iterate over the vertices in P starting in u, and for each vertex p ∈ P ,
add q ∈ VM into PM such that p ∈ Cq. For every two consecutive vertices
a, b ∈ PM , either a = b or {a, b} ∈ EM because by Observation 4 there is a
complete bipartite subgraph between Ca and Cb in G. PM can be reduced
into a walk by leaving out repeated vertices. Thus, i and j are in the same
component in GM .

10



3.2. Neighborhood Diversity

Figure 3.2: Example of a graph with neighborhood diversity 5.

Observation 5. The metagraph GM can be obtained from G by iterating
over all pairs of vertices, checking whether they are twins, and updating VM

accordingly. The presence of an edge {i, j} ∈ EM is then equivalent to the
presence of an edge {u, v} ∈ E for any u ∈ Ci, v ∈ Cj .

Now, we make some observations about the minimum eccentricity shortest
path in a graph G whose neighborhood diversity is small.

Observation 6. Let G be a graph with neighborhood diversity 1. Because
we only consider connected graphs, G must be a clique. Then, the minimum
eccentricity shortest path in G is any single edge, and its eccentricity is 1.

Lemma 6. Let G be a graph with neighborhood diversity 2, i.e., VM = {1, 2}.
Because we only consider connected graphs, we have {1, 2} ∈ EM . At least
one of C1, C2 must be an independent set on at least two vertices in G.

Proof. Let C1 and C2 both be cliques (note that a single vertex is also a clique).
Because G is connected, by Observation 4, there is a full bipartite subgraph
between C1 and C2. Then, C1 ∪ C2 is also a clique and every two vertices
in G are twins, which is a contradiction with the graph having neighborhood
diversity 2.

Corollary 2. If G has neighborhood diversity 2, then the minimum eccen-
tricity shortest path is P = (x, y, z) and eccG(P ) ≤ 1 for any x, z ∈ Ci and
y ∈ Cj such that Ci is an independent set in G.

Proof. P is clearly a shortest path. If G = P , then P is clearly the minimum
eccentricity shortest path with eccG(P ) = 0. Otherwise, we have eccG(P ) = 1
because every vertex in set Ci is a neighbor of all vertices from the other set
Cj out of which at least one is in P , and vice versa. Clearly, a shortest path
may contain at most two vertices from Ci and at most one vertex from Cj ;
therefore, P is the minimum eccentricity shortest path.

11



3. Parameterized Algorithms

Now, we should be able to find a minimum eccentricity shortest path in
graphs with neighborhood diversity at most 2 pretty easily. We continue by
showing that the structure of the metagraph restricts the structure of any
shortest path in the original graph significantly.

Lemma 7. Let P be a shortest path in G of length at least 3. For each
i ∈ VM , there is at most one vertex from Ci in P .

Proof. Let P = (p1, . . . , pℓ). Suppose that ps, pt ∈ Ci. Clearly, at least one of
ps, pt is not an endpoint of P (otherwise the length of P would be at most 2).
Without loss of generality, suppose that ps is not an endpoint of P , thus it
has a predecessor ps−1 on P . We have P = (p1, . . . , ps−1, ps, . . . , pt, . . . , pℓ).
Because ps and pt are twins and {ps−1, ps} ∈ E, we have {ps−1, pt} ∈ E and
P may be shortened to P ′ = (p1, . . . , ps−1, pt, . . . , pℓ). Therefore, P is not a
shortest path.

Corollary 3. If G has neighborhood diversity at least 3, then there is a
minimum eccentricity shortest path in G which contains at most one vertex
from Ci for each i ∈ VM .

Proof. Let P be the minimum eccentricity shortest path in G. If the length
of P is at least 3, then this holds by Lemma 7. If the length of P is at most 2
and P contains two vertices from some Ci, they must both be the endpoints
of P . There is a vertex j ∈ VM such that {i, j} ∈ EM and P does not contain
any vertex from Cj . Consider path P ′ created from P by appending a vertex
u ∈ Cj after an endpoint of P and removing the other endpoint of P . Clearly,
P ′ is a shortest path and all neighbors of P are also neighbors of P ′. Thus,
eccG(P ′) ≤ eccG(P ).

We have shown that there is a minimum eccentricity shortest path which
contains at most one vertex from each set Ci. Finally, we show that with
respect to eccentricity, all vertices in the same set are equivalent, and it does
not matter which of them we choose. In other words, the minimum eccentricity
shortest path in G can be found by trying all shortest paths in GM .

Lemma 8. Let P be a shortest path in G. Create path P ′ by substituting
any vertex p ∈ P by its twin p′. Then, eccG(P ′) = eccG(P ).

Proof. Let u ∈ V such that u ̸= p and u ̸= p′. Then, dG(u, p) = dG(u, p′) be-
cause p and p′ are twins. Thus, dG(u, P ) = dG(u, P ′). Moreover, dG(p, P ′) =
dG(p′, P ) = 1.

Based on what we have shown, we propose Algorithm 2 to solve the
MESP problem. It handles separately the graphs with neighborhood diver-
sity 1 and 2. For neighborhood diversity at least 3, it iterates through all
the subsets of VM and all their permutations (containing all shortest paths
in GM ), and for each of them checks whether they form a shortest path with
eccentricity at most k in G.

12



3.2. Neighborhood Diversity

Algorithm 2: FPT Neighborhood Diversity
Input: Graph G = (V, E), sets C1, . . . , Cd ⊆ V

1 if d = 1 then
2 return any edge in E

3 else if d = 2 then
4 let Ci be an independent set in G
5 let j ∈ {1, 2}, j ̸= i
6 let x, z ∈ Ci, y ∈ Cj

7 return (x, y, z)
8 else
9 foreach L ⊆ {1, . . . , d}, π permutation of L do

10 foreach i ∈ {1, . . . , |L|} do
11 let pi ∈ Cπi

12 P := (p1, . . . , p|L|)
13 if P is a shortest path and eccG(P ) ≤ k then
14 return P

15 No shortest path with eccentricity at most k exists.

Lemma 9. Algorithm 2 finds a shortest path with eccentricity at most k if it
exists and reports if it does not exist.

Proof. By Observation 6, the algorithm works correctly if the neighborhood
diversity is 1 (lines 1–2).

By Corollary 2, the algorithm works correctly if the neighborhood diversity
is 2 (lines 3–7).

If the neighborhood diversity is at least 3 and a shortest path with eccen-
tricity at most k exists, then by Corollary 3 it contains at most one vertex
from each Ci. Thus, there is an iteration on lines 10–14, which finds the cor-
responding sequence π of vertices in VM . Then, by Lemma 8, it does not
matter which vertex from each Ci is chosen, so the algorithm will find a path
with the desired eccentricity.

Because of the check on line 13, the path that the algorithm finds is always
a shortest path with eccentricity at most k.

Lemma 10. Algorithm 2 runs in O(2dd! · n2) time.

Proof. Lines 1–7 can be implemented in constant time. There are 2d possible
sets L, and for each of them there are at most O(d!) possible permutations π.
Lines 10–12 can be implemented in O(d) time. The checks on line 13 can be
implemented in O(n + m) time.

13



3. Parameterized Algorithms

3.3 Bipartite Graphs
In this section, we present an FPT algorithm for the MESP problem on bipar-
tite graphs parameterized by the size of one partition. All the following sec-
tions will be based on this algorithm. We start by defining the Constrained
Set Cover (CSC) problem and proposing an algorithm to solve it. Then, we
reduce the MESP problem on bipartite graphs to the CSC problem.

Definition 13 (Constrained Set Cover). Let R = {r1, . . . , rn} be a set
of requirements that need to be satisfied. Let C = C1 ∪ . . .∪Cm be a union of
disjoint sets of candidates. Let Ψ : C → 2R be a function that determines for
each candidate which requirements it satisfies.

The constrained set cover is a set of candidates, exactly one from each set:
s1 ∈ C1, . . . , sm ∈ Cm such that together they satisfy all the requirements.

Ψ(s1) ∪ . . . ∪Ψ(sm) = R

To help us solve the CSC problem, we now define a function Di for each
i ∈ {1, . . . , m}.

Definition 14. Let R = {r1, . . . , rn}, C = C1 ∪ . . . ∪ Cm, Ψ : C → 2R be an
instance of the CSC problem. We define function Di : 2R → C ∪ {⊤,⊥}.

Di(R) =


⊤ if i = 0 ∧R = ∅
si if ∃ (s1 ∈ C1, . . . , si ∈ Ci) : R ⊆ Ψ(s1) ∪ . . . ∪Ψ(si)
⊥ otherwise

Note that strictly speaking, Di is not a function because, for some R, there
might be multiple different values satisfying the definition (for example, if
there are two different candidates that satisfy exactly the same requirements).
Even in such a case, we suppose that Di only has one value. As we will see, it
does not matter which specific value it has, as long as it satisfies the definition.

Before using this function to solve the CSC problem, we need to know how
to calculate its values effectively.

Lemma 11. Di+1 can be computed recursively.

Di+1(R) =
{

si+1 if ∃ K ⊆ R, si+1 ∈ Ci+1 : R ⊆ K ∪Ψ(si+1) ∧Di(K) ̸= ⊥
⊥ otherwise

Proof. We suppose that the initial values of D0 are taken directly from Def-
inition 14 and prove the lemma for any i ≥ 1. First, we show that if the
recursion yields some value si+1, then it is one of the correct possible values
of Di+1(R) according to Definition 14. Second, we show that if Di(R) ̸= ⊥,
then the recursion does not yield ⊥ either.

14



3.3. Bipartite Graphs

If the recursion yields si+1 ∈ Ci+1, then there is some K ⊆ R such that
R ⊆ K∪Ψ(si+1)∧Di(K) ̸= ⊥. From induction, the value of Di(K) is correct,
thus there exist (s1 ∈ C1, . . . , si ∈ Ci) : K ⊆ Ψ(s1) ∪ . . . ∪ Ψ(si). Hence,
R ⊆ Ψ(s1) ∪ . . . ∪ Ψ(si) ∪ Ψ(si+1), which corresponds to Definition 14 and
Di+1(R) yields a correct value.

