FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

ASSIGNMENT OF BACHELOR'’S THESIS

Title: DET language IDE

Student: Toghrul Sultanzade

Supervisor: Ing. Ondfej Guth, Ph.D.

Study Programme: Informatics

Study Branch: Computer Science

Department: Department of Theoretical Computer Science
Validity: Until the end of summer semester 2020/21

Instructions

The aim is to implement an integrated development environment (IDE) for DET scripting language (it is a
proprietary language based on Java). The IDE should be capable of syntax highlighting, autocompletion, and
error recognition.

1. Study existing parser of DET language [1] and modify it for the needs of the IDE.

2. Research existing open-source IDEs and techniques for syntax highlighting, autocompletion and error
recognition.

3. Based on the research, use existing libraries and algorithms to implement the IDE and its required
features as a prototype.

4. Use appropriate tools and methods to test the results.

References

[1] GRANKIN, Daniil. A translator of DET scripting language into Java. Bachelor's thesis. Czech technical university in
Prague, 2019. Available from: http://hdl.handle.net/10467/83386.

doc. Ing. Jan Janousek, Ph.D. doc. RNDr. Ing. Marcel Jifina, Ph.D.
Head of Department Dean

Prague October 17, 2019

CZzECH TECHNICAL UNIVERSITY IN PRAGUE

FacuLTy OF INFORMATION TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE

Bachelor’s thesis

DET language IDE

Toghrul Sultanzade

Supervisor: Ing. Ondrej Guth, Ph.D.

21st February 2020

f

Acknowledgements

Firstly, I would like to express my appreciation and thanks to my thesis su-
pervisor, Ing. Ondrej Guth, for his professional attitude and dedication to
help me. The door to his office was always open, whenever I had troubles and
obstacles in the process of writing the thesis. Moreover, I would like to thank
my family and friends for support during writing this thesis.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive author-
ization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work for non-
profit purposes only, in any way that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on 21st February 2020 ool

Czech Technical University in Prague

Faculty of Information Technology

© 2020 Toghrul Sultanzade. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Sultanzade, Toghrul. DET language IDE. Bachelor’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2020.

Abstrakt

Tato diplomova prace si dava za tkol navrhnout a vyvinout vylepsené in-
tegrované vyvojové prostiedi, které vyiesi problémy a zreviduje schopnosti
stavajictho Scriptovaciho Editoru. Tento Scriptovaci Editor je uzivan k vyvoji
a implementaci skriptu, pouzivajici DET skriptovaci jazyk popsan v diplo-
mové praci [I]. DET jazyk ma syntaxi zalozenou na Java jazyce s vlastnimi
rozsifenimi reprezentujici Java proménné a Java metody. Vady pfedchozi im-
plementace jsou feSeny v prototypu projektu, ktery je predmétem této prace.
K rozvoji podpory pro DET skriptovaci jazyk jsou pouzity dnesni moderni
postupy. Soucasny stav je prezentovan spolecné s preferovanou metodologii
zpracovani uzivatelskych vstupu.

Kliéova slova doplnovani kédu, naseptavani, zvyraznovani sytanxe, vyvojové
prostiedi, skriptovaci jazyk, ANTLR, gramatika, AST

Abstract

This thesis aims to design and develop an improved integrated development
environment solution, which resolves problems and revises the capabilities
of the existing proprietary Scripting Editor implementation. The Scripting
Editor is used to develop and implement scripts, written in DET scripting

X

language that is described in the thesis [I]. DET language has Java-like syntax
with custom language extension into the variables and methods of java classes.
The flaws of the previous implementation are approached in the prototype
project, which is the subject of this thesis. The modern and contemporary
approaches are used to develop support for the DET scripting language. The
state of the art is presented alongside the favored methodology of the user
input processing.

Keywords code completion, autocomplete, syntax highlighting, develop-
ment environments, scripting language, ANTLR, grammar, AST

Contents

Introduction
[Thesis Overview] 1
[1 Theoretical background| 3
[1.1 ~Algorithmic trading] 3
[1.2 DET scripting language] 3
[1.3 Programming Language| 4
1.4 Domain-specific language] 5
1.5 __Formal Grammarl 5
[1.6 Graph theory| 9
P Bl 11
[1.8 Integrated development environment| 12
(1.9 _Research of modern solutions| 16
[1.10 Available tools to implement IDE features| 22
2__Current Statel 25
21 Texteditor] 25
2.2 Features of the text editorl 25
2.3 Syntax Highlightingl 26
2.4 Code completion| Lo 28
2.5 Key disadvantages of the current state] 29
13 Analysis and Design| 33
BI"WebTIDE oo 33
B2 TFeatures of IDEl. 34
B.3 Editor frameworkl 36
4__Realisation| 37
A1 Fnvironment] 37
4.2 Syntax highlightingl. 39

xi

4.3 Code completion| oo

[4.4 FError recognition and indication|

Conclusionl

|Bibliography|

|A Acronyms|

[B_Contents of enclosed CDI

xii

45

49
49

51

57

59

List of Figures

[I.1 An example of the syntax diagram for an expression rule, from [2].| 5
[1.2 Example of two different parse trees for a single sentence from a |
| language. 8
1.3 An example of aradix tree.| 11
1.4 Structure of the code completion plugin in Code::Blocks IDE, from |
Bl 17
1.5 The main flow of a parser in Code::Blocks| 18
[1.6 An example of automatic code completion in Code::Blocks.| 19

2.1 An example of using primitive types from the DET language in the |

[Avalonbdit text editord 27
[2.2 Representation of the regular expression used to match a declared |
[variable from source codel 29
2.3 An example of the code completion list tor the word GET_C.| . . . 30
2.4 An example of the code completion list for the word variable| . . . 31

4.1 ANTLR grammar rules representing a digit or letter in a DE'T script.| 39

5.1 Mean features score. Blue bars represent original editor, while red |
| bars represent prototype evaluations| 46

xiii

Introduction

Low latency trading has been made possible by introducing informational tech-
nologies into the capital markets. Algorithmic trading became widely spread
during the past few decades, thus raising demand for platforms supporting
scripting and real-time usage of the broker’s business logic. Dynamic Elec-
tronic Trading (DET) company provides one of such platforms, granting fast
and discrete tools for implementing the custom routing logic.

In the world of informational technologies, the development of any script
or application in a plain text editor brings various complications along the
way. One such complication is the time consumed by the compilation of the
program only to reveal minor errors in the code. As developers are facing
more challenging tasks each day, the significance of time spent on looking
up the identifier or locating a particular error has increased. There has been
developed an integrated development environment concept, aimed at providing
development assistance in the form of various facilities. IDE has become a
demanded tool ever since, saving lots of coding time.

This thesis takes as a goal to design an integrated development envir-
onment that supports business-driven DET scripting language. An existing
parser and grammar for this language can be found in this [I].

DET language IDE is one of the various environments, that is capable
of syntax highlighting, code completion and error recognition. The IDE is a
lightweight web-based application, providing swift utilization support to most
of the popular platforms. It helps clients to avoid searching for particular
documentation entry, highlights errors on the go while the developer is writing
code and displays source code in different colors and fonts to make it easier
to read.

Thesis Overview

Chapter [I] introduces the reader to the terms, tools and concepts used in the
project, as well as to the state of art.

INTRODUCTION

Chapter [2] shows and describes an analysis of implementation problems
and features of the existing environment that supports the DET language.

Chapter [3] describes approaches to the problems of the old IDE and com-
poses a solution.

Chapter 4] discusses the implementation details of solution.

Chapter [5] describes the necessary tests for the application.

CHAPTER 1

Theoretical background

The project aims to implement an integrated development environment for
DET scripting language, which should be capable of syntax highlighting, code
completion, and error recognition. Therefore, in this chapter, I provide an
overview of the most common solutions and existing frameworks available to
implement theses features. In addition, I present a detailed review of the
following concepts: FIX, programming language, parsing, formal grammar,
terminology of graph theory, AST and IDE.

1.1 Algorithmic trading

Algorithmic trading is a method of executing a large order (parent or-
der) using special algorithmic instructions. These pre-programmed trading
instructions divide the order into several sub-orders (child orders) with their
characteristics of price and volume, and each of the sub-orders is sent at a
specific time to the market for execution [4]. Such algorithms were invented
so that traders do not have to monitor quotes continually and divide a large
order into small ones manually.

The main goal of algorithmic trading is to reduce the cost of executing
a large order (transaction cost), minimize its impact on the market (market
impact), and reduce the risk of its non-execution. It is widely used by invest-
ment banks, pension, hedge, and mutual funds, as these institutional investors
in their activities operate with large orders and therefore, cannot place such
orders on the market with the risk of losses [5].

1.2 DET scripting language
DET scripting language is a proprietary language designed to implement

scripts in the DET platform. The language has Java-like syntax with cus-
tom language extensions enriching the list of the variables and methods. The

3

1. THEORETICAL BACKGROUND

existing grammar that describes DET language is provided in the thesis DET
scripting engine work [1].

1.3 Programming Language

Any language, including a programming language, obeys a number of rules.
They are usually divided into rules that determine the syntax of a language
and rules that determine its semantics.

1.3.1 Syntax and Semantics

The language syntax is a set of rules that describes combinations of alphabet
characters that are considered to be a properly structured program or its
fragment in some language [6]. Each programming language has a syntactic
description as part of the grammar, a formal description of the grammar is
presented in Section [1.5)

The syntax are checked in the early stages of translation. Program trans-
lation is converting a program presented in one of the programming languages
into a program in another language. For example, the validity of the source
code of programs can be checked when editing code using the IDE, for more
details about ad IDE see Section [1.8] If any aspects of the source code do
not match the syntax of the specified programming language, a syntax error
occurs [7].

The semantics of a language is a set of rules that determine the meaning
of syntactically correct language constructions and their content.

Programming languages belong to the group of formal languages(see Sec-
tion for which, unlike natural languages, syntax and semantics are
uniquely defined. The Backus-Naur (BNF) form or syntax diagrams are usu-
ally used to construct a description of the syntax of a language, a detailed
description of the BNF is presented in Section [1.5.40 The syntax diagram
allows you to depict the structure of the syntactic unit graphically, see an
example of such a diagram in Figure [L.1

4

1.4. Domain-specific language

expr

—> term

term

Figure 1.1: An example of the syntax diagram for an expression rule, from

2].

1.4 Domain-specific language

A domain-specific language is a programming language with a higher level
of abstraction specialized for a specific class of problems. The construction of
such a language and its data structure reflect the specifics of the tasks solved
with its help. It is a crucial concept of language-oriented programming.
Typically, a domain-specific language is less complicated than a general
programming language such as C ++, Java, or Ruby. Typically, this type of
language is not intended for use by developers, but instead by those who are
fluent in the domain which is addressed by the domain-specific language.

