
prof. Ing. Pavel Tvrdík, CSc.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 14, 2019

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Use of physically unclonable function to secure wireless communication

 Student: František Kovář

 Supervisor: Ing. Jiří Buček, Ph.D.

 Study Programme: Informatics

 Study Branch: Computer Security and Information technology

 Department: Department of Computer Systems

 Validity: Until the end of summer semester 2019/20

Instructions

1. Study the topic of physically unclonable functions (PUFs).
2. Design and implement a security device consisting of a WiFi-enabled microcontroller module [1] and an
FPGA board containing a PUF [2]. The microcontroller will be connected to the FPGA using an SPI bus and
will communicate with other devices over WiFi using TCP/IP.
3. Design and implement a system consisting of an authentication authority (on a PC) and two or more
security devices described above. Implement an authentication protocol under the guidance of the
supervisor.
4. The system will support the following functions:
* Enrollment of the security devices to the authentication authority.
* Authentication of the security devices by the authentication authority using PUF.
5. Perform automated testing of the system and its functionality in order to measure reliability parameters,
such as false acceptance ratio and false rejection ratio.

References

[1] Wemos D1 mini or similar, https://wiki.wemos.cc/products:d1:d1_mini
[2] Kodýtek, F. and Lórencz, R.: A design of ring oscillator based PUF on FPGA. In Design and Diagnostics of Electronic
Circuits & Systems (DDECS), 2015 IEEE 18th International Symposium on (pp. 37-42). IEEE.

Bachelor’s thesis

Use of physically unclonable function to
secure wireless communication

František Kovář

Department of Information Security
Supervisor: Ing. Jiří Buček, Ph.D.

June 4, 2020

Acknowledgements

I would like to thank everyone who supported me during my work on this
thesis. First of all, I would like to thank my supervisor Ing. Jiří Buček, PhD.
for his incredible patience and every valuable advice, that helped me to finish
my thesis. An exclusive thanks belong to my sister, Bc. Michaela Kovářová,
for her endless support and unbelievable motivation during all my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its
value. This authorization is not limited in terms of time, location and quan-
tity. However, all persons that makes use of the above license shall be obliged
to grant a license at least in the same scope as defined above with respect to
each and every work that is created (wholly or in part) based on the Work, by
modifying the Work, by combining the Work with another work, by including
the Work in a collection of works or by adapting the Work (including trans-
lation), and at the same time make available the source code of such work at
least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on June 4, 2020 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2020 František Kovář. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Kovář, František. Use of physically unclonable function to secure wireless
communication. Bachelor’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2020.

Abstrakt

V této bakalářské práci jsme zdokumentovali návrh a implementaci bezpeč-
nostních zařízení, které využívají fyzicky neklonovatlnou funkci k zabezpe-
čení bezdrátové komunikace. Implementace proběhla v jazyce C++ a v jazyce
VHDL na zařízeních Wemos D1 mini s ESP8266 wifi čipem a na FPGA Digi-
lent Basys 2. Wemos D1 mini komunikuje přes s FPGA pomocí sériové linky a
tím získáva data k prokázání své identity. Zařízení bylo otestováno na lokální
wifi síti a úspěšnost takovéto zabezpečené komunikace dosahovala 96,7% kvůli
nestabilitě fyzicky neklonovatelné funkce.

Klíčová slova PUF, fyzicky neklonovatelná funkce, FPGA, IoT, Wemos D1
mini, zabezpečení, WiFi komunikace, TCP/IP protokol, samoopravný kód

Abstract

In this bachelor’s thesis, we documented the design and the implementation
of security devices that use a physically unclonable function to secure wire-
less communication. The implementation is in C ++ language and VHDL
language on Wemos D1 mini device with ESP8266 WiFi chip and on FPGA
Digilent Basys 2. Wemos D1 mini communicates with FPGA via serial line
and thus obtains data to prove its identity. The device was tested on a local

vii

WiFi network, and the success of such secure communication reached 96.7%
due to the instability of a physically unclonable function.