If Di+1(R) = si+1 ∈ Ci+1, then there are some candidates s1 ∈ C1, . . . si+1 ∈
Ci+1 such that R ⊆ Ψ(s1)∪ . . .∪Ψ(si+1). Let K = Ψ(s1)∪ . . .∪Ψ(si). Then,
R ⊆ K∪Ψ(si + 1) and Di(K) = si. Hence the recursion does not yield ⊥.

We continue by showing how a solution of the CSC problem may be ex-
tracted from the values of D1, . . . , Dm. We will use each function Di to choose
the candidate si from Ci.

Lemma 12. If Dm(R) = ⊥, then this instance of the CSC problem has no
solution.

Proof. By the definition of Dm, we only have Dm(R) = ⊥ if no set of candi-
dates s1 ∈ C1, . . . , sm ∈ Cm exists, such that R ⊆ Ψ(s1) ∪ . . . ∪Ψ(sm). Thus,
no solution of the CSC instance exists.

Lemma 13. The CSC problem can be solved by dynamic programming.
First, calculate all values of D1, . . . , Dm using the recursion from Lemma 11.
If Dm(R) = ⊥, then no solution exists. Otherwise, the solution can be found
by iterating through the calculated values backwards and setting:

sm = Dm
(
R

)
sm−1 = Dm−1

(
R \Ψ(sm)

)
sm−2 = Dm−2

(
R \

(
Ψ(sm) ∪Ψ(sm−1)

))
. . .

si = Di
(
R \

m⋃
j=i+1

Ψ(sj)
)

. . .

s1 = D1
(
R \

m⋃
j=2

Ψ(sj)
)

Proof. By the definition of Dm, we can set sm = Dm(R). We know that
given an i ∈ {1, . . . , m − 1}, all the requirements ⋃m

j=i+1 Ψ(sj) are satisfied
by si+1, . . . , sm, so the rest of them needs to be satisfied by s1, . . . , si. Also,
by the definition of Di+1 we know that there exists s1, . . . , si such that they
satisfy the rest of the requirements. Then, by the definition of Di, we have
Di

(
R \

⋃m
j=i+1 Ψ(sj)

)
= si.
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Finally, we propose Algorithm 3 to solve the CSC problem. It first com-
putes all values for each of D1, . . . , Dm, and then constructs the solution
s1, . . . , sm from them.

Algorithm 3: Constrained Set Cover
Input: Set of requirements R, sets of candidates C = C1 ∪ . . . ∪ Cm,

function Ψ : C → 2R

1 foreach S ⊆ R do
2 D0(S)← ⊥
3 D0(∅)← ⊤
4 for i = 1, . . . , m do
5 foreach S ⊆ R do
6 Di(S)← ⊥
7 foreach c ∈ Ci do
8 foreach K ⊆ R, F ⊆ Ψ(c) do
9 if Di−1(K) ̸= ⊥ then

10 Di(K ∪ F )← c

11 if Dm(R) ̸= ⊥ then
12 for i = m, . . . , 1 do
13 si ← Di(R)
14 R← R \Ψ(si)
15 return (s1, . . . , sm)
16 else
17 No solution exists.

Lemma 14. Algorithm 3 works correctly and runs in O(22|R||R| · |C|) time.

Proof. On lines 1–3 we set D0 according to Definition 14. On lines 4–10 we
compute D1, . . . , Dm according to Lemma 11. On lines 11–17 we construct
the solution from D1, . . . , Dm according to Lemma 13.

The for-loop on line 4 iterates over all sets of candidates and the foreach-
loop on line 7 iterates over all candidates in each set. Together, lines 8–10
will be executed |C| times. The foreach-loop on line 8 iterates over all subsets
of R and all subsets of the output of Ψ, which sums to at most O(2|R| · 2|R|)
iterations in total. Lines 9–10 can be implemented in O(|R|) time. The for-
loop on line 12 has m iterations, and lines 13–14 can be implemented in O(|R|)
time.

Now, we continue with the FPT algorithm for bipartite graphs. First,
we discuss some properties of bipartite graphs in which a shortest path with
eccentricity at most k exists.
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3.3. Bipartite Graphs

Definition 15. Let G = (U ∪ V, E) be a bipartite graph with partitions
U and V . Let P be a shortest path in G with eccG(P ) ≤ k. We denote
L = P ∩U the vertices from partition U on the path P and π = (π1, . . . , π|L|)
the permutation/order of vertices from L in which they appear on the path P .
We denote R = {u ∈ U | dG(u, P ) = 1} the set of vertices in partition U that
are at distance 1 from P .

Observation 7. For every i ∈ {1, . . . , |L| − 1}, there is exactly one vertex
that lies on P between πi and πi+1 on P . Moreover, this vertex is in the
partition V .

Proof. There cannot be any vertex from U between πi and πi+1 (otherwise π
would not be the correct permutation of vertices from U on P ). Because G
is a bipartite graph, there must be exactly one vertex from V between πi

and πi+1.

Definition 16. We use Ci =
{

u ∈ V |
{
{πi, u}, {u, πi+1}

}
⊆ E

}
for every

i ∈ {1, . . . , |L| − 1} to denote the set of candidate vertices, one of which lies
between πi and πi+1.

Intuitively, if we had the correct values of π, we would only need to select
the correct vertices from C1, . . . , C|L|−1, one from each set, to solve the MESP
problem. Later we will show that the problem of choosing these vertices is an
instance of the CSC problem.

First, we define a function that will help us prove that the path constructed
from the CSC solution will not have eccentricity higher than P .

Definition 17. We define function e : U ∪ V → N as follows.

e(u) = min
{
dG(u, L), dG(u,R) + 1

}
Lemma 15. Function e is a good estimate of the distance from P :

1. e(u) = dG(u, P ) for every u ∈ U , and

2. e(u) = dG(u, P \ {u}) for every u ∈ V .

Proof. Clearly, if e(u) = dG(u, v) for some v ∈ L ⊆ P , then dG(u, P ) ≤
e(u). Clearly, if e(u) = dG(u, v) + 1 for some v ∈ R neighbor of P , then
dG(u, P ) ≤ e(u).

Let y ∈ P be the nearest vertex to u on P . If y ∈ U , then y ∈ L and
e(u) ≤ dG(u, y) = dG(u, P ). If y ∈ V and y = u, i.e., u ∈ P , then u has a
neighbor in L and e(u) = 1 = dG(u, P \ {u}). If y ∈ V and y ̸= u, then let Q
be the shortest path from u to y and let x be the last vertex on Q before y.
Then, x ∈ R and e(u) ≤ dG(u, x) + 1 = dG(u, y) = dG(u, P ).

Now we are ready to show how the correct vertices from each Ci may be
chosen by solving the CSC problem.
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Lemma 16. Suppose that both endpoints of P are in U , and we have the cor-
responding values of L, π,R, as described in Definition 15. Let (s1, . . . , s|L|−1)
be a solution of the CSC problem with requirements R, sets of candidates
C = C1 ∪ . . . ∪ C|L|−1, and function Ψ(v) = NG(v). Consider the following
path.

P ′ = (π1, s1, . . . , πi, si, . . . , π|L|−1, s|L|−1, π|L|)

Then, P ′ is a shortest path and eccG(P ′) ≤ k.

Proof. By Observation 7, P ′ is a shortest path, since P is a shortest path.
All vertices in L are on both P and P ′. All vertices in R are neighbors

of P and, thanks to the way we chose s1, . . . , s|L|−1, they are also neighbors
of P ′. Thus, dG(u, P ′) ≤ e(u) for every u ∈ U ∪ V . Lemma 15 says that
e(u) = dG(u, P )—and so dG(u, P ′) ≤ dG(u, P )—for each u ∈ U ∪ (V \P ). For
each u ∈ V ∩ P the distance from P ′ is at most 1. Moreover, if P ̸= P ′, then
the distance of each vertex from P \ P ′ to P ′ is also 1.

Before constructing an algorithm, we need to discuss the cases where the
path P has one or both endpoints in V . These endpoints are not contained
in any set Ci and therefore, they are not present in the CSC either. We will
handle these cases separately by trying all possible combinations for the first
and last vertex on the path.

Observation 8. Suppose P has exactly one endpoint in V . Without loss of
generality, let u ∈ NG(π1) be an endpoint of P . Let s1, . . . , s|L|−1 be a solution
of the CSC problem with requirements R′ = R \ NG(u), sets of candidates
C = C1 ∪ . . . ∪ C|L|−1, and function Ψ(v) = NG(v). Consider the following
path.

P ′ = (u, π1, s1, . . . , π|L|−1, s|L|−1, π|L|)

Then, P ′ is a shortest path and eccG(P ′) ≤ k.

Proof. All vertices in L are on P ′, and, thanks to the way we chose s1, . . . , s|L|−1,
all vertices in R are neighbors of either u or one of s1, . . . , s|L−1|. Thus, the
same argument as in the proof of Lemma 16 applies.

Observation 9. Analogically, if both endpoints of P are in V , P ′ may be
constructed by removing both of their neighborhoods fromR and adding them
to the corresponding positions in P ′.

Finally, we propose Algorithm 4 to solve the MESP problem. It finds the
correct values for L, π,R, and the correct endpoints of P by trying all possible
combinations. For each combination, it checks if the prospective solution of
CSC with the current configuration would form a shortest path, and if yes, it
tries to construct the CSC. If a solution of the CSC is found, it constructs a
shortest path from it and checks its eccentricity, which might still be too high,
if the current combination of values is incorrect.
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Algorithm 4: FPT Bipartite
Input: bipartite graph G = (U ∪ V, E)

1 foreach (L̄, π̄, R̄) : L̄ ⊆ U, π̄ is a permutation of L̄, R̄ ⊆ (U \ L̄) do
2 for i = 1, ..., |L̄| − 1 do
3 Ci ←

{
u ∈ V |

{
{π̄i, u}, {u, π̄i+1}

}
⊆ E

}
4 if dG(π̄1, π̄|L̄|) ̸= 2(|L̄| − 1) ∨ ∃i ∈ {1, . . . , |L̄| − 1} : Ci = ∅ then
5 continue to the next (L̄, π̄, R̄)
6 let s1, . . . , s|L̄|−1 be the solution of CSC for requirements R̄,

candidates C = C1 ∪ . . . ∪ C|L̄|−1, and Ψ(v) = NG(v)
7 if such a solution exists then
8 P ← (π̄1, s1, . . . , π̄|L|−1, s|L|−1, π̄|L|)
9 foreach ū ∈ NG[π̄1] | dG(ū, π̄|L̄|) = |P | ∨ ū = π̄1 do

10 P ′ ← P
11 if ū ̸= π̄1 then
12 P ′ ← (ū) ⌢ P ′

13 foreach v̄ ∈ NG[π̄|L|] | dG(ū, v̄) = |P ′| ∨ v̄ = π̄|L̄| do
14 P ′′ ← P ′

15 if v̄ ̸= π̄|L̄| then
16 P ′′ ← P ′′ ⌢ (v̄)
17 if eccG(P ′′) ≤ k then
18 return P ′′

19 A shortest path with eccentricity at most k does not exist.

Lemma 17. Algorithm 4 finds a shortest path with eccentricity at most k if
it exists. It reports correctly if such path does not exist.

