
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague October 28, 2019

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Comparison of storing data flows in graph and relational database

 Student: Valeriy Lyalin

 Supervisor: Ing Michal Peroutka

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2020/21

Instructions

The aim of the work is to compare the performance of the classic relation and graph database on the
specified use cases and on data given by the client. The motivation is the question whether it would be
worthy to transfer or replicate part of the data into the graph database in the client's product.

Follow these steps:
1. Get to know MMP product and its current way of storing data for data flow analysis.
2. Learn typical use cases for data flow analysis.
3. Search for potential graph database engines that could be used.
4. In agreement with the supervisor, select one database engine, implement the relevant part of the
database you will get from the supervisor.
5. Describe and implement use cases in both databases as a benchmark.
6. Compare the response in both systems, discuss the results.
Make recommendations whether to go to the graph repository with part of the database.

References

Will be provided by the supervisor.

Bachelor’s thesis

Comparison of Storing Data Flows in
Graph and Relational Database

Valeriy Lyalin

Department of Software Engineering
Supervisor: Ing. Michal Peroutka

May 26, 2020

Acknowledgements

I would like to thank everybody who directly or indirectly contributed to the
bachelor thesis. My special thanks go to Ing. Michal Peroutka, the supervisor
of the thesis, who mentally and physically supported during the whole process
of working on the thesis, and who shared his rich experience and always was
there when I needed.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 26, 2020

Czech Technical University in Prague
Faculty of Information Technology
© 2020 Valeriy Lyalin. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Lyalin, Valeriy. Comparison of Storing Data Flows in Graph and Relational
Database. Bachelor’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2020.

Abstrakt

Bakalářská práce se zabývá porovnáním ukládání a dotazování datových toků
v grafovém a relačním systému správ databází na základě určitých případů
užití. První část práce nastiňuje zvlaštností systémů pro správu grafových
databází a architekturu podnikových datových skladů. Poté na základě poža-
davků je provedeno srovnání existujících grafových databází, na konci kterého
se vybere ArangoDB pro nasledující implementaci a porovnávání. Dále se po-
pisuje návrh optimálního mapovacího modelu v grafové databázi na základě
určitých požadavků a na základě existujícího relačního modelu. Dále se nasti-
ňuje implementace operací nad datovými toky na základě případů užití. Pak
se provádí řadu testů, díky kterým se učiní závěr, že pro konkretné případy
užití se vyplatí používat systém pro správu grafových databází.

Klíčová slova grafová databáze, porovnávání databází, datový model, Aran-
goDB, NoSQL, .NET Core

Abstract

The bachelor thesis compares storing and querying data flows in a graph and
a relational database management system based on specific use cases. The

vii

first part of the thesis outlines the Graph Database Management Systems and
Enterprise Data Warehouse Architecture. Then, concerning the requirements,
conducts a comparison of existing graph databases, based on which chooses
ArangoDB for the following implementation and comparison. Then describes
the designing optimal graph mapping model based on requirements and an
existing relational model. Then outlines an implementation of the data flow
operations based on use cases and conducts a series of tests to conclude, if it
is worthy to represent the mapping model in a graph database management
system. Finally finds that on the given use cases, it is worth using a graph
database management system.

Keywords graph database, database comparison, data model, ArangoDB,
NoSQL, .NET Core

viii

Contents

Introduction 1

The aim of this thesis 3

1 Graph database management system 5
1.1 The storage types of graph databases 5
1.2 Graph models . 6
1.3 Multi-model graph databases 7
1.4 Live query . 8
1.5 Querying . 8
1.6 ACID and BASE . 9
1.7 Graph searching algorithms . 10
1.8 Graph databases and scaling 10

1.8.1 Replication . 10
1.8.2 Partitioning . 11
1.8.3 The ArangoDB cluster structure 11
1.8.4 ArangoDB cluster recomendations 12
1.8.5 Datacenters . 12
1.8.6 Conclusion . 13

2 Enterprise data warehouse architecture 15
2.1 Data source layer . 16
2.2 Data staging layer . 16
2.3 Data storage layer . 16
2.4 Data presentation layer . 16
2.5 Metadata . 16
2.6 Mapping in a data warehouse 17

3 Analysis and design 19

ix

3.1 MMP DD Tool . 19
3.2 Analyzing requirements . 19

3.2.1 Use cases for comparison 20
3.2.2 Additional requirements and subtasks 20

3.3 Comparision of graph database management systems 20
3.3.1 Neo4j . 21
3.3.2 Microsoft Azure CosmosDB 21
3.3.3 ArangoDB . 21
3.3.4 OrientDB . 22
3.3.5 Virtuoso . 22
3.3.6 Amazon Neptune . 22
3.3.7 Conclusion . 23

3.4 Design of a mapping model in RDBMS 23
3.5 ArangoDB liminations . 23
3.6 Design of a mapping model in LPG GDBMS 24

3.6.1 Column mapping graph 24
3.6.2 Metadata graph representation with unique vertexes . . 26
3.6.3 Meta model representation with non-unique vertices . . 26
3.6.4 Conclusion . 26

3.7 Indexes on the Meta Model . 27
3.8 Choosing a programming language 28

4 Realization 29
4.1 The application overview . 29
4.2 Architecture of the application 30
4.3 Adding multi-tenancy to application 31
4.4 Graph operations in a RDBMS 35

4.4.1 The shortest path algorithm 35
4.4.2 The related objects algorithm 36

4.5 Finding an object in a graph database 37
4.6 Graph operations using ArangoDB 37
4.7 Test-driven development . 37
4.8 The data transformation from an existing relation DB 38

5 Performance testing 41
5.1 Aims . 41
5.2 Testing environment . 41
5.3 Test data . 41
5.4 Test measurements . 42

5.4.1 The shortest path tests I 43
5.4.2 The shortest path tests II 44
5.4.3 The incoming data flow tests 46
5.4.4 The outgoing data flow tests 46
5.4.5 Finding an object by attributes 46

x

5.5 Conclusion . 47

6 Conclusion 49

Biblioraphy 51

Used images 53

A Acronyms 55

B Contents of enclosed Micro SD 57

xi

List of Figures

1.1 An RDF model of the fact that Dan has liked Ann three times . . 7
1.2 A comparison of a regular query and a live query. Source: [10] . . 8
1.3 Structure of an ArangoDB Cluster. Source: [13] 12

2.1 An example of a Data Warehouse architecture. Source: [15] 15

3.1 Column Mapping graph . 25
3.2 Metadata graph representation with unique vertexes 25
3.3 Meta model representation with non-unique vertices 27

4.1 A package diagram of the Database Comparison Application . . . 32
4.2 The DataFlowController class diagram 33
4.3 The RepositoryContext class diagram 34
4.4 The ObjectController class diagram 34

5.1 The shortest path measurements between two objects, where each
vertex has one incoming and one outgoing edge 43

5.2 The shortest path measurements between two objects, where each
vertex has one incoming and one outgoing edge (scaled) 44

5.3 The shortest path measurements, where each vertex has one in-
coming and three outgoing transformation edges 45

5.4 The shortest path measurements, where each vertex has one in-
coming and three outgoing transformation edges (scaled) 45

5.5 The incoming flow measurements, where each vertex has one in-
coming and three outgoing transformation edges 46

5.6 The outgoing flow measurements, where each vertex has one in-
coming and three outgoing transformation edges 47

5.7 The measurements of getting a particular column object by its
attributes . 48

5.8 The measurements of getting a particular column object by its
attributes . 48

xiii

List of Tables

5.1 Notebook parameters that was used for testing 41
5.2 Count of rows in MSSQL database 42
5.3 Count of documents and import time in Arango database 42

xv

Introduction

The limitations of traditional relational databases to cover the requirements of
application domains have lead to the development of new alternative technolo-
gies. These technologies are called NoSQL, which stands for “not only SQL”.
All the NoSQL technologies could be categorized as key-value stores, docu-
ment stores, column-oriented databases, and graph databases. Each type of
NoSQL database has its own strengths and weaknesses. Key-value stores are
more flexible and could have better performance in read and write operations.
Document stores are highly transient and have more flexible schema as well.
Column-oriented databases are more efficient in hard-disk access for a given
workload. Graph databases are more efficient in querying highly connected
data and provide Graph Processing Engine (i.e. “Index Free Adjacency”).

NoSQL technologies are not new. They have existed from the late 1960s,
but relational databases were the only standard for all types of applications
simply because the relation models cover all the requirements of application
domains. It is still the standard for almost all domains, but the recent growth
in social network analysis and overall data analyses have lead developers to
extend their horizons and use NoSQL technologies. Some companies stated to
enlarge (or even replace) their existing relational databases by NoSQL tech-
nologies. Among these companies belongs a company that owns the Metadata
Management Platform (MMP).

The MMP is a model-oriented project, which among other things provides
a Data Dictionary tool. The customer’s data warehouse metadata, which is
shown in the tool, usually comes from different resources, then stores at the
stage area and goes through a series of transformations in a Data Warehouse,
Data Marts, and eventually is shown to users. All of the data flow transforma-
tions are shown in the Data Dictionary tool. For each object, the application
shows source and destination objects. The MMP project stores all the data
flow transformations in a relational database. Relational Database Manage-
ment Systems (RDBMS) can efficiently handle the task, but the project is
interested in extending an existing Data Dictionary tool by adding additional

1

Introduction

data linage functionality. Relational databases are not so effective in the area.
A typical use case that metadata-oriented project is intended to add is finding
the shortest path between two objects in transformations.