1.5 Formal Grammar

The basic definitions of the terminology used in this section are given below.

1.5.1 Basic notions

Terminal symbols is minimal grammar elements that do not have their
own grammatical structure. Terminal characters are either predefined
identifiers or chains — sequences of characters in quotation marks or
apostrophes.

1. THEORETICAL BACKGROUND

Non-terminal symbols — grammar elements that have their own names and
structure. Each non-terminal symbol consists of one or more terminal
and non-terminal symbols, the combination of which is determined by
the rules of grammar. Each non-terminal character has a name, which
is a string of characters.

Production rule — A grammar rule specifying which symbols can be sub-
stituted with other symbols. Such rules can be used to generate or parse
strings. A production is of the form left part — right part, where:

e [eft part — non-empty sequence of terminals and non-terminals
containing at least one non-terminal
e right part — any sequence of terminals and non-terminals

Start symbol — a member of a set of non-terminals from which all strings
in a language can be obtained by sequentially applying production rules

Alphabet — finite set of terminal symbols. A sequence of symbols in the
alphabet is called a string over an alphabet.

Formal language — a set of finite words (e.g., words, sentences) over a finite
alphabet [§].

Empty string (denoted as €) — is the special case of a string over an alphabet
where the sequence of characters has length zero, so there are no symbols
in the string.

Derivation (denoted as =) — a sequence of applications of the grammar
rules that produces a string of terminals. A derivation is also called a
parse.

A formal grammar in the theory of formal languages is a way of describ-
ing language, that is, constructing correct sentences from a specified language
[9]. Grammar is a quadruple G = (N, X, P, S), where

e N — a finite nonempty set of non-terminal symbols

e Y — a finite nonempty set of terminal symbols (X N N = ()
e P — a set of production rules

e S € N — the start symbol of the grammar

Other possibilities to describe grammar: Backus-Naur Form (BNF) and
Extended Backus-Naur Form (EBNF) (see Section [1.5.4).

Example: A language of unsigned integers can be described using gram-
mar G, which is specified by BNF [7].

G = ({integer, digit},{0,1,2,3,4,5,6,7,8,9}, P, integer)

1.5. Formal Grammar

, where:
o {integer,digit} is a set of non-terminals
e {0,1,2,3,4,5,6,7,8,9} is a set of terminals
e P is a set of productions rules:

integer — digit integer | digit
digit—0|1]|2]3[4]5]6|7|8]|9

e integer is the starting symbol

1.5.2 Grammar Types

According to the Chomsky hierarchy, grammars are divided into 4 types,
each subsequent one is a more limited subset of the previous one (but also
easier to analyze):

e Type 0 unrestricted grammars — any rules are possible

e Type 1 context-sensitive grammars — the left side may contain one non-
terminal surrounded by a “context” (sequences of symbols that are in
the same form on the right side). The non-terminal itself is replaced by
a nonempty sequence of terminals on the right side.

e Type 2 context-free grammars - the left part consists of one non-
terminal.

e Type 3 regular grammars are simpler, equivalent to finite automata.

Since most programming languages are described using context-free gram-
mars, the more detailed description is provided in the next section.

1.5.3 Context-free grammars

Since the Algol project [10], the formal definition of a language includes some
sort of context-free grammar. Context-free grammar is a particular case of
formal grammar, in which the left parts of all production rules are single non-
terminals. The meaning of the term “context-free” is that it is possible to ap-
ply products to a non-terminal, regardless of the context of this non-terminal
[9]. Context-free grammars are widely used in computer science. They define
the syntactic structure of most programming languages, structured data, etc.

A context-free grammar is ambiguous, if there is a sentence from a lan-
guage generated by this grammar that is a result of at least two different parse
trees [11].

Trivial example of ambiguous grammar:

1. THEORETICAL BACKGROUND

Figure 1.2: Example of two different parse trees for a single sentence from a
language.

A grammar that can generate the string ”a” with the following production
rules has two different parse trees for this string(see Figure |1.2)).:

A — aA| Aa|e
where:

A is a starting symbol

1.5.4 BNF and EBNF

Backus—Naur form or Backus normal form (BNF) is a formal syntax
description system for the representation of context-free grammars, the defin-
ition of such grammars is given in Section It is widely used to describe
the syntax of programming languages, data, communication protocols (for ex-
ample, in RFC documents), etc. Extended backus-naur form (EBNF)
is one of the variations of the Backus-Naur form which differs only in more
capacious designs and EBNF is commonly used [12].

As in the BNF, the grammar description in the EBNF is a set of rules that
define the relationship between terminal symbols (terminals) and non-terminal
symbols (non-terminals).

The rule in the EBNF is:

Identifier = Expression.

where
e Identifier is the name of a non-terminal symbol

e Fxpression is a combination of terminal and non-terminal characters
and special characters corresponding to the EBNF rules.

1.6. Graph theory

e The dot . at the end is a special character that indicates the end of the
rule.

The semantics of the EBNF rule are a non-terminal symbol specified by
the identifier to the left of the equal sign, is a combination of terminal and
non-terminal symbols defined by the expression.

A complete grammar description is a set of rules that defines all non-
terminal symbols of a grammar so that each non-terminal symbol can be
reduced to a combination of terminal symbols by sequential (recursive) applic-
ation of the rules. There is no special order of rules in the EBNF definition
for writing rules, although such prescriptions can be introduced when using
the EBNF with software tools that automatically generate parsers.

1.6 Graph theory

In this section, I present a brief introduction to graph theory, since the ter-
minology related to graphs is used in my work.

1.6.1 Graph
In computer science, a graph G is an ordered pair
G=(V,E)
where
e IV — a nonempty set of vertices or nodes
e I/ — a set of pairs of vertices, where elements of this set are called edges.
Usually, a graph means an undirected graph for distinguishing from a

directed graph [13].

1.6.2 Tree

A tree is a connected acyclic graph. Connectivity means the presence of paths
between any pair of vertices. The acyclic graph indicates the absence of cycles
in the graph, which means that there is only one path between pairs of vertices
[14].

1.6.2.1 Basic Definitions

Path in a graph — a sequence of vertices that are joined by a sequence of
edges, where the edges are distinct.

Rooted tree — a tree in which one vertex is marked as the root of the tree

[15].

1. THEORETICAL BACKGROUND

Parent of some vertex, in a rooted tree — the vertex connected to it on the
path to the root. The root has no parent.

Child of a vertex v — vertex u, where v is the parent of vertex u, in a rooted
tree [13].

Leaf — a vertex with no children.

Descendant of a vertex v — any vertex which is either the child of v or is the
descendant of any of the children of v [15].

Ascendant of some node v — any node which is either the parent of v or is
the ascendant of the parent v [15].

1.6.3 Prefix and Radix tree
1.6.3.1 Prefix tree

A prefix tree, also called a trie or digital tree is a data structure that allows
you to store a symbol table where the keys are strings [16]. It is a rooted tree,
where all edges are marked with a symbol. In addition, for any node, all
the edges connecting this node with its children are marked with different
symbols. The position of the node in the tree determines the key with which
it is associated. Moreover, all descendants of a node have a common string
prefix associated with the given node. Not every node has a key, though some
of them may correspond to keys. However, all leaves contain strings. Hence,
the trie contains a given key string if and only if this string can be read on
the way from the root to some selected node [17].

1.6.3.2 Radix tree

A radix tree (also called as compact prefix tree, compact Patricia tree or
radix trie [18]) is a data structure that is a memory-optimized implementation
of the prefix tree. Unlike prefix trees, node of a radix tree can be marked with
a sequence of symbols, which makes this tree more efficient for small sets of
strings (especially if the strings themselves are long enough), and also for sets
that have a small number of lengthy prefixes. An example of a radix tree can
be seen in Figure[1.3

10

1.7. Parsing

psychic

physics physiology

Figure 1.3: An example of a radix tree.
Radix trees find particular applications for parsing languages and in the
IP routing [19] 20]. The compact prefix tree is also one of the data structures
used in Linux kernels [21].

1.7 Parsing

Parsing or syntactic analysis, in the context of programming languages, is
transforming of human-readable representation of source code to a syntactical
description which is often some kind of parse tree or abstract syntax tree

(AST) [22.

1.7.1 Lexer and Parser

A lexer or lexical analyzer is a software program that performs lexical ana-
lysis. Lexical analysis is the process of breaking a piece of text into different
words, which are called tokens in computer science. Lexer generates an lexical
error if some text cannot be recognized to any type of token [23].

Tokens are sequence of characters defined by grammar rules, by means of
patterns using regular expressions.

A parser or syntactical analyzer is a program that converts input data
(usually text) into a structured format. The parser parses the tokens generated
from the lexer.

11

1. THEORETICAL BACKGROUND

1.7.2 Abstract Syntax Tree

Abstract syntax tree (AST) in computer science is a tree, in which in-
ternal vertices are mapped (labeled) with programming language operators,
and leafs with corresponding operands. ASTs are used in parsers to provide
an intermediate representation of the program between the parse tree (CST)
and the data structure [24].

1.7.3 Concrete Syntax Tree

A concrete syntax tree (CST) or parse tree is a tree that records the
tokens and grammar rules used to match the text. The starting symbol of a
grammar that was used to parse the text is always the root node of CST. The
leafs consist of all terminals that were found when the text was parsed and all
other nodes of the tree contain encountered non-terminals [25].

1.7.4 Symbol table

A symbol table is an important data structure used to store information
about the declaration or appearance of variable names, method names, ob-
jects, classes, interfaces in the program’s source code. The information re-
corded in the entries of the symbol table may be related to the data type,
visibility, region, memory location, and location in the source code[26].

1.8 Integrated development environment

An Integrated Development Environment (IDE) is a software applica-
tion that provides comprehensive services to make it easier to develop software
for the developer or programmer. An IDE scans and parses the source pro-
gram to provide these services. A few examples of the most commonly used
IDEs are IntelliJ IDEA [27] and Visual Studio [28].

Usually, an IDE consists of:

e a text editor(e.g., source code editor)
e syntax highlighting

e Code completion (IntelliSense)

e a debugger

Many modern IDEs, such as NetBeans and Eclipse, contain a compiler, an
interpreter, a class browser, an object finder, and a class hierarchy diagram,
for use with the development of object-oriented software.

The first IDEs were created to work using a console or terminal. Before
that, programs were created on paper, entered into the machine using pre-
prepared paper media (punched cards, punched tape).

