
doc. Ing. Jan Janoušek, Ph.D.
vedoucí katedry

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
děkan

V Praze dne 27. ledna 2020

ZADÁNÍ BAKALÁŘSKÉ PRÁCE
 Název: Implementace algoritmů vyhledávání v řetězcích s konstantní pracovní pamětí navíc

 Student: Jan Jirák

 Vedoucí: Ing. Jan Trávníček, Ph.D.

 Studijní program: Informatika

 Studijní obor: Teoretická informatika

 Katedra: Katedra teoretické informatiky

 Platnost zadání: Do konce letního semestru 2020/21

Pokyny pro vypracování

Nastudujte metody vyhledávání v řetězcích využívající při svém běhu pouze konstantní množství paměti
navíc podle [1].
Navrhněte v C++ datové struktury, které tyto algoritmy používají.
Implementujte algoritmy z [1] v C++ v Algoritmové knihovně [2] s využitím a případnou úpravou
dostupných datových struktur.
Otestujte implementaci pomocí Vámi vhodně generovaných náhodných řetězců a pomocí Vámi zvoleného
standardního korpusu testovacích řetězců.

Seznam odborné literatury

[1] Cantone, Domenico, and Simone Faro. “IT’S ECONOMY, STUPID!”: SEARCHING FOR A SUBSTRING WITH CONSTANT
EXTRA SPACE COMPLEXITY.
[2] T r á v n í č e k , J a n , P e c k a , T o m á š , e t . a l . A l g o r i t h m s L i b r a r y T o o l k i t . D o s t u p n é o n l i n e :
h t t p s : / / g i t l a b . f i t . c v u t . c z / a l g o r i t h m s - l i b r a r y - t o o l k i t

Bachelor’s thesis

Implementation of string searching
algorithms with constant extra space
complexity

Jan Jirák

Department of Computer science
Supervisor: Ing. Jan Trávńıček, Ph.D.

May 25, 2020

Acknowledgements

Thanks to everyone who helped me on my way.
In the first place, I wish to express my sincere thanks to my supervisor Ing.

Jan Trávńıček, Ph.D. for providing me every advice, guidance needed, and the
patience he had for me. I am also grateful to my family for encouraging me
while I was finishing this work and for all the kind environment they created
for me.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 25, 2020

Czech Technical University in Prague
Faculty of Information Technology
c© 2020 Jan Jirák. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Jirák, Jan. Implementation of string searching algorithms with constant extra
space complexity. Bachelor’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2020.

Abstrakt

Ćılem této práce je uvedeńı do problematiky přesného vyhledáváńı v řetězci
s požadavkem použit́ı pouze konstantńıho množstv́ı paměti. Práce se dále
zabývá implementaćı prob́ıraných algoritmů, které tento problém řeš́ı. Tyto
implementace budou integrovány do Algorithms Library Toolkit vyv́ıjeného
na FIT ČVUT v Praze. Implementace jsou založeny čistě na pseudokódech z
odkazované literatury.

Kĺıčová slova implementace algoritmů pro vyhledáváńı v řetězci, stringo-
logie, přesné vyhledáváńı, konstantńı pamět, Algorithms Library Toolkit

Abstract

The goal of this thesis is a theoretical introduction to searching in string exact
match with only constant space memory given. Next the thesis considers the
implementation of algorithms, which solve the problem. Algorithms will be
integrated into Algorithms Library Toolkit developed at FIT CTU in Prague,
where will be implemented based on pseudocodes from referred literature.

Keywords implementation of string-matching algorithms, stringology, ex-
act matching, constant space matching, Algorithms Library Toolkit

vii

Contents

Introduction 1

1 Theoretical part 3
1.1 Definitions . 3
1.2 Algorithms . 5

1.2.1 Not-So-Naive algorithm 6
1.2.2 The Dogaru algorithm 7
1.2.3 The Two-Way algorithm 8
1.2.4 The Galil-Seiferas algorithm 13
1.2.5 The Sequential-Sampling algorithm 17
1.2.6 The CGR algorithm . 19
1.2.7 The Quite-Naive algorithm 20
1.2.8 The Tailed-Substring algorithm 21

2 Implementation 25
2.1 Algorithm Library Toolkit . 25
2.2 Algorithms . 25
2.3 Usage . 26

3 Testing 27
3.1 Testing the correctness of implementation 27
3.2 Speed benchmarks . 27

Conclusion 31

Bibliography 33

A Acronyms 35

B Contents of enclosed CD 37

ix

List of Tables

1.1 Corresponding borders . 4

3.1 Rusults on a short pattern . 28
3.2 Rusults on a long pattern . 28

xi

Introduction

Given a text T and pattern P , the problem of finding all occurrences of P in
T is called string matching. String matching is the base of the whole scien-
tific field called stringology. In a lot of real-world situations string matching
is related. To mention a few areas as data compression, computer vision,
molecular biology, speech recognition, and others.

There exist a lot of variations of pattern matching, in this thesis, we will
consider only problem called exact matching, the problem, where you get text
and pattern, our task is to say whether the pattern occurs as a substring in
the text. Other problems like approximate matching or matching based on
regular expression will not be touched.

We will not only be looking for only exact matching algorithms that are fast
(with linear time complexity), but also with the memory economic solutions
(constant space complexity). We will show that it is not only possible to
achieve these results, but that some of these algorithms are in practical use
faster than algorithms with bigger memory consumption.

One question surely comes to your mind “Why to bother with the restric-
tion of constant memory?”. For this question are lots of answers. In this
time when Iot is getting big, there is a huge need for small embedded devices,
sometimes you just can’t afford to have linear memory.

The main goal of this bachelor’s thesis is to implement algorithms de-
scribed in the thesis [1]. We will understand the theoretical background, then
implement them. In the end we will test not only the correctness, but also
do some speed benchmarks to be able to compare their performance in use on
commons strings.

The second goal is to provide an understandable overview of the subject
effective constant space string matching algorithm, where no other resources
are needed.

In chapter 1 we start by introducing the basic definitions and properties
of the string, then we proceed right to the algorithms description with their
mathematical deduction. In chapter 2 we implement algorithms from chapter

1

Introduction

1 to Algorithmic Library Toolkit based on previously presented pseudocodes.
In chapter 3 we describe how was the implementation tested. In the appendix
you can find the content of the enclosed CD where you can find built ALT.

2

Chapter 1
Theoretical part

In this chapter we gradually build the theoretical foundation around stringol-
ogy and then apply it on specific algorithms mentioned in [1]. First we start
with some general properties of the string and then we will discuss all imple-
mented algorithms. In this section only pseudocode is considered.

1.1 Definitions

Let’s start with a few basic definitions. These definitions are defined according
to [2].

Definition 1.1.1. Let Σ be a finite set of symbols, then we call Σ an input
alphabet.

Example. Set of {0, 1}, UTF-8, greek alphabet, {a, b, c}.

Definition 1.1.2. String is a finite sequence over some alphabet Σ.

Example. “Hello” over {H, e, l, o}, “010011” over {0, 1}.

Definition 1.1.3. Let l be the number of characters in string s, then we call
l to be the lenght of s, the lenght of s is denoted by |s|.

Example. |Hello| = 5.