2

The aim of this thesis

The bachelor thesis aims to answer a question if it is worth implementing a
relative part of a mapping model using an existing relational mapping model
or current relational database is capable of effectively performing the data
flow operations. The aim is considered to be achieved by the following smaller
steps.

1. Get to know MMP product and its current way of storing data for data
flow analysis.

2. Learn typical use cases for data flow analysis.

3. Search for potential graph database engines that could be used.

4. In agreement with the supervisor, select one database engine and imple-
ment the relevant part in the database.

5. Describe and implement use cases in both databases as a benchmark.

6. Compare the response in both systems, discuss the results.

3

Chapter 1
Graph database management

system

A Graph Database Management System (GDBMS) is a database management
system with Create, Read, Update, Delete methods that expose a graph data
model. Graph systems are generally optimized for performance, and engi-
neered with integrity and operational availability in mind [1]. The structure
of graph databases is generally contained with nodes and edges. Nodes repre-
sent an object and edges represent the connection (usually directed) between
two objects. The fundamental concept of the system is the graph (or rela-
tionships). Graph databases keep relationships between nodes as a priority.
When relational systems using joins to connect tables, graph databases usu-
ally use pointers or indices to connect documents. According to the people
from Neo4j: “Accessing nodes and relationships in a native graph database is
efficient, constant-time operation and allows you to quickly traverse millions
of connections per second per core.” [2]

1.1 The storage types of graph databases
Graph databases differ in underlying storage. There are two main storage
types: native and non-native. Native graph storage is storage specifically
designed for graph database requirements. Graph storage is considered to
be non-native when it comes from relational, wide-column or other NoSQL
database. Databases with native storage offer index-free adjacency. This
means that each node has a collection of pointers of its edges. In contrast,
the idea of index adjacency is that each node has an index to an item in a big
hash table. The table is usually a hash table with double-linked-lists in each
cell. This linked-lists contains edges.

The graph databases with index-free adjacency present this feature as a
huge benefit over graph databases that have a non-native data storage [3]. It

5

1. Graph database management system

may be true in cases where a database located only on one server (i.e., runs in a
standalone mode) and nodes have a relatively small amount of edge pointers.
To be able to traverse edges in both directions, nodes have to store edges
on both directions. To delete a bidirectional edge in index-free adjacency,
the edge has to be deleted in both nodes. But this is not the only problem.
The main problem is that index-free adjacency is worthless when it comes to
distributed world [4], simply because pointers works only on one machine.

1.2 Graph models
Graph models can be categorized as label-property graphs (LPG), Resource
Description Frameworks (RDF), and Hypergraphs.

A label property model is realized by vertexes, edges, properties, and la-
bels. Both vertexes and connections store properties, which are represented by
key-value pairs. Labels are used when defining constraints, adding indexes for
properties and grouping them. An object can have multiple labels. Edges and
nodes are stored in edge and node collections respectively. Each collection is
usually a set of documents in JavaScript Object Notation (JSON) format with
unique property identifiers. Each document in edge collection additionally has
source and destination vertexes.

Resource description framework also knows as Triplestores, is a triple of
a subject, a predicate and an object. Subjects and objects are vertexes and
predicates are edges. RDF has two types of vertexes: resources and attribute
values, and one type of edges: relationships, which connect resources. Re-
sources and relationships have a unique uniform identifier (URI). An attribute
value contains literal values. Nodes or edges have no internal structure. RDF
databases, such as GraphDB [5], AlegroGraph [6] claim that this technology
over a relational system gives the benefit of better discoverability of content
assets, rich semantic context, easier knowledge exploration, and navigation
[7]. But the structure of RDF has some negative aspects. The first aspect is
that edges do not have attributes. To add properties to the edge in the RDF
graph, we have to add an intermediate object with attributes and connect all
of these three objects by edges. Another aspect is that all of the edges are
unique. Consider modelling the fact that Dan has liked Alice three times. In
a label-property graph, it can be simply represented as three edges from Dan
to Alice with a label “likes”. In a Triplestores, it must be stored in a different
scheme. That scheme is outlined in figure 1.1.

Another type of database is a hypergraph. The key feature of this database
over a property graph database are hyperedges. A hyperedge is an edge that
connects any number of edges. One of the representants of this technology
is HypergraphDB [8], which describe itself as a general-purpose, open-source
data storage mechanism based on a robust knowledge management formalism
known as directed hypergraphs. According to the database vendor, the hyper-

6

1.3. Multi-model graph databases

Figure 1.1: An RDF model of the fact that Dan has liked Ann three times

graph model is designed mostly for knowledge management, AI and semantic
web projects.

1.3 Multi-model graph databases
A multi-model database is designed to support multiple data models against
a single, integrated backend. The type of database can store, index and query
data in more than one model. The most significant advantages of such a sys-
tem are that it takes useful features from multiple database systems, and it
has one API for querying. ArangoDB and OrientDB are hybrid databases
that combine document, graph and key-value models. A document store is
suitable for querying some of its fields. A graph store is useful for performing
graph operations. The mentioned databases combine these two benefits. For
example, product registration and customer information in a grocery store
can be modelled in a document store for better querying of a field that de-
scribes product or customer. However, finding correlations between customers
buying certain products would be better performed on adequately modelled
graph system. Usually, customers want both, so a multi-model data store is
a solution to the problem.

The other side of the approach is that due to different model combination,
it is not suitable for all use cases of each model. For example, ArangoDB can
be used as a key-value store. However, due to additional overheads (such as
adding identifiers to every document), it is not recommended to use ArangoDB
for use cases which require hyper-scale [9].

7

1. Graph database management system

Figure 1.2: A comparison of a regular query and a live query. Source: [10]

1.4 Live query
Live query is a subscription on changes on a particular object in a database.
This future supports only a small part of graph databases such as OrientDB.
The feature is useful when it comes to realtime, reactive applications. Mainly
when a backend and a database server are located on separate servers and
communicate via the internet, which is quite a popular scenario. Instead of
continually querying a database for updates, pulling and comparing the data,
an application can subscribe on updates on a particular object in a database
(as shown on the figure 1.2).

1.5 Querying
In contrast with a relational world, where almost every relational database
supports one querying language, which is called SQL, as of 2020, there is no
such language in NoSQL systems. This can be solved by releasing GQL lan-
guage. However, the language is still in progress. There were some attempts of
creating a general-purpose language for all the graph databases, or at least for
label-property graph databases. However, it all ended up with the fact that
almost every database has its querying language. Although there are some
languages, which can be considered as relatively popular among others. These
languages are Cypher, SPARQL, Gremlin and Graph Query Language(GQL).

Cypher is a query language of the most popular graph database – Neo4j
[11]. The language is designed for a Property Graph Model, specifically for
Neo4j. Syntax of the Cypher is unique and does not SQL-like language.

8

1.6. ACID and BASE

SPARQL is a querying language for RDF. SPARQL supports Amazon
Neptune, AllegroGraph, Apache Marmotta and others. SPARQL consists of
triple patterns, conjunctions, disjunctions, and optional patterns.

Gremlin a graph query language of Apache TinkerPop. This language sup-
ports OrientDb, TitanDb, Apache Spark and others. Queries in the language
could be written in an imperative or declarative way. Gremlin has been made
with the idea to be a universal language for property-label databases. The
query transforms to a set of traversal strategies, which do their best to de-
termine the most optimal execution plan based on an understanding of graph
data access costs as well as the underlying data systems’ unique capabilities
[12].

GQL is a new language for property graph databases. This language is
the first new ISO database language since SQL. As of 2020, this language is
still in progress. The language will extend SQL by combining some ideas from
open Cypher, Oracle PGQL and other query languages. GQL is intended to
be a declarative database language, like SQL. This means that the GQL would
express the logic of a computation without describing its control flow.

1.6 ACID and BASE

ACID is an acronym, which stands for atomicity, consistency, isolation and
durability. These properties provide a mechanism to ensure correctness and
consistency of a database. Atomicity means that a transaction is completed
or is aborted as a whole. Consistency ensures that a database transfers from
one consistent state to another. Isolation or independence ensures that result
of concurrent execution of a transaction is the same as sequential execution.
Durability guarantees that once a transaction is committed, it will remain
committed even in case of a system failure.

The BASE is an acronym, which breaks down as basic availability, soft-
state and eventual consistency. Basic availability means that a database ap-
pears to work most of the time. Soft state implies that a database does not
guarantee to be consistent. Eventual consistency ensures consistency at some
later point. This model values availability over consistency. The BASE con-
sistency model is used by column, key-value and document stores.

When it comes to a distributed world, database systems have to face with
CAP theorem. CAP theorem is a concept that a distributed database can have
at most two of the following properties: consistency, availability and partition
tolerance. A system is partition tolerant when it can sustain any number of
network failure between nodes that do not fail an entire network. Availability
means an ability to access a cluster even if a node in the cluster is down.
Consistency means that data is the same across a cluster. Partition tolerance
cannot be left, because network faults happen quite often. So systems are

9

1. Graph database management system

choosing between consistency and availability. If a database is intended to
support ACID properties, it has to give up with availability.