12

1.8. Integrated development environment

Maestro I is a product from Softlab Munich, was the first integrated soft-
ware development environment in the world in 1975 [29]. Today, Maestro
I belongs to history and can only be found at the Museum of Information
Technology in Arlington.

Certain IDE features may use Al to speed up or improve results. In par-
ticular, to improve the IDE functionality, it is possible to gather information
between developers. For example, intelligent code completion can be achieved
using a data-driven approach to code completion [30].

The following section describes the basic functions of the IDE, language
server protocol, and online integrated development environment.

1.8.1 Text editor

A text editor is an independent computer program designed to create and
modify text data [31]. Text editors are designed to work with text files online.
They allow you to view the contents of text files and perform various actions
on them - insert, delete and copy, search and replace text, sort lines, view
character codes and convert encodings, etc.

1.8.2 Syntax highlighting

Syntax highlighting is a feature of integrated development environments
and text editors that displays source code in different colors and fonts ac-
cording to some criteria. Commonly used to make reading the source code
of computer programs easier and emphasise syntax and semantic errors [32].
One of the first text editors to support syntax highlighting was developed by
Wilfred Hansen in 1969 [33]. Since then majority of Integrated Development
Environments and text editors provide syntax highlighting.

Some code formatting tools perform syntax highlighting using pattern
matching instead of implementing a parser for a programming language [34].
This approach leads to the inaccurate syntax highlighting and poor perform-
ance. However, in most cases, strict parsers that are used in the compilation
process, cannot parse the code displayed in the editor as it is incomplete or
incorrect, while pattern matching is successful.

Syntax highlighting also helps programmers identify programming errors.
For example, most editors highlight errors using a red font or red wavy lines
[35]. Errors are generally classified into three groups:

e lexical errors — when some text cannot be recognized as belonging to
any type of token

e syntactical errors — when the structure of the code is not correct

e semantic errors — they depend on the nature of the language. Example
of semantic errors are usages of undeclared variables, or operations in-
volving incompatible types.

13

1. THEORETICAL BACKGROUND

1.8.3 Code Completion(IntelliSense)

Code completion is a feature in the IDE that predicts and provides the rest
of the input the user is typing. Mostly, it is used when querying parameters of
functions, available variables and functions in the current scope, query hints
related to syntax errors, etc.

IntelliSense is a general term for code completion tool that refers to the
basic features of an IDE such as complete word, quick info, parameter info,
and member lists. In addition, it is also used to access documentation and
to remove ambiguous names using reflection. A brief description of the code
completion features is given below, for more details see [36].

e Complete word is a feature that completes the rest of the name after
the user has entered enough characters to disambiguate the term.

e Quick info shows the declaration details for any identifier in the source
code.

e Parameter info displays information about the number, types, and
names of method parameters. It also indicates the next parameter that
is required as the user types the function.

e Member list is a feature that displays all valid and available members
from a particular type or namespace that the user entered before trigger-
ing IntelliSense (usually a trigger character used to display the member
list).

IntelliSense first appeared in Visual Basic 5.0 Control Creation Edition in
1996, which was a publicly available prototype of Visual Basic 5.0 [37]. It
has entered a new development phase with the advent of Visual Studio .NET
and is currently supported in Visual Studio for languages such as C++, C#,
Visual Basic, XML, HTML, and others. Starting with Visual Studio 2005,
IntelliSense, by default, begins to offer code completion options as soon as
the user starts typing, without typing trigger characters(e.g., ’.” character).
Since the available suggestions now include language constructs (such as for
or if keywords), they have also been included in the list of options for auto-
completion.

The next segment lists and briefly discusses the key benefits of code com-
pletion, for more details see [3§].

e Fast typing: code completion systems assist IDE users by displaying
and completing descriptive and large names for methods, variables, or
classes that are commonly used nowadays.

e Error free code: IntelliSense offers only syntactically correct items in
the completion list.

14

1.8. Integrated development environment

e Valuable documentation: when code completion systems display a
list of completions, the user can see all available documentation. This
additional information helps not to remember the names and descrip-
tions of all public methods and variables from any library or framework.

1.8.4 Refactoring

Refactoring is the process of changing the internal structure of a program
that does not affect its external behavior and aims to facilitate understanding
of the code [39]. Fundamentally, refactoring is a sequence of transformations.
Since each transformation is small, it is easier for the programmer to follow
its correctness. At the same time, the entire sequence can lead to a significant
restructuring of the program and improve its consistency and clarity [40].

Refactoring can be moving a field from one class to another, taking a
piece of code from a method and turning it into an independent method,
renaming class property or even moving the code through a class hierarchy.
Each step may seem elementary, but the combined effect of such small changes
can radically improve the project.

1.8.5 Version control

Version control is a feature to facilitate work with changing information. It
allows you to store several versions of the same document, return to earlier
versions, determine who made a change, and much more. A letter code or a
number identifies each change [41].

1.8.6 Debugger

A debugger is a computer program for automating the debugging process:
searching for errors in code. Depending on the built-in capabilities, the de-
bugger allows you to trace, set, or change the values of variables during code
execution, set and delete breakpoints or stop conditions, for more details see
[41].

1.8.7 Language Server Protocol

The Language Server Protocol (LSP) is a protocol that is used for commu-
nication between language servers (also called services) that provide features
to support programming language and integrated development environments.
Historically, implementing support for features such as code completion, syn-
tax highlighting, goto definition, or hover documentation for a programming
language must be repeated for each source code editor or IDE, as development
tool provides different interfaces for implementing the same features. So the
fundamental goal of the protocol is to allow the programming language sup-

15

1. THEORETICAL BACKGROUND

port to be implemented independently of the given integrated development
environment [42].

1.8.8 Online integrated development environment

An online integrated development environment, also known as web IDE
or Cloud IDE is an interactive development system that is based on browsers
[43]. The web IDE can be accessed from a web browser such as Google Chrome
or Mozilla Firefox, which provides a portable working environment, and allows
you to develop software on low-power devices that are usually not suitable
[44].

1.9 Research of modern solutions

An important part of this work is the research and analysis of existing open-
source integrated development environments and techniques for syntax high-
lighting, code completion and error indication. This section describes some
IDEs, briefly discusses their history, development, current versions and scope.
Besides, I provide an overview of the available libraries and algorithms com-
monly used to implement the required features of an IDE.

1.9.1 Code::Blocks

Code::Blocks is a free, cross-platform, open-source integrated development
environment. It is a desktop-based software application developed in the C++
programming language. The first official version was released on February 28,
2008 [45]. Currently, it supports C, C++, D (with restrictions), Fortran pro-
gramming languages and can be extended with plugins. The majority of basic
features of the code::blocks IDE are implemented through core plugins. These
plugins are installed by default and are maintained by the official development
team.

Code::Blocks uses Scintilla as a component for editing source code. Scin-
tilla is a free, open-source text editing component, which provides features
especially useful when editing source code. These include support for: syntax
highlighting, line numbering in the margin, code completion, code folding and
error indicators. The first published version of Scintilla was released on March
14, 1999, and was developed by Neil Hodgson [46].

I present an overview of the techniques that were used to implement the
syntax highlighting and code completion(for more details see [47, [45]).

Syntax Highlighting is implemented in scintilla using a lexer that parses

the given document and sets a predefined style for each part of the text.
In other words, the lexer determines how the specified range of text

16

1.9. Research of modern solutions

fodeComplelion

User interface

Toolbar

“NativeParser Symbol Browser
Option Dialog
Code Suggestion

- Tool Tip
ParserLlst | Context Menu

BN

y A S

‘ Parser || Parser
TokensTree

) ThreadPool

Parser

Run if\ Parserthread| | Token

\

| [Parserthread
‘[Parserthread|

Figure 1.4: Structure of the code completion plugin in Code::Blocks IDE, from
3]

should be colored. The colors per each style are set in a controlling
application that displays a scintilla window.

Each programming language has a specific implementation of the lexer
and the corresponding styles written in C++. Therefore, to enable syn-
tax highlighting for a particular programming language that is not sup-
ported by scintilla, it is necessary to write an implementation of the
lexer.

Code Completion feature is implemented as a plugin that comes with the
source code of code::blocks and only C/C++ programming languages
are supported. The structure of this plugin is shown in Figure

Below I present a brief overview of the main classes.
e CodeCompletion is the main class of the plugin that handles
events sent from code::blocks.

e NativeParser is a member of the CodeCompletion class that man-
ages Parser instances; that is, it creates or removes parsers when a
project loads or closes, respectively.

e Parser — a class that mainly processes tokens. It also contains a
thread pool to run the analysis task in a separate thread from this
pool.

e Parserthread is a class for computing complex tasks for code com-
pletion or parsing code.

17

1.

THEORETICAL BACKGROUND

18

The main flow of a parser is demonstrated in Figure [1.5] Where the
parser consists of low and high level parsers.

Source code

Low level parser

High level parser

| |
| |
| |
| |
| |
| |
| |
| Tokens I

|
: |
| |
| |
| |
| |
| |

Request. code : Completions
completion

Code completion
GUI

Figure 1.5: The main flow of a parser in Code::Blocks

A low level parser is also called a tokenizer, which performs lexical
analysis of the source code and divides it into tokens. Each token has
a unique meaning and cannot be divided into smaller tokens. For ex-
ample, a token can be a keyword, identifier, number, etc. In fact, the
tokenizer moves the internal pointer across the text and returns tokens
to feed the high level parser also called a syntax analyzer. For per-
formance reasons, this analyzer contains a reference to a thread pool and
runs syntax analysis in separate threads. A high-level parser collects all
tokens and stores them in a tree, and then the graphical user interface
can request keywords associated with some tokens to show hints, code
completion, or build a class browser tree.

A token class contains all the necessary information to obtain its type,
location in the source code, class hierarchy, etc. All tokens are stored in
the TokenTree class. Besides, for fast access to tokens, a compact prefix
tree (see Section is used to store token names. Additionally,
each node contains links to tokens associated with the same name as the
node’s string key.

When code completion is triggered, the first step of the automatic code
completion algorithm is to find the search scope. I present an example
(see Figure used in the documentation of code::blocks IDE [3]:

1.9. Research of modern solutions

#Finclude "Scintilla k"
#include "EplicWector. h"
finclude "Partitcioning. k"
finclude "IunStyles. h"

[l #ifdef 2CI_NAMESTPACE
uwsing namespace Scintilla; A

fendif
B C

Flint Bunfcyles: :PunFromPositioni{int position) |
int run = starts-*PartitionFromPositioniposition);

= whilea 1 D = 0) &4 fposition == starts-:rPositionFromPartition(run-1))) |
run--;
}

return run;

b E

Flint Punfcyles::8plicBuniint position) |
int run = PunFrowmPositioniposition);
int posPun = starts-=PositionFromPartitionirun) ;
= if (posBun < position) |
int rundtyle = Valuelt (position):
runt+;
starts-=InsertPartitionirun, position;
styles-=InsertWalue (ruan, 1, runitcyle);
}

return run;

Figure 1.6: An example of automatic code completion in Code::Blocks.