Definition 1.1.4. Empty string (string of the lenght 0) is denoted by ε.

Definition 1.1.5. Let s be a string over some σ, then we denote its i-th
position by s[i] and we denote by s[i..j] the factor s[i+ 1]s[i+ 2]...s[j] of s.

Example. Let s be Hello, then s[2..4] = ll and s[2] = e.

Definition 1.1.6. Word x is an factor of y iff exist i such that x = y[i..i+m],
where m is length of x. We say that x occurs on position i in y.

3

1. Theoretical part

Definition 1.1.7. Lexicographical order is a way of ordering strings based
on ordered alphabets of the string. We define that for strings x and y, x < y
iff ∃i, such x[i] < y[i] and ∀j, 1 ≤ j < i holds, that x[j] = y[j]. If the two
strings are not of the same lenght, then we artificially append characters $ to
end of the shorter string, such that ∀α ∈ Σ holds, that $ < α.

Definition 1.1.8. Let pattern and text of lengths m,n be two strings over
the same alphabet. String matching is problem of deciding whether pattern
occurs in text. Another version of this problem is its extencion from simple
decidibility problem to problem, where you also have to report all occurences
of pattern in text.

Definition 1.1.9. Let’s say we have an text y and pattern x, if the characters
x[i] are aligned with y[s+ i], where i ∈ {1, ...,m}, we denote this alignment as
shift of x in y. If x = y[s..s+m− 1], we say that shift s is valid.

All string matching related algorithms rely on some mathematical proper-
ties of string, now we define a few such key properties.

Definition 1.1.10. Period of a string s is a number p, 1 ≤ p ≤ |s|, such
that s[i] = x[i + p] for all i ∈ {1, ..., |s| − p}. We denote by period(s) the
smallest period of s. If period(s) ≤ |s|2 , then we say that s is periodic otherwise
nonperiodic.

Example. Let s = abcabcabcabc, then all the periods of s are 3, 6, 9, 12,
period(s) = 3.

Definition 1.1.11. Border of a string s is a substring that is simultaneously
a prefix and suffix of s. Note that ε and whole s are also borders of s. We
denote by Border(s) the longest nontrivial border of s.

Example. Take s from previous example, then borders are abcabcabcabc, abcabcabc, abcabc, abc, ε.
Border(s) = abcabcabc.

Remark. Have you noticed the correlation between borders and periods? It
is obvious that border is dual version of period. To every period corresponds
border with lenght of s− p. From previous two examples:

Period Border
3 abcabcabc
6 abcabc
9 abc
12 ε

Table 1.1: Corresponding borders

4

1.2. Algorithms

Lemma 1.1.1. Periodicity lemma Let p and q be two periods of the string
x. If p+ q < |x|, then gcd(p, q) is also a period of x.

Proof. If p = q the conclusion is trivially satisfied. W.l.o.g. let us assume that
p > q. We show that condition p+ q < |x| implies that p− q is also period of
x. Let i be some position in x, then either 1 ≤ i− q or i+ p ≤ |x|. In the first
case x[i] = x[i−q] = x[i+p−q], in the second case x[i] = x[i+p] = x[i+p−q],
so p − q is also period of x. Rest of the proof is only showing the property
that gcd(p, q) = gcd(p− q, q) and using this in proper induction.

Definition 1.1.12. Let x be a string and l be an integer such that 0 ≤ l ≤ |x|,
then an integer r is called local period of x at position l iff x[i] = x[i+r] for all
i such that 1–r+1 < i < 1 and such that both sides of the equality are defined.
The local period of x at position l is the smallest local period at position l. It
is denoted r(x, l).

Definition 1.1.13. String z is a prefix period of w if it is basic and zk is a
prefix of w.

Definition 1.1.14. Let w be some string, then we define reach for p ≤ |w| as

reachw(p) = max(q ≤ |w||[0, p]wisaperiodof [0, q]w)

.

1.2 Algorithms

A lot of string matching algorithms use some kind of pattern preprocessing.
They create shift tables, which are used for computing minimal safe shift
increments, that algorithm can perform in every step. Mostly used algorithms
like Knuth–Morris–Pratt or Boyer–Moore, compute these tables in linear time
and space, but for our purposes that not enough.

Next presented algorithms use all only constant space. They achieve that
either by computing the table entry on the run, or by using some properties of
string. Take into consideration that not all of the next algorithms are exactly
running in the worst case in linear time, but in practice they are often shown
as really fast.

The first six of these algorithms in this section are not designed by the
authors of [1], the last two are.

In the following material we denote the text by y and pattern by x. The
length of the text y is denoted by n and the length of the pattern x is denoted
by m.

5

1. Theoretical part

1.2.1 Not-So-Naive algorithm

The Not-So-Naive algorithm is a little bit smarter version of the Naive algo-
rithm. Let us first introduce the Naive algorithm from [3].

Naive or Brute force algorithm checks all the position from 1 to n − m,
it start with position 1, naively checks whether x = y[1..m] and then shifts
his sliding window by 1 to the right. It runs in O(nm) and needs no pattern
preprocessing.

The Not-So-Naive works similarly, with the exception of two cases in
matching phase, where the shift can be advanced by two positions instead
of rigid one as seen in Naive. Cases:

1. Assume that x[0] 6= x[1] and x[0] = y[s] ∧ x[1] = y[s + 1]. When the
matching phase of shift s ends, we can safety advance shift s by two
positions. That is because x[0] 6= x[1] = y[s+ 1].

2. Assume that x[0] = x[1], then if we match x[0] = y[s] and next character
match fails (x[1] 6= y[s+1]), we can also advance shift s by two positions.

Not-So-Naive needs constant space and time preprocessing of |x|. On one side
it can run in worst case O(nm), but in practise is deemed as in average fast
algorithm. Note that comparisons are done in order 1, 2, ...,m− 1, 0.

Algorithm 1 Not-So-Naive
. Preprocess pattern

if x[0] = x[1] then . Case 2
k ← 2
ell← 1

else . Case 1
k ← 1
ell← 2

end if
while i ≤ n−m do

if x[1] 6= y[1] then
i += case

else
if Check the rest of positions then Report match
end if
i += ell

end if
end while

6

1.2. Algorithms

1.2.2 The Dogaru algorithm

Another very simple string matching algorithm is the Dogaru algorithm from
the article [4]. This is another algorithm, which uses no preprocessing and in
worst case run in O(nm).

It works similarly as the Naive algorithm, start searching in the text from
left to right. If the pattern is matched, the shift is advanced by one position.
However if lets say mismatch on position j between x[j] and y[s+ j] is found,
then algorithm searches for x[j] in y[s + j + 1]. If no occurrence of x[j] is
found, the algorithm terminates, else let’s say that the occurrence was found
on pos s′. Next algorithm naively checks left and right side of s′, whether
pattern starts on position s′ − j. If not search for x[j] is resumed on position
s′ + 1.

Algorithm 2 The Dogaru
i, j = 0
while j < m ∧ x[j] = y[i] do . Look for the match at pos 0

if j = m then
Report match
i = i−m+ 1
j = 0

end if
end while
while i ≤ n−m+ j ∧ x[j] 6= y[i] do . Look for pos[j]

i+ = 1
end while
Check naively position i− j for match, if found report match and go to first
while with i = i− j+ 1, j = 0, else go to second while and continue looking
for pos[j].