1.7 Graph searching algorithms
It is always better to perform complex graph operations on a database server
since transferring data over network significantly slows down the calculation.
In a relational world, these partially solved by using procedures. But proce-
dures do not return data. There are some workarounds how to get data from
a procedure execution (for example storing it in a table and then retrieve
data). But this is quite complicated. Developers of most graph databases
thought about the fact that performing graph searching algorithms on a graph
database is a common scenario, so most of the graph databases support the
most used graph algorithms. These algorithms are finding the shortest path
between two nodes (OrientDb, ArangoDb, Neo4j, etc.), getting distances be-
tween two nodes (ArangoDb, OrientDb, Neo4j), node similarity calculation
(Neo4j), PageRank algorithm (Neo4j) and others.

1.8 Graph databases and scaling
Scaling is a necessity for larger application domains. Most of the graph
databases offer vertical and horizontal scaling. In a database world, vertical
scaling means improving an existing server by adding more or improving CPU,
RAM and memory. Horizontal scaling is merely adding more machines. The
vertical direction is more expensive, and costs grow exponentially, whereas
horizontal improvement is cheaper and costs grow linearly. Horizontal scal-
ing though involves more software efforts to take advantage of scale. The
process of combining more than one servers or instances connecting a single
database is called clustering. Clustering is closely associated with replication,
partitioning, load balancing, automation and other things.

1.8.1 Replication
Replication is a strategy of duplicating data across servers (nodes). Replica-
tion in ArangoDB can be done using Master-Slave or Active Failover tech-
nique.

In a Master-Slave setup, more slaves replicate from a master. The repli-
cation can be synchronous or asynchronous. In the case of synchronous repli-
cation, when performing update operations, data is locked until all the slaves
have updated their data. In this approach, we gaining consistency, but have
to trade off availability. If asynchronous mode is turned on, data modification
is firstly performed on a master. All the changes are logged in the write-ahead
log. Using the log, a replication applier reads data from a master database’s

10

1.8. Graph databases and scaling

log and applies changes locally. This leads to eventual consistency because
there is a replication lag, which can be described as the time between applying
modifications on a master and a moment when all the slaves are synchronized
(i.e. have the same data). Every slave has to fetch the write operation’s data
from the master’s log, then parse and apply it locally. The duration of the
lag depends on network capabilities, amount of data and frequency in which
slaves are checking updates. When availability plays a crucial role and more
important than consistency, this can be a solution.

Active Failover technique is a slightly better version of a Master-Slave
setup. It consists of a leader, a follower(s) and an agency. The role of a leader
and a follower is the same as in Master-Slave setup. An agency determines
which server becomes a leader in a failure situation. Moreover, an agency
observes and supervises all server processes.

1.8.2 Partitioning

Partitioning is distributing data between nodes. Partitioning can be verti-
cal and horizontal. Vertical partitioning is creating a collection or a table
with fewer properties or columns and using additional collections or tables
to store the remaining data. Horizontal partitioning involves splitting data
using a particular property or column. For example, in reporting data can be
partitioned by a creation month.

1.8.3 The ArangoDB cluster structure

In ArangoDB, the structure of a cluster includes agents, coordinators and
database servers (shown in figure 1.3).

Agency is the central place to store the configuration in a cluster. Without
the Agency none of the other components can operate. It performs leader
elections and provides other synchronization services for the whole cluster.
All the agency decisions are replicated in a configuration tree. It supports
transnational reads and writes, which among other things means that a cluster
can contain multiple agencies. Agency is not visible from the outside, but other
servers inside a cluster subscribe for all the changes in the configuration tree.

Coordinators are the ones the client(s) can talk to. They know where data
is stored and parse queries to find out what data to look for. Based on the
query, coordinators either send a query to a particular database server or send
it to all servers. Then obtain data from the database server(s) and return the
data to the client. Coordinators are stateless, which means they can be easily
restarted as needed.

A database server stores data. It can be either a leader or a follower. Data
modifications firstly applied to a leader and secondly to followers. It uses an
active failover technique, meaning that database servers are subscribed for all

11

1. Graph database management system

Figure 1.3: Structure of an ArangoDB Cluster. Source: [13]

the changes in the configuration tree. They can execute queries, but database
services are not accessible directly, only indirectly through coordinators.

1.8.4 ArangoDB cluster recomendations

Each item in the ArangoDB structure can be multiplied. ArangoDB recom-
mends placing an agency on a separate, less powerful server. Then place coor-
dinators on machines, where database servers run. The configuration reduces
latency of transferring data from a database server to a coordinator.

1.8.5 Datacenters

At some point in the growth of the database, there is a need for replicating
data across multiple clusters. By doing that we can reduce the possibility
of failure, increase availability, etc. In ArangoDB terminology, it is called
datacenter to datacenter replication (DC2DC), but it is possible to replicate
multiple datacenters. Replication between datacenters is asynchronous. It
is not synchronous, because in that case availability decreasing significantly.
Replication can be done only in one direction and cannot be synchronous (as
of ArangoDB 3.6). Also, only one datacenter can be primary, and others are
replicas. All the clients communicate only with a central cluster. Data modi-
fications are made to a primary datacenter, then are made asynchronously to
replicas using a changelog. In case of failure, user intervention is required to
decide either to bring a master backup or choose a slave to become a master.
If the second decision has been made, data consistency is not guaranteed. Ac-
cording to ArangoDB, slaves will typically be behind the master by a couple
of seconds or minutes.

12

1.8. Graph databases and scaling

1.8.6 Conclusion
In conclusion, it is essential to point out that clustering by itself does not
solve the problem of speeding up queries, improving availability, etc. It solves
the problem only if data is effectively partitioned and intelligently replicated
across the whole cluster. In a graph world, compared to a relation one, it is
even harder, because we need to keep in mind that most commonly used edges
and vertexes in the graph should be one the same database server. Otherwise,
all the graph features, like finding the shortest path between two nodes by
edges, will be significantly slowed down by the enormous amount of network
communication and the superiority of the graph database over the relational
one will be negligible.

13

Chapter 2
Enterprise data warehouse

architecture

A data warehouse is a type of data management system that is designed to
support business intelligence activities, especially analytics [14]. The architec-
ture of a data warehouse, like house architecture, is different and depends on
business use cases. Inmon is a data warehouse approach that is used by one of
the project MMP customers. According to the approach data warehouses have
following layers: Data Source Layer, Data Staging layer, Data Storage Layer
and Data Presentation Layer. An example of a Data Warehouse architecture
is shown in figure 2.1.

Figure 2.1: An example of a Data Warehouse architecture. Source: [15]

15

2. Enterprise data warehouse architecture

2.1 Data source layer
A data source layer is a layer where data is collected. Data can be struc-
tured (database), semi-structured (XML files, JSON) and unstructured (im-
ages, voice recordings, videos and so on). The data can be categorized as
operational data, social media data and third-party data. Operational data
includes product data, marketing data, HR data and other data. Social me-
dia, among other things, includes content popularity, web site hits, content
page completion. Third-party data includes demographic information, survey
data, etc.

2.2 Data staging layer
A data staging layer is responsible for extracting data from different external
and internal sources, performing a high-level check on the data and storing
all the information into a single landing database storage. The final result
of staging will be clean and organized data that can be loaded into a data
warehouse. This layer uses extract, transform and load (ETL) tools. An
example of the instrument, which supports ETL is Informatica.

2.3 Data storage layer
A data storage layer is a single central repository in a data warehouse architec-
ture. The design of the storage can be different depending on the business use
cases. The data storage layer can be represented as a data warehouse, data
marts or an Operational Data Store. Data marts can also be placed along
with a data warehouse database. A data mart is a subset of the database,
which stores the information of a particular function of an organization, such
as sales, inventory, purchasing.

2.4 Data presentation layer
A data presentation layer is where a user interacts with structured data. This
layer provides an ability to query, analyze the information and develop reports.
Usually, a presentation layer includes a Graphical User interface.

2.5 Metadata
Metadata is an essential part of every data warehouse. Metadata is a set
of data that describes information about the stored data. Without them, it
would not be possible to determine the meaning of stored data. The metadata
in a data warehouse can be categorized as technical metadata and business

16

2.6. Mapping in a data warehouse

metadata. The first one includes information about processes, repositories, a
physical layer of data. In other words, it includes information about indexes,
mappings, relationships, indexes, constraints, etc. Business metadata includes
definitions of functionality, elements, how data is used in business and so on.

2.6 Mapping in a data warehouse
Mapping is an essential process of every data warehouse architecture. Passing
through from one layer to anther data is being transformed into different struc-
tures. Without mapping metadata, the information about data origins will be
lost. An analytical department uses information about data transformation
to figure out firstly the sources of data and secondly data targets.

17

Chapter 3
Analysis and design

3.1 MMP DD Tool

The MMP Data Dictionary (DD) tool is an application for a data warehouse
that stores and shows metadata of a part of a data warehouse. The metadata
usually is loaded from .pdm files of SAP PowerDesigner, but also can be im-
ported from other sources. The primary item of DD is a model. The model
describes the internal structure of a particular aspect of a data warehouse.
A model can contain an annotation, a description, tables, views, diagrams,
source and target models (mapping), source and target tables (mapping as
well), procedures and so on. Almost every object can have a description and
annotation, which describes an object. A model can contain any number
of tables. Each table includes columns, indexes, source and target tables and
columns, etc. Views contain its SQL query and columns. Diagrams are graph-
ical objects of models that are shown in PowerDesigner. Some object, such
as models, table, columns can have source and target transformations. These
transformations help to answer questions, such as where data came from and
where it goes. Also, transformations are the focal point of the bachelor thesis.
Transformations are going to be exported from the Physical Data Model and
imported to a new model in a graph database. The Physical Data Model of
the Data Dictionary Tool is a relational model that is designed to store the
content of metamodels.