Keywords PUF, physically unclonable function, FPGA, IoT, Wemos D1
mini, security, WiFi communication, TCP/IP protocol, error correction code

viii

Contents

Introduction 1

1 Analysis 3
1.1 Field programmable gate array 3
1.2 Physically unclonable function 3

1.2.1 Arbiter PUF . 4
1.2.2 Ring Oscillator PUF . 4
1.2.3 SRAM PUF . 4
1.2.4 Butterfly PUF . 5

1.3 Error correction codes . 5
1.4 Random number generator . 6

1.4.1 True random number generator 6
1.4.2 Pseudo random number generator 7

1.5 Data Encryption . 7
1.5.1 Block cipher modes . 8

1.6 Data integrity . 9
1.6.1 Hash functions . 9
1.6.2 Message authentication code 9

1.7 ESP-8266 . 10
1.8 Authentication . 11
1.9 Communication over internet 11

2 Design and implementation 13
2.1 Basic structure of the system 13
2.2 Authentication protocol . 14
2.3 Synthesized design on the FPGA 15

2.3.1 Data transmission . 16
2.3.2 Control block . 17
2.3.3 Physically unclonable function 18

ix

2.4 Encryption, decryption, integrity 19
2.5 Replay . 19
2.6 Error correction code . 20

2.6.1 Encoding . 20
2.6.2 Decoding . 21

2.7 Authentication authority . 23
2.7.1 Enrollment . 24
2.7.2 Start . 25

2.8 Security device . 25
2.8.1 Serial peripheral interface 26
2.8.2 Enrollment . 27
2.8.3 Server . 27
2.8.4 Client . 28

2.9 Authentication . 28

3 Measurements 29
3.1 Physically unclonable function 29

3.1.1 Stable bits . 29
3.1.2 Response differences . 30

3.2 Response generation times . 31
3.3 Authentication of the security device 31

Conclusion 33

Bibliography 35

A Acronyms 39

B Contents of enclosed CD 41

x

List of Figures

1.1 Example usage of encoding and decoding of sent message over a
noisy channel.[1] . 5

1.2 Basic model of a true random number generator(A) and a pseudo
random number generator(B)[2]. 6

1.3 Stream cipher versus block cipher.[3] 8
1.4 An example of MAC use[4]. 10

2.1 Design of our system consisting of at least two security devices and
an authentication authority. 13

2.2 Design of the security device consisting of FPGA and ESP8266. . . 14
2.3 Design of the enrollment process between the AA and security device. 14
2.4 Initialization of the communication from device A to the device B

using AA . 15
2.5 FPGA design containing SPI interface and PUF 16
2.6 An example of receiving 2bits of data followed by another 2bits. . 16
2.7 The final design of the finite state machine of the control block. . . 17
2.8 Implementation of RO PUF using [5] realization. 18
2.9 Key encoding using a random key k, divided into four groups, and

a PUF response r to form helper data h. 21
2.10 Implementation of the full binary adder and 9-4 parallel counter. . 22
2.11 Karnaugh map for treshold of the 9-4 parallel counter. 22
2.12 Digilent Basys 2 with FPGA, hardware connector, Wemos D1 mini

with ESP8266. 26

xi

List of Tables

3.1 PUF response bit stability. 30
3.2 PUF responses from the same PUF. 30
3.3 PUF response difference using different bits. 31
3.4 Time measurements of a response computing in µs. 31
3.5 Successful authentication using different bits. 31

xiii

Introduction

The topic of this bachelor thesis is to secure wireless communication with the
use of a physically unclonable function. The goal of the theoretical part of
this thesis is to study the physically unclonable functions and other tools that
can be used to secure the communication.

The goals of the practical part are to design and create a security device,
which will be able to communicate over the TCP/IP protocol with other
devices and will use its physical properties to secure the connection. We
furthermore need an authentication protocol and authentication authority, so
the devices can use it as a trusted third party to authorize themselves and at
the end share a secret message.

This thesis is divided into three chapters. In the first chapter, Analysis,
we focus on the theoretical background that we need to design and implement
all our goals. In the second chapter, Design and implementation, we look
at the design and subsequent implementation individual building blocks of
our security device, protocol and authentication authority. In this part, we
entirely use the knowledge gained from the first chapter. In the last chapter,
Measurements, we have some measurements that were needed to do during
the thesis, to find out some implementation details and the reliability of the
protocol used.