In the example shown above, the caret is located at "E” label. The
following steps must be taken to get the search scope.

e All child tokens of the namespaces used in the current file should be
searched when providing code completion. In this particular case,
all tokens from Scintilla namespace are searched, see the label 7A”.

e If the caret is located in the method body, then method parameters
and all local variables are searched as well. In the example above,
the caret symbol is located in the ”RunFromPosition()” method,
therefore the method parameter ”position” (indicated by the label
”(C”) and the local variable "run” (marked as ”D”) also correspond
to tokens.

e In addition, the search scope is expanded by tokens from the class
in which the caret symbol is located, see Label “B”, and tokens
from the global namespace are also displayed.

When the search scope is found, the algorithm tries to match the search
scope with the components from the statement before the caret symbol
and produces the matching result that is code completion items. The
following example explains how to create components from the state-
ment and matching algorithm works. For example, if a string of some

19

1. THEORETICAL BACKGROUND

statement is equal to VarA.metho| and the caret symbol is located after
metho part, then the entire line is divided into the sequence of compon-
ents with names ”VarA” and "metho”. The matching algorithm begins
by matching the initial search scope with the name of the first compon-
ent. When matched, a new search scope is obtained from the ”VarA”
token reference. The same procedure is performed with the new scope
and the second component. This matching routing runs continuously
until the last component is matched. Finally, the code completion list is
populated with elements from the search scope retrieved from the last
component.

1.9.2 Visual Studio Code

Visual Studio Code is a source code editor developed by Microsoft for Win-
dows, Linux, and macOS operating systems and positioned as a “lightweight”
code editor for cross-platform development. It includes a debugger [48], tools
for working with Git [49], syntax highlighting, IntelliSense [50], and refactor-
ing tools. Visual studio code is an open source project and released under the
MIT License [51]. This source code editor can be used to develop applications
using various programming languages, including Java, JavaScript, C ++, and
Node.js. Visual Studio code was announced by Microsoft at the Build 2015
conference on April 29, 2015. Later that year, it was released under the MIT
license [52].

Visual Studio Code has plugin support available through a central repos-
itory, called the Visual Studio Marketplace. The capabilities and features of
the IDE can be expanded using these plugins, for example, support additional
programming languages, using the Language Server Protocol [53], or static
code analyzers.

VSCode Programmatic Language Features are a suite of source code edit-
ing features based on vscode.languages.® API [54]. Visual Studio Code offers
two common ways to provide these features [55].

e VSCode provides an interface (API) with available methods that register
providers of any of the VSCode Programmatic Language Features.

e An alternative way is to implement a language server and client that
use the language server protocol. For a better understanding of this
approach, an example from the [55] is given. When a user hovers over a
certain code in the source code editor, VS Code informs the client about
it. Then the language client sends a request to the language server and
receives back the hover result, which is propagated to the VS code.

The majority of the supported languages in the Visual Studio Code are
implemented through language servers that use language services to provide
features such as code completion, syntax highlighting, and error recognition.

20

1.9. Research of modern solutions

Meanwhile, these services utilize the corresponding compilers to analyze the
source code and obtain all the necessary information.

Due to poor documentation of the design and implementation details of the
syntax analysis process, which is required to provide code completion and error
recognition, and lack of examples in such compilers, there is no description
of the techniques used to provide these features in VSCode. However, the
particular parts of the source code of compilers were examined during the
realization of the solution.

The following section describes the design of the syntax highlighting fea-
ture and basic details of IntelliSense in the Visual Studio Code. All document-
ation related to implementation details, techniques, and approaches described
below is available at [56] [54].

Syntax highlighting in Visual Studio code establishes the color and style
of the code written in the source code editor. Firstly, the text is divided
into a list of tokens and scopes. Then a theme is used to map tokens
and scopes to predefined colors and styles.

TextMate grammars are used by the VS code to break a source code
from the editor into a list of tokens. TextMate is one of the most
popular text editors for developers using the Mac OS operating system.
It allows users to create their custom complex syntax highlighting modes
using a modified version of the Apple ASCII property list format to
define language grammars, see [57, 58]. TextMate grammars are used to
denote elements of the source code, such as keywords, comments, lines,
annotations or similar. The primary purpose of this is to enable syntax
highlighting and help find the context in which the caret is located. The
syntax highlighting colors are defined for each token, in the TextMate
themes files [57].

Code completion(IntelliSense) features are provided by the language ser-
vice based on analysis of the source code and language semantics. In-
telliSense is triggered by typing Ctrl+Space or when you enter a trigger
character, which depends based on language.

IntelliSense, in the VSCode, offers a wide variety of completion types:

e Methods and Functions
e Variables

e Classes

e Interfaces

e Fields

e Properties

e Enumerations

21

1. THEORETICAL BACKGROUND

Keywords

References

Colors

Snippet Prefixes
e Words

1.9.3 Web-IDEs

This section provides a list of web-based integrated development environments.

Monaco editor is a browser based source code editor that powers Visual
Studio code. It is released under the MIT License and supports Chrome,
Safari, Classic Edge, Edge and Opera browsers.

Eclipse Theia is an integrated development environment framework for web-
based and desktop application. It is open-source and free software pro-
ject that was released under the Eclipse Foundation and licensed under
the Eclipse Public License 2.0 [59].

Codemirror is a JavaScript text editor for the browser. It has a rich pro-
gramming API and supports customization of advanced code editing
functionality. CodeMirror is an open-source project released under an
MIT license and is compatible with Chrome, FireFox, and Safari.

1.10 Available tools to implement IDE features

The goal is to support DET scripting language, which is a small subset of the
Java programming language with custom extensions. Thus, there is no need
to build a complex compiler for this language.

There are many different approaches and tools available to accomplish this
task. In the next section, I present tools that are publicly available and widely
used to analyze and parse a language.

1.10.1 Parser Generator ANTLR

Tools such as parsers and lexers are used to process user input from a text
editor. In this section, I present a detailed description of ANTLR tool.

ANTLR (ANother Tool for Language Recognition) is an efficient parser
generator used to parse structured text. It is used commonly for developing
programming languages, tools, and frameworks. Initially, ANTLR was created
for the Java language, but today, a parser can also be created for C#, Python
2 and 3, JavaScript, Typescript, Go, C++ and Swift programming languages.

ANTLR takes the grammar specified in an EBNF-like syntax as input and
performs the following actions:

22

1.10. Available tools to implement IDE features

1. Generates a lexer that breaks the text into tokens(i.e., generates stream
of tokens)

2. Generates a parser that creates an AST using token stream as an input.

3. Detects lexical and syntax errors (if present) in the grammar and syntax
of the text.

4. Provides two ways of traversing parse tree in its runtime library: visitor
and listener.

The following section describes the ANTLR tree walkers:

Listener ANTLR generates a listener interface that responds to events triggered
by the built-in tree walker. The generated interface is unique for each
grammar with enter and exit methods for each rule. The enter method
for some rule X from the grammar is triggered when the walker encoun-
ters the node for this rule. As the walker visits all children of the rule
X, it triggers exit method for that rule [60].

Visitor Similarly, ANTLR is able to generate a visitor interface from a spe-
cified grammar. For each rule in the grammar it generates corresponding
method to walk a parse tree. Visitor mechanism allows us to control the
walk itself, explicitly calling methods of each rule to visit children.

The biggest difference between listener and visitor strategies is that
listener methods are called by the walker object provided by the ANTLR,
while visitor methods via explicit visit calls.

1.10.1.1 ANTLR4 Code Completion Core

The ANLTR4 Code Completion Core (antlr4-c3) is a project that con-
tains a grammar-independent code completion engine for ANTLR based pars-
ers. This engine is useful for text editors since it is able to provide candidates
for code completion regardless of the provided grammar or programming lan-
guage. Initially, antlr4-c3 was implemented in the TypeScript programming
language and released under the MIT License [61].

The following sections provide a brief description of existing tools and
structures that generate software instruments to add support for a specific
language.

1.10.2 Xtext

Xtext is a tool for development of textual programming languages [62]. It
is an open-source project released under Eclipse Public License [59]. Based
on grammar defined in EBNF-like notation, Xtext generates the following
artifacts:

23

1. THEORETICAL BACKGROUND

— a parser that reads the text and return an Eclipse Modeling Framework
based AST.

— a compiler, type checker and linker

— an editing support for Eclipse and any editor that supports the Language
Server Protocol.

Eclipse Modeling Framework (EMF) is a free modeling framework and code
generation application for building applications based on a structured data
model described.

1.10.3 textX

textX is a metalanguage framework for building Domain-Specific Languages
in Python programming language. A metalanguage is a language used to
define another language [63].

Based on a grammar description, textX automatically creates a metamodel
and a parser for the described language. The parser analyzes the expressions
of the language and automatically builds a graph of Python objects corres-
ponding to the metamodel. textX is inspired by Xtext, so it follows the syntax
and semantics of Xtext

1.10.4 JetBrains MPS

JetBrains MetaProgrammingSystem (MPS) is a tool to design lan-
guages. It uses projection editor, which allows users to create language editors,
with the support of non-textual elements such as math notations, diagrams,
and forms [64]. MetaProgrammingSystem is an environment for language
definition and integrated development environment (IDE) for such languages
[65].

24

CHAPTER 2

Current State

The current source code editor used for the DET scripting language is im-
plemented as a component of the desktop user interface application, which
is developed in the C# programming language. Supported features of this
editor are: syntax highlighting and autocompletion. Error recognition and
indication are not supported in the current state. This chapter presents
the design and approaches used in the current state and points out main the
disadvantages.

2.1 Text editor

The current state is based on the AvalonEdit. It is a Windows Presentation
Foundation based text editor [66]. WPF is a graphical system, developed by
Microsoft, for building Windows-based applications with user interface cap-
abilities [67]. AvalonEdit offers many options for displaying a text document,
which is suitable for a code editor, where the style and color of the text de-
pends on the syntax of the language.

2.2 Features of the text editor

The IntelliSense service (IntellisenseService.cs) component provides data to
support syntax highlighting and code completion features in the text editor.
It is implemented as part of the editor application. The service is created
when the text editor is launched.