3.2 Analyzing requirements

The thesis aims to answer a question if it is worth implementing a relative
part of mapping model using an existing relational mapping model to get
better performance of some specific data flow operations or a current relational
database is capable of effectively performing the data flow operations.

19

3. Analysis and design

3.2.1 Use cases for comparison
As mentioned in the chapter of a data warehouse architecture, mapping is
an essential part of capturing the process of transferring data between layers
of a data warehouse. Sometimes data is transferred without changes, but
mostly information changes. The amount of changes and transformations is
not constant. It depends on data source and data itself. Moreover, there is
usually more than one transformation between two objects. As a result, it is
important to have a tool, which will support:

• finding the shortest path between two objects in transformations

• data source analysis

• impact analysis of object deletion

3.2.2 Additional requirements and subtasks
The process of building an application for data flow comparison on the previ-
ously specified use cases is following. The first step is to search for potential
graph database management system. The limitation for the system is that it
has to be open-source with a possibility for commercial use. The second step
is to adequately design a mapping model in a graph database. The model
should be scalable and extendable. Moreover, the model should also support
multitenancy. The third step is to build an application for comparison. The
only limitation here is to use a .NET Core environment. The limitation may
affect choosing a graph database because it has to have a driver for .NET en-
vironment. The fourth step is to transfer data from a relational database to
a graph one. Then data should be enhanced by tenant information. In the
step, it is essential to consider how to automatize the process of transferring
data. Last but not least, is to conduct a series of tests on both relational and
graph database and write down a conclusion if it is worthy of using a graph
database management system to store and to use it on the describe use cases.

3.3 Comparision of graph database management
systems

The era of social networks has led to the active development of alternative
database technologies. In 2010 ACID graph databases that supports hori-
zontal scaling became available. Also in 2010, multi-model databases became
available (such as ArangoDB and OrientDB). It increased their attractive-
ness for use in large projects. Ten years passed by, a lot of commercial and
open-source graph databases come in sight, a lot of efforts has been made to
improve already existing databases. Let’s take a look at the most popular
ones.

20

3.3. Comparision of graph database management systems

3.3.1 Neo4j
Neo4j is an open-source label property graph database with a GPLv3 license
and a commercial license. According to DB-Engines.com ranking [16], it is the
most popular graph database and it is the 21th most popular database [17].
Neo4j supports transaction data access and claims to have ACID properties in
a stand-alone mode. The database can be scaled in both directions. In a clus-
ter setup, it offers casual and eventual consistency. Casual consistency means
that a client application is guaranteed to read at least its own writes [18]. The
database supports a range of programming languages and frameworks: .Net,
Java, JavaScript, Scala, Go, Python, etc. It has its Cypher query language
and RESTful API for querying. Neo4j has native graph storage and offers
index-free adjacency. As mentioned in the chapter of GDBMS, the benefits
of this feature are questionable, especially in a cluster setup.

3.3.2 Microsoft Azure CosmosDB
Microsoft CosmosDB is a multi-model database service, which considers it-
self as a document, key-value, wide column store and a graph database. The
database is under a commercial license and only hosted on Azure Services.
CosmosDB is the second most popular graph database and placed on the
third position in a document, key-value, wide column store rating [17] among
other big players like Redis (a key-value store and a graph), Cassandra (a
wide column store) and Neo4j(a graph database). Almost all of these com-
petitors focus on a single thing, whereas CosmosDB focuses on all the things.
In general, it stores data as a JSON and uses SQL as a query language with
some extensions for a graph database. The database can be scaled vertically
and horizontally. Azure CosmosDB allows developers to choose among five
consistency methods: strong, bounded staleness, session, consistent prefix and
eventual. Session consistency is recommended and set by default. The consis-
tency method is placed right in the middle between durable consistency with
latency and eventual consistency with the lowest latency. The service even al-
lows developers to create their consistency level. The service offers migrations
from MongoDB, HBase, Amazon DynamoDB, SQL Server, etc. CosmosDB
supports Java, Javascript, Python, .Net environment, etc.

3.3.3 ArangoDB
ArangoDB is a document, key-value, graph DBMS with support of text-search.
It has two versions: a community, which is under Apache V2 and an enterprise,
which is a commercial one. The commercial version includes more encryption
capabilities, claims to have better clustering mode with SmartJoins, Smart-
Collections and SmartGraphs. ArangoDB can be scaled in both directions.
The database is placed on the third position in the DB-Engines graph ranking
[17]. The DBMS can be turned to a set of data centres where there is the main

21

3. Analysis and design

one, and others are asynchronous copies the primary datacenter. In a regular
cluster mode, it offers either eventual or immediate consistency with support
of ACID properties. ArangoDB supports full-text-search, which uses the view
concept. Developers can create any number of these views. It is possible to
perform complex searches across the whole graph, even in a cluster mode.
The query language of ArangoDB is called AQL. The syntax is close to SQL
with some extensions and small differences. ArangoDB supports a variety of
programming languages: .Net, Java, JavaScript, Python, Go, etc.

3.3.4 OrientDB
OrientDB is a combination of a graph DBMS, a document and a key-value
store. It also has two editions: community and enterprise. The community
edition is under Apache V2. Enterprise edition includes replication and Multi
data center support, non-stop backup, etc [19]. OrientDB can be scaled ver-
tically and horizontally. Horizontal scaling includes the Multi-Master repli-
cation, sharding and multiple datacenter architecture. Replication is config-
urable. Users are allowed to set up a write quorum, which is recommended to
be N/2 + 1, where N is a number of nodes. The database uses OrientDB SQL
dialect. The dialect mainly differs in joins and some extensions for a graph
database (shortest path, traverse, match, et cetera). OrientDB supports .Net,
Java, JavaScript, Python, Scala and other programming languages.

3.3.5 Virtuoso
Virtuoso is a multi-model hybrid that supports management of data that is
represented as relational tables and/or RDF graphs. The database is avail-
able with GPLv2 license in a community edition and commercial licenses.
The database supports scaling in both directions. Horizontal scaling options
are only available with the enterprise license. Virtuoso has multiple replica-
tion methods: master-slave, master-master, chain, star, bi-directional. This
database supports ACID for relational and RDF data, even in a cluster mode.
The multi-model hybrid uses SQL extended by Federated SPARQL as a query
language. Virtuoso has drivers for .Net, Java, JavaScript, Python and others.

3.3.6 Amazon Neptune
Amazon Neptune is a combination of a graph database and an RDF store.
The system is offered as a cloud-based only Amazon service. As others already
mentioned database management systems, this one supports vertical and hor-
izontal scaling. Resources of each machine can be configured. In a cluster
mode, it offers asynchronous replication for up to 15 devices. It uses active-
failover replication technique. Amazon Neptune uses SPARQL and Gremlin
as a query language. It supports .Net, Go, Java, JavaScript, Scala, Python
and other languages.

22

3.4. Design of a mapping model in RDBMS

3.3.7 Conclusion

Neo4j is an excellent database with a big community of developers using it.
However, it is under the GPLv3 license, which means that the system cannot
be chosen. CosmosDB is strongly coupled with Azure and works only as a
service, which force to use Azure Services. Amazon Neptune, like CosmosDB,
is cloud-based only commercial service. Virtuoso uses an RDF and a rela-
tional model, and it is under GPLv2 license. A label property graph model
comparing to RDF-Triplestore model seems to be more flexible and intuitive;
it has more intuitive query languages. OrientDB has an attractive Apache
V2 license in a community edition. However, according to DB-Rankings,
which constantly tracking the popularity of databases, OrientDB loses to its
competitor (ArangoDB) in gaining popularity. Also, it has a questionable
multi-master replication architecture, compare to active failover architecture
in ArangoDB. ArangoDB is under Apache V2 license in a community edition.
It has excellent support for the .NET environment, including drivers, which
implements LINQ querying. In the case of database growth, it can be hori-
zontally and vertically scaled, even with a community license. In conclusion,
the ArangoDB had been chosen as a graph database for storing and analyzing
data flow operations.

3.4 Design of a mapping model in RDBMS
Project MMP in the Data Dictionary tool stores mapping information in
Model_Mapping, Table_Mapping and Column_Mapping tables. All of these
tables can be potentially stored in just one table, but one of the main reasons
for that implementation is optimization. All of these mappings contain infor-
mation about the source and target objects. In case of Model_Mapping these
are Source_Model and Target_Model. Table_Mapping additionally has the
source and target tables. Finally, Column_Mapping has the source and target
models, tables and columns. These source and target objects are subsets of
existing Models, Tables and Columns. Although mapping tables do not con-
tain integer keys, instead, it contains names of the objects, which usually are
nvarchar(254). Having fixed length is important for indexes because as of
SQL Server 2016, the maximum allowable size of the combined index for a
non-clustered index is 1700 bytes [20]. This denormalization is added to im-
prove the performance of querying. Otherwise, almost every query will have
multiple joins, which will significantly affect the querying speed.