1

Chapter 1
Analysis

1.1 Field programmable gate array

An FPGA is an integrated circuit, which is designed to be reconfigured by
users after manufacturing. People typically use HDL, such as Verilog [6] or
VHDL [7], to describe hardware behaviour. An FPGA contains a set of logic
blocks and a hierarchy of interconnects which are configurable. Modern FP-
GAs also consist of memory elements, such as simple flip-flops or complete
memory blocks [8]. A considerable advantage of FPGAs is their flexibility,
reprogramming, and cost-effectiveness. The FPGA is often used to create
prototypes so that the designs can be fully debugged, tested, and updated
before manufacturing.

In this thesis, we only consider the device Digilent Basys 2 with Xilinx
Spartan-3E [9] and the software needed for development ISE Design Suite:
WebPACK Edition 14.7 [10] of company Xilinx.

1.2 Physically unclonable function

Physical Unclonable Function (PUF) generates a digital fingerprint using a
device’s characteristics which were created during the manufacturing process.
Therefore, identical integrated circuits from the same fabrication facility, using
the same manufacturing process can generate different challenge-response pair,
as there will always be a slight difference in the manufacturing process. As
stated in [8], secret keys are usually stored in a nonvolatile memory (NVM),
which can be hard to secure. Since a PUF can produce a cryptographic key
or digital fingerprint, which should be unique from device to device, it can
eliminate the need of storing such a key in an NVM as it is always generated
on the fly. A PUF, unlike an NVM, is resistant to a physical attack, as the
attack, even slightly, changes the small differences that made the PUF and
could drastically change the PUF’s response.

3

1. Analysis

We divide PUFs into two groups. A weak PUF and a strong PUF. This is
determined on the challenge-response pair (CRP)-space. A weak PUF has its
CRP-space is extremely small, an example of a weak PUF is an SRAM PUF. In
contrast, a strong PUF should handle a huge number of challenges. At best
the CRP-space should grow exponentially with the length of the challenge
itself [8]. An example of a strong PUF is the Arbiter PUF and Ring oscillator
PUF.

The PUFs can be used for secret key generation. Still, this process should
be provided with an ECC since even with a slight change of the output,
the resulting cryptographic application and its messages would be corrupted.
Strong PUFs are excellent candidates to provide device authentication based
on the hardware, and the response can be considered to be its signature or
fingerprint.

1.2.1 Arbiter PUF

As stated in [11], this type of PUF is composed of delay paths, multiple
switches that can change the path, and an arbiter located at the end of the
delay paths. The PUF takes as an input 64bit long challenge and produces a
1bit response as an output. The resulting bit is decided as from what path
the signal came first. To achieve the maximum variation of PUF responses
the delay paths must be placed as symmetrically as possible, to minimize the
delay differences.

1.2.2 Ring Oscillator PUF

The basic idea behind Ring Oscillator PUF (RO PUF) [12] is that given two
same symmetrical oscillators, the frequency of the two oscillators will differ due
to the manufacturing process, and two counters. Comparison of the counter,
which oscillator gave a bigger number of cycles, determines a state of the
response as a single bit.

The RO PUF [5] uses two oscillators, which are selected by the challenge,
composed of 1 NAND gate and four inverters. These two oscillators are con-
nected to their respective counters, and the response is the value of the counter
that did not overflow a specified threshold. Using this approach, we not only
get one bit of response but multiple bit response. The response must be
processed appropriately and is documented in [5].

1.2.3 SRAM PUF

The principle for SRAM PUF is based on the content of the uninitialized
SRAM memory after startup as its behaviour is unpredictable. The SRAM
snapshot is taken to authenticate the device. An SRAM cell consists of six
transistors as where four internal behave like a small oscillator [13]. As some of

4

1.3. Error correction codes

EncodingMsg Decoding Msg

Noisy
channel

Msg'

Figure 1.1: Example usage of encoding and decoding of sent message over a
noisy channel.[1]

the SRAM cells after startup are stable, since the strength of a cross-coupled
inverter is different for each SRAM bitcell[14], they will have a preferred state.
Due to noise, temperature and voltage fluctuations, the value can be different.
Thanks to stable and even the unstable SRAM cells we can identify the device.
“The chip is identified if: a) the Hamming distance between all values in the
database (except one) and the request value is bigger than 39%, and b) there
is one entry in the database where the Hamming distance between the entry
and the request ID is below 25%.”[13].