Proof. If a shortest path P with eccG(P ) ≤ k exists, let u be the first vertex
on P and v be the last vertex on P . All the following combinations will be
tried in some iterations of the foreach-loop on line 1.

(L̄, π̄, R̄) =
(
L, π,R

)
(1)

(L̄, π̄, R̄) =
(
L, π,R \Ψ(u)

)
(2)

(L̄, π̄, R̄) =
(
L, π,R \Ψ(v)

)
(3)

(L̄, π̄, R̄) =
(
L, π,R \

(
Ψ(u) ∪Ψ(v)

))
(4)

For each of these combinations, clearly dG(π̄1, π̄|L̄|) = 2(|L̄| − 1) and all of
C1, . . . , C|L̄|−1 are non-empty. Also, for each of these combinations, the CSC
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clearly has a solution. There is an iteration of the foreach-loop on line 9 in
which ū = u, and there is an iteration of the foreach-loop on line 13 in which
v̄ = v. If both endpoints of P are in U , then by Lemma 16, the algorithm
finds a solution for combination (1). If one of the endpoints of P is in U and
the other is in V , then by Observation 8, the algorithm finds a solution for
combination (2) or (3). If both endpoints of P are in V , then by Observation 9,
the algorithm finds a solution for combination (4).

If the algorithm finds a solution, it is a shortest path thanks to the check
on line 4, and its eccentricity is at most k thanks to the check on line 17.

Lemma 18. Algorithm 4 runs in O(12uu! · n4) time for u = |U |.

Proof. The for-loop on line 1 has at most O(3u · u!) iterations. The for-loop
on lines 2–3 can be implemented in O(un) time. The CSC on line 6 can be
solved by Algorithm 3 in O(22uun) time. Lines 7–19 can be implemented in
O

(
n2(n + m)

)
time.

3.4 Vertex Cover
In this section, we show that in order to construct an FPT algorithm param-
eterized by vertex cover, only a slight modification of Algorithm 4 is needed.

Observation 10. Let G = (U ∪V, E) be a graph with vertex cover U . Then,
there are no edges in G[V ], but, unlike in a bipartite graph, there may be
edges in G[U ].

Proof. From Definition 7, every edge in G has one or both endpoints in U .

Lemma 19 (Chen, Kanj, Xia [7]). The vertex cover of size u in a graph G
can be found in O(1.2738u + un) time.

Again, we start by discussing the properties of graphs in which a shortest
path with eccentricity at most k exists. Note that the rest of this section is
just a slight modification of Section 3.3.

Figure 3.3: Example of a graph with vertex cover number 4. Vertices from
the vertex cover are highlighted in blue. Note that all edges have at least one
blue endpoint.
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We use exactly the same definitions as in Section 3.3.

Definition 18. Let G = (U ∪ V, E) be a graph with vertex cover U and
let P be a shortest path in G with eccG(P ) ≤ k. We denote L = P ∩ U
the vertices from the vertex cover on the path P and π = (π1, . . . , π|L|) the
permutation/order of vertices from L in which they appear on P . We denote
R = {u ∈ U | dG(u, P ) = 1} the set of vertices in the vertex cover that are at
distance 1 from P .

Observation 11. For every i ∈ {1, . . . , |L| − 1}: if πi is connected to πi+1 by
an edge, then there is no vertex between πi and πi+1 on P . Otherwise, there
is exactly one vertex that lies between πi and πi+1 on P , and it is from V .

Proof. Clearly, there is no vertex from U between πi and πi+1. If {πi, πi+1} ∈ E
and some vertex u were between πi and πi+1 on P , then P would not be a
shortest path. If {πi, πi+1} /∈ E, then there is exactly one vertex from V
between them, as there are no edges in G[V ].

Similarly as in Section 3.3, we need to select some vertices from V to put
between the vertices in π. However, this time we only need to select vertices
between such πi, πi+1 that {πi, πi+1} /∈ E. To allow us to refer to these indices
easily, we define the sequence h.

Definition 19. We denote h = (h1, . . . , hℓ) the increasing sequence of all
indices i such that {πi, πi+1} /∈ E.

Now, we define the sets of candidate vertices, exactly the same way as in
Section 3.3, but only for indices in h.

Definition 20. We denote Chi
=

{
u ∈ V |

{
{π̄hi

, u}, {u, π̄hi+1}
}
⊆ E

}
, the

set of candidate vertices between πhi
and πhi+1, for every hi ∈ h.

Intuitively, if we had the correct values of π, we would only need to select
the correct vertices from Ch1 , . . . , Chℓ

, one from each set, to solve the MESP
problem.

As in Section 3.3, we define function e and show that it is a good estimate
of the distance from P .

Definition 21. We define function e : U ∪ V → N the same way as in
Section 3.3.

e(u) = min
{
dG(u, L), dG(u,R) + 1

}
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Lemma 20. Function e is a good estimate of the distance from P :

1. e(u) = dG(u, P ) for every u ∈ U , and

2. e(u) = dG(u, P \ {u}) for every u ∈ V .

Proof. The proof is completely the same as the proof of Lemma 15.

Now, we show how to construct a shortest path with eccentricity at most k
by solving the CSC problem.

Lemma 21. Suppose that both endpoints of P are in U , and we have the
corresponding values of L, π,R, as described in Definition 18. Let sh1 , . . . , shℓ

be a solution of the CSC problem with requirements R, sets of candidates
C = Ch1 ∪ . . .∪Chℓ

, and function Ψ(v) = NG(v). Consider the following path.

P ′ = (π1, . . . , πh1 , sh1 , πh1+1, . . . , πhℓ
, shℓ

, πhℓ+1, . . . , π|L|)

Then, P ′ is a shortest path and eccG(P ′) ≤ k.

Proof. The proof is completely the same as in the proof of Lemma 16.

As in Section 3.3, we need to discuss the cases in which the path P has
one or both endpoints in V , before constructing an algorithm.

Observation 12. If P has one or both endpoints in V , we can find sh1 , . . . , shℓ

by subtracting the corresponding endpoint neighborhoods from R and solving
the CSC. Then, by prepending/appending the endpoints to P ′ (constructed
in the same way as in Lemma 21), we get a shortest path with eccG(P ′) ≤ k.

Proof. The proof is completely the same as the proof of Observation 8.

Finally, we propose Algorithm 5 as a slight modification of Algorithm 4.
The only difference is that candidate sets Ci with {πi, πi+1} ∈ E are not
considered as πi must be directly connected to πi+1 in P (see lines 4–7, 10,
12), and the correct shortest path distance is modified (see line 8).

Lemma 22. Algorithm 5 finds a shortest path with eccentricity at most k if
it exists. It reports correctly if such path does not exist.

Proof. The proof is completely the same as the proof of Lemma 17.

Lemma 23. Algorithm 5 runs in O(12uu! · n4) time for |U | = u.

Proof. The proof is completely the same as the proof of Lemma 18.
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Algorithm 5: FPT Vertex Cover
Input: graph G = (U ∪ V, E) with vertex cover U

1 foreach (L̄, π̄, R̄) : L̄ ⊆ U, π̄ is a permutation of L̄, R̄ ⊆ (U \ L̄) do
2 ℓ← 0
3 for i = 1, ..., |L̄| − 1 do
4 if {π̄i, π̄i+1} /∈ E then
5 Ci ←

{
u ∈ V |

{
{π̄i, u}, {u, π̄i+1}

}
⊆ E

}
6 ℓ← ℓ + 1
7 hℓ ← i

8 if dG(π̄1, π̄|L̄|) ̸=
∑|L̄|−1

i=1 dG(π̄i, π̄i+1) ∨ ∃i ∈ {h1, . . . , hℓ} : Ci = ∅
then

9 continue to the next (L̄, π̄, R̄)
10 let sh1 , . . . , shℓ

be the solution of CSC for requirements R̄,
candidates C = Ch1 ∪ . . . ∪ Chℓ

, and Ψ(v) = NG(v)
11 if such a solution exists then
12 P := (π̄1, . . . , π̄h1 , sh1 , π̄h1+1, . . . , π̄hℓ

, shℓ
, π̄hℓ+1, . . . , π̄|L|)

13 foreach ū ∈ NG[π̄1] | dG(ū, π̄|L̄|) = |P | ∨ ū = π̄1 do
14 P ′ ← P
15 if ū ̸= π̄1 then
16 P ′ ← (ū) ⌢ P ′

17 foreach v̄ ∈ NG[π̄|L|] | dG(ū, v̄) = |P ′| ∨ v̄ = π̄|L̄| do
18 P ′′ ← P ′

19 if v̄ ̸= π̄|L̄| then
20 P ′′ ← P ′′ ⌢ (v̄)
21 if eccG(P ′′) ≤ k then
22 return P ′′

23 A shortest path with eccentricity at most k does not exist.
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3.5 Twin Cover
In this section, we show that, in fact, Algorithm 5 from the previous section
works correctly, even if the set U from its input graph G = (U ∪ V, E) is a
twin cover and not a vertex cover. Thus, it is parameterized by twin cover.
We do not consider the trivial case of a graph with twin cover number 0.
A connected graph with twin cover number 0 is a clique, and any single edge
in such a graph is the minimum eccentricity shortest path.