3.5 ArangoDB liminations
ArangoDB is a schemaless graph database management system. Data in the
system is stored in JSON documents. Schema is defined per document, not

23

3. Analysis and design

per collection. Among other things, it means that two documents can have
different properties. In reality, ArangoDB groups documents by its schema to
save storage. But it is important to keep in mind that indexes are defined per
collection. In case if every document in a collection will have different schema,
it is worthless to define indexes.

Even though ArangoDB is a schemaless database, an edge collection can
join up to two types of objects. The relation can be created either within the
same data collection or between two collections. It is impossible to define an
edge collection, which, for example, connects a document from A collection
and a document from B collection, and at the same time connects objects
from collections B and C.

3.6 Design of a mapping model in LPG GDBMS
There are multiple ways how to represent mapping in a graph database. Each
representation has its cons and pros, but before going into details of each
representation, it is essential to point out some MMP requirements for rep-
resentation. Main MMP demands of representation are an abstraction, scal-
ability and speed. The first two are essential since every IT product has a
rapidly growing number of functional requirements. A graph representation
should be abstract and scalable in a way that instead of adding representa-
tion for a similar demand, it would be easier and faster to extend an existing
representation.

In the following models, some properties are omitted for brevity, such as a
tenant. The information can be either defined in a separate collection and con-
nected using edges or can be stored in the objects itself. In a relational world,
to reduce numbers of anomalies, and speed up an update on tables, the data
is usually transformed into the third normal form. In case of frequent reading,
data is denormalized, because joins are expensive. In the graph world, there
are no joins. This leads to a conclusion that theoretically in a graph database
it is better to have normalized collections (at least in a standalone mode).
Although having tenant information in a separate collection does not improve
the speed of deletion, because during removal all the edges that connect object
vertexes with a tenant vertex have to be deleted as well. Moreover, having the
information separately may take more space than having it right in an object
node itself.

3.6.1 Column mapping graph
The first model is represented by two data collections. The first one is
ColumnVertex, which is a vertex collection and the second one is the edge
TransformsToEdge collection. The representation is shown in figure 3.1. Each
node is a combination of a model, table and column code. Nodes are connected
using transformation edges. The benefit of the representation is performance.

24

3.6. Design of a mapping model in LPG GDBMS

Figure 3.1: Column Mapping graph

Figure 3.2: Metadata graph representation with unique vertexes

An index can be defined on these three properties, and only one lookup is
required to find a particular object. The representation though has a huge
drawback of poor scalability. Since column mapping is not the only type
of mapping, it needs to define separate collections for model mapping, table
mapping, etc.

25

3. Analysis and design

3.6.2 Metadata graph representation with unique vertexes
The second model is called the metadata model. The representation is more
generic compare to the first one. Since it is impossible to have an edge col-
lection that connects more than two different types of vertex collections, an
object type is defined as a separate property of the ObjectVertex collection.
The Has edge is added to capture hierarchy, i.e. a table belongs to a model,
and a column belongs to a table. The TransformsTo is an edge collection
that connects ObjectVertices. With this concept, there is a possibility of
unexpected relations. For example, columns can have models and models can
transform into tables. The problem can be solved by triggered data checking.

The model is contained with unique objects. Having unique objects reduces
the size of the collections and improves the speed of querying. Although it
has a vast problem. The problem is that different models can potentially have
tables that have the same name, but have different columns. For example
Model1 has Table1 that contains Column1 and Column2 and Model3 also has
Table1, but with ColumnA. As a result both of these models will share the table
Table1 that has Column1, Column2 and ColumnA. This case is also shown in
figure 3.2. That is why the model cannot be used to represent mapping.

3.6.3 Meta model representation with non-unique vertices
The representation is similar to the previous but without unique objects. This
solves the problem with losing hierarchy. Having a generic model for differ-
ent types of objects makes it scalable. The representation contains not only
information about column mapping, but also table and model mapping. More-
over, specific attributes based on the Type attribute can be stored either in
the objects itself or in different collections and connected using edges.

The model has some disadvantages. The first one is that most of the
data is stored in a single ObjectVertex collection, which may lead to slower
querying. Though this can be improved by adequately using different types of
indexes. Choosing indexes on the model is described in the following section.
The second negative aspect is to find a particular column; it needs to find a
model, which has a specific table, and a column that belongs to the table. But
ArangoDB, like other graph databases, promises fast traversing (at least at a
standalone mode), which should solve the more complex searching.

3.6.4 Conclusion
As mentioned above, the main demands are querying speed (read operations
are more critical than update and delete) and scalability. The first model
might be potentially fast, but it cannot be chosen since the representation
has poor scalability. The second one also cannot be selected because it loses
hierarchy information after a transformation. As a result, the third meta-
model is selected for comparison with a relational model.

26

3.7. Indexes on the Meta Model

Figure 3.3: Meta model representation with non-unique vertices

3.7 Indexes on the Meta Model
By default, ArangoDB adds indexes to the document identifiers. Addition-
ally, it adds indexes to source and target vertexes to every document in edge
collections. All of these was done to improve the performance of traversing op-
erations. However, performing traversing or finding the shortest path requires
object identifiers. As mentioned in the previous section, to find a particular
column, it needs to find a model that has a particular table which has a par-
ticular column. Performance of the operation definitely can be improved by
adding combined indexes that includes Repository_Code, Object_Type and
Object_Name.

Performance of the data flow operations in the relational mapping model
strongly depends on indexes, since finding object neighbours involves searching
for rows that have a particular source or target columns, such as Model_Code,
Table_Code and Column_Code in case of looking for all the incoming col-
umn neighbours, and Source_Model, Source_Table, Source_Column in case
of finding all the outgoing neighbours of a particular column. This leads to a
conclusion, that should be defined two combined non-clustered indexes for ev-
ery mapping table, which will include either source or target columns and also
each index should include a tenant name because each query will eventually
have a tenant cut.

27

3. Analysis and design

3.8 Choosing a programming language
The Metadata Management Platform uses .NET Environment, to be precise
.NET Core Environment. This is a relatively new framework, the first version
of which was released by Microsoft on June 27, 2016. Benefits of this frame-
work are that it is under the MIT License and it is a cross-platform successor
of .NET Framework. Since Oracle had changed the licensing of Java language,
it helped the new framework from Microsoft gain popularity even more. As of
2019, according to StackOverflow, it is the most loved framework [21]. Other
features of the Environment are strong support from Microsoft, performance,
built-in dependency injection and Language Integrated Query (LINQ).

The output of this thesis is a comparison of a relational and a graph
database, and also an application that will perform operations and tests on
these databases. The application may be modified and used for the data
flow operation as a separate microservice application. This means that it can
be written in any language. But since the project MMP uses .NET Core
Environment, it is not wise to have a different environment, because it is
harder to maintain, requires installing different packages for each customer.
To sum up, that were the main reasons why the application for comparison is
written in C# on .NET Core Platform.

28

Chapter 4
Realization

4.1 The application overview

The result of the thesis is a backend application that exposes REST API for
data flow querying. Each endpoint of the REST API is designed for com-
parison. When it gets a request, it stores the request time, and when it is
done with calculations, it returns a JSON that additionally contains server
calculation time. This time includes only calculations and does not include
time for accepting a request and sending a response.

The application exposes two endpoints for data flow operations. One for
getting the shortest path and one for traversing either all the incoming or
all the outgoing related objects. Database technology is sent as a parameter.
Based on a request, the application connects to a relational or a graph database
management system. In case of a graph DBMS, all the graph operations are
performed right in the database. In other words, the application sends a
request, for example, for finding the shortest path between two columns in
transformations, and then gets a result. Unconditionally it is a significant
benefit of a graph database management system since in production; it is not
a common scenario when a database and an application runs on the same
machine. In case of a relation database, these operations are implemented
in the application. There is a lot of communications happening between the
application and an RDBMS. Moreover, an object-relational mapping may also
add additional latency to performing the operations. To perform fair compar-
ison were implemented stored procedures for the specified use cases. These
procedures stores result in temporary tables. After procedure execution, the
application reads data from these tables and returns results from the tables
to clients.

The data flow API is built for different types of objects. Instead of having
separate endpoints for column, table and model mapping, it combines all of
them in two endpoints. Additionally, the application exposes endpoints for

29

4. Realization

getting column, table and model description that also contains its identifiers.
These identifiers are strings. Since ArangoDB uses string keys, sending strings
using GET method is not wise. The key should be firstly encoded and then
decoded, because it may contain occupied symbols, such as backslash. It was
the reason why POST has been chosen over GET method.

The application endpoints are following:

• POST /api/data-flow/technology/shortest-path

• POST /api/data-flow/technology/traversal

• POST /api/object/technology/model

• POST /api/object/technology/table

• POST /api/object/technology/column

• POST /api/object/export-to-graph-model

The application also provides an API for exporting mapping data from
SQL Server. The endpoint transforms data from a relational database into
graph collections and stores data using a specified path.

Additionally, the application has a presentation layer, which is automati-
cally generated from code. Swagger is an open-source framework, which gen-
erates beautiful HTML pages that contain a list of exposed endpoints. The tool
generates it from the code during the build time. So backend developers do
not have to constantly update an API documentation and frontend develop-
ers always uses actual endpoint information for building frontend applications.
Moreover, the graphical user interface of the tool supports querying, including
GET, POST, PUT and DELETE methods.