1.2.4 Butterfly PUF

According to [5], it is not always possible to implement an SRAM PUF on
the FPGA since they usually initialize memory to some default values. The
concept of the Butterfly PUF (BPUF) [15] is based on the idea of creating
structures with the FPGA matrix, which behave similarly to an SRAM cell
during the startup phase. Its benefits versus an SRAM PUF is that we do
not need to power on and off the device to generate the output. A BPUF cell
is a cross-coupled circuit which can be brought to an unstable state before
allowing it to settle to one of the two stable states that are possible. It is
necessary to have as symmetrical circuit as possible, to ensure the best results
of the BPUF.

1.3 Error correction codes
“Communication of a piece of information begins with a sender writing it, goes
on with its transmission through a channel and ends with the reconstruction
of the message by the recipient.”[1].

When we transfer data from one device to another, Error Correction
Codes (ECCs) are important for detection and if possible correction of oc-
curred errors on the data. An error can emerge in different situations. The
message is modified by a third party or some bits are modified over a noisy
channel. We will discuss only the second option, that some bits are distorted
by an accident while transferring over a noisy channel. ECCs aim to fix or
at least detect errors in a message using redundancy data and simultaneously

5

1. Analysis

ensure that the initial size of the data doesn’t change much. According to
used ECC it can fix and detect limited amount of errors depending on the size
of redundancy data it uses.

1.4 Random number generator

In this section we will discuss one of the main tools in cryptography. Ran-
domness, random numbers and their generation using true random number
generator (TRNG) or pseudo random number generator (PRNG). The next
figure fig. 1.2 shows an example of such generation.

Conversion
to binary

Deterministic
algorithm

Source of
true

randomness Seed

Random
bit stream

Pseudorandom
bit stream

A) B)

Figure 1.2: Basic model of a true random number generator(A) and a pseudo
random number generator(B)[2].

1.4.1 True random number generator

First, we look at true random number generators, and these generators rely
on unpredictable sources in the physical world. “A TRNG is based on the
randomness produced by physical phenomena and therefore provides a source
of randomness”[3]. “A TRNG is a hardware primitive widely used in security
and cryptographic application to generate session keys, onetime pads, random
seeds, nonces, challenges to PUFs, and so on, and these applications are grow-
ing in number with time”[8]. To produce a truly random output, the TRNG
must rely on a non-deterministic source of randomness, such as:

• time intervals in the radioactive decay of a nuclear atom,

• semiconductor thermal noise,

• measurements of running oscillators.

6

1.5. Data Encryption

That were so far sources of randomness for the hardware implementation
of a TRNG. According to [3], software implementation of a TRNG relies on
physical phenomena of connected hardware to a computing device. These
sources could be, for example:

• times between keystrokes,

• times between interrupts,

• mouse movements.

1.4.2 Pseudo random number generator

As the price of a TRNG can be expensive, we can use a pseudo-random number
generator (PRNG) instead. A PRNG is an algorithm which outputs a pseudo-
random bit string. The bit string is required to have no apparent structure;
however, the output is certainly not random. If the PRNG is run twice with
the same input data, the corresponding output data will follow as before.
Anyone who knows the initial seed can completely predict the output; thus, the
initial seed must remain secret, so its output appears to have been randomly
generated. Usually, the PRNG seed is first generated using a TRNG output.
There are many approaches to construct a PRNG, such as linear congruential
generators, block ciphers or stream ciphers.

1.5 Data Encryption
Encryption is applied in two forms of using a symmetric key or an asymmet-
ric key. Symmetric cipher uses the same key for encryption and decryption,
whereas asymmetric cipher uses two keys, one key for encryption, which is
publicly known, and one key for decryption, which the receiver only posses.
The symmetric encryption is usually cheaper to implement than asymmetric.
In this thesis, we focus on using only symmetric encryption.

Symmetric encryption algorithms, according to [16], we have two different
symmetric encryption approaches: stream cipher or block cipher, an example
can be seen in fig. 1.3. Stream ciphers perform a series of operations on one
bit of plaintext using a pseudorandom key. Block ciphers, data is divided into
fixed length of bits, also called blocks, the block is then transformed by the
cipher to produce an output. The output size of the cipher is usually the same
as the input size, for the block ciphers we typically need to add extra padding
to the end of the message.