Observation 13. Let G = (U ∪ V, E) be a graph with twin cover U . Then,
there may even be edges in G[V ]. However, for every edge {u, v} in G[V ],
u and v are twins.

Lemma 24 (Ganian [8]). The twin cover of size u in a graph G can be found
in O

(
1.2738u + un + nm) time.

We will use the same definitions as in Section 3.4 and show that the claims
made about a graph with vertex cover U also hold for a graph with twin
cover U .

Definition 22. Let G = (U∪V, E) be a graph with twin cover U and let P be
a shortest path in G with eccG(P ) ≤ k. We denote L = P∩U the vertices from
the twin cover on the path P and π = (π1, . . . , π|L|) the permutation/order
of vertices from L in which they appear on P . We denote R = {u ∈ U |
dG(u, P ) = 1} the set of vertices in the twin cover that are at distance 1
from P .

We denote h = (h1, . . . , hℓ) the increasing sequence of all indices i such
that {πi, πi+1} /∈ E.

We denote Chi
=

{
u ∈ V |

{
{π̄hi

, u}, {u, π̄hi+1}
}
⊆ E

}
, the set of candi-

date vertices between πhi
and πhi+1, for every hi ∈ h.

Observation 14. For every i /∈ h, there is no vertex between πi and πi+1
on P . For every hi ∈ h, there is exactly one vertex from Chi

that lies between
πhi

and πhi+1 on P .

Figure 3.4: Example of a graph with twin cover number 4. Vertices from
the twin cover are highlighted in blue. Note that all edges either have a blue
endpoint, or their endpoints are twins.
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Proof. Clearly, there is no vertex between πi and πi+1 if {πi, πi+1} ∈ E and
there may only be vertices from V between πhi

and πhi+1 if {πhi
, πhi+1} /∈ E.

The only edges in G[V ] are between twins. If there were two twins on the
same path, it would not be a shortest path.

Definition 23. We define function e : U ∪ V → N the same way as in
Section 3.3.

e(u) = min
{
dG(u, L), dG(u,R) + 1

}
Lemma 25. Function e is a good estimate of the distance from P :

1. e(u) = dG(u, P ) for every u ∈ U , and

2. e(u) = dG(u, P \ {u}) for every u ∈ V .

Proof. Clearly, dG(u, P ) ≤ e(u) for every u ∈ U ∪ V .
Let y ∈ P be the nearest vertex to u on P . If y ∈ U , then y ∈ L and

e(u) ≤ dG(u, y) = dG(u, P ). If y ∈ V and y = u or y is a twin of u, then u has
a neighbor in L and e(u) = 1 = dG(u, P \ {u}). If y ∈ V and y ̸= u and y is
not a twin of u, then let Q be the shortest path from u to y and let x be the
last vertex on Q before y. Then, x ∈ R and e(u) ≤ dG(u, x) + 1 = dG(u, y) =
dG(u, P ).

Now, we know that even if the set U is a twin cover and not a vertex
cover, there is still exactly one vertex from each Chi

between πhi
and πhi+1.

Furthermore, we know that the function e still estimates the distance from P
correctly for all vertices other than those in P ∩ V (for which it estimates
distance 1 instead of 0). Again, by constructing an instance of the CSC and
creating path P ′ from it the same way as in Section 3.4, we can make sure
that dG(u, P ′) ≤ e(u) for every u ∈ U ∪ V .

Lemma 26. Algorithm 5 works correctly and with the same time complexity
even for a graph G = (U ∪ V, E) such that U is a twin cover of G, instead of
vertex cover.

Proof. Thanks to Observation 14 and Lemma 25, the proof is exactly the same
as the proofs of Lemma 22 and Lemma 23.

3.6 Distance to Cluster
In this section, we present an FPT algorithm for the MESP problem param-
eterized by the distance to cluster. Again, this algorithm will only be a slight
modification of Algorithm 5 from Section 3.4. We do not consider the trivial
case of a graph with distance to cluster 0. A connected graph with distance
to cluster 0 is a clique, and any single edge in such a graph is the minimum
eccentricity shortest path.
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Figure 3.5: Example of a graph with distance to cluster 4. Vertices from the
modulator to cluster are highlighted in blue. Note that the non-blue twin
vertices form clusters, i.e., cliques.

Observation 15. Let G = (U∪V, E) be a graph with modulator to cluster U .
Then, for any edge {u, v} in G[V ], u and v are twins in G[V ].

Lemma 27 (Boral et al. [9]). A modulator to cluster of a graph with distance
to cluster u can be found in O

(
1.9102u · (n + m)

)
time.

Observation 16. Let G = (U ∪V, E) be a graph with modulator to cluster U
and let P be a shortest path with eccG(P ) = k. Then, there exists a shortest
path P ′ such that it contains at least one vertex from U and eccG(P ′) ≤ k.

Proof. Suppose that P only contains vertices from V . All these vertices form
a clique, so the length of P is at most 1. Let P = (u, v). If there is some
vertex w ∈ U such that it is a neighbor of exactly one endpoint of P , then
either P ′ = (u, v, w) or P ′ = (w, u, v). If all vertices in U are neighbors of
both u and v, then P ′ = (v, w) for any w ∈ U .

We will use similar definitions as in the previous sections. The main dif-
ference between the following definition and Definition 22 from Section 3.5
is that instead of one requirements set R, we define two sets: R1 and R2.
Also, we require that the path P contains a vertex from U , and we skip the
definition of sets Ci, which will be defined separately.

Definition 24. Let G = (U ∪ V, E) be a graph with modulator to cluster U
and let P be a shortest path in G with eccG(P ) ≤ k that contains at least one
vertex from the modulator to cluster U . We denote L = P∩U the vertices from
the modulator to cluster on P and π = (π1, . . . , π|L|) the permutation/order
of vertices from L in which they appear on P . We denote Ri = {u ∈ U |
dG(u, P ) = i} for i ∈ {1, 2}.

We denote h = (h1, . . . , hℓ) the increasing sequence of all indices i such
that {πi, πi+1} /∈ E.

We start by observing that even if U is a modulator to cluster of G, the
alternatives for which vertices may appear between each πi and πi+1 on P are
still limited.
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Observation 17. dG(πi, πi+1) ≤ 3 for each i ∈ {1, . . . , |L| − 1}.

Proof. The shortest path between πi and πi+1 consists of only vertices from V
(except for the endpoints). All these vertices must be twins in G[V ] and thus
form a clique in G[V ]. There are at most two such vertices on a shortest path.
If there were three vertices from the same clique on a path, it would not be a
shortest path.

Observation 18. For every i /∈ h, there is no vertex between πi and πi+1
on P . For every hi ∈ h: If dG(πhi

, πhi+1) = 2, then there is one vertex on P
between πhi

and πhi+1, and it is from V . If dG(πhi
, πhi+1) = 3, then there are

two vertices on P between πhi
and πhi+1, and both are from V .

Proof. Clearly, there are no vertices from U between πi and πi+1. If the
number of vertices between πi and πi+1 did not correspond to the distance
between πi and πi+1, then P would not be a shortest path.

Now, we define the sets of candidate vertices Chi
. The definition is similar

to those in the previous sections. However, this time, we need to consider
pairs of vertices, instead of single vertices, since there might be up to two
vertices between each πhi

and πhi+1.

Definition 25. We define the set Chi
of candidate vertices between πhi

and
πhi+1 for each hi ∈ h.

Chi
=


{

(u, u) ∈ V 2 |
{
{πhi

, u}, {u, πhi+1}
}
⊆ E

}
if dG(πhi

, πhi+1) = 2{
(u, v) ∈ V 2 |

{
{πhi

, u} , {u, v}, {v, πhi+1}
}
⊆ E

}
if dG(πhi

, πhi+1) = 3
∅ otherwise

For hi ∈ h with dG(πhi
, πhi+1) = 2, the set Ci contains pairs of the same

vertices (u, u). To avoid adding some vertex into a path twice, we define the
following function.

Definition 26. Function µ maps a pair of any two elements to a sequence of
length 1 or 2.

µ(u, v) =
{

(u) if u = v

(u, v) if u ̸= v

Again, to solve the MESP problem, we need to choose one pair from each
of Ch1 , . . . , Chℓ

and satisfy all the requirements R1∪R2. To prove that a path
constructed from vertices that satisfy all the requirements will have eccentric-
ity at most k, we need to redefine function e.

Definition 27. We define function e : U ∪ V → N as follows.

e(u) = min
{
dG(u, L), dG(u,R1) + 1, dG(u,R2) + 2

}
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Lemma 28. Function e is a good estimate of the distance from P :

1. e(u) = dG(u, P ) for every u ∈ U , and

2. e(u) = dG

(
u, P \ (NG[u] ∩ V )

)
for every u ∈ V .

Proof. Clearly, dG(u, P ) ≤ dG

(
u, P \ (NG[u] ∩ V )

)
≤ e(u).

Let z be the nearest vertex to u on P and Q be the shortest path from u
to z. If there are any vertices from U on Q, let x be the last vertex from U
on Q. We know that dG(x, z) ≤ 2 because Q is a shortest path and all vertices
connected in G[V ] form a clique. If x = z, then x ∈ L. If dG(x, z) = 1, then
x ∈ R1. If dG(x, z) = 2, then x ∈ R2. Hence, e(u) ≤ dG(u, z) = dG(u, P ).
If Q consists only of vertices from V , let s be the nearest vertex to u such that
s ∈ P \ (NG[u] ∩ V ). Clearly, s ∈ L and e(u) ≤ dG(u, s) = dG

(
u, P \ (NG[u] ∩

V )
)
.

Now, we are ready to show how to find a shortest path with eccentricity
at most k by solving the MESP problem.

Lemma 29. Suppose that both endpoints of P are in U , and we have the cor-
responding values of L, π,R1,R2 as described in Definition 24. Let (sh1 , . . . , shℓ

)
be a solution of the CSC problem with requirements R = R1 ∪ R2, sets of
candidates C = Ch1 ∪ . . . ∪ Chℓ

, and function Ψ(u, v) = NG(u) ∪ NG(v) ∪((
N2

G[u] ∪N2
G[v]

)
∩R2

)
. Consider the following path.

P ′ = (π1, . . . , πh1) ⌢ µ(sh1) ⌢ (πh1+1, . . . , πh2)
. . .