4.2 Architecture of the application
The application is built on Microsoft .NET Core Web SDK and consist of
five layers: External Data, Data, Service, Controller and Presentation layers.
The presentations layer is automatically generated during build time using
Swagger. A package diagram of the application is shown in figure 4.1.

External Data Layer is consists of database management systems. These
are the ArangoDB graph database and Microsoft SQL Server object-relational
database.

Data layer represents objects that exist in an RDBMS and GDBMS. Each
entity in the layer can have mapping attributes, constraints, related objects,
foreign keys, etc. In other words, this layer contains definitions for object-
relational and graph mapping.

The service layer is a logic layer of the application. It consists of Reposi-
tories, Services, Utilities and Models. A repository implements create, read,

30

4.3. Adding multi-tenancy to application

update, delete (CRUD) operations using entities from the Data Layer and
Language Integrated Queries (LINQ). Additionally, it implements operations
on top of CRUD methods, such as finding the shortest path between objects.
The only limitation is that it cannot use another repository. Usually, each
class in Data Layer has its repository. Although, sometimes it needs to use
a combination of different repositories to handle a request. It was the reason
why Services were added to the application. The services are usually defined
per controller. Utilities consist of methods that do not use database entities.
An example can be export to file in CSV format. Models, like Data Entities,
have properties and are used for storing and exchanging data, but models do
not take part in an object-relational or graph mapping. There are three types
of models: Settings, Models and View Models. Settings are used for accessing
the application settings. Models are the ones that are parsed from a HTTP
request. View Models used for sending data back to a client.

Controller layer defines API, checks authorization and roles, gets requests,
parses request parameters, invokes a service with the parameters and returns
a response (usually a View Model). According to best practices, controllers
should be as thin as possible to enforce separation of concepts and to make
code more testable [22].

A class diagram of the application is divided into three parts and shown
in figure 4.2, figure 4.3 and figure 4.4. The method parameters are omitted
for brevity. The ControllerBase and DbContext methods and properties are
also omitted for brevity and because these abstract classes are parts of Entity
Framework Core library.

4.3 Adding multi-tenancy to application

A Cloud Applications refers to an application that is deployed in a cloud
environment rather than being hosted on a local server or machine. Instead of
maintaining each component of the application separately for each customer,
it manages to serve different customers in one global environment. To handle
the demand, an application should be able to determine which customer it
belongs to. One way of doing this is by adding tenancy. For the database
world, it may mean adding a tenant column to every single table. In the
application, each table and each document has a repository code. The code is
a string, which is unique for each customer. For now, the information is stored
in appsettings.json, but it also can be stored in a database. Each database
request in the application has a tenant WHERE cut to ensure that data is taken
from the correct sources.

31

4. Realization

Figure 4.1: A package diagram of the Database Comparison Application

32

4.3. Adding multi-tenancy to application

Figure 4.2: The DataFlowController class diagram

33

4. Realization

Figure 4.3: The RepositoryContext class diagram

Figure 4.4: The ObjectController class diagram

34

4.4. Graph operations in a RDBMS

4.4 Graph operations in a RDBMS
Mapping in a relational database defined in model, table and column mapping
tables. For each of them are implemented data flow operations, such as finding
the shortest path between two objects, getting all outgoing and incoming
objects. Although, an API is designed to be general for all the types of
mappings in a way that it takes only identifiers. Then, based on the identifiers,
an application can determine what type of mapping should be used.

4.4.1 The shortest path algorithm
Finding the shortest path between two objects in transformations is imple-
mented using a Breadth-First search algorithm (BFS). The pseudo-code is
defined in listening 4.1.

Listing 4.1: The pseudocode of the shortest path algorithm
GetOutgoingShortestPath(sourceColumn,targetColumn)
{

var queue = new Queue<Column>();
var depth = new Dictionary<Column, int>();
var parents = new Dictionary<Column, Column>();
depth[sourceColumn] = 0;
queue.Enqueue(sourceColumn);
while (queue.Any())
{

var y = queue.Dequeue();
GetOutgoingNeighbours(y)

.Where(x => !depth.ContainsKey(x))

.ForEach(
x =>
{

depth[x] = depth[y] + 1;
queue.Enqueue(x);
parents[x] = y;

}
);

if (depth.ContainsKey(targetColumn)) {
//the shortest path has been found
break;

}
}

return RestorePath(targetColumn, parents);
}

RestorePath(targetColumn,parents)
{

var path = new List<Column>();

35

4. Realization

path.Add(targetColumn)
var curr = targetColumn;
while (parents.ContainsKey(curr))
{

path.Add(parents[curr]);
curr = parents[curr];

}

return path;
}

The time complexity and memory complexity is the same as in BFS and
can be expressed as O(|V | + |E|). Where |V| is the number of vertexes
and |E| is the number of edges. There is one interesting thing in terms
of database comparison. The thing is the method of getting neighbours
(GetOutgoingNeighbours). There are at least two possible ways how to im-
plement it. The first way is to load all of the mappings to memory and then
query for object’s neighbours. The second way is to query a database for each
object. The first one is more efficient when memory is capable of storing all
of the information. But when it comes to the big data world, it is hardly
imaginable to load all of the data. Also, if all of the data are loaded at once,
it is no longer database comparison. In that case, the only thing a database
has to do is to return all of the data. That was the reason why was chosen the
second implementation of GetOutgoingNeighbours. In this way though there
is a lot of communication between a database and an application. It should
not affect results since the application and the database server are running on
the same machine. Though there are some speed penalties of object-relational
mapping, that should be taken on the account. For that reason, these opera-
tions were also implemented as stored procedures, which write results to the
temporary tables.

4.4.2 The related objects algorithm

Related objects in transformations can be found using Depth-fist or Breadth-
first search algorithms. The output of the second algorithm seems to be more
natural for understanding related objects. The code of the algorithm is similar
to finding the shortest path between two objects. It differs only in the fact,
that does not have an IF condition in the while loop, it does not have to have
a parent dictionary since related objects are added right in the for each loop.
Time and memory complexity of this algorithm is the same as the previous
one.

36

4.5. Finding an object in a graph database

4.5 Finding an object in a graph database
Since a meta mapping model in a graph database is more generic comparing to
a relational one, finding a particular object is not so simple as in a relational
model. To find a model it needs to perform only one lookup in ObjectVertex
collection using the model name, tenant name and object type. Finding tables
and columns is more complicated. Firstly it looks for a particular model. If
model has been found, then it searches in HasEdges collection, where the
owner id is an identificator of the model and item is a table in the same
tenant as owner, plus it has to have a desirable table name. The same thing
is performed for a column. In case if some of the objects has not been found,
a not found exception is thrown.

4.6 Graph operations using ArangoDB
ArangoDB, like many other graph databases, has built-in operations for travers-
ing and finding the shortest path between two nodes. Because of that, the
application sends only one request to a graph database, the system performs
an operation and sends results back to the client. An example of the query
for finding the shortest path is following:

FOR vertex[, edge]
IN OUTBOUND|INBOUND|ANY SHORTEST_PATH
startVertex TO targetVertex
GRAPH graphName
[OPTIONS options]

The query for getting all the outgoing or incoming objects is following:

FOR vertex[, edge[, path]]
IN [min[..max]]
OUTBOUND|INBOUND|ANY startVertex
GRAPH graphName
[PRUNE pruneCondition]
[OPTIONS options]

The shortest path or traversal queries can be performed not only on a
graph but also on a set of edge collections. The comparison application uses
a TransformationEdge collection instead of creating a graph.

4.7 Test-driven development
The application was built using Test-Driven Development. After defining
models and designing service interfaces, for each service were written tests.
Then were implemented the data flow operations.

37

4. Realization

Testing was complicated by the fact that the data flow operations were
implemented in three different ways: using built-in graph database data flow
operations, by wringing stored procedures, and by implementing an applica-
tion that is continually asking for neighbours. Testing the application im-
plementation is the easiest one because it can use an in-memory database.
Testing two others is more complicated. A connection to ArangoDB and SQL
Server can be mocked, but by mocking the testing does not make sense, be-
cause it will test nothing. For that reason were locally created test databases
on ArangoDB and SQL Server. Before every test, data in the databases is
truncated and then inserted using initial seeders.

4.8 The data transformation from an existing
relation DB

Since a graph and a relational model are different, the data from a relational
model has to be transformed. The transformation can be done by writing
SQL mapping scripts and exporting data to comma-separated values (CSV).
Considering that a schema of the mapping model in a relational model should
not change so often, the transformation can also be performed right in the
application.

A relational mapping model has three types of mappings: model, table
and column. Moreover, it contains models, tables and columns in tables
PDM_Model, PDM_Table and PDM_Column respectively. A graph meta model
consists of ObjectVertex, HierarchyEdge and TransformationEdge. Tran-
formation is implemented following these rules:

1. PDM_Model, PDM_Table, PDM_Column are transformed to ObjectVertex.
Additionally it has ObjectType set to 1, 2 and 3 respectively.

2. When transferring PDM_Table, hierarchy edges are added with _from
equals to a model, which it belongs to, and _to equals to the id of the
table.

3. PDM_Column information hierarchy is also replicated in hierarchy edges
with _from equals to a table that it belongs to and _to equals to the
column identifier.

4. Model_Mapping joins pairs of ObjectVertex, which have ObjectType is
equal to one, by TransfomrationEdge. Source_Model is an identifier
of the source object (_from property), Model_Code is a target identifier
(_to property).