What is a little bit surprising is the fact that this algorithm does not find
all occurrences of pattern. It is caused, because when the algorithm finds a
valid shift in the text, it advances the window by the whole m. For example
if you take x = aa and y = aaaaaa, it finds a match at position 1 and then
skip position 2. If m would be replaced by the 1, the algorithm would find all
occurrences.

Example. x = abc, y = abcabbbbcabcaa
abcabbbbcabcaa
abc match

ab? mismatch at c
abc mismatch at a looking for next c

abc match

7

1. Theoretical part

1.2.3 The Two-Way algorithm

In this section we will propose another algorithm, which has the following
properties. It is linear in time O(|y| + |x|) and maximum number of com-
parisons is 2|y|+ 5|x|. Only constant memory is needed. This algorithm was
designed in [5].

Let l be critical position (will be explained later in this section), then
x = xlxr where xl is prefix of x and |x| = l. Searching for position t in y,
where x begins takes two phases. In the first phase algorithms compares y
with xr from left to right, if succesful then compares rl from right to left. In
case of mismatch in xr, sliding window is shifted by k, where k is number
of characters matched in xr. In case of mismatch in xl, shift of per(x) is
performed. In case of full match, also shift of per(x) is performed.

More formal description is given in pseudocode 3. The meaning of used
variables pos, i, j, s is following. Pos is the position in y at which match is
tested, i is an index in xr, j is an index in xl and s is a length of matching
prefix of pattern with text. s is used in order to not check some comparisons
again, when shift is performed as a result of mismatch in xl.

Algorithm 3 Two-Way
1: per = per(x) and l < per is a critical position, both previously computed.
2: pos←= 0, s← 0
3: while pos+ |x| ≤ |y| do
4: i← max(l, s)
5: while i < |x| ∧ x[i] = y[pos+ i] do i← i+ 1
6: end while
7: if i ≤ |x| then . Mismatch in xr
8: pos← pos+max(i− l, s− p+ 1)
9: s← 0

10: else . Match of xr, check xl
11: j ← l
12: while s < j ∧ x[j] = y[pos+ j] do j ← j − 1
13: end while
14: if j ≤ s then report match at pos
15: pos← pos+ per
16: s← |x| − per
17: end if
18: end if
19: end while

In order to be able to understand how Two-Way algorithms works, first
we have to build some theory. Let’s start by introducing the concept of self-
maximal suffixes.

8

1.2. Algorithms

Definition 1.2.1. Let x be a string over alphabet Σ, then we denote by
MaxSuf(x), the lexicographically maximal suffix of x. We say that x is self-
maximal iff MaxSuf(x) = x.

Definition 1.2.2. Factorization of a string x is any pair (u, v), such that
x = uv.

Theorem 1.2.1. Critical factorization theorem says, that for each string
x there exists a postion l, 0 ≤ l < per(x) such that

r(x, l) = per(x).

Position l such that r(x, l) = per(x) is called a critical position of x.

Example. Let x = abaabaa, per(x) = 3 and it has three critical positions
2, 4, 5. Note that for the rest positions, there is alway smaller local period that
3.

Lets now prove that algorithm 3 finishes in finite time and outputs correct
results.

The algorithm will finish in finite time, because every run of the while
statement at line 3 increments pos by a positive number. Either line 8 or line
15 in this while is executed and per(x) > 0 ∧ i− l > 0.

Now we should prove the correctness of the algorithm, but we will just
refer the curious reader to the original article [5]. The second way to prove
this is by using properties of maximal suffix from [2] and showing that the
shifts are correct.

Next we need to prove it’s linearity, so we will show that the algorithm 3
runs in 2|y| when we have the factorization x = xlxr already precomputed.

First we prove, that every comparison done at line 3 strictly increases the
value of pos+ i. This is obvious if the letters x[i] and y[pos+ i] coincide and
i < |x|. If letters coincide but x[i] is the last character of x, variable i is
increased and at line 15 pos is increased by per and variable i is decreased by
at most per, because of s at line 4. If mismatch occurs in the right part of
the pattern, let i′ be the value of the variable i, when this occurs. Then the
variable pos is increased by at least i′ − l at line 8 and the variable i is in the
next run of the loop decreased at most i′ − l − 1 at line 2. So the number of
comparisons at line 3 is at most |y| − |xl|, because initial value of pos + i is
|xl|+ 1 and last value is |y|.

Secondly we take a look at line 12, where xl is being compared. Because
in at most |xl| steps will be performed shift of length per and variable per is
more than |xl|, at most |y| comparisons are performed here.

This implies that the maximum number of character comparisons is 2|y|.
Now let’s take a look at the proof of theorem 1.2.1. This proof is mentioned

here, because it will give us a method, how to practically compute the critical
factorization. We will use proof using maximal suffixes of a string.

First we need to know following lemma.

9

1. Theoretical part

Lemma 1.2.1. Let v be the alphabetically maximal suffix of x and let x = uv.
Then no nonempty string is both a suffix of u and a prefix of v. In other
words, the string uv does not overlap.

Proof. We will use the proof by contradiction. By the definition v is the
maximal suffix of x and w to be the both a suffix of u and a prefix of v. We
can denote v = wt. From the equation wv < v we get wwt < wt, so if we
omit starting w, we get wt < t = v < t, that leads to contradiction if w is
nonempty string, because then t is some shorter maximal suffix of x.

Lemma 1.2.2. For the orderings ≤ and ⊆, we have

w ≤ w′ ∧ w ⊆ w′

iff w is a prefix of w′.

Now we can prove the theorem.

Theorem 1.2.2. Let ≤ be an alphabetical ordering and let ⊆ be the alpha-
betical ordering obtained by reversing the order ≤ on Σ. Let x be a nonempty
string on Σ. Let v (resp., v′) be the alphabetically maximal suffix of x ac-
cording to the ordering ≤(resp., ⊆). Let x = uv = u′v′.

If |v| ≤ |v′|, then (u, v) is a critical factorization of x. Otherwise, (u′, v′)
is a critical factorization of x. Moreover, |u| < per(x) and |u′| < per(x).

Proof. In the case that x is a power single letter(case with per(x) = 1) any
factorization is critical.

Lets now assume w.l.o.g. that |v| ≤ |v′|. First let us prove that u 6= ε. If
u = ε, then we have x = v = v′. This means, that per(x) = 1 and this case
was already resolved.

Let r be the local period at (u, v). Thanks to 1.2.1 we cannot have r ≤
|u| ∧ r ≤ |v|, parts u and v would overlap. Since v is alphabeticaly maximal,
it cannot be a factor of u, so r > |u|, else v would be foctor of u. Let z be
the shortest string such that v is a prefix of zu or zu is a prefix of v. Then,
r = |zu|. We now distinguish two cases according to r > |v| or r ≤ |v|.

Case r > |v|: In this situation, by the definition of r, the string u cannot be
factor of v. The integet |uz| is a period of uv since uv is a prefix of uzuz.
The period of uz cannot be shorter than |uz|, because this quantity is
the local period at (u, v). Hence, per(uv) = |uz| = r. So factorization
(u, v) is critical.