⌢ µ(shi
) ⌢ (πhi+1, . . . , πhi+1) ⌢ µ(shi+1)

. . .

⌢ (πhℓ−1+1, . . . , πhℓ
) ⌢ µ(shℓ

) ⌢ (πhℓ+1, . . . , π|L|)

Then, P ′ is a shortest path and eccG(P ′) ≤ max{2, k}.

Proof. Clearly, P ′ is a shortest path.
Thanks to the way we chose sh1 , . . . shℓ

and from Lemma 28 we know that:

1. for every u ∈ U : dG(u, P ′) ≤ e(u) = dG(u, P ),

2. for every u ∈ V : dG(u, P ′) ≤ e(u) = dG

(
u, P \ (NG[u] ∩ V )

)
.

If u ∈ V and P ∩ (NG[u] ∩ V ) ̸= ∅, then dG(u, P ) ≤ 1. Because P contains at
least one vertex from U and all vertices in NG[u]∩ V form a clique, dG

(
u, P \

(NG[u] ∩ V )
)
≤ 2.

Clearly, if k ≥ 2, then we can use Lemma 29 to construct a shortest path
with eccentricity at most k. Now, we discuss the case when k = 1.
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Observation 19. If eccG(P ) = 1, then for every u ∈ U ∪ V : e(u) ≤ 2.

Proof. If u ∈ U , then either u ∈ L or u ∈ R1, and e(u) ≤ 1. For each u ∈ V ,
let v ∈ L be the nearest vertex to u on P from U . Because all vertices that
are connected in G[V ] form a clique, dG(u, v) ≤ 2, hence e(u) ≤ 2.

Corollary 4. If eccG(P ) = 1, then a path P ′ with eccG(P ′) ≤ 1 can be
constructed similarly as in Lemma 29 but for each candidate set Ci which
contains some pair (x, y) ∈ V 2 such that there is a neighbor z ∈ V of x (and
of y, they are twins in G[V ]) with e(z) = 2, removing every (u, v) ∈ V 2 such
that z is not a neighbor of u (and v) from Ci.

Proof. For any Ci, if any of the removed pairs were selected into P ′, then the
distance of z to P ′ would be dG(z, P ′) = 2 and therefore eccG(P ′) > 1.

We have shown how to construct a shortest path with eccentricity at most k
by solving the CSC problem, even if k = 1. Finally, we observe that such a
path can be constructed even if one or both of its endpoints are in V .

Observation 20. If P has an endpoint s ∈ V , its neighbor t ∈ P might also
be in V . Let P = (s, t, . . .). Similarly as in Observation 8, we may obtain P ′

with eccG(P ′) ≤ k by removing Ψ(s) (and Ψ(t) if t ∈ V ) from R, finding
sh1 , . . . , shℓ

by solving the CSC, and preprending s (and t if t ∈ V ) to P ′.

We propose Algorithm 6 to solve the MESP problem. It is very similar to
Algorithm 5 from Section 3.4. Before presenting the pseudocode, we list the
only four differences.

1. The distance between each πi and πi+1 may be not only 1 or 2, but
also 3. Thus, the candidate sets Ch1 , . . . , Chℓ

are not sets of individual
vertices, but sets of pairs of vertices instead. If dG(πi, πi+1) = 2, then
each pair in Ci contains the same vertex twice.

2. If the desired eccentricity k is 1, there is a special condition that the
candidate pairs must satisfy (see Corollary 4).

3. The CSC requirements are still vertices from U that need to be at some
distance from P . However, they are further separated into two distinct
subsets: R1 (vertices at distance 1 from P ) andR2 (vertices at distance 2
from P ). The Ψ function is updated accordingly.

4. All combinations must be tried not only for the first and last vertex
on P , but also for the second and second-to-last, as all of these may be
in V .
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Algorithm 6: FPT Distance to Cluster
Input: graph G = (U ∪ V, E) with modulator to cluster U

1 foreach (L̄, π̄, R̄) : L̄ ⊆ U, π̄ is a permutation of L̄, R̄ = R̄1 ∪ R̄2 ⊆ (U \ L̄)
do

2 ℓ← 0
3 for i = 1, ..., |L̄| − 1 do
4 if {π̄i, π̄i+1} /∈ E then
5 if dG(π̄i, π̄i+1) = 2 then
6 Ci ←

{
(u, u) ∈ V 2 |

{
{π̄i, u}, {u, π̄i+1}

}
⊆ E

}
7 else
8 Ci ←

{
(u, v) ∈ V 2 |

{
{π̄i, u} , {u, v}, {v, π̄i+1}

}
⊆ E

}
9 if k = 1 then

10 K ←
{
z ∈ V | e(z) = 2 ∧ ∃(x, y) ∈ Ci : {x, z} ∈ E

}
11 Ci ← Ci \

{
(u, v) ∈ Ci | ∃z ∈ K : {u, z} /∈ E

}
12 ℓ← ℓ + 1
13 hℓ ← i

14 if dG(π̄1, π̄|L̄|) ̸=
∑|L̄|−1

i=1 dG(π̄i, π̄i+1) ∨ ∃i ∈ {h1, . . . , hℓ} : Ci = ∅ then
15 continue to the next (L̄, π̄, R̄)
16 let sh1 , . . . , shℓ

be the solution of CSC for: requirements R̄,
candidates C = Ch1 ∪ . . . ∪ Chℓ

, and
Ψ(u, v) = NG(u) ∪NG(v) ∪

((
N2

G[u] ∪N2
G[v]

)
∩R2

)
17 if such a solution exists then
18 P ← empty sequence
19 for i = 1, . . . , |L̄| − 1 do
20 P ← P ⌢ π̄i

21 if {π̄i, π̄i+1} /∈ E then
22 P ← P ⌢ µ(si)

23 foreach t̄ ∈ NG[π̄1], s̄ ∈ NG[t̄], ū ∈ NG[π̄|L̄|], v̄ ∈ NG[ū] do
24 if dG(s̄, v̄) ̸= dG(s̄, t̄) + dG(t̄, π̄1) + dG(π̄1, π̄|L̄|) + dG(π̄|L̄|, ū) + dG(ū, v̄)

then continue
25 P ′ ← P
26 if t̄ ̸= π̄1 then P ′ ← (t̄) ⌢ P ′

27 if s̄ ̸= t̄ then P ′ ← (s̄) ⌢ P ′

28 if ū ̸= π̄|L̄| then P ′ ← P ′ ⌢ (ū)
29 if v̄ ̸= ū then P ′ ← P ′ ⌢ (v̄)
30 if eccG(P ′) ≤ k then
31 return P ′

32 A shortest path with eccentricity at most k does not exist.
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Lemma 30. Algorithm 6 finds a shortest path with eccentricity at most k if
one exists, and reports if it does not exist.

Proof. The proof is very similar to the proof of Lemma 17. If a shortest path P
with eccG(P ) ≤ k exists, let s be the first vertex on P , t the second vertex
on P , u the next-to-last vertex on P , and v the last vertex on P . There will
be an iteration of the foreach-loop on line 1 in which (L̄, π̄, R̄) = (L, π,R), as
well as iterations in which R̄ equals R without the requirements satisfied by
any combination of s, t, u, and v. By Lemma 29 and Observation 20, there will
be a solution of the CSC for some of the combinations (depending on which of
s, t, u, v are in V ). Then, there will be an iteration of the foreach-loop on line
23 in which s̄ = s, t̄ = t, ū = u, and v̄ = v. By Corollary 4, in this iteration
the path P ′ will have eccG(P ′) ≤ k, even if k = 1.

If the algorithm finds a solution, it is a shortest path thanks to the check
on line 14, and its eccentricity is at most k thanks to the check on line 30.

Lemma 31. Algorithm 6 runs in O(24uu!u · n6) time for u = |U |.

Proof. The foreach-loop on line 1 has at most O(4uu!) iterations. The for-
loop on line 3 has at most O(u) iterations and lines 4–13 can be implemented
in O(n + m) time. The CSC on line 16 can be solved by Algorithm 3 in
O(22uun2) time as |R| ≤ u and |C| ≤ n2. Lines 17–31 can be implemented in
O

(
n4(n + m)

)
time.

3.7 Distance to Disjoint Paths
In this section, we present an FPT algorithm for the MESP problem pa-
rameterized by the distance to disjoint paths and the minimum eccentricity,
combined.

Lemma 32. The modulator to disjoint paths C of a graph G with distance
to disjoint paths c can be found in O

(
3c(n + m)

)
time.

Figure 3.6: Example of a graph with distance to disjoint paths 3. Vertices
from the modulator to disjoint paths are highlighted in blue.
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Proof. If the highest degree in G is at most 2, then G consists only of disjoint
paths and cycles, and the modulator to disjoint paths is a set of vertices
containing one vertex from each cycle. Thus, the modulator to disjoint paths
can be found in O(n + m) time by identifying all cycles with a depth-first
search.

If the highest degree in G is at least 3, then the modulator to disjoint
paths can be found by a simple branching rule.

1. Select any vertex u with degG(u) ≥ 3.

2. Either u ∈ C or some subset S ⊆ NG(u) of size |S| = degG(u)− 2 must
be in C.

For a given maximum distance to disjoint paths c, this yields the following
time complexity recursion.

T (0) = O(n + m)
T (c) ≤ 3T (c− 1)

≤ 3cO(n + m)

We start by discussing some properties of graphs in which a shortest path P
with eccG(P ) ≤ k does exist.

Definition 28. Let P = (p1, . . . , p|P |) be a shortest path in G with eccG(P ) ≤
k. Let Ĉ = C ∪ {p1, p|P |}. Let L = P ∩ Ĉ. We denote π = (π1, . . . , π|L|) the
permutation/order of vertices from L on the path P . We define function
e(v) = dG(v, P ) for every v ∈ V .

Observation 21. For each consecutive pair of vertices πi, πi+1 ∈ L, there may
be multiple shortest paths connecting them, such that they do not contain any
other vertices from Ĉ. Exactly one of these shortest paths is contained in P
for each pair.

Proof. If there was some vertex from Ĉ between πi and πi+1 on P , then there
would have to be some πj between πi and πi+1 in π.