5. Table_Mapping and Column_Mapping joins pairs of ObjectVertex with
ObjectType equals to two and three respectively.

38

4.8. The data transformation from an existing relation DB

What should not be performed in the application is inserting transformed
data. ArangoDB clients usually using an HTTP connection, which tremen-
dously slows down inserting, especially if it commits every single row. But
there is a solution that. Arangoimport is a command-line application that was
built for importing data in JSON or CSV formats. When data is transformed
into one of those formats, database generated keys cannot be used. The reason
is that every edge collection consists of object identification properties, such
as _from and _to, which are identifiers of vertex collections.

39

Chapter 5
Performance testing

5.1 Aims
The chapter includes a series of performance tests using the specified oper-
ations: finding the shortest path between objects, getting all related objects
using incoming and outgoing transformations. The result of these tests is a
conclusion either it worthy of using a graph database management system for
mapping operations or not.

5.2 Testing environment
All of the tests were conducted on a laptop with parameters, which are spec-
ified in table 5.1. During tests were launched only essential programs for
running the operating system.

5.3 Test data
Test data was extracted from one of the project MMP customers. Additionally
on the data was performed a series of anonymizations. The extracted data was
inserted into model, table and column tables. Mapping data was inserted into
model, table and column mapping. Additionally was added a column mapping

Notebook DELL Latitude 5495
Operating system Windows 10 Pro (64-bit)
Processor AMD Ryzen 5 PRO 2500 2.00 GHz
RAM memory 16 GB
SSD disk yes

Table 5.1: Notebook parameters that was used for testing

41

5. Performance testing

Table name Count of rows
PDM_Model 24038
PDM_Table 130326
PDM_Column 1312478
Model_Mapping 23838
Table_Mapping 140584
Column_Mapping 924522

Table 5.2: Count of rows in MSSQL database

Collection name Count of documents Import time
ObjectVertex 1466836 55s
HierarchyEdge 1442798 73s
TransformationEdge 1088946 71s

Table 5.3: Count of documents and import time in Arango database

that consists of one hundred thousands transformations. All of the data was
placed in a single repository. Then it was transformed into a CSV format
using the application endpoint for transformation, then was imported into
ArangoDB. Amount of rows in tables and amount of documents in collections
is described in table 5.2 and table 5.3, respectively. Import time is shown in
the table 5.3.

5.4 Test measurements
Following tests were conducted using built-in ArangoDB graph operations
(shortest path and traversals), application-side implementation of data flow
operations using SQL Server and an implementation that executes stored pro-
cedures that write results to temporary tables in SQL Server and then reads
results from that tables. The last implementation was added to prove that
communication and an object-relational mapping does not significantly affect
the speed results of the operations as the internal architecture of databases
itself.

The following test measurement charts contain the following abbreviations:

1. arango is an implementation that uses built-in ArangoDB operations

2. mssql app is an application-side implementation that uses SQL Server
and indexes on tables are not defined

3. mssql sp is an implementation that uses custom stored procedures and
indexes are not defined as well

42

5.4. Test measurements

Figure 5.1: The shortest path measurements between two objects, where each
vertex has one incoming and one outgoing edge

4. mssql app idx is similar to the second one, except it has predefined
indexes on the mapping tables

5. mssql sp idx is an implementation using storing procedures with in-
dexes on some columns in the mapping tables

6. mssql sp both_idx means the same implementation as the mssql sp,
but with predefined indexes on the mapping tables as well as the tem-
porary visited tables

Test measurements are shown in the charts. Since test measurements are
discrete values, the charts should only contain dots. But for better clarity,
these distinct values are connected.

5.4.1 The shortest path tests I
The first test measures test finding the shortest path between two objects.
These source and target objects are located in the structure that is called
a path, i.e. each node has only one incoming edge and only one outgoing
transformation edge except the source and destination vertexes, which have
only one outgoing edge and one incoming edge. Test results are shown in
figure 5.1 and 5.2.

The first thing that stands out a mile is that the C# implementation and
implementation that stored procedures are almost equal. The second one is
even slower. And slower simply because the table insertions and deletions are
not cheap. Adding an indexes that covers Repository_Code, Model_Code,

43

5. Performance testing

Figure 5.2: The shortest path measurements between two objects, where each
vertex has one incoming and one outgoing edge (scaled)

Table_Code significantly improved the mssql app idx implementation re-
sults. Also, it improved the implementation that uses stored procedures. The
next question was whether defining an index for the internal table of visited
vertexes will improve the result. Adequately defined indexes significantly im-
prove read speed, but it slows down modification and insertion. Turned out
that adding an index to the table of visited vertexes was worth it. Although
it did not help, because the latency of finding the shortest path which consists
of more that one thousand vertexes is about fifty seconds.

In this test, ArangoDB is shining, because, in this particular test, it is
capable of finding the shortest path that consists of twenty thousand objects
in less than a second.

5.4.2 The shortest path tests II

The first test conditions were far from real. In practice, every object usually
has more than one transformation. In these tests, each object had four neigh-
bours: one incoming and three outgoings. The test results are illustrated in
figure 5.3 and 5.4.

Comparing to the previous test ArangoDB is still tremendously fast, but
the application-side implementation and the stored procedure implementation
are more than three times slower. Mainly because of the amount of iterated
objects, which was increased three times comparing to the previous test.

44

5.4. Test measurements

Figure 5.3: The shortest path measurements, where each vertex has one in-
coming and three outgoing transformation edges

Figure 5.4: The shortest path measurements, where each vertex has one in-
coming and three outgoing transformation edges (scaled)

45

5. Performance testing

Figure 5.5: The incoming flow measurements, where each vertex has one in-
coming and three outgoing transformation edges

5.4.3 The incoming data flow tests
Finding all the related objects uses the same Breadth-First Search algorithm
as finding the shortest path, which leads to a conclusion that the speed of
getting all the related objects will be the same. The measurements, which are
shown in figure 5.5, proves that.

What is not expected is that ArangoDB noticeably loses in performance af-
ter it reaches the amount of about twenty thousand objects. At forty-thousand
objects, it has almost the same latency as the C# implementation with in-
dexes. It might be because of the ArangoDB settings, to be more precise, it
reaches the memory limit for buffering the results.

5.4.4 The outgoing data flow tests
The implementation of getting the outgoing data flow is almost the same as
getting the incoming data flow, except it iterates through the incoming edges.
The results of the test are illustrated on chart 5.6.

5.4.5 Finding an object by attributes
As mentioned in the previous chapter, to perform the data flow operation,
a client should know the object identifier(s). Finding a particular object by
attributes is usually expected to be in a range of milliseconds. As shown on
chart 5.7, the ArangoDB implementation is able to get a column object in

46

5.5. Conclusion

Figure 5.6: The outgoing flow measurements, where each vertex has one in-
coming and three outgoing transformation edges

about seven seconds. Although adding an additional combined index on the
Object_Vertex collection had significantly improved the results, which are
also shown on figure 5.8.

5.5 Conclusion
After conducting the series of tests, it is clear that firstly, a stored procedure
implementation is the slowest one. Secondly, constantly database querying for
object neighbours can work relatively well if indexes are adequately defined.
Thirdly, ArangoDB should have as much RAM space as possible to get the
advantages of being a graph database. Otherwise, the performance is almost
the same as the C# implementation that uses SQL Server (with predefined
indexes on the mapping tables).

47

5. Performance testing

Figure 5.7: The measurements of getting a particular column object by its
attributes

Figure 5.8: The measurements of getting a particular column object by its
attributes

48

Chapter 6
Conclusion

An analysis of the existing mapping model, desirable use cases and research of
graph database technologies revealed that a label property graph database is
the most suitable for the project MMP requirements. After the graph database
research, ArangoDB had been chosen as a graph database for comparison. The
main reasons were that it is an open-source multimodel database that con-
sistently gains popularity, and the database is dynamically developed. Then
was designed a general meta-model for all mapping types in a label property
graph database. Based on this model were implemented data flow operations.
The operations were also implemented on a relational model. The series of
the tests revealed that a relational model with adequately defined indexes
could be somewhat comparative with a model in a graph database. If map-
ping data is not strongly connected and includes hundreds of transformations
between two objects or less, then a relational model can be the right solution.
When it comes to thousands of transformations and more, a graph database
(ArangoDB in this case) is more suitable for the scenario. Graph database
though, comparing to a relational one, requires more RAM space to take ad-
vantage of using it.

The bachelor thesis aimed to answer a question if it is worth implementing
a relative part of a mapping model using an existing relational mapping model
or current relational database is capable of effectively performing the data
flow operations. The answer is yes. My advice for the MMP project is to
give ArangoDB a try. The database, even in the community version, shows
better performance on the specified use cases than SQL Server. The database
can be integrated as a separate service, which will continuously (for example
one time per day) update its internal collections using a relational mapping
model, and it will expose a data flow API.

Microsoft SQL Server in version 19 introduced graph database features.
Since the project uses SQL Server version 17, the questing would be if it worth
to use a newer version and implement these operations using the new graph
features. As of May 2020, Microsoft have not released a library that adds LINQ

49

6. Conclusion

support of graph querying. The solution though has some benefits comparing
to ArangoDB, such as the fact that the project does not have to support an
external database and it still uses SQL language with some extensions.