The DET language supports custom language extensions that are provided
from the backend part. Whenever the IntelliSense service is instantiated, it
requests the definitions of custom language extensions to provide additional
support for them. The structure of language extension definition would be
the following:

e Name

25

2. CURRENT STATE

e Type

e Description

e Attributes

The following list represents all possible types:
— Function

— Procedure

Field

— Notation

— Namespace

— Constant

— RuntimeFunction
— Session

— Template

The attributes of language extensions are defined only for functions, pro-
cedures, and RuntimeFunctions.

2.3 Syntax Highlighting

Syntax highlighting data for the DET language are defined via the definitions
in the file, which would be loaded by the editor in runtime. In addition,
an extra highlighting information is provided by the IntelliSense service to
support custom extensions.

The AvalonEdit editor uses regular expressions to process text and colorize
words. It requests the data in the following format:

o text
e color info

where the text is used to generate a regular expression to find all the words
from the source code of the editor that match the specified text, and color
info defines the color and font size of the matched text.

The file lists all language metadata constructs such as a font size and color
name. For example, the data to support syntax highlighting for all available
primitive types from the DET language is defined in the format shown in

Listing

26

2.3. Syntax Highlighting

1:boolean boolVar = false;
2 double doubleVar = 1.0;
Jlint intVar = 1;

4 short shortVar = 0;

5 long longVar = 2;

f: float floatVar = 0.1;

7 byte byteVar = 0;

g char charVar = '0;
9:String stringVar = "string”;
10
11
12|

Figure 2.1: An example of using primitive types from the DET language in
the AvalonEdit text editor.

Listing 2.1: The part of the text that defines the color and style of primitive
data types.

<Color name="ValueTypes" foreground="Red" fontWeight="bold" />

<Keywords color="ValueTypes">
<Word>boolean</Word>
<Word>double</Word>
<Word>int</Word>
<Word>short</Word>
<Word>long</Word>
<Word>float</Word>
<Word>byte</Word>
<Word>char</Word>
<Word>String</Word>

</Keywords>

The file format is determined by the syntax highlighting loader provided
by the AvalonEdit editor. When a text editor is created, the loader retrieves
the color and style definitions for the DET language. An example of syntax
highlighting for primitive types is shown in Figure

IntelliSense provides additional data to support syntax highlighting for
custom language extensions. The data structure is the same as described
above, that is, it has information about the name and color. It is collected
from language extension definitions provided by the backend system.

The name field within the syntax highlighting info corresponds to the name
of the language extension.

The color depends on the type of language extension. The mapping is
visible from the following code snippet:

27

2. CURRENT STATE

private static Color GetColor(LanguageExtensionType type)

{

switch (type)

{

case

LanguageExtensionType

Color.0Orange;

case
case
case
case
case
case

LanguageExtensionType
LanguageExtensionType
LanguageExtensionType
LanguageExtensionType
LanguageExtensionType
LanguageExtensionType

.RuntimeFunction: return

.Function: return Color.Green;
.Procedure: return Color.Green;
.Field: return Color.DarkMagenta;
.Notation: return Color.DarkMagenta;
.Namespace: return Color.DarkMagenta;
.Constant: return Color.DarkMagenta;

default: return Color.Black;

2.4 Code completion

The code completion feature automatically gets triggered when the user starts
typing in the text editor or press Ctrl4+Space.

The code completion list is shown in a dedicated window provided by the
AvalonEdit. In the following cases, the code completion list is empty, and
therefore the completion window is not displayed:

e The caret position is inside the comment section.

e The last entered character is the whitespace character.

The structure of the completion data is provided by the AvalonEdit and
has the following format:

e text is an entry in the completion window

e type defines an icon of the completion entry

e description is additional information that can be seen by pressing
Ctrl4-Space when any completion element is selected

e priority determines the order in which the elements are displayed in
the window.

Initially, when the code completion gets invoked, the list is populated with
completion items provided by the IntelliSense service. The structure of such
items is listed below:

o Keywords

28

2.5. Key disadvantages of the current state

e Declared variables

e Custom language extensions

All available DET language keywords with corresponding descriptions
are collected from a hard-coded list defined in an XML file.

IntelliSense service utilizes the VariableExtractionService.cs component to
provide declared variables. This component parses the text from the editor
with an algorithm that uses the following regular expression. This regular
expression only detects declared variables with primitive data types and stores
variable names.

(7:double|float|int|boolean|String
| short | long|byte|char) \s+(?<var_name>\w+)

Figure 2.2: Representation of the regular expression used to
match a declared variable from source code.

When the processing of the entire source code of the text editor is com-
pleted, the collected names are propagated to the IntelliSense service.

Custom language extensions are handled internally by the IntelliSense
service. It bypasses all definitions and generates a list of completion items as
follows:

— the text and type of the completion item correspond to the name and
type of the language extension, respectively.

— the priority depends on the type of custom extension. The dependency
is hard-coded in the IntelliSense service.

— the combination of attributes and the description of language extensions
defines the description of the code completion item.

When all completion items are assembled, they are displayed in the com-
pletion window. Besides, if the window is open and the user continues to enter
text, items in the completion list are sorted alphabetically by the word that
the cursor points to. Moreover, the most suitable suggestion for the current
word is highlighted, see Figure

2.5 Key disadvantages of the current state

The design and approaches used in the existing script editor to implement the
core IDE features that were discussed in this chapter have many drawbacks.
This section lists critical flaws in the current state.

29

2.

CURRENT STATE

1
2
3
4

JE% GET_CLUSTER_ID GET_CLUSTER_ID

GET_C

fx GET_COMFIGURATION_FII Gets id of the cluster with hub,
fx GET_CURRENT_TEST_SUI

Figure 2.3: An example of the code completion list for the word GET_C.

30

e The text editor has no ability to recognize and display errors when the

user enters a code.

Hard to maintain and analyze the source code of the current state due
to the lack of project documentation and poor source code style.

The code completion list contains elements that when used generate
errors in the script, that is, the search scopes according to the caret
position are not supported. See the following example for a better un-
derstanding.

In the example (see Figure , the completion list contains variable
names that are not available at the current position of the caret symbol.
variable_B is inaccessible after line 4, and variable_C is not declared and
initialized.

Only declared variables with primitive data types are supported in the
code completion function. Thus, the completion list is not populated
with the names of declared variables that have a custom class type.

The code completion feature does not display the type of declared vari-
ables.

2.5. Key disadvantages of the current state

1 int variable_A;

29

3 int variable_B;

4.}

5

& int variable_C = variable|
== variable_A variable B
Evariable_ﬂ Variable
== variable_C

& VariableCabinetTradePrice

= VariableRate

& VariableRateDemandMaots
>

Figure 2.4: An example of the code completion list for the word variable.

31

CHAPTER 3

Analysis and Design

The following section would analyze the main requirements of the project and
suggest the solution design.

3.1 Web IDE

The existing editor is a part of an application developed in C#. Therefore it
could not be used on any other platform rather than Windows. The backend
part of the DET platform is Java based and ordinarily deployed onto Linux
distributive systems. To prune the complexity of the deployment to end-user,
the new IDE should platform-independent. Moreover, developing multiple ap-
plications for required systems would be inefficient in terms of maintainability.
Web-based IDE would be supported by most Linux distributives out of the
box, focusing the development on one application.

The web-based integrated development environment has many advantages
over the desktop-based IDE which is used in the previous approach. In the
next section, I introduce the key benefits of the web IDE. For a more detailed
comparison of web-based and desktop-based editors see [44].

e Installability is a capability of the software product to be installed in
a specified environment. It is perhaps the most notable advantage for
web-based IDE. The idea is that the user would be able to log in through
the browser and directly start writing code without installing anything
(e.g., IDE itself, tools, extensions). Besides, the user would no longer
need to install any updates, as they are applied in a central way.

e Software mobility and portability (or accessibility) is a software
features that describes how easily this software can accessed in different
environments. It is the second prominent advantage of a web-based
solution over a desktop tool. The goal is that the IDE could be accessed
from any device that has a browser.

33

3. ANALYSIS AND DESIGN

3.2 Features of IDE

The primary IDE usecase is projecting business logic onto DET language
scripts. The goals of the IDE to ease the process of writing the scripts and to
provide useful interactive context information on the go.

As the user interferes with the central platform, custom-defined functions
and constants are used in the script to reflect the idea of the message routing.
The code completion feature should be implemented to give an opportunity
of not remembering the whole identifier name. That would give the user
the ability to enter only part of the identifier he remembers and then select
the appropriate one from the list of suggested identifiers. The completion
should not be performed for every possible token in the text, at least often
encountered static constraints, and the identifiers should be supported. Some
state of code completion feature was implemented in the initial version of IDE,
which forces the feature to be present in the prototype, as this work considered
to be an improvement.

A dedicated color could provide the context regarding the particular entry
of the code. Highlighted code is much easier to perceive when compared with
plain black letters text. Syntax highlighting feature should be implemented in
the prototype and support at least all the highlighting which was present in
the original editor. The highlighting should be configurable so that any color
scheme could be used. Users should be able to define their own color schemes
or use the existing ones if it satisfies their needs. Instant error feedback should
be provided, meaning the error context should be presented to the user as
the code is being written. On the other hand, there should not be context
overloading; thus, the error description should be provided only when hovered
on with the cursor. While the error is not in focus, it could be indicated
with the underline. The error recognition and indication feature should be
introduced in the prototype.

The following sections describe the design of code completion, syntax high-
lighting, and error recognition features of DET language integrated develop-
ment environment.

3.2.1 Code completion

The approach chosen to implement the code completion feature is based on
traversing an abstract syntax tree. ANTLR parses the text entered in the
script editor and creates an abstract syntax tree that is processed to provide
the necessary data for automatic code completion. The main points of pro-
cessing an AST are listed below:

e Discover the context in which code completion was triggered, and collect
all possible words that could follow the caret symbol.

34

3.2. Features of IDE

e Collect the necessary information about the declared variables from the
part of the text in the editor located before the caret symbol.. This
information includes:

— name of variable, to populate the completion list, if necessary

— type of declared variable for being able to list all public fields and
method of this variable

— the search scope of each variable to find out if it can be accessed
from the location indicated by the caret symbol

3.2.2 Syntax highlighting

The previous approach used to support syntax highlighting was implemented
for the AvalonEdit editor, so it needs to be rewritten in order to be compatible
with the Monaco editor. In addition, the generated ANTLR lexer can be
utilized to implement syntax highlighting feature, so there is no need to process
text using regular expressions.

The idea of implementing syntax highlighting feature is to use the ANTLR
lexer, which performs lexical analysis of user input and divides the source code
into tokens. Thus, style and color can be defined for each type of token and
used in the Monaco editor to highlight text.