Definition 29. We say σ̄ is a candidate segment if it is a sequence of vertices
on some shortest path from πi to πi+1 excluding the endpoints πi, πi+1 and
σ̄∩Ĉ = ∅. We define Σ(πi, πi+1) as a set of all candidate segments σ̄ between πi

and πi+1. We denote Σ̃ =
⋃|L|−1

i=1 Σ(πi, πi+1) the set of all candidate segments
in G. We say that a candidate segment σ ∈ Σ̃ is a true segment if σ ⊆ P .

Intuitively, if we had the correct values of π, we would only need to select
the true segment out of each Σ(πi, πi+1) for i ∈ {1, . . . , |L| − 1}, in order to
construct the path P .
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To select the true segments, we will need the following function, which
estimates the distance from a vertex to the path P .

Definition 30 (estimate distance to P ). For a graph G = (V, E), a set of
vertices Ĉ ⊆ V and a function e : Ĉ → N we define de

G : V × 2Ĉ → N as

de
G(v, S) = min

s∈S
dG(v, s) + e(s).

Observation 22. If e corresponds to the shortest path P in G, then for
every v ∈ V : dG(v, P ) ≤ de

G(v, Ĉ). In particular, if de
G(v, Ĉ) ≤ k, then

dG(v, P ) ≤ k.

Proof. By definition, for any v ∈ V , there is some s ∈ Ĉ such that de
G(v, Ĉ) =

dG(v, s) + e(s) = dG(v, s) + dG(s, P ) and, from triangle inequality, dG(v, P ) ≤
dG(v, s) + dG(s, P ).

If we had the correct values for the permutation π of vertices from Ĉ
that are on P , we would still have to take care of those vertices v ∈ V with
de

G(v, Ĉ) > k, in order to solve the MESP problem. In particular, we would
have to choose a segment from each Σ(πi, πi+1) in a way that for every vertex v
with de

G(v, Ĉ) > k, there would be some chosen segment at distance at most k
from v. We express this more formally in the following definition.

Definition 31. A candidate segment σ̄ ∈ Σ̃ satisfies v ∈ V \Ĉ if the following
inequality holds.

dG(v, σ̄) ≤ k < de
G(v, Ĉ)

We continue by showing that the number of vertices v with de
G(v, Ĉ) > k

which do not lie on P is bounded by the size of L.

Lemma 33. Let σ̄ ∈ Σ̃ be a segment and D = {v ∈ V \ P | σ̄ satisfies v}.
Then |D| ≤ 2.

Proof. Let v ∈ D and u ∈ σ̄ be the nearest vertex to v on segment σ̄. There
is a shortest path from u to v which does not contain any vertex from Ĉ (if
it did, then de

G(v, Ĉ) = dG(v, P ) ≤ k). Because G \ C is a union of disjoint
paths and it contains the whole segment σ̄ as well as the path from u to v,
these two paths must be connected through their endpoints. Neither of the
endpoints is in C, so no more than two such connections can be present in G.
(see Figure 3.7)

Corollary 5. Let U = {v ∈ V \ P | de
G(v, Ĉ) > k}. There are |L| − 1 true

segments, therefore |U | ≤ 2(|L| − 1).

We have shown that there are not many vertices v /∈ P with de
G(v, Ĉ) > k.

Now, we show that all such vertices actually have de
G(v, Ĉ) = k + 1.
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πi πi+1

u u′

v v′

Figure 3.7: Example of a situation from Lemma 33. Segment σ̄ is highlighted
in blue and D = {v, v′}.

Lemma 34. Let v ∈ V : de
G(v, Ĉ) ≥ k + 1. Let u ∈ P be the nearest vertex

to v on P . Then either u = v, or dG(u, v) = k and dG(u, Ĉ) = 1.

Proof. If v ∈ P , then the nearest vertex on P is itself, so u = v. Suppose
that v /∈ P (see Figure 3.8). There is no vertex from Ĉ on any shortest path
between v and u (otherwise de

G(v, Ĉ) ≤ dG(v, u) ≤ k). In particular, u /∈ Ĉ,
therefore, u has exactly 2 neighbors on P . It also has at least one neighbor
outside of P , through which it is connected to v. In G \ Ĉ, u must have at
most 2 neighbors, thus at least one of its neighbors on P is in Ĉ. Because
L = P ∩ Ĉ, we get dG(u, L) = 1. Then, from

k + 1 ≤ de
G(v, Ĉ) ≤ dG(v, u) + dG(u, L) = dG(v, u) + 1 ≤ k + 1,

we get dG(v, u) = k.

πi πi+1 πi+2

u

v

w

k k

Figure 3.8: Example of a situation from Lemma 34. Path P is highlighted
in red. Candidate segments are highlighted in blue. Clearly, the segment
containing vertex u satisfies v. If all the dashed parts are present in G, then
the segment containing vertex w also satisfies v.
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Let v ∈ V \P : de
G(v, Ĉ) = k +1 and S ⊆ Σ̃ be a set of candidate segments

that satisfy v. As shown in Figure 3.8, there may be multiple such candidate
segments in S. However, we observe that if v itself lies on some candidate
segment, then only those candidate segments in the same Σ(πi, πi+1) may
satisfy v.

Observation 23. Let σ̄ ∈ Σ(πi, πi+1) be a candidate segment that contains
some vertex u such that de

G(u, Ĉ) = k + 1. Let u′ ∈ P be the nearest vertex
to u on P . Then u′ lies on a true segment σ ∈ Σ(πi, πi+1).

Proof. If u′ ∈ L, then de
G(u, Ĉ) ≤ dG(u, u′) ≤ k. If σ /∈ Σ(πi, πi+1), then P

would not be a shortest path because dG(u, u′) ≤ k < k+1 ≤ dG(u, {πi, πi+1}).

We already know that if a candidate segment contains some vertex v with
de

G(v, Ĉ) > k + 1, then it must be a true segment. Now, we show another
sufficient condition for a candidate segment to be a true segment.

Lemma 35. Let σ̄ ∈ Σ(πi, πi+1) be a candidate segment that contains some
vertices u, v ∈ σ̄ such that u ̸= v and de

G(u, Ĉ) = de
G(v, Ĉ) = k + 1. Then, σ̄ is

a true segment.

Proof. Suppose that σ̄ is not a true segment and let σ ∈ Σ(πi, πi+1) be a true
segment. By Lemma 34 there must be some vertices u′, v′ ∈ P with dG(u, u′) =
dG(v, v′) = k. By Observation 23, both u′ and v′ are in σ. No shortest
path between u and u′, contains any vertex from Ĉ (otherwise de

G(u, Ĉ) ≤
dG(u, u′) = k). The same applies for any shortest path between v and v′.
Thus, in G \ Ĉ, u is connected to v, v is connected to v′, v′ is connected to u′,
and u′ is connected to u. Due to the length constraints, all these paths are
disjoint (except for their endpoints). There is a cycle in G \ Ĉ, which is a
contradiction with C being a modulator to disjoint paths.

Let us summarize what we have shown so far.
If we had the correct values for the permutation π of vertices from Ĉ that

are on P , we would only need to select the true segment out of each Σ(πi, πi+1)
to find a shortest path with eccentricity at most k.

There are some vertices u ∈ V such that de
G(u, Ĉ) ≤ k and for these

vertices, the distance to the resulting path will be at most k, no matter which
segments we choose.

A segment which contains some vertex v with de
G(v, Ĉ) > k + 1 must be a

true segment. A segment which contains two vertices u ̸= v with de
G(u, Ĉ) =

de
G(v, Ĉ) = k + 1 must be a true segment as well.

For the remaining segments, we know that for every u ∈ V with de
G(u, Ĉ) >

k, the shortest path with eccentricity at most k needs to contain some σu ∈ Σ̃
such that dG(u, σu) ≤ k. Furthermore, for every v ∈ Ĉ with dG(v, L) > e(v) ,
the path needs to contain some σv ∈ Σ̃ such that dG(v, σv) ≤ e(v).
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Clearly, the problem of selecting one true segment out of each set of can-
didate segments is an instance of the CSC problem: the sets of candidates
are C = Σ(π1, π2) ∪ . . . ∪ Σ(π|L|−1, π|L|), the requirements are R = {v ∈
V \ Ĉ | de

G(v, Ĉ) > k} ∪ {v ∈ Ĉ \ L | dG(v, L) > e(v)}, and the function
Ψ(σ̄) = {v ∈ V \ Ĉ | σ̄ satisfies v} ∪ {v ∈ Ĉ \ L | dG(v, σ) ≤ e(v)}.

We know that the number of vertices outside of P that the true segments
can satisfy is bounded by the size of L. Furthermore, we know that if a segment
contains at least two vertices that need to be satisfied, then it must be a true
segment. Lastly, we know that if a segment from some Σ(πi, πi+1) contains one
vertex v with de

G(v, Ĉ) = k + 1, then only segments from the same Σ(πi, πi+1)
may satisfy v. Thus, all segments in Σ(πi, πi+1) that do not satisfy v may
be disregarded. By this, we ensure that v will be satisfied no matter which
segment is chosen, and v does not need to be added to the requirements R.
Hence, the requirements R do not need to contain any vertices from P , and
the size of R is bounded by the size of C.

In the following lemma, we show that we do not need to explicitly check
whether a segment contains some vertex v with de

G(v, Ĉ) > k + 1 to decide
that it is a true segment. This will simplify our pseudocode a bit.

Lemma 36. If a segment σ ∈ Σ̃ contains some vertex u such that de
G(u, Ĉ) >

k + 1, then it must also contain two vertices v, v′ such that de
G(v, Ĉ) =

de
G(v′, Ĉ) = k + 1.

Proof. Let s, t be endpoints of σ, thus de
G(s, Ĉ) = de

G(t, Ĉ) = 1. If there was
no v ∈ σ with de

G(v, Ĉ) = k + 1 between s and u, then there would have
to be some neighbors p, q ∈ σ such that de

G(p, Ĉ) > de
G(q, Ĉ) + 1. This is a

contradiction because clearly de
G(p, Ĉ) ≤ de

G(q, Ĉ) + 1 if p is a neighbor of q.
The same holds for v′ ∈ σ with de

G(v′, Ĉ) = k + 1 between u and t.