Case r ≤ |v|: The string u is a factor of v. We only need to show that |zu|
is a period of x. Remember x = uv = u′v′ for orderings ≤ and ⊆. Let
u = u′u′′ and v = zuz′. By the definition of v′, the suffix u′′z′ of uv
satisfies

u′′z′ ⊆ v′ = u′′v

10

1.2. Algorithms

hence z′ ⊆ v. By the definition of v, we also have z′ ≤ v. By the
observations made at the beqinning of the proof, these two inequalities
imply that z′ is a prefix of zuz′. Hence, z′ is a prefix of a long enough
repetion of zu’s. Since x = uzuz′, this shows that uz is a period of x.

Now when we proved the theorem, we can reduce the computation of a
critical factorization to the computation of two maximal suffixes for ordering
≤ and ⊆. Such a computation of a critical factorization is sometimes called
magic decomposition.

The only things left are the computation of per(x) and the computation
of maximal suffixes for orderings ≤ and ⊆.

We will now describe an algorithm for computation of the maximal suffix
of a string, which is developed from its recursive version from [5]. For its
correctness take a look into its original.

Algorithm 4 Maximal suffix
i← 0, j ← 1, k ← 1, p← 1
while j + k ≤ n do

a′ ← x[i+ k], a← x[j + k]
if a < a′ then j ← j + k, k ← 1, p← j − i
end if
if a′ = a then

if k = p then j ← j + p, k ← 1
else k ← k + 1
end if

end if
if a > a′ then i← j, j ← i+ 1, k ← 1, p← 1
end if
return i, p

end while

Integer i is the starting position of current max(x) being tested, j is the
position of last occurence of rest(x) and p is period of max(x).

Theorem 1.2.3. The algorithm 4 uses on its run less than 2n character
comparisons, where n is the lenght of the input string.

Proof. We will show that expression i+j+k is increased after each comparison
between letters a′ and a at least by one. Since i ≤ n and j + k ≤ n + 1, we
have

2 ≤ i+ j + k ≤ 2n+ 1

which means that the number of comparisons is bounded by 2n.

11

1. Theoretical part

Lets prove now that i + j + k is increased after each comparison. We
distinquish three cases:

1. If a < a′, then i+ j + k is replaced by i+ j + k + 1.

2. If a = a′, then i+ j + k is replaced also by i+ j + k + 1.

3. If a > a′, then i+j+k is replaced by 2j+2, but since we have i+k ≤ j,
after adding j on both sides, we obtain i + j + k ≤ 2j, so i + j + k is
increased in this case at least by two.

Hence the proof is complete.

But how to compute the period of x. Sure we can use the Knuth-Morris-
Pratt algorithm, but that would spoil our so far constant space algorithm.
We will adjust our string matching algorithm, which will now use per(x) only
when the string x is periodic, if not we will present a simpler algorithm.

In the case, that per(x) ≤ x
2 (is is periodic), we use the algorithm, that

produces per(x) iff x is periodic, else lowerbound to per(x). It is based on
following theorem.

Theorem 1.2.4. Let (u, v) be the critical factorization of the string x such
that |u| < per(x). Let v = yez with e ≥ 1 and |y| = per(x), if |u| < |x|

2 and u
is suffix of y, then per(x) = per(v), otherwise per(x) > max(|u|, |v|).

Proof. If the condition |u| < |x|
2 is true, then the string x is a factor of ye+2.

Hence, |y| = per(v) is a period of x, and since the period of x cannot be less
than the period of v, we get per(x) = per(v).

If |u| ≥ |x|2 , then trivially holdsmax(|u|, |v|) = |u| and per(x) > max(|u|, |v|).
If |u| < |x|

2 and u is not a suffix of y. We show that there is no nonempty
string w such that wu is a prefix of x. We will show this by contradiction.
Assume that wu is a prefix of x. If w is nonempty, its lenght is a local period at
(u, v), and then |w| ≥ per(x) ≥ per(v). We cannot have |w| = p(v) because u
is not a suffix of y. We cannot either have |w| > per(v) because this would lead
to a local period at (u, v) strickly less than per(v), a contradiction. This proves
the assertion and also shows that the local period at (u, v) is strictly larger that
|v|. Since max(|u|, |v|) = v, we get the conclusion: per(x) > max(|u|, |v|).

We showed that, when our algorithm has |u| ≤ |x|
2 , then we can simply

we can simply use precomputed per(v) of 4 as our per(x). But what about
larger periods? In the case of a larger period we will use an easier algorithm,
that instead of shifting pattern by per(x) to the right, shifts only by q with
q ≤ per(x). When q is chosen well, the time complexity remains linear. How
to choose q is explained below.

12

1.2. Algorithms

Theorem 1.2.5. Let x and t be strings and let q be an integer such that
0 < q ≤ per(x). Then, the function POSITION-BIS, which uses both the
integer q and a critical position l such that l < per(x), computes the set of
position of x in t. If q > max(l, |x| − l) the number of comparisons executed
is at most 2|t|.

Note that function POSITION-BIS is not mentioned here. It is described
in the original article [5]. The only difference between this algorithm and
algorithm 3, is the change of shifts mentioned above.

Now we can finally describe the whole Two-Way algorithm. It is composed
of the two procedures. First is 3 in the case when l < |x|

2 and x[1..l] is a suffix
of x[l + 1..l + p]. Second is POSITION-BIS with q = max(l, |x| − l) + 1.
Proof that this combined algorithm works in linear time and constant space
is consequence of correctness the previous two algorithms.

1.2.4 The Galil-Seiferas algorithm

The base idea of this algorithm was firstly presented in [6], where authors de-
duced almost linear time hybrid algorithm from KMP. It was shown that this
algorithm for fixed k needsO(log(m)) memory space and runs inO(|x|ε(|x||y|))
for some small ε. They also showed that if we choose our k based on deliber-
ately designed function, memory consumption of this algorithm can be torn
down to only constant space, but at the cost of slowing down time complexity.

In [7] authors improve their previous algorithm with using string property
called prefix period and develop a constant space algorithm, which makes at
most 5n character comparisons with preprocessing in O(m).

Note that in this section we consider k to be some small fixed value, Galil
and Seiferas suggested k = 4, because the time complexity of is the algorithm
is proportional to k. In further text we will leave k to be unspecified to show
its role in the analysis.

Lot of string-matching algorithms uses following scheme 5. We will use
it as well. Variable p is position in text tested for a match, q maintains the
lenght of currently matched part of pattern (x[0, q] = y[p, p+ q]). Then next
p′ > p and q′ are computed, the shift is advanced. When q = |x|, valid shift
at position p is reported.

For example Naive algorithm computes p′ = p + 1, q′ = 0. To achieve
better performance, we need to use the knowledge that x[0..q] = y[p..p + q].
KMP uses this knowledge in a way, that he computes

shiftx(q) = min(shift > 0|x[shift..q] = x[0..q − shift])

, and then applies p′ = p+shiftx(q) and q′ = q−shiftx(q). The shift function
basically computes the shortest period of x[0..q].