The strengths, of the symmetric encryption, are: they are fast, hard to
crack and cheap to implement. On the other hand, since the symmetric en-
cryption uses the same secret key for both encryption and decryption, the
key must be therefore distributed among all parties who want to exchange
encrypted messages. That is a potential risk as if we distribute the secret key

7

1. Analysis

Figure 1.3: Stream cipher versus block cipher.[3]

among multiple parties, which is not secure, and we should use a new key for
everyone. In that case, if only a single device were compromised, the secret
key and all other devices could be fooled by the impersonated device. The
strength of any symmetric cipher relies on the secrecy and strength of the key.

In these days we have multiple block cipher algorithms, but we only
present current Advanced Encryption Standard (AES). Rijndael algorithm,
also known and interchangeable with AES, is a symmetric block cipher that
processes 128 bits size data blocks. It can use keys of different lengths of 128,
192, and 256 bits. The complete design and implementation can be found
here [17].

1.5.1 Block cipher modes

Electronic Code Book (ECB) is the easiest and fastest mode to use since
it can run in parallel. Although it is fast, it has a fatal security issue; every
block is encrypted with the same key. For long messages, multiple patterns
could emerge, thus increasing the risk of the attacker discovering the plain
text and then deduce the secret key.

Cipher Block Chaining (CBC) is, on the other hand, slower, but it does
not have these issues. This mode uses an initialization vector(IV), and every
block of the ciphertext is chained with the previous block, except for the first,
which is chained with the IV. In this mode, there is no pattern, and with the
use of a new IV, even the same message encrypted with the same secret key
will always be different.

Cipher Feedback (CFB), according to [3], has similar properties to the
CBC mode, but has a little different way of operation. The basic version of
CFB mode is, as in CBC mode using an IV. In this mode XORs plain text

8

1.6. Data integrity

with the encryption of the previous block, in the case of the first block, on the
IV.

Counter (CTR), can be thought of as a counter-based version of CFB
mode without feedback. The feedback is interchanged for a counter, as we
assume both sender and receiver have the same counter with the same state,
and this counter does not need to be secret. Still, both sides must keep the
counter synchronized as it needs to compute a new value each time a cipher-
block is exchanged.

1.6 Data integrity
According to [18], integrity ensures that data is protected from unauthorized
modification or data corruption. The goal of integrity is to preserve the consis-
tency of data, including data stored in files, databases, systems, and networks.

1.6.1 Hash functions

A hash function is a cryptographic algorithm that processes data of any ar-
bitrary length and outputs a fixed-length output. “A one-way hash function
reduces a message to a hash value”[18]. Since they reduce the original message
to a fixed hash, there is a possibility of a collision happening. A collision is
defined as when two different messages have the same hash value. An example
of hash functions:

• MD5 – produces a 128-bit hash value, performs four rounds of compu-
tations, is not collision-free;

• SHA-1 – produces a 160-bit hash value, performs 80 rounds of compu-
tation;

• SHA-2 – this is a family of hash functions, each provides different func-
tional limits.

Most of the hash functions are easy to compute, but they might be a
bit weaker in the cryptographic context. Since all hash functions are publicly
computable, they provide only a weak notion of data integrity. Results of hash
functions must then be protected with the use of another security mechanism,
to prevent the hash value from being manipulated by a malicious party.

1.6.2 Message authentication code

Amessage authentication code (MAC) is a little different from a hash function.
It is a cryptographic checksum where a secret key is now involved in the
hash generation. The usage can be seen in fig. 1.4. “These are symmetric
cryptographic primitives designed to provide data origin authentication, which

9

1. Analysis

is a stronger notion than data integrity”[3]. Usually, to implement a MAC
algorithm is to use a block cipher. The MAC does not provide identification
of a problem occurred so the receiver can not determine if the message was
altered on purpose or if it was an accident, but they can for sure tell the
message is somehow modified.

So far, we talked about MAC based on block ciphers. The second version
of MACs are based on hash functions and are called HMAC. The strength of
an HMAC is bound to the hash function used. “This type of MAC can, at
least in theory, be constructed from any cryptographic hash function”[3].

Figure 1.4: An example of MAC use[4].

1.7 ESP-8266

According to [19], the Wemos D1 mini is an inexpensive ESP8266-based WiFi
board that is powerful as any NodeMCU or ESP8266-based microcontroller.
The D1 mini is very cheap, supports wifi and is fully compatible with the
Arduino platform.