Finally, we propose an algorithm that solves the MESP problem. First,
we describe the main ideas informally, and then we present the pseudocode as
Algorithm 7.

The algorithm finds the correct values for L, π, and e(Ĉ \L) by trying all
possible combinations. For each combination, it performs the following steps.

1. For each πi, πi+1, check all candidate segments in Σ(πi, πi+1).

a) If there are any segments containing a vertex u such that de
G(u, Ĉ) =

k + 1, then we may disregard all candidate segments which do not
satisfy u.

b) After disregarding these segments, if there is only one candidate
segment left, it is a true segment. If there is no candidate segment
left, then no solution exists.

2. If there is a vertex v such that de
G(v, Ĉ) > k + 1, and it does not lie on a

segment that we have marked as true segment, then no solution exists.
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3.7. Distance to Disjoint Paths

3. Construct the set U of vertices v that are not contained in any segment
and have de

G(v, Ĉ) = k + 1. If |U | > 2(|L| − 1), then no solution exists.

4. Choose the rest of the true segments from all candidate segments (except
those disregarded in step 1) by solving the CSC problem, with require-
ments u ∈ Ĉ \ L whose distance to the parts of P selected so far is
greater than e(u), and all of U .

5. If the CSC has a solution, construct a path from π and from the cho-
sen candidate segments. If the resulting path is a shortest path with
eccentricity at most k, return it.

Lemma 37. Algorithm 7 finds a shortest path with eccentricity at most k if
it exists, and reports if it does not exist.

Proof. If a shortest path with eccentricity at most k exists, the values (L̄, π̄, ē) =
(L, π, e) will be found in some iteration of the foreach-loop on line 3.

By Observation 23, if there is a candidate segment containing some vertex
v with de

G(v, Ĉ) = k + 1, then the true segment from Σ(πi, πi+1) must sat-
isfy v. Thus, we may disregard all segments that do not satisfy v and line 9
is correct. If Ci does not contain any segment, then either there are no can-
didate segments in Σ(π̄i, π̄i+1) or there are some but none of them satisfies
all vertices in K. In either case, this implies that there is no solution for the
current configuration of (L̄, π̄, ē) and lines 10–11 are correct. If Ci contains
only one segment, it must be the true segment, thus lines 12–14 are correct.
If there are multiple segments to choose from, we will need to choose later by
solving the CSC. However, no matter which candidate segment from Ci we
choose, it will satisfy all vertices in K. Thus, lines 15–19 are correct.

From Lemma 34, if de
G(u, Ĉ) > k, then either u ∈ P or de

G(u, Ĉ) = k + 1.
However, if u ∈ P and de

G(u, Ĉ) > k + 1, then u lies on a candidate segment
which would have been chosen as some σi on line 13, because by Lemma 36 it
contains two vertices v, v′ with de

G(v, Ĉ) = de
G(v′, Ĉ) = k+1 and by Lemma 35,

u and u′ are not satisfied by any other segment. Thus, lines 22–23 are correct.
From Corollary 5 we know that lines 27–28 are correct.
We have shown that the segments σ̄i ̸= ⊥ are the true segments. Now, for

the resulting path to have eccentricity at most k, we need to satisfy dG(u, P ) ≤
e(u) for every u ∈ Ĉ \ L, and dG(u, P ) ≤ k for every u ∈ U . These are
vertices that do not lie on P , but the vertices on P nearest to them lie on
segments which have not been chosen yet. The constrained set cover solution,
as described on lines 29–30, chooses the rest of the segments exactly to satisfy
all these requirements.

Clearly, lines 31–32 are correct. We have shown that if a shortest path
with eccentricity at most k exists, the algorithm finds and returns it.

If the algorithm returns a path, it is clearly a shortest path with eccen-
tricity at most k, thanks to the check on line 31.
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Algorithm 7: FPT Distance to Disjoint Paths
Input: graph G = (V, E), modulator to disjoint paths C ⊆ V

1 foreach ā, b̄ ∈ (V \ C), ā ̸= b̄ do
2 Ĉ = C ∪ {ā, b̄}
3 foreach (L̄, π̄, ē) : L̄ ⊆ Ĉ, π̄ = (ā = π̄1, . . . , π̄|L̄| = b̄) is a

permutation of L̄, ē : (Ĉ \ L̄)→ {1, ..., k} do
4 S ← ∅
5 I ← L̄
6 ℓ = 0
7 for i = 1, . . . , |L̄| − 1 do
8 K ← {u ∈ V | ∃σ̄ ∈ Σ(π̄i, π̄i+1) : u ∈ σ̄ ∧ dē

G(u, Ĉ) = k + 1}
9 Ci ← {σ̄ ∈ Σ(π̄i, π̄i+1) | ∀u ∈ K : σ̄ satisfies u}

10 if Ci = ∅ then
11 continue to the next (L̄, π̄, ē)
12 else if |Ci| = 1 then
13 σ̄i ← the only segment in Ci

14 I ← I ∪ σ̄i

15 else
16 σ̄i ← ⊥
17 ℓ← ℓ + 1
18 hℓ ← i
19 S ← S ∪K

20 Ū ← ∅
21 foreach v ∈ V \ (Ĉ ∪ S ∪ I) do
22 if dē

G(v, Ĉ) > k + 1 then
23 continue to the next (L̄, π̄, ē)
24 else if dē

G(v, Ĉ) = k + 1 then
25 Ū ← Ū ∪ {v}
26 ē(v)← k

27 if |Ū | > 2(|L̄| − 1) then
28 continue to the next (L̄, π̄, ē)
29 let σ̄h1 , . . . , σ̄hℓ

be the solution of CSC for:
requirements R =

{
u ∈ (Ĉ \ L̄) ∪ Ū | dG(u, I) > e(u)

}
,

candidates C = Ch1 ∪ . . . ∪ Chℓ
,

and Ψ(σ̄) =
{
u ∈ R | dG(u, σ̄) ≤ ē(u)

}
30 P := (π̄1) ⌢ σ̄1 ⌢ (π2) ⌢ . . . ⌢ (π̄|L̄|−1) ⌢ σ̄|L̄|−1 ⌢ (π̄|L̄|)

31 if dG(π̄1, π̄|L̄|) =
∑|L̄|−1

i=1 dG(π̄i, π̄i+1) ∧ eccG(P ) ≤ k then
32 return P

33 A shortest path with eccentricity at most k does not exist.
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Lemma 38. Algorithm 7 runs in O(25cc!kcc2 · n4) time for c = |C|.

Proof. The distances between all pairs of vertices can be precomputed in
O(n3) time. The foreach-loop on line 1 will have at most O(n2) iterations.
The foreach-loop on line 3 will have at most O(2cc!kc) iterations. The for-loop
on line 7 will have O(c) iterations. The set K on line 8 can be constructed
in O(n + m) time. Because of Lemma 35, at most two vertices need to be
stored in K for each candidate segment. Thus, by Lemma 33, each segment
will satisfy at most four vertices from K (two lying on the segment, and two
outside the segment). If |K| > 4, Ci may be set directly to ∅. Otherwise, Ci

can be constructed in O(n + m) by iterating over all vertices in all the candi-
date segments and checking at most 4 conditions for each vertex. Line 14 can
be implemented in O(n) time. Lines 10–13 and 15–19 can be implemented in
constant time. The foreach-loop on line 21 will have at most O(n) iterations.
Lines 22–26 can be implemented in O(c) time. Lines 27–28 can be imple-
mented in constant time. The CSC on line 29 can be solved by Algorithm 3
in O(24cc2) time as |C| = O(c) and

|R| ≤ |(Ĉ \ L̄) ∪ Ū |
= |Ĉ| − |L̄|+ |Ū |
≤ |Ĉ| − |L̄|+ 2(|L̄| − 1)
= |Ĉ|+ |L̄| − 2
≤ (c + 2) + (c + 2)− 2
= 2c + 2.

The check on line 31 can be implemented in O(n + m) time.
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Chapter 4
Implementation and

Measurements

We have implemented the FPT algorithm parameterized by the distance to
disjoint paths and minimum eccentricity (Algorithm 7). We ran the program
on some larger graphs with a small distance to disjoint paths and experi-
mentally concluded that thanks to our algorithm, the MESP problem is now
tractable even on graphs with hundreds of vertices.

4.1 Implementation
The implementation consists of two main programs: mesp—an implementa-
tion of Algorithm 7 which takes a graph and a modulator to disjoint paths as
input and solves the MESP problem, and paths—an implementation of the
branching algorithm from Lemma 32 which finds the modulator to disjoint
paths. A third program test served mainly for testing during active devel-
opment: it combines the first two programs, then runs on a number of small
graphs, and checks the resulting paths against provided expected eccentrici-
ties.

All three programs are implemented in the C++ 17 programming language
using the Boost 1.72 library, and are operated through a command-line in-
terface. All three programs measure their computation time and report it back
to the user along with other information. The current system time is read once
before the computation starts (the boost::chrono::system_clock::now()
function is used), and once after it ends. The computation time is obtained
by subtracting the initial time from the end time, and it is printed to the
standard output. Note that the initial system time is read after loading the
input, so the reported computation time is a bit less than the running time.

The mesp program also supports parallel execution for each combination
of start- and endpoints of the shortest path.
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4.2 Environment
The experiments were run on a virtual machine instance of the Google Com-
pute Engine. The VM configuration was: 8 virtual CPUs (Intel® Xeon® Sky-
lake @ 2.00 GHz), 30 GB RAM, operating system Debian 10 “buster”. The
program was compiled with the gcc compiler version 8.3.0 and with -Ofast
optimizations enabled. We allocated eight threads for the program so that all
the virtual CPUs were used up.

4.3 Datasets
Our goal was to evaluate the computation time of the program based on
the values of distance to disjoint paths and the resulting eccentricity. To do
this, we have created the Evaluation Dataset. Each graph in the dataset
was generated using the Python 3 programming language by performing the
following steps.

1. Generate p paths of length ℓ.

2. Generate c vertices (these will form the modulator to disjoint paths).

3. Generate e extra edges at random, such that at least one endpoint of
each edge is in the modulator to disjoint paths.

To generate the dataset, we used values p = ℓ = 23 and c ∈ {1, . . . , 6}. The
values p and ℓ are constant throughout the dataset to minimize the influence of
parameters other than the distance to disjoint paths and resulting eccentricity
on the running time. By changing the value of e, we aimed to control the
resulting eccentricity.