13

1. Theoretical part

Algorithm 5 General scheme
(p, q)← (0, 0)
ploop:
while y[p+ q + 1] = x[q + 1] do q ← q + 1
end while
(p, q)← (p′, q′)
goto ploop

From this scheme we can easily deduce a hybrid algorithm, on which we
will build our theory.

Algorithm 6 Hybrid
(p, q)← (0, 0)
ploop:
while y[p+ q + 1] = x[q + 1] do q ← q + 1
end while
if q = 0 then (p, q)← (p+ 1, 0)
else if q > 0 ∧ shift(q) ≤ q/k then

(p, q)← (p+ shift(q), q − shift(q))
else if q > 0 ∧ shift(q) > q/k then

(p, q)← (p+ d qke, 0)
end if
goto ploop

Its correctness is obvious. In each step p is incremented at least by 1, hence,
it terminates, and no valid shift is skipped, because each advance performed
is smaller than shift(q) and it is (according to KMP) a smallest safe advance
we can perform.

Running time of 6 is O(k|y| + |x|, because the number (k + 1)p + q is
increased every step. So the time complexity is stricktly proporcional to k.

We also should mention the corollary of periodicity lemma which will be
later used in proofs.

Theorem 1.2.6. Distinct prefix periods of the same string differ in length by
at least a factor of k − 1. In fact, if w has a prefix period of length p1 and
a basic prefix of length p2 ≥ p1 with reachw(p2) = k′p2 for any k′ ≥ 2, then
p2 > (k − 1)p1.

Next two lemmas give together the notion of prefix period and occurence
of the first case shift(q) ≤ q/k.

Lemma 1.2.3. If shift(q) ≤ q
k , then x[0..shift(q)] is a prefix period of x.

Proof. Shift(q) is a shortest period of x[0..q] and because q ≥ k ∗ shift(q),
x[0..shift(q)] appers at least k-times in x[0..q] it is prefix period. If it would

14

1.2. Algorithms

not be basic, then there would be some shorter period, which is a contradiction.

Lemma 1.2.4. If x[0..shift] is a prefix period of x, then

shift = shift(q) ≤ q/k ↔ k ∗ shift ≤ q ≤ reach(shift)

.

Proof. The way → is trivial, all you need is to realize the definition of prefix
period and reach function. Backward implication ← is a little bit harder.
Lets prove it by contradiction. Consider two cases. If shift(q) > shift, then
this claims that shift(q) is the shortest period, hence, this could not happen,
because shift is also period and is shorter. If shift(q) < shift, this contradicts
the assumption that x[0..shift] is basic.

Now we will present decomposition theorem, which will give us an efficient
way how to use scheme 6 for constant space string-matching algorithm.

Theorem 1.2.7 (Decomposition theorem). Each pattern x has a parse x = uv
such that v has at most one prefix period and |u| = O(shiftv(|v|)).

In order to be able to prove the theorem, first, we need to prove following
lemma. This lemma will give us constructive proof which we will use in the
preprocessing.

Lemma 1.2.5. For each basic string w, there is a parse w = w1w2 such that,
no matter what w′ is, w2w

k−1w′ has no prefix period shorter that |w|.

Proof. To prove this lemma we will first show that w′ does not matter. By
the corollary 1.2.6 any prefix period shorter than |w| would have to be shorter
than |w|k . When we realize that |w|/(k − 1) ≤ (k − 1)|w|/k ≤ |w2w

k−1|/k, we
see that w′ is completely irrelevant because this shorter prefix is also a prefix
period of just w2w

k−1 for any choice of parse w = w1w2.
Now let’s assume the string w∞ and seek this parse in it. We will repeat-

edly delete prefixes z such that remainder of w∞ has a prefix zk and |z| < |w|.
Note that if this terminates, we have found our parse.

We claim that this sequence of deletions terminates. To show that we
need to prove that every deleted z′ is longer or of the same length as z deleted
before and no same |z| can loop forever. When z is deleted, then zk−1 remains
a prefix of the rest. By the periodicity lemma, z′k would have to be a prefix
of zz′ and also of zk. This is a contradiction, hence |z′| ≥ |z| or z′ = z. Since
the w is basic, the periodicity lemma implies that no same z will be deleted
forever. Hence, the termination of the sequence is guaranteed.

Further, we will use a stronger version of this lemma that claims Not even
one full |w| gets deleted. Proof is omitted.

15

1. Theoretical part

Proof of Decomposition theorem. We will prove this theorem by the construc-
tion of such decomposition. Consider this algorithm which produces v =
x[s..|x|], also called perfect factorization.

Algorithm 7 Perfect factorization
s← 0
while x[s..|x|] has more than one prefix period do

p2 ← a second shortest period
Find s′ such x[s′..|x|] has no prefix period shorter than p2
s← s′

end while

By the lemma 1.2.5 the algorithm is correct. Its property that |u| =
O(shiftv(|v|)) remains to be proved. We will just refer our reader to [7]
where the proof by induction is completed.

If we would somehow find an algorithm that computes such decomposition
in linear time, we get a linear time algorithm with constant space memory. To
show that consider our scheme 6. We use this scheme to find all occurrences
of v in text. If v has no prefix period then first case shift(q) < q/k never
happens and (p, q) ← (p + d qke, 0) all the time. If v has a prefix period (note
that it could not have more that one due to Decomposition theorem), then the
first case occurs only when kp1 ≤ q ≤ reach(p1) according to lemmas 1.2.3
and 1.2.4.

Time complexity of searching for every occurence of v is O(|v| + |y|) as
shown earlier. Then the algorithm naively check whether there is an occurence
of u before every v. Since v can occur at most |y|/shiftv(|v|) in a text y and
|u| = O(shiftv(|v|)), hence, the total number of charecter comparisons while
searching for u will be O(|u|)|y|/shiftv(|v|) = O(|y|).

Complete complexity of these two checks is O(|x|+ |y|).
Now last thing left is to show an algorithm for finding perfect factorization

in a linear time. We will efficiently implement the algorithm 7. We have found
a fast way how to compute the desired s′.

If we look at 1.2.5 and its stronger version, we can use:

while x[s′..|x|] has a prefix shorter than p2, delete shortest one.

Remains to find such a subroutine that will find p1 and p2 in linear time
proportional to their lenghts. Such a subroutine is a matching the pattern
against itself with (p, q)← (1, 0). Result of this algorithm will be that at each
position i we have shift(i) = per(x[0..i]). Hence, we need to look for the first
i such that shift(i) ≤ i/k. If such a position i does not exist, the algorithm
runs through whole w and therefor will have a complexity O(|w|). If p1 is
found its complexity is O(p1).

16

1.2. Algorithms

To find a prefix period shorter than p2 we will search for i < p2.
The same procedure is used for finding p2, the second longest prefix period.

Suppose we have found an p1, then we determine reachw(p1) naively in time
O(reachw(p1)). When we have the value we just look for an occurence of
i > reachw(p1) where shift(i) ≤ i/k in time O(p2) if p2 exists or O(|w|).

Consider the time of using such subroutines for finding perfect factoriza-
tion. Test for one failed entry x[s..|x|] will take O(|v|). The time spend by
computation of s′ by deleting shortest prefix periods will be O(s′−s)+O(p2) =
O(p2) and because each successive p2 will be at least k − 2 ≥ 2 times the
previous (according to periodicity lemma and s′ < s + p2) we get the total
decomposition time

O(|v|) +O(|v|(1 + 1/2 + 1/4 + ...)) = O(|v|) = O(|x|)

, hence, we showed that Galil-Seiferas is indeed constant space algorithm with
running time O(|x|+ |y|).