3.2.3 Error recognition and indication

The old script editor does not offer error recognition and indication while the
user is typing the source code. Therefore, the approach to supporting this
feature was developed from scratch.

The plan is to support lexical, syntactical and intuitive semantic errors.
Error recognition design of the mentioned types of errors is provided in the
section below.

— lexical and syntax errors in the source code can be detected using the
listener interface, which is generated by ANTLR in accordance with
the grammar of the DET language. The listener traverses through the
abstract syntax tree and collects the information necessary to provide
errors.

— to provide supported semantic errors, such as usage of undeclared vari-
ables, methods, or classes, and duplicate variable declarations, the AST
produced by the ANTLR parser needs to be traversed. A tree walker
that traverses the abstract syntax tree collects the information necessary
to detect these types of errors.

When all errors are detected, the position of the error in the code and the
error message are sent to the editor of Monaco to be able to highlight them.

35

3. ANALYSIS AND DESIGN

3.3 Editor framework

The end-users should not be dealing with significant latencies over the input.
Thus the solution should be dramatically improved in terms of processing
speed and overall response time. The technologies of the web-based applica-
tion also allow the solution to be light-weight and to require as few resources
as possible.

Comparing the web-based IDEs such as Monaco editor, Eclipse Theia, and
Codemirror, the differences were not significant for the current use case.

The chosen web-based integrated development environment is Monaco ed-
itor. The list of Monaco editor benefits is presented below:

— it provides an extensive list of features that are integrated into Visual
Studio code

— Microsoft thoroughly supports it

— it has well described API documentation and many available examples,
which simplifies the coding for this editor

— it provides a framework that allows implementing light-weight solutions

To support the required features of the DET language IDE, such as syntax
highlighting, code completion and error recognition, proper lexical and syntax
analysis needs to be performed.

Specially designed context-free grammar should be used to support Java-
like languages, as was presented in [I]. The grammar would be relatively easy
to maintain, unlike the regular expressions which make the base of the text
processing for the previous implementation of the DET language editor.

The DET language has already been defined in DET Scripting Engine
work [I] using ANTLR domain-specific language. Maintenance of several
frameworks dealing with the definition and parsing of DET language would
be cost-inefficient. Although most of the tools mentioned in section 1 can also
provide custom language support for most IDEs, lexer, and parsers generated
by defined ANTLR grammar would be utilized in this project.

ANTLR grammar provides tools to generate parser and lexer, that could be
used to parse and analyze user input, to a wide variety of languages, including
one used in this project. Moreover, the API of the provided tools is extensive
and suits the goals of this project.

36

CHAPTER 4

Realisation

4.1 Environment

Like any program, this prototype project behavior depends on the input, which
is composed of two main parts:

e User input, which is dynamic and can be accessed only during runtime

e Various static data, which is available at the compilation time. This
data builds the environment of the prototype

The environment could also be divided into smaller parts. The following
subsections present the main components of the environment and describe
some of the implementation aspects.

4.1.1 Metadata of custom methods and variables

This project would not include communication with the backend systems to
obtain the metadata for the DET language. For prototype purposes, the
metadata would be provided as part of the source code. When the prototype
would be integrated with the platform, a proper provider could implement the
interface in order to receive data from the backend. The language extensions
metadata for the DET language contains specific information:

e Name of the class where the language extension is implemented. It can
be used in the code to access methods or fields of this class.

e Alias for the method or variable, which could be used as part of the
DET language script

e The replacement for the alias, which would take place right before the
compilation

e The return type of the extension method or type of the extension variable

37

4. REALISATION

e Number of required arguments, valid only if the extension is a method

e Method parameter types and other method information

The provided hardcoded metadata is generated only for testing purposes
and does not reference any real extension methods nor variables.

4.1.2 Grammar

The grammar defined in ANTLR domain-specific language is available from
the DET Scripting Engine project [1]. ANTLR framework is capable of gen-
erating TypeScript code based on the provided grammar. However, some of
the rules in the provided grammar contain Java code inside their actions.
TypeScript equivalent code should have been used before the lexer and parser
could be generated. Some of the actions which were modified could be seen
in Figure Furthermore, the majority of the rules were transformed to be
non-ambiguous. The reason for this is described in one of the following sec-
tions

The generated lexer and parser provide extensive API for parsing the
DET language scripts into an abstract syntax tree for later traversal using
the listener pattern.

4.1.3 Prototype web server

The prototype would be accessible as an HTML page, containing only the
editor. The web server for the page is implemented as a standalone Kotlin
application. When the solution would be integrated with the platform, a
standalone web server for the editor would be obsolete, as it would be using
the central platform web server. When the user opens the HTML page, the
instance of the Monaco editor is being created. As Monaco requires language
to be registered on the startup, DET language is being defined via Monaco
API. This process could be divided into the following parts:

e Setting language configuration which defines the brackets and comments
which are supported in DET language

e Setting styles and colors for language constructs

e Registration of the following IDE features providers that are implemen-
ted as editor components:

— RaTokensProvider for dividing the text to tokens. These tokens
used by the Monaco editor for syntax highlighting.
— SuggestAdapter for providing code completions.

— DiagnosticsAdapter is used for static code analysis. Each time the
user edits text in the editor, this adapter checks the text for errors.

38

4.2. Syntax highlighting

fragment Javaletter:

[a-zA-Z_] // these are the "java letters" below Ox7F

| // covers all characters above Oz7F which are not a surrogate

~[\u0000-\u007F\uD800-\uDBFF]
{Character.isJavaldentifierStart(_input.LA(-1))}7?

| // covers UTF-16 surrogate pairs encodings for U+10000 to
U+10FFFF

[\uD800-\uDBFF] [\uDCOO-\uDFFF]
{Character.isJavaldentifierStart (Character.toCodePoint ((char) _input.LA(-2),
(char) _input.LA(-1)))

}7;

fragment JavalLetterOrDigit:

[a-zA-Z0-9$_] // these are the "java letters or digits" below Oz7F

| // covers all characters above Oz7F which are not a surrogate

~[\u0000-\u007F\uD800-\uDBFF]
{Character.isJavaldentifierPart(_input.LA(-1))3}?

| // covers UTF-16 surrogate pairs encodings for U+10000 to
U+10FFFF

[\uD800-\uDBFF] [\uDCOO-\uDFFF]
{Character.isJavaldentifierPart(Character.toCodePoint ((char) _input.LA(-2),
(char) _input.LA(-1)))

375

Figure 4.1: ANTLR grammar rules representing a digit or letter in a DET
script.

Once the language and all components are registered, the editor would be
displayed on the HTML page. An initial script would be presented for the
instant demonstration.

4.2 Syntax highlighting

Being a feature-rich framework, Monaco editor provides syntax highlighting
API. It requires two components: tokens provider and theme for each token
type. As the code would be presented to a token provider, tokens would be
requested as the output. Each token has the name and the starting position.
The token provider for the prototype project is implemented in RaTokens-
Provider class and internally uses the functionality of the lexer, which was
generated by the ANTLR framework based on the DET language grammar.
The lexer is parsing the input into a sequence of tokens that have all the ne-
cessary information for the Monaco API. The supported tokens for the syntax
highlighting contain the following types:

39

4. REALISATION

e Digit
e Keyword

e String

The token type has its own theme, which consists of the font, style, and
color. The themes should be registered via Monaco API for each token type.

4.3 Code completion

Code completion provider in the DET scripting language IDE utilizes a lan-
guage service. The service is implemented as part of the editor and responsible
for parsing the input of the user.

When code completion is triggered, the Monaco editor requests the pro-
vider for code completion information. The caret symbol location and the test
are passed as part of the API request. The request is then propagated to the
language service for the code completion list based on the text preceding the
caret position. The language service utilizes the ANTLR4 code completion
core to collect candidates that could follow the caret position. It requires the
text and caret position and produces a collection of the candidates.

The ANTLR4-C3 is not capable of providing the code completion in case
of syntax error before the caret position. Therefore, the language service sends
the text of the last statement to isolate it from the rest of the source code
written in the editor. In this case, errors that are present in the code before
the last statement would not prevent the engine from providing all possible
candidates. An AST processing provides the last statement from the source
code. The AST is traversed by using the listener API. The listener API is
part of the framework generated based on DET language grammar.

All the rules which are defined in the ANTLR grammar would be accessible
via listener API using the dedicated methods. When the text is being parsed,
there are two methods which are accessed at different times:

e On entering the rule
e On exiting the rule

If the enterStatement method is being invoked during text parsing, that
would indicate that Statement rule is being used, and the rule’s context can
be accessed. In that particular case, the source code of the statement is saved.
When the tree traversal ends, the code of the last statement is passed to the
engine.

The ANTLRA4 code completion core requires the following data:

e tokens that are ignored and not provided as completion items

40

4.3. Code completion

e grammar rules that indicate the following types of completion items:
variables, methods, and classes

The code completion core returns a candidate collection that contains fields
for lexer tokens and parser rule indexes. Provided lexer token list consists of
token ids which directly follow the given token in the grammar. The actual
names of tokens are taken from the parser’s vocabulary providing the token
id. The names correspond to DET language keywords that could follow the
current position of the caret symbol. An obtained parser rule indexes list is
used to collect completions of variables, methods, and classes. For showing
possible symbols in source code, symbol tables are used. They contain all
available symbols at the caret position. The following section describes the
realization of symbol tables.

4.3.1 Symbol table

The ANTLRA4 code completion core provides symbol table implementation out
of the box. The following symbol tables are utilized to provide the symbols:

e Global symbol table — stores information about custom extensions. They
are loaded when the code completion feature gets invoked

e Editor symbol table — stores the information about all declared variables
available at the current caret symbol position

As was described earlier, processing of each rule during text parsing could
be monitored via listener API. That allows to collect all declared variables
and save names and type into the symbol table. In addition, search scopes
are supported, that is, when a declared variable becomes inaccessible to the
current position of a caret symbol, it is removed from the symbol table.

4.3.2 Processing candidates

The parser rules provided by the engine are iterated. Each rule is processed
depending on the rule index. The rule indexes represent the specific type
of completion items, such as variable, method, and class. Depending on the
type, the corresponding symbols are looked up in the symbol tables that were
described earlier. Completion items are constructed from the found symbols
and provided to the Monaco editor.