50

Biblioraphy

1. IAN ROBINSON Jim Webber, Emil Eifrem. Graph Databases: New Op-
portunities for Connected Data. 2nd ed. O‘Reilly Media, Inc., 1005 Graven-
stein Highway North, Sebastopol, CA 95472. ISBN 9781491930892.

2. Neo4j. What Is a Graph Database and Property Graph [online] [visited
on 2020-05-14]. Available from: https://neo4j.com/developer/graph-
database.

3. Neo4j. Graph Databases for Beginners: Native vs. Non-Native Graph
Technology [online] [visited on 2020-05-14]. Available from: https://
neo4j.com/blog/native-vs-non-native-graph-technology/.

4. ArangoDb. Index Free Adjacency or Hybrid Indexes for Graph Databases
[online] [visited on 2020-05-14]. Available from: https://www.arangodb.
com / 2016 / 04 / index - free - adjacency - hybrid - indexes - graph -
databases/.

5. GraphDB. GraphDB Main Page [online] [visited on 2020-05-14]. Available
from: http://graphdb.ontotext.com/.

6. AllegroGraph. AllegroGraph Main Page [online] [visited on 2020-05-14].
Available from: https://allegrograph.com/.

7. Ontotext. Got meaning? Or Why an RDF Graph Database Is Good for
Making Sense of Your Data [online] [visited on 2020-05-14]. Available
from: https : / / www . ontotext . com / blog / rdf - graph - database -
making-sense-data/.

8. HypergraphDB. HypergraphDB Main Page [online] [visited on 2020-05-
14]. Available from: http://www.hypergraphdb.org/.

9. ArangoDB. The Many Faces of a Native Multi-Model Database [online]
[visited on 2020-05-14]. Available from: https://www.arangodb.com/
why-arangodb/multi-model/.

51

https://neo4j.com/developer/graph-database
https://neo4j.com/developer/graph-database
https://neo4j.com/blog/native-vs-non-native-graph-technology/
https://neo4j.com/blog/native-vs-non-native-graph-technology/
https://www.arangodb.com/2016/04/index-free-adjacency-hybrid-indexes-graph-databases/
https://www.arangodb.com/2016/04/index-free-adjacency-hybrid-indexes-graph-databases/
https://www.arangodb.com/2016/04/index-free-adjacency-hybrid-indexes-graph-databases/
http://graphdb.ontotext.com/
https://allegrograph.com/
https://www.ontotext.com/blog/rdf-graph-database-making-sense-data/
https://www.ontotext.com/blog/rdf-graph-database-making-sense-data/
http://www.hypergraphdb.org/
https://www.arangodb.com/why-arangodb/multi-model/
https://www.arangodb.com/why-arangodb/multi-model/

Biblioraphy

11. DB-Engines. DB-Engines Ranking of Graph DBMS [online] [visited on
2020-05-14]. Available from: https://db-engines.com/en/ranking/
graph+dbms.

12. Apache TinkerPop. The Gremlin Graph Traversal Machine and Language
[online] [visited on 2020-05-14]. Available from: https://tinkerpop.
apache.org/gremlin.html.

14. Oracle. What Is a Data Warehouse? [online] [visited on 2020-05-14].
Available from: https://www.oracle.com/database/what- is- a-
data-warehouse/.

16. DB-Engines. DB-Engines Ranking of Graph DBMS [online] [visited on
2020-05-14]. Available from: https://db-engines.com/en/ranking/
graph+dbms.

17. DB-Engines. DB-Engines Ranking [online] [visited on 2020-05-14]. Avail-
able from: https://db-engines.com/en/ranking.

18. Neo4j. Clustering in Neo4j [online] [visited on 2020-05-14]. Available
from: https : / / neo4j . com / docs / operations - manual / current /
clustering/introduction/.

19. OrientDB. OrientDB Enterprise Edition [online] [visited on 2020-05-14].
Available from: https://orientdb.com/orientdb-enterprise/.

20. Microsoft. CREATE INDEX (Transact-SQL) [online] [visited on 2020-
05-14]. Available from: https://docs.microsoft.com/en-us/sql/t-
sql / statements / create - index - transact - sql ? redirectedfrom =
MSDN&view=sql-server-ver15.

21. StackOverflow. Developer Survey Results 2019 [online] [visited on 2020-
05-14]. Available from: https://insights.stackoverflow.com/survey/
2019.

22. Medium. RESTful API Best Practices and Common Pitfalls [online] [vis-
ited on 2020-05-14]. Available from: https://medium.com/@schneidenbach/
restful-api-best-practices-and-common-pitfalls-7a83ba3763b5.

52

https://db-engines.com/en/ranking/graph+dbms
https://db-engines.com/en/ranking/graph+dbms
https://tinkerpop.apache.org/gremlin.html
https://tinkerpop.apache.org/gremlin.html
https://www.oracle.com/database/what-is-a-data-warehouse/
https://www.oracle.com/database/what-is-a-data-warehouse/
https://db-engines.com/en/ranking/graph+dbms
https://db-engines.com/en/ranking/graph+dbms
https://db-engines.com/en/ranking
https://neo4j.com/docs/operations-manual/current/clustering/introduction/
https://neo4j.com/docs/operations-manual/current/clustering/introduction/
https://orientdb.com/orientdb-enterprise/
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-index-transact-sql?redirectedfrom=MSDN&view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-index-transact-sql?redirectedfrom=MSDN&view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-index-transact-sql?redirectedfrom=MSDN&view=sql-server-ver15
https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2019
https://medium.com/@schneidenbach/restful-api-best-practices-and-common-pitfalls-7a83ba3763b5
https://medium.com/@schneidenbach/restful-api-best-practices-and-common-pitfalls-7a83ba3763b5

Used images

10. OrientDB. Traditional query polling approach [online] [visited on 2020-
05-14]. Available from: https://orientdb.com/docs/last/images/
queryPolling.png.

13. ArangoDB. Structure of an ArangoDB Cluster [online] [visited on 2020-
05-14]. Available from: https://www.arangodb.com/docs/stable/
images/cluster_topology.png.

15. Panoply. A Data Warehouse Architecture [online] [visited on 2020-05-14].
Available from: https://panoply.io/uploads/versions/diagram8-
1---x----750-376x---.jpg.

53

https://orientdb.com/docs/last/images/queryPolling.png
https://orientdb.com/docs/last/images/queryPolling.png
https://www.arangodb.com/docs/stable/images/cluster_topology.png
https://www.arangodb.com/docs/stable/images/cluster_topology.png
https://panoply.io/uploads/versions/diagram8-1---x----750-376x---.jpg
https://panoply.io/uploads/versions/diagram8-1---x----750-376x---.jpg

Appendix A
Acronyms

API Application Program Interface

CRUD Create, Read, Update, Delete operations

CSV Comma-separated values

DB Database

DBMS Database Management System

DD Data Dictionary Tool

ETL Extract, Transform, Load Tools

GDBMS Graph Database Management System

GQL Graph Query Language

HTTP HyperText Transfer Protocol

JSON JavaScript Object Notation

LINQ Language Integrated Query

LPG Label Property Graph

MMP Metadata Management Platform

NoSQL Not only SQL

PDM Physical Data Model

RAM Random-access memory

RDBMS Relational Database Management System

55

A. Acronyms

RDF Resource Description Framework

REST Representational state transfer

SQL Structured Query Language

URI Unique Uniform Identifier

56

Appendix B
Contents of enclosed Micro SD

readme.txt.........................the file with CD contents description
exe....................................... the directory with executables
src...the directory of source codes

wbdcm .. implementation sources
thesis...............the directory of LATEX source codes of the thesis

text.. the thesis text directory
thesis.pdf............................the thesis text in PDF format
thesis.ps...............................the thesis text in PS format

57

	Introduction
	The aim of this thesis
	Graph database management system
	The storage types of graph databases
	Graph models
	Multi-model graph databases
	Live query
	Querying
	ACID and BASE
	Graph searching algorithms
	Graph databases and scaling
	Replication
	Partitioning
	The ArangoDB cluster structure
	ArangoDB cluster recomendations
	Datacenters
	Conclusion

	Enterprise data warehouse architecture
	Data source layer
	Data staging layer
	Data storage layer
	Data presentation layer
	Metadata
	Mapping in a data warehouse

	Analysis and design
	MMP DD Tool
	Analyzing requirements
	Use cases for comparison
	Additional requirements and subtasks

	Comparision of graph database management systems
	Neo4j
	Microsoft Azure CosmosDB
	ArangoDB
	OrientDB
	Virtuoso
	Amazon Neptune
	Conclusion

	Design of a mapping model in RDBMS
	ArangoDB liminations
	Design of a mapping model in LPG GDBMS
	Column mapping graph
	Metadata graph representation with unique vertexes
	Meta model representation with non-unique vertices
	Conclusion

	Indexes on the Meta Model
	Choosing a programming language

	Realization
	The application overview
	Architecture of the application
	Adding multi-tenancy to application
	Graph operations in a RDBMS
	The shortest path algorithm
	The related objects algorithm

	Finding an object in a graph database
	Graph operations using ArangoDB
	Test-driven development
	The data transformation from an existing relation DB

	Performance testing
	Aims
	Testing environment
	Test data
	Test measurements
	The shortest path tests I
	The shortest path tests II
	The incoming data flow tests
	The outgoing data flow tests
	Finding an object by attributes

	Conclusion

	Conclusion
	Biblioraphy
	Used images
	Acronyms
	Contents of enclosed Micro SD