1.2.5 The Sequential-Sampling algorithm

In [8] was presented another constant space and linear time, which is based
upon the idea of sampling. In this article two versions of the algorithms
were proposed, where the first one makes at 2n character comparisons and
the second one makes (1 + ε)n +O(n/m) comparisons. Preprocessing to our
algorithm makes (1 + ε)m+O(m/ε) comparisons and can be implemented in
constant space.

In this thesis we will attend only to the 2n version with no regard to
preprocessing. We refer the curious reader to [8] for the whole understanding
of the algorithm if needed.

Let start by introducing the definition of the sample of the pattern.

Definition 1.2.3. If nonperiodic pattern has a periodic prefix, denote by π
the longest one. Let q − 1 be the lenght of π and per the shortest period of π.
Let the sample of the prefix y[1..q] be the set S = {p, q}. Secondly define the
predicate MatchSample(i, S) = (y[i+ p] = x[p] ∧ y[i+ q] = x[q].

From this definition results the key property that claims that ifMatchSample(i, S)
then no occurence of the pattern starts at any position in y[i + 1..i + p]. In
another words, if MatchSample(i, S) next safe shift can is at least p.

Example. If x = aaaab then S = {4, 5} and if MatchSample(i, S) the next
safe shift is at least 4.

Our simple algorithm differs in three cases.

1. All the patterns prefixes are nonperiodic.

2. The pattern is nonperiodic and has periodic prefix.

17

1. Theoretical part

3. The pattern is periodic.

In the first case we can use the algorithm 8.

Algorithm 8 SimpleTextSearching
i← 0
while i ≤ n−m do

j ← max{k : y[i+ 1..i+ k] = x[1..k]}
if j = m then Report match at i
end if
i← i+ d j+1

2 e
end while

Notice the shift i ← i + d j+1
2 e. Why we can do so? Recall KMP shift,

where shift[i] = per(x[1..i+1]). Because we know that every prefix of pattern
is nonperiodic, the per of every prefix is larger than |prefix|/2, so this shift
is correct. Because j + 1 ≤ 2d j+1

2 e, where j + 1 is number of comparisons in
every stage, we get that 8 makes at most 2n comparisons.

In the second case the pattern has a sample S = {p, q}. For every i we try
to match the sample S. If we succeed we try to match the whole occurrence of
the pattern. In case of some mismatch we decide the next safe shift upon the
fact, whether j < q − 1 or not. If it is, we use previous property and shift by
p, in case j ≥ q − 1 it means that the matched part is larger than the longest
periodic prefix, therefore the shift by d j+1

2 e can be used. The time complexity
of the second case is also 2n, because if j < q − 1 we can amortize negative
match by 2 comparisons on 1 shift, if not it is the same as in the first case.

Algorithm 9 SequentialSampling
. Required precomputed S = {p, q}

i← 0
while i ≤ n−m do

if not MatchSample(i, S) then i← i+ 1
else

j ← max{k : y[i+ 1..i+ k] = x[1..k]}
if j = m then Report match at i
end if
if j < q − 1 then i← i+ p
else

i← i+ d j+1
2 e

end if
end if

end while

In the third case, when the pattern is periodic then x = vkv′ for k ≥ 2
where v is a prefix of length per and v′ is a prefix of v. We will the observation

18

1.2. Algorithms

that the prefix vv− where v− is v without the last character is nonperiodic.
Now we can search for vv− in the text with one of the first two cases applied.
If the part vv− is found we start to match the next characters of the pattern.
In case of a mismatch the number of comparisons made is 2 ∗ per+k for some
0 ≤ k ≤ m−2∗per+1, but the shift is s = per+k, because the matched prefix
has the period per. Again even here the time complexity can be amortized to
2n, because 2 ∗ s ≥ 2 ∗ per + k.

1.2.6 The CGR algorithm

The CGR algorithm presented in [9] is the first algorithm that tries to run
in sublinear time. In average it runs in o(n) (in worst case O(n) with only
constant space complexity. The formal proof of these complexities is omitted,
but can be found in the referenced paper.

The algorithm is based upon the key concept of subword repetition.

Definition 1.2.4. Let w be a subword of x, then iff w has two disjoint occur-
rences in x, we say w is a repeated subword. Denote by RepSize(x) the length
of longest repeated subword of x.

There also holds the following lemma which gives us information about
the lower bound of a length of RepSize(x).

Lemma 1.2.6. Assume that the alphabet is constant. Then for any pattern
x of size m RepSize(x) = Ω(m).

For our algorithm we need to have precomputed this 4-tuple REPET (x) =
(w, r, p, q), where w is a longest repeated subword, r is the RepSize(x), p, q
are position in x of occurences of w. Let window be a part of y of length r/2
(r is a RepSize(x)) x[i − r/2..i] for i > r/2. For a position i in text denote
CheckingArea(i) the union of two intervals

y[i+ p..i+ p+ r/2] ∪ y[i+ q..i+ q + r/2]

. A mismatch in CheckingArea(i) is are positions p′, q′, where p′ − p =
q′ − q, such that y[p′] 6= y[q′]. We define LeftMostM ismatch(i) as first such
a position in CheckingArea(i) from the left, if no mismatch is found, return
nil.

Now we can formally describe our algorithm.
Procedure NaiveCheck just naivelly check whether pattern x mathes text

at position i0.
Correctness of 10 is based upon following lemma.

Lemma 1.2.7. If LeftmostMismatch(i) 6= nil then no occurrence of the
pattern starts in the window y[i− r/2, i].

19

1. Theoretical part

Algorithm 10 CGR
r ← RepSize(x)
i← r/2 + 1
while i ≤ n−m do

if LeftMostM ismatch(i) = nil then
for i0 ∈ [i− r/2..i] do NaiveCheck(i0)
end for

end if
end while

Proof. Lets look at two positions p′, q′ in text, where mismatch was found.
Now look at positions p′′, q′′ in the pattern, which should match p′, q′. Because
positions in the window are at most r/2 positions to the left of i, p′′ and q′′

should be the same. They are part of the repeating factor. This leads to a
contradiction.

Without correct proof we claim that the algorithm uses constant space
and for nonperiodic pattern runs in O(n/RepSize(x)) = O(n/ log(m)) on the
average, for periodic pattern runs even faster, in average in O(n/m).

1.2.7 The Quite-Naive algorithm

The Quite-Naive algorithm is an improvement of the Not-So-Naive algorithm.
Its worse time complexity is O(nm) and it requires pattern preprocessing in
O(m). This is a new algorithm proposed in [1].

In the preprocessing phase the algorithm computes two walues δ, γ, where

δ = min(1 ≤ j < m : x[m− 1− j] = x[m− 1]) ∪ {m}

γ = min(1 ≤ j < m : x[m− 1− j] 6= x[m− 1]) ∪ {m}

. It is united with {m}, because you are not guaranteed, that there exist in
either case such an index j. It is obvious that either δ or γ is one, the other
is strictly bigger than one, hence the preprocessing phase takes only a single
run of at most m+ 1 characters comparisons and requires constant space.