4.3.3 ANLTR error recovery mechanism

ANTLR Framework provides a default error handler that is able to recover
from the errors. It would ignore the syntax errors and provide a valid AST tree.
Moreover, there would be generated error reports, providing some context in

41

4. REALISATION

the form of the error position and possible reason. ANTLR also supports
cascading errors; thus, a sequence of errors could be handled, not impacting
the parsing of the rest of the text. There is a requirement for the ANTLR to
support error processing in the given grammar. It would be able to successfully
recover only in case the error occurred during the parsing of unambiguous
rules. Thus the grammar should have been modified to avoid the possibility
of the multiple next token choices from the moment where error can occur.
The following techniques were used to alter the grammar:

o Left factorization. The definition follows:

A — aay |aag | ... | aay
is changed to
A — ad
A/ — al\a2| |an

e Corner substitution. The definition follows:

A — Ba
B — bi|ba]| ... | bm
is changed to
A = bia|byal| ... | bpa

Some of the least used rules were left unchanged and can be subject to the
future error handling recovery improvement.

4.4 Error recognition and indication

Static code analysis was introduced in the DET language IDE to detect and
indicate errors as a user types the code. Each time the user enters text into the
editor, the diagnostic provider validates it and returns errors to the Monaco
editor so that it can display them.

The ANTLR parser API allows the user to attach an error listener to
handle syntactical and lexical errors. If the parser detects an error during
text processing, the error listener would be notified. An error listener that
collects these errors and propagates them to the user is implemented in the
prototype. Other from that, the DET language IDE supports some minor
semantic mistakes, such as usage of undeclared variables, methods, or classes
and declaring duplicate variables. As was described earlier, the processing of

42

4.4. Error recognition and indication

the AST is able to provide the context of all declared variables. This list is used
to detect duplicate variable declaration or usage of an undeclared variable.

Whenever the listener is notified about a declaration of a variable(enter VariableDeclaration
is called) during a traversal of the AST, it checks the editor symbol table for
the symbol of type variable with the specified name. If the symbol table
already contains this symbol and error is generated with the corresponding
error message and stored to the list of semantic errors.

The listener’s appropriate methods get called when the usage of the name
of variable, method, or class is detected during a traversal of the AST. The
symbol tables are searched for the symbol of the specified name and of the
corresponding type(variable, method, or class). In case the symbol was not
found, an error is stored in the list accompanied by the relevant message.

When all errors are collected, they are propagated to the Monaco editor
that displays them as an underlined red line. Moreover, if the user hovers over
the displayed error, the message of the error is shown.

43

CHAPTER 5

Testing

The primary purpose of the experiment was to test the overall usability of the
prototype and the previous editor. The test results are composed of the feed-
back over both editors, enabling evaluation comparison of separate features.
The test scenarios were designed to replicate the usual routine use cases of
the DET platform, where internal functions and features of the language are
commonly used alongside with standard programming tasks such as:

e Conditionals usage

e Accessing custom language extensions such as custom variables and
methods

e Variables declarations inside and outside the scopes

The testing process consists of the following steps:

1. Implementation of the given task using the original IDE
2. Fulfilling the same task using new IDE prototype

3. Filling out a questionnaire regarding the advantages and disadvantages
of the prototype and documenting the overall user experience with feed-
back on what might be improved in the future

4. Filling the assessment table of the DET language IDE capabilities. Eval-
uation is based on points from 0 to 10. See Figure for the results.
The result shows the overall superiority of the new IDE

All the testing was performed by the system specialists subdivision of
the DET company. All the sixteen testers have roughly the same experience
required for the experiment:

e Above 2000 lines of code written in DET language

45

5. TESTING

ime | 6.63
Response time | 3,06
ion | | 6.56
Code completion | 569
Syntax highlighting l ||6§é914
| 6.38

Error recognition

| 0

Figure 5.1: Mean features score. Blue bars represent original editor, while red
bars represent prototype evaluations

e Long time experience with the original editor

These qualities are distributed evenly in the end-user groups as well, thus
making the experiment close to a deployment environment.

The results of the experiment could be seen in Figure [5.1] The chart
represents the mean subsequent evaluation among all of the testers. Both
assessments, for the original editor and the prototype, are included in the
table. The main observations of the experiment are the following:

e The error recognition and indication function in the prototype has re-
duced the overall script implementation time and was anticipated by the
testers

e Syntax highlighting remained virtually on the same level

e Suggestions have become more natural and helpful in the context of the
proposed task

e The average input response time has dramatically improved for the short
scripts. However, in cases where the actual code length is more than
approximately 60 lines, the latency starts to decrease. This flaw is in-
significant since the vast majority of the scripts do not exceed 30 lines.

On the other hand, users have encountered a few problems introduced in
the prototype. The following list describes the challenges and offers possible
solutions which could be revisited in future iterations:

e Autocompletion introduces errors in the code in particular infrequent
cases. Semantic error recognition should be improved to prevent the
editor from suggesting incorrect code.

46

e Latency increases as the script take more than 140 lines of actual code.
The implementation could be parallelized using threads in the form of
web workers, which would decrease the load of the main thread.

e JAVA block code is out of support. More advanced support for Java
constraints should be implemented. Moreover, it should be revisited
with each new release of Java.

e Multiple errors in the code prevent the editor from suggesting any auto-
completion. Error detection and isolation algorithm should be improved.

The tests were performed on the Windows platform as the previous im-
plementation of DET IDE is not supported on any other platform. However,
several participants insisted on the testing prototype on one of Linux dis-
tributives. The overall prototype user experience has been mostly evaluated
as satisfying and pleasant under the condition of addressing confronted prob-
lems. The test showed the improvements and minor flaws of the prototype
implementation, assuring the validity of the performed work.

47

Conclusion

The goal of this thesis was to implement an integrated development environ-
ment (IDE) for DET scripting language, which is a proprietary language based
on Java. The IDE should be capable of syntax highlighting, code completion,
and error recognition. Based on the research of modern solutions, use existing
libraries and techniques to implement the IDE and its required features as a
prototype.

The DET integrated development environment preserved features of previ-
ous IDE iteration alongside with modern design concepts. Analysis of design
flaws of the original IDE revealed the main problem of processing performance
and was addressed using contemporary solutions, resulting in much pleasant
user experience. Many features were revisited and improved by switching to
the proper lexer and parser, which provides more robust parsing, unlike the
regular expressions approach. Along with revised features, new ones have
been introduced that improve the user experience furthermore. One of those
features is error recognition, which gives an ability to review errors before
actual compilation. The web-based approach has introduced much better ac-
cessibility than the standalone Windows application. The Monaco editor, as
the base component of the IDE, gave an opportunity to integrate new features
seamlessly.

Future work

There are a couple of milestones to be achieved before the project could be
integrated into the platform. Further work main points are derived from the
user feedback during manual testing of the prototype:

e Error correction suggestions as an extension of the error context.
e Type errors which would indicate if an incorrect type is being used

49

CONCLUSION

e Integrated version control support, including annotations and file’s change
history

Besides the tester requests, there are certain ambitions to improve the user
experience furthermore:

e Debug mode to improve the developing process and decrease time spent
on finding the error

e Warnings support can help developers adhere to specific requirements in
script implementation, preventing unpredictable behavior of the script
or security issues.

e A powerful code completion engine that uses Al to significantly improve
the quality of sentences.

20

Bibliography

Grankin, D. A translator of DET scripting language into Java. Disserta-
tion thesis, 2019. Available from: http://hdl.handle.net/10467/83386

Hartley, R. Syntax diagrams. https://www.cs.nmsu.edu/~rth/cs/
cs471/Syntax%20Module/diagrams.html, [Online; accessed 11-January-
2020).

Code Completion Design. [Online; accessed 01-February-2020]. Available
from: http://wiki.codeblocks.org/index.php/Code_Completion_
Design

Lin, T. C. The new investor. UCLA L. Rev., volume 60, 2012: p. 678.

Hendershott, T.; Riordan, R.; et al. Algorithmic trading and information.
Manuscript, University of California, Berkeley, 2009.

Hope, C. What is Syntax? www.computerhope.com, [Online; accessed 17-
January-2020].

Melichar, B.; Holub, J.; Muzatko, P. Languages and translations. CVUT,
1997.

Barron, D. W.; et al. Introduction to Programming Languages, volume 7.

CUP Archive, 1977.

Hopcroft, J. E.; Motwani, R.; Ullman, J. D. Introduction to automata
theory, languages, and computation. Acm Sigact News, volume 32, no. 1,
2001: pp. 60-65.

Backus, J. W. The syntax and semantics of the proposed international
algebraic language of the Zurich ACM-GAMM conference. Proceedings of
the International Comference on Information Processing, 1959, 1959.

o1

http://hdl.handle.net/10467/83386
https://www.cs.nmsu.edu/~rth/cs/cs471/Syntax%20Module/diagrams.html
https://www.cs.nmsu.edu/~rth/cs/cs471/Syntax%20Module/diagrams.html
http://wiki.codeblocks.org/index.php/Code_Completion_Design
http://wiki.codeblocks.org/index.php/Code_Completion_Design
www.computerhope.com

BIBLIOGRAPHY

[11]

[12]

[13]

[21]

22]

23]

[24]

02

Peretti, O. COP 4555. https://www.coursehero.com/sitemap/

schools/502-Florida-International-University/, [Online; ac-
cessed 10-January-2020].

Scowen, R. S. Generic base standards. In Proceedings 1993 Software En-
gineering Standards Symposium, IEEE, 1993, pp. 25-34.

Bender, E. A.; Williamson, S. G. Lists, Decisions and Graphs. S. Gill
Williamson, 2010.

Read, R. C. Graph theory and computing. Academic Press, 2014.
Gross, J. L.; Yellen, J. Handbook of graph theory. CRC press, 2003.

Brass, P. Advanced data structures, volume 193. Cambridge University
Press Cambridge, 2008.

Black, P. E. Dictionary of algorithms and data structures. Technical re-
port, 1998.

Morin, P. Data Structures for Strings. PDF'). Retrieved, volume 15, 2012.

Tzeng, H.-Y. Method for IP routing table look-up. May 9 2000, uS Patent
6,061,712.

Korobov, M. Morphological analyzer and generator for Russian and
Ukrainian languages. In International Conference on Analysis of Images,
Social Networks and Texts, Springer, 2015, pp. 320-332.

Love, R. Linuzx kernel development. Pearson Education, 2010.

Tomassetti, G. A Guide to Parsing: Algorithms and Technology.
https://dzone.com/articles/a-guide-to-parsing-algorithms-
and-technology-part, [Online; accessed 10-January-2020).

Nordquist, R. What Is Parsing? https://www.thoughtco.com/parsing-
grammar-term-1691583, [Online; accessed 13-January-2020].

Jones, J. Abstract syntax tree implementation idioms. In Proceedings of
the 10th conference on pattern languages of programs (plop2003), 2003,
p- 26.