To verify that our choice for the values p and ℓ in the Evaluation Dataset
does not yield graphs with properties significantly different from what other
values of these parameters would yield, we have created the Comparison
Dataset. In this dataset, we have generated graphs the same way as in the
Evaluation Dataset, but with different values of p and ℓ. There are seven
graphs with p = 23 and ℓ ∈ {20, . . . , 26}, seven graphs with p ∈ {20, . . . , 26}
and ℓ = 23, and three graphs with p = 23 and a random path length (different
for each generated path).

We have also created the Miscellaneous Dataset, which contains several
larger graphs with random path lengths (generated similarly as the last three
graphs in the Comparison Dataset). Additionally, we have added one graph
on 101 vertices that was created manually to verify the correct handling of
some edge cases that sprang to our minds.

Furthermore, we have decided to show that the algorithm can even be
used for some real-world networks, and we have created a graph from the
2014 route map of the Taipei Mass Rapid Transit (MRT) [10]. Each vertex
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in the graph represents one MRT station, and each edge represents a direct
connection between two stations through some rail line. The graph does not
contain some small branch lines, such as the Xiaobitan branch line or the
Xinbeitou branch line. The graph is included in the Miscellaneous Dataset.

4.4 Results
The measurements performed on the Miscellaneous Dataset show that Algo-
rithm 7 is able to solve the MESP problem even for graphs with over 1,000
vertices. In comparison, a naive O(2n) approach that tries all subsets of ver-
tices would not be able to solve the problem even for graphs with 100 vertices.
The results are displayed in Table 4.1.

The Evaluation Dataset shows a direct dependence of the computation
time on the value of distance to disjoint paths c, as well as on the resulting
eccentricity k. The number of vertices remains nearly constant throughout
the dataset (between 553 and 558, depending on the value of c) while the
number of edges varies significantly. However, we can see that the changes in
the computation time are much smaller if the values of k and c remain fixed,
as opposed to when either of the values changes. Thus, the influence of c
and k on the computation time is more significant than the influence of the
number of edges, as was expected from the time complexity of the algorithm.
The results are displayed in Table 4.2.

The Comparison Dataset shows that slight changes in the values of p and ℓ
do not affect the computation time significantly. In comparison, slight changes
of the distance to disjoint paths or the resulting eccentricity affect the com-
putation time much more. The results are displayed in Table 4.3.

The computation times in Table 4.1, Table 4.2, and Table 4.3 are as mea-
sured by the mesp program (see Section 4.1), and rounded to the nearest
whole second. The running time of the paths program is not included as the
problem of finding the distance to disjoint paths was not a goal of this thesis.
Note, however, that even the simple algorithm we used is much faster than
the MESP algorithm itself, and the paths program finished in less than one
second for all graphs in our datasets.
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Table 4.1: Miscellaneous Dataset. Each row represents one graph with the
following properties, respectively: type of the graph, the total number of
vertices, total number of edges, distance to disjoint paths, eccentricity of the
resulting path, computation time.

Graph n m c k Time
Taipei MRT 105 113 8 11 178 h 5 m 58 s

generated 1,895 3,330 5 6 50 h 33 m 32 s
generated 565 701 5 11 46 h 11 m 53 s
generated 4,272 7,574 3 6 33 h 19 m 28 s
generated 1,228 2,172 6 5 15 h 18 m 36 s
generated 1,210 2,653 7 4 15 h 3 m 5 s
generated 2,265 4,316 4 4 3 h 24 m 2 s
generated 1,063 3,006 7 3 1 h 13 m 28 s

hand-made 101 126 10 3 8 m 37 s
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Figure 4.1: The Evaluation Dataset plot shows how the computation time t[s]
of the program depends on the distance to disjoint paths c and the resulting
eccentricity k. Note the logarithmic scale of the time axis. The plot was
created from the data in Table 4.2. For some combinations of c and k, there
are multiple values in the table. In such cases, the median computation time
is used in the plot.

44



4.4. Results

Table 4.2: Evaluation Dataset. The columns contain the following values,
respectively: the total number of vertices, total number of edges, number of
extra edges (as described in Section 4.3), distance to disjoint paths, eccentric-
ity of the resulting path, computation time in seconds.

n m e c k t[s]
558 929 400 6 6 52,003
558 954 425 6 5 13,751
558 979 450 6 4 2,632
558 1,029 500 6 4 1,522
558 1,079 550 6 4 1,776
558 1,129 600 6 4 1,640
558 1,229 700 6 3 515
558 1,329 800 6 3 188
558 1,429 900 6 3 294
558 1,529 1,000 6 3 395
558 1,629 1,100 6 3 399
558 1,729 1,200 6 2 12
558 1,829 1,300 6 2 11
558 2,429 1,900 6 2 23
558 3,529 3,000 6 2 44
558 3,629 3,100 6 1 1
557 1,029 500 5 6 8,740
557 1,044 515 5 5 1,836
557 1,054 525 5 4 548
557 1,079 550 5 5 1,932
557 1,129 600 5 4 469
557 1,229 700 5 4 801
557 1,329 800 5 4 924
557 1,429 900 5 3 196
557 1,529 1,000 5 3 179
557 1,629 1,100 5 3 225
557 1,729 1,200 5 2 10
557 1,829 1,300 5 3 249
557 1,929 1,400 5 2 12
557 2,529 2,000 5 2 22
557 3,029 2,500 5 2 32
557 3,129 2,600 5 1 1
556 779 250 4 6 889
556 829 300 4 5 413
556 929 400 4 5 407
556 1,029 500 4 4 209
556 1,129 600 4 4 186

n m e c k t[s]
556 1,179 650 4 3 64
556 1,229 700 4 2 68
556 1,329 800 4 2 67
556 1,429 900 4 3 90
556 1,529 1,000 4 2 8
556 2,529 2,000 4 2 23
556 2,629 2,100 4 2 26
556 2,729 2,200 4 1 1
555 829 300 3 6 221
555 929 400 3 5 138
555 1,029 500 3 4 80
555 1,129 600 3 4 89
555 1,229 700 3 4 88
555 1,329 800 3 3 44
555 1,429 900 3 2 13
555 1,529 1,000 3 2 9
555 2,029 1,500 3 2 15
555 2,129 1,600 3 1 1
554 729 200 2 7 72
554 779 250 2 6 73
554 829 300 2 5 37
554 929 400 2 4 24
554 1,029 500 2 3 16
554 1,129 600 2 3 19
554 1,229 700 2 3 37
554 1,329 800 2 2 6
554 1,429 900 2 1 8
554 1,529 1,000 2 2 9
554 1,629 1,100 2 1 1
553 729 200 1 7 20
553 779 250 1 6 18
553 829 300 1 5 14
553 929 400 1 4 10
553 954 425 1 3 13
553 979 450 1 2 5
553 1,029 500 1 2 4
553 1,079 550 1 1 1
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Table 4.3: Comparison Dataset. The columns contain the following values,
respectively: the total number of vertices, total number of edges, number of
paths, length of each path, number of extra edges (as described in Section 4.3),
distance to disjoint paths, eccentricity of the resulting path, computation time
in seconds. The dataset is divided into three sections: the first section contains
graphs with a variable number of paths and fixed path length; the second
section contains graphs with a fixed number of paths and variable path length;
the third section contains graphs with a fixed number of paths and each path
having a uniformly random length between 1 and 45.

n m p ℓ e c k t[s]
486 960 20 23 500 6 4 986
510 983 21 23 500 6 4 1,751
534 1,006 22 23 500 6 4 2,278
558 1,029 23 23 500 6 4 2,030
582 1,052 24 23 500 6 4 4,235
606 1,075 25 23 500 6 4 2,517
630 1,098 26 23 500 6 5 10,305
489 960 23 20 500 6 4 1,967
512 983 23 21 500 6 4 1,307
535 1,006 23 22 500 6 4 1,707
558 1,029 23 23 500 6 4 1,258
581 1,052 23 24 500 6 5 8,191
604 1,075 23 25 500 6 5 9,530
627 1,098 23 26 500 6 4 5,233
552 1,023 23 1–45 500 6 4 1,221
493 964 23 1–45 500 6 4 1,364
591 1,062 23 1–45 500 6 5 7,639
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Chapter 5
Conclusion

We have shown that the MESP problem is fixed-parameter tractable with
respect to the maximum leaf number, neighborhood diversity, distance to
cluster (and thus vertex cover and twin cover), and the combination of distance
to disjoint paths with the minimum eccentricity. We have implemented one of
the algorithms and shown that it can be used to find the minimum eccentricity
shortest path in reasonably large graphs.

An open question remains, whether the presented algorithms are asymp-
totically optimal (assuming the Exponential Time Hypothesis [11]). The nat-
ural next steps in the research of parameterized complexity of the MESP
problem would be to investigate the existence of FPT algorithms with respect
to the distance to disjoint paths alone, and with respect to other structural
parameters, such as tree depth.
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Appendix A
Acronyms

BFS breadth-first search

CSC constrained set cover

FPT fixed-parameter tractable

MESP minimum eccentricity shortest path

MRT mass rapid transit

VM virtual machine

XP slice-wise polynomial
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Appendix B
Contents of enclosed CD

The CD is also available online at http://mkucera.cz/bp.zip.

bin .......................................................... executables
mesp ........................................... the MESP executable
paths..................... the modulator to disjoint paths executable

datasets............................the datasets presented in this thesis
comparison..................................the Comparison Dataset
evaluation...................................the Evaluation Dataset
miscellaneous............................ the Miscellaneous Dataset

res..............................outputs for all graphs from the datasets
comparison......................outputs for the Comparison Dataset
evaluation.......................outputs for the Evaluation Dataset
miscellaneous ................ outputs for the Miscellaneous Dataset

src.........................................................source codes
impl..........................................implementation sources
text..............................XƎLATEX source codes of this thesis
gen.py.......................the script for generating random graphs

readme.txt.....................................CD contents description
thesis.pdf...............................the thesis text in PDF format
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