The matching phase is performed in the following way. The algorithm
matches the text from right to left and every shift is by δ or γ. Assume that
we are trying to match the text at position s. Now we distinguish two cases

Case 1: If the first comparison fails, namely x[m − 1] 6= y[s + m − 1], then
we advance the shift by γ position to the left.

Case 2: If the first comparison succeeded, we proceed further in the match-
ing at position s, and then it doesn’t matter whether we successfully
matched pattern, we advance the shift by δ position to the left.

20

1.2. Algorithms

In practical cases The Quite-Naive performs slightly better than the Not-
So-Naive.

1.2.8 The Tailed-Substring algorithm

The Tailed-Substring algorithm is another worst-case O(nm) algorithm, but
in practice performs well, especially on longer patterns. This is also a new
algorithm proposed in [1].

Definition 1.2.5. Tailed substring is a substring sub of pattern, where
holds that last character of sub has no other occurence in sub. Maximal-
tailed substring is a tailed substring, which is also maximal in pattern.

Its run consists of two phases. In the first phase the algorithm searches for
x and simultaneously computes values δ and y such that sub = x[k− δ+ 1..k]
and sub is a maximal-tailed substring of pattern. Value δ is the length of sub
and k is the last index of sub in pattern. When these values are correctly
computed we can quicken our algorithm and proceed to phase 2, where are
these values used for such purpose.

21

1. Theoretical part

Algorithm 11 The Tailed-Substring
1: . First phase
2: s← 0
3: δ ← 1
4: i← k ← m− 1
5: while s ≤ n−m ∧ i− δ ≥ 0 do
6: if x[i] 6= y[s+ i] then s← s+ 1
7: else
8: j ← 0
9: while j < m ∧ x[j] = y[s+ j] do j ← j + 1

10: end while
11: if j = m then Report(s)
12: end if
13: h← i− 1
14: while 0 ≤ h ∧ x[h] 6= x[i] do h← h− 1
15: end while
16: if δ < i− h then
17: δ ← i− h
18: k ← i
19: end if
20: s← s+ i− h
21: i← i− 1
22: end if
23: end while
24: . Second phase
25: while s ≤ n−m do
26: if x[k] 6= y[s+ k] then s← s+ 1
27: else
28: j ← 0
29: while j < m ∧ x[j] = y[s+ j] do j ← j + 1
30: end while
31: if j = m then Report(s)
32: end if
33: s← s+ δ
34: end if
35: end while

Lets now describe the pseudocode 11. We start by with assigning δ ← 1
and indices i, k are set to the last character of pattern, k represents currently
maximal-tailed substring and i potencial candidate on k.

The first phase ends when δ ≥ i, because then we have already computed
correct k and δ. First we find a shift s such that x[i] = y[s + i], then we
try to match this shift from left to right. After this we find an index h in

22

1.2. Algorithms

pattern such that x[i] = x[h]. If such an index is found, we advance the shift
so position h is aligned with y[s+ i]. Otherwise, we advance the shift by i+ 1
(Note that this is principally the bad character shift performed in BM). Both
these cases are resolved at line 20, in the second case h = −1. Then on the
line 16-18 we update if possible δ. It is obvious that after phase 1, we have
the correct maximal tailed-substring of pattern.

In the second phase, we look for an occurrence of x[k] in the text. If we
find such a position, we naive check whether this is a valid shift and advance
by δ positions.

23

Chapter 2
Implementation

In this chapter we will discuss the implementation and integration of algo-
rithms described in the theoretical part. We will also mention the project of
the Algorithms Library Toolkit itself in order to introduce the reader to our
environment.

2.1 Algorithm Library Toolkit

Algorithms Library Toolkit(ALT) from [10] is a set of data structures and
algorithms from the area of stringology. To name a few data structures ALT
offers, various kinds of automata, grammars, trees, etc. All the data structures
are written to be acting closest possible to its theoretical background.

The library is written in C++ and consists of a series of modules, command-
line interpreter aql2 and prototype of a GUI version agui2.

ALT was created mainly for educational purposes at the Faculty of Infor-
mation Technology, Czech Technical University, and is there still under active
development. We also could not forget its authors Jan Trávńıček, Tomáš
Pecka and others.

2.2 Algorithms

Our purpose was to implement every algorithm from [1]. Our implementation
is based solely on descriptions in this article and the referenced bibliography.
The implementation holds the structure of pseudocodes in these resources.

Note that the TwoWay algorithm was not implemented and will not be in-
cluded in the rest of this thesis. It was because after sticking to its pseudocode
and making minor adjustments, it kept failing in the integration tests.

All the implemented algorithms can be found in automata-library/alib2algo/
src/stringology/exact. For their implementation were not used any outer
libraries with the exception of stl. In some of these implementations were

25

automata-library/alib2algo/src/stringology/exact
automata-library/alib2algo/src/stringology/exact

2. Implementation

needed other procedures as for example finding a longest prefix period etc.
These additional procedures related to string properties can be found in
automata-library/alib2algo/src/string/properties.

Also, note that the preprocessing for the CGR and the Sequential-Sampling
were made naively, but because in the testing chapter we measure only the
running phase, this has no impact on the final results.

2.3 Usage

You can either download ALT from its source on https://alt.pecka.me/
download/ or use enclosed CD, where is the library already precompiled with
its code sources.

All you need to do, is to run the command line interpreter aql2. In case
of using enclosed CD, navigate to automata-library/debug/aql2, in case of
downloading ALT from source, it comes with prepared executable, that you
can run from a terminal. Now you are in the interpreter and you can execute
the algorithm you want to run by command print algorithm input. For
example if you want to run Not-So-Naive algorithm you would type down
print stringology::exact::NotSoNaive abaaba aba. It is also possible
to redirect the output of a command to file, use standard UNIX > redirect.
For quitting the interpreter use command quit.

26

automata-library/alib2algo/src/string/properties
https://alt.pecka.me/download/
https://alt.pecka.me/download/
automata-library/debug/aql2

Chapter 3
Testing

In this chapter we will attend to the important subject of testing our imple-
mentation described in previous chapter. This chapter is divided into two
sections, the correctness of implementation and speed benchmarkes. Again
note that TwoWay algorithm is ommited.

3.1 Testing the correctness of implementation

After implementing our algorithms, it is necessary to test its correctness. We
did it by automatically generated test data.

ALT has already nicely written integration tests for all the data structures
and algorithms contained, with exact matching included. For every algorithm
we added line

std::make_tuple ("Name of the algorithm",
"stringology::exact::Name $subject $pattern", true).

This registers the algorithm into testing on the automatically generated dataset.
All these integration tests are run when the library is built.

3.2 Speed benchmarks

For testing the efficiency of our implementation we chose to conduct tests
through the command line interpreter aql2. Average running time is measured.
Also we will make comparisons with the BoyerMooreHorspool algorithm in
order to get our data related to in practice used algorithms. BoyerMooreHor-
spool is in practice one of the most commonly used algorithms.

ATL has already prepared utilities for testing purposes. Namely it is the

string::generate::RandomStringFactory class
string::generate::RandomSubstringFactory class.