Chiswell, I.; Hodges, W. Mathematical logic, volume 3. OUP Oxford,
2007.

Nguyen, B. Linuz Dictionary. Binh Nguyen, 2003.

IntelliJ, I. The Java IDE for Professional Developers by JetBrains. URL:
https://www. jetbrains. com/idea/(besucht am 19. 02. 2019), 2019.

https://www.coursehero.com/sitemap/schools/502-Florida-International-University/
https://www.coursehero.com/sitemap/schools/502-Florida-International-University/
https://dzone.com/articles/a-guide-to-parsing-algorithms-and-technology-part
https://dzone.com/articles/a-guide-to-parsing-algorithms-and-technology-part
https://www.thoughtco.com/parsing-grammar-term-1691583
https://www.thoughtco.com/parsing-grammar-term-1691583

Bibliography

28]

[29]

Randolph, N.; Gardner, D. Professional visual studio 2008. John Wiley
& Sons, 2008.

Computerwoche. Interaktives Programmieren als Systems-Schlager.
https://www.computerwoche.de/a/interaktives-programmieren-
als-systems-schlager,1205421, [Online; accessed 5-January-2020].

Bruch, M.; Bodden, E.; Monperrus, M.; et al. IDE 2.0: collective intelli-
gence in software development. In Proceedings of the FSE/SDP workshop
on Future of software engineering research, 2010, pp. 53-58.

Kaufman, L. The Best Free Text Editors for Windows, Linux,
and Mac. http://www.howtogeek.com/112385/the-best-free-text-
editors-for-windows-and-linux/k

d’Anjou, J.; Fairbrother, S.; Kehn, D.; et al. The Java developer’s guide
to Eclipse. Addison-Wesley Professional, 2005.

Hansen, W. J. User engineering principles for interactive systems. In Pro-
ceedings of the November 16-18, 1971, fall joint computer conference,
1972, pp. 523-532.

Group, M. S. KEDIT Language Definition Files. http://www.kedit.com/
wwkld.html, 2012, [Online; accessed 20-January-2020].

Klock, A. H.; Chodak, J. B. Syntax error correction method and appar-
atus. Oct. 14 1986, uS Patent 4,617,643.

Jillre. Visual Studio IDE documentation. [Online; accessed 04-
February-2020]. Available from: https://docs.microsoft.com/en-us/
visualstudio/ide/?view=vs-2019

Microsoft. Visual Basic 5.0 Control Creation Edition. https://
archive.org/details/VB5CCE, [Online; accessed 7-January-2020].

Asaduzzaman, M. Context-Sensitive Code Completion. Dissertation
thesis, University of Saskatchewan, 2018.

Kerievsky, J. Refactoring to patterns. Pearson Deutschland GmbH, 2005.

Fowler, M.; et al. Refactoring: Improving the Design of Existing Code.
2000. DOI= hittp://www. martinfowler. com/books. html/refactoring,
2003.

Zeil, S. J. Course CS350 Integrated Development Environments. [Online;
accessed 15-January-2020]. Available from: https://www.cs.odu.edu/
~zeil/cs350/£17/Public/IDEs/index.html

93

https://www.computerwoche.de/a/interaktives-programmieren-als-systems-schlager,1205421
https://www.computerwoche.de/a/interaktives-programmieren-als-systems-schlager,1205421
http://www.howtogeek.com/112385/the-best-free-text-editors-for-windows-and-linux/
http://www.howtogeek.com/112385/the-best-free-text-editors-for-windows-and-linux/
http://www.kedit.com/wwkld.html
http://www.kedit.com/wwkld.html
https://docs.microsoft.com/en-us/visualstudio/ide/?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/ide/?view=vs-2019
https://archive.org/details/VB5CCE
https://archive.org/details/VB5CCE
https://www.cs.odu.edu/~zeil/cs350/f17/Public/IDEs/index.html
https://www.cs.odu.edu/~zeil/cs350/f17/Public/IDEs/index.html

BIBLIOGRAPHY

[42]

[43]

[44]

[50]

[51]

o4

LSP / LSIF. [Online; accessed 09-February-2020]. Available from: https:
//microsoft.github.io/language-server-protocol/

Tunc, H.; Taddese, A.; Volgyesi, P.; et al. Web-based integrated develop-
ment environment for event-driven applications. In SoutheastCon 2016,
IEEE, 2016, pp. 1-8.

Jonas Helming, M. K. Web-based vs. desktop-based Tools — Ec-
lipseSource. [Online; accessed 12-January-2020]. Available from:
http://eclipsesource.com/blogs/2018/06/19/web-based-vs-
desktop-based-tools/

CodeBlocks. [Online; accessed 14-January-2020]. Available from: http:
//www.codeblocks.org/

Scintilla and SciTE. [Online; accessed 16-January-2020]. Available from:
https://www.scintilla.org/ScintillaHistory.html

Scintilla Documentation. [Online; accessed 18-January-2020]. Available
from: https://www.scintilla.org/ScintillaDoc.html

Debugging in Visual Studio Code. Apr 2016, [Online; accessed
10-February-2020]. Available from: https://code.visualstudio.com/
docs/editor/debugging

Version Control in Visual Studio Code. Apr 2016, [Online; accessed
07-February-2020]. Available from: https://code.visualstudio.com/
docs/editor/versioncontrol#_git-support

IntelliSense in Visual Studio Code. Apr 2016, [Online; accessed
02-February-2020]. Available from: https://code.visualstudio.com/
docs/editor/intellisense

Stallman, R. M. Various licenses and comments about them. 2006, [On-
line; accessed 04-February-2020]. Available from: http://www.gnu.org/
licenses/license-list

Archived MSDN and TechNet Blogs. BUILD 2015: Visual Studio
Code. [Online; accessed 10-February-2020]. Available from: https://
docs.microsoft.com/en-us/archive/blogs/

Language Server Extension Guide. Apr 2016, [Online; accessed 04-
February-2020]. Available from: https://code.visualstudio.com/api/
language-extensions/language-server-extension-guide

Extension API. Apr 2016, [Online; accessed 04-February-2020]. Available
from: https://code.visualstudio.com/api

https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
http://eclipsesource.com/blogs/2018/06/19/web-based-vs-desktop-based-tools/
http://eclipsesource.com/blogs/2018/06/19/web-based-vs-desktop-based-tools/
http://www.codeblocks.org/
http://www.codeblocks.org/
https://www.scintilla.org/ScintillaHistory.html
https://www.scintilla.org/ScintillaDoc.html
https://code.visualstudio.com/docs/editor/debugging
https://code.visualstudio.com/docs/editor/debugging
https://code.visualstudio.com/docs/editor/versioncontrol#_git-support
https://code.visualstudio.com/docs/editor/versioncontrol#_git-support
https://code.visualstudio.com/docs/editor/intellisense
https://code.visualstudio.com/docs/editor/intellisense
http://www.gnu.org/licenses/license-list
http://www.gnu.org/licenses/license-list
https://docs.microsoft.com/en-us/archive/blogs/
https://docs.microsoft.com/en-us/archive/blogs/
https://code.visualstudio.com/api/language-extensions/language-server-extension-guide
https://code.visualstudio.com/api/language-extensions/language-server-extension-guide
https://code.visualstudio.com/api

Bibliography

[55]

[56]

[57]

[58]

[65]

[66]

[67]

Programmatic Language Features. Apr 2016, [Online; accessed 04-
February-2020]. Available from: https://code.visualstudio.com/api/
language-extensions/programmatic-language-features

Documentation for Visual Studio Code. Apr 2016, [Online; accessed 11-
February-2020]. Available from: https://code.visualstudio.com/docs

Gray, J. E. Textmate: Power Editing for Everyone. Pragmatic Bookshelf,
2007.

Anderson, F. Step into Xcode: Mac OS X development. Addison-Wesley
Professional, 2006.

Beaton, W.; d Rivieres, J. Eclipse platform technical overview. Retrieved
on November, volume 2, 2006: p. 2009.

Parr, T. The definitive ANTLR 4 reference. Pragmatic Bookshelf, 2013.

Lischke, M. antlr4d-c3 The ANTLR4 Code Completion Core. https:
//github.com/mike-1lischke/antlr4-c3, 2019, [Online; accessed 04-
January-2020].

Efftinge, S.; Spoenemann, M. Xtext-language engineering made easy!
2016, [Online; accessed 15-February-2020)].

Dejanovié, I.; Vaderna, R.; Milosavljevi¢, G.; et al. TextX: a python
tool for Domain-Specific Languages implementation. Knowledge-Based
Systems, volume 115, 2017: pp. 1-4.

Pech, V.; Shatalin, A.; Voelter, M. JetBrains MPS as a tool for extending
Java. In Proceedings of the 2013 International Conference on Principles

and Practices of Programming on the Java Platform: Virtual Machines,
Languages, and Tools, 2013, pp. 165-168.

Campagne, F. The MPS language workbench: volume I, volume 1. Fabien
Campagne, 2014.

Table of Content. [Online; accessed 11-February-2020]. Available from:
http://avalonedit.net/documentation/

Nathan, A. Windows presentation foundation unleashed. Pearson Educa-
tion, 2006.

95

https://code.visualstudio.com/api/language-extensions/programmatic-language-features
https://code.visualstudio.com/api/language-extensions/programmatic-language-features
https://code.visualstudio.com/docs
https://github.com/mike-lischke/antlr4-c3
https://github.com/mike-lischke/antlr4-c3
http://avalonedit.net/documentation/

APPENDIX A

Acronyms

GUI Graphical user interface

XML Extensible markup language

o7

APPENDIX B

Contents of enclosed CD

readme.tXbt . ovviniiin i the file with CD contents description
= the directory with executables
= o o P the directory of source codes
WhACI .o v et e e e implementation sources
thesis.............. the directory of IXTEX source codes of the thesis

I 1 PP the thesis text directory
tthesis.pdf the thesis text in PDF format
thesis.ps...ovviiiiiiii it the thesis text in PS format

	Introduction
	Thesis Overview

	Theoretical background
	Algorithmic trading
	DET scripting language
	Programming Language
	Domain-specific language
	Formal Grammar
	Graph theory
	Parsing
	Integrated development environment
	Research of modern solutions
	Available tools to implement IDE features

	Current State
	Text editor
	Features of the text editor
	Syntax Highlighting
	Code completion
	Key disadvantages of the current state

	Analysis and Design
	Web IDE
	Features of IDE
	Editor framework

	Realisation
	Environment
	Syntax highlighting
	Code completion
	Error recognition and indication

	Testing
	Conclusion
	Future work

	Bibliography
	Acronyms
	Contents of enclosed CD