According to [20], there are multiple versions of WeMos D1 Mini, which
differs by ESP chip, size of flash memory, if they contain LED pin, and what
antenna they use.

To use the Wemos D1 mini, one must install the driver for serial port,
Arduino IDE and python. The Arduino IDE offers many sketch files to try
out the microcontroller. All requirements and documentation can be found
online [21, 22].

10

1.8. Authentication

1.8 Authentication
“Authentication is the binding of an identity to a subject”[23]. The authen-
tication process determines if someone is who they say they are. “Limiting
access to unauthorized devices to important assets is the most fundamental
security step that you can take” [24]. To be able to confirm someone identity,
they usually should provide some authority one or more of the following:

• something they know,

• something they have,

• something they are.

The process to authenticate someone is first obtaining some of the above data
and then determine if it is associated with that entity. For example, we receive
username and password, and it matches the entry in the database, or a bank
card accepts the given PIN. Not only we can authenticate people, but we
also can, and mostly should authenticate software, devices, drivers. These are
crucial since if we would not verify them, we could run unauthorized software
on our devices which was substituted for the original.

“One valuable use of encryption is in the authentication process”[16]. The
authentication information, such as passwords or PINs, must always be kept
secret from everyone. We have to prevent exposure of sensitive information;
otherwise, the authentication would be useless. Such as not keeping passwords
in raw format, but for example properly hashed or encrypted.

We divide authentication into two categories. We have single-factor au-
thentication, well known is providing a password to a system. This could be
seen as a user is trying to connect to a wireless access point. On the other
hand, we also have multifactor authentication. This authentication process
requires two or more different identity authenticators. This could be logging
into a personal computer using a smart card and the assigned PIN code. We
now provided something we have and something we know. It does not only
have to be a smart card, but it could be, for example:

• a USB key dongle,

• an SMS code,

• a fingerprint or iris scanned,

• accepting login attempt in an application on the phone.

1.9 Communication over internet
According to [24], many people think of the Internet as it is only their email
and the Web, but on the contrary, there have always been many protocols,

11

1. Analysis

and more are created every day. It should not matter what type of device or
software is used; information must move through the Internet in the form of
TCP/IP packets.

According to [25], one of the core protocols is the Internet Protocol, gener-
ally used the term as TCP/IP. As the title of the protocol indicates, TCP/IP
stands for two protocols, Transmission Control Protocol and the Internet Pro-
tocol. This term can also include other protocols, applications, and even the
network medium. TCP protocol provides reliable delivery and delivery in the
correct order, and the IP protocol provides proper routing using its routing
table.

A collection of devices that can exchange data freely is called a network,
and the Internet is nothing more than a group of networks. Since all data can
be freely transferred, it makes the Internet a dangerous place.

Internet of Things (IoT) is a network of connected devices. In most cases,
this network is also connected to the Internet. As a result, IoT devices are
accessible from the Internet. For that one can, for example, turn on lights,
start making their coffee or cook dinner before they even get home. “As
IoT continues to grow in popularity, we will see more and more attacks on the
device class”[16]. These devices could cause potentially DDoS if a vulnerability
is found. An example is the Mirai malware discovering and exploiting IoT
devices using [26, 27].

12

Chapter 2
Design and implementation

In this chapter, we design and implement a security device, a communication
protocol over which will the devices communicate, and an authentication au-
thority which provides authentication to all enrolled devices. The design part
begins with defining our authentication protocol, where we need to identify all
parts of the protocol and continues with the design and then implementation
of all required components.

2.1 Basic structure of the system
In this section, we show the basic structure of our system and devices. The
fig. 2.1 shows the connection of all the devices in the domain to the cloud and
are able to communicate wirelessly.

Security device
Security device

AA

Figure 2.1: Design of our system consisting of at least two security devices
and an authentication authority.

In the fig. 2.2 we can see the design of our security device. It is able to
communicate with its FPGA and is able to connect to the cloud using its
wireless connection.

13

2. Design and implementation

Security device

ESP8266

FPGA

Figure 2.2: Design of the security device consisting of FPGA and ESP8266.

The fig. 2.3 shows our expectation of the enrollment process. The AA
sends individual challenges and receives