27

3. Testing

The first one is used for generating the text and the second one is used for
generating the pattern.

Then we need to measure the running times of our algorithm. For this
purpose we used the measure utility from ALT. For more details look at the
bash script from the following text.

We wrote a simple bash script measure.sh(in automata-library/debug/aql2),
which calls aql2 with necessary arguments and inside the command line call
all the measured algorithms with a randomly generated text and pattern. In
the script there are three things parametrized. The length of the generated
text, the length of the generated pattern, and the number of runs that will be
used to compute average running time. The number of runs was decided to
be the fixed number 10.

With this script we ran following test cases.

1. Short pattern

2. Long pattern

In the first case we chose textsize = 10000, patternsize = 7. The results
were following. Note that all units are in ms.

SequentialSampling QuiteNaive TailedSubstring CGR Dogaru GalilSeiferas NotSoNaive Horspool
3518 1426 1488 2291 2398 6843 3439 2183

Table 3.1: Rusults on a short pattern

In the second case we chose textsize = 10000, patternsize = 30. The
results were following.

SequentialSampling QuiteNaive TailedSubstring CGR Dogaru GalilSeiferas NotSoNaive Horspool
3657 704 1091 3646 2400 6997 2938 1869

Table 3.2: Rusults on a long pattern

From the above result we see that in both cases two best-performing al-
gorithms are the QuiteNaive and the TailedSubstring followed by the Dogaru
and the NotSoNaive. Although it seems that with shorter patterns QuiteNaive
and TailedSubstring performed approximately the same, with longer pattern
QuiteNaive is a little bit faster.

Note also that the time decrease in searching for longer patterns is caused
by a lower density of pattern occurrences in the text.

There is also nicely demonstrated one thought from the [1], that ”some-
times economical solutions are more efficient than unrestricted ones, it’s econ-
omy, stupid! “. In both test cases Horspool performs worse than the two
best algorithms. Although as mentioned in [1] Horspool, which is one of the

28

3.2. Speed benchmarks

most efficient versions of BoyerMoore algorithm, performs better on bigger
alphabets and not so short, we see that in some cases these in comparison to
Horspool trivial algorithms with restricted memory can outperform a lot more
sophisticated algorithms.

29

Conclusion

The goal of this thesis was to understand, implement and test algorithms from
[1].

In this bachelor thesis you are presented with 8 constant space algorithms
for the string matching problem. All of them except the Two-Way were im-
plemented into the ALT library, tested and results of their performance were
compared. The integration into the ALT ecosystem was successful.

In common literature on this theme, although there are enough books and
articles about the algorithms described, we lack a complex overviewing text,
which can give us all the information needed in one place. This thesis can
serve as such a text. We described for the reader every algorithm presented
in [1] with correctly proven properties which these algorithms are based on.
Their implementation is in the enclosed CD. The algorithms were purposely
implemented tightly according to pseudocodes mentioned here or in original
articles to ease the understanding and to preserved their nature described
here.

In chapter 3 we made performance testing on randomly generated strings
and shown as said in [1] that in some cases more economical solutions can be
even more efficient than those unrestricted. It was revealed that under the
test circumstances two in practice the fastest algorithms were the Quite-Naive
and the Tailed-Substring.

31

Bibliography

1. CANTONE, Domenico. “ IT’S ECONOMY, STUPID! ” : SEARCHING
FOR A SUBSTRING WITH CONSTANT EXTRA SPACE COMPLEX-
ITY. In: 2005.

2. M., Crochemore; W., Rytter. Jewels of Stringology: Text Algorithms.
World Scientific, 2002. ISBN 9789810248970. Available also from: https:
//books.google.cz/books?id=9NdohJXtIyYC.

3. CHARRAS, Christian; LECROQ, Thierry. EXACT STRING MATCH-
ING ALGORITHMS [online] [visited on 2020-04-20]. Available from:
http://www-igm.univ-mlv.fr/˜lecroq/string/.

4. DOGARU, O. C. On the All Occurrences of a Word in a Text. Proc. of
The Prague Stringology Conference. 1998.

5. CROCHEMORE, Maxime; PERRIN, Dominique. Two-way string-matching.
Journal of the ACM (JACM). 1991, vol. 38, pp. 650–674. Available from
DOI: 10.1145/116825.116845.

6. GALIL, Zvi; SEIFERAS, Joel. Saving Space in Fast String-Matching. In:
1977, vol. 9, pp. 179 –188. Available from DOI: 10.1109/SFCS.1977.27.

7. GALIL, Zvi; SEIFERAS, Joel. Time-space-optimal string matching. Jour-
nal of Computer and System Sciences. 1981, vol. 26, pp. 280–294. Avail-
able from DOI: 10.1016/0022-0000(83)90002-8.

8. PLANDOWSKI, Wojciech; RYTTER, Wojciech; INFORMATKI, Insty-
tut; WARSZAWSKI, Uniwersytet. Constant-Space String Matching With
Smaller Number of Comparisons: Sequential Sampling. In: 1999. Avail-
able from DOI: 10.1007/3-540-60044-2_36.

9. CROCHEMORE, Maxime; GASIENIEC, Leszek; RYTTER, Wojciech.
Constant-space string-matching in sublinear average time. Carpentieri,
B.; De Santis, A.; Vaccaro, U.; Storer, J. A.: Compression and Complex-
ity of SEQUENCES 1997, -, 230-239 (1998). 1999, vol. 218. Available
from DOI: 10.1016/S0304-3975(98)00259-X.

33

https://books.google.cz/books?id=9NdohJXtIyYC
https://books.google.cz/books?id=9NdohJXtIyYC
http://www-igm.univ-mlv.fr/~lecroq/string/
http://dx.doi.org/10.1145/116825.116845
http://dx.doi.org/10.1109/SFCS.1977.27
http://dx.doi.org/10.1016/0022-0000(83)90002-8
http://dx.doi.org/10.1007/3-540-60044-2_36
http://dx.doi.org/10.1016/S0304-3975(98)00259-X

Bibliography

10. JAN, Trávńıček; TOMÁŠ, Pecka; ET. Algorithms Library Toolkit [online]
[visited on 2020-04-20]. Available from: https:/gitlab.fit.cvut.cz/
algorithms-library-toolkit.

34

https:/gitlab.fit.cvut.cz/algorithms-library-toolkit
https:/gitlab.fit.cvut.cz/algorithms-library-toolkit

Appendix A
Acronyms

GUI Graphical user interface

XML Extensible markup language

iff If and only if

35

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
automata-library.......the directory with executables and source code
text..the thesis text directory

thesis.pdf...........................the thesis text in PDF format
thesis..............the directory of LATEX source codes of the thesis

37

	Introduction
	Theoretical part
	Definitions
	Algorithms
	Not-So-Naive algorithm
	The Dogaru algorithm
	The Two-Way algorithm
	The Galil-Seiferas algorithm
	The Sequential-Sampling algorithm
	The CGR algorithm
	The Quite-Naive algorithm
	The Tailed-Substring algorithm

	Implementation
	Algorithm Library Toolkit
	Algorithms
	Usage

	Testing
	Testing the correctness of implementation
	Speed benchmarks

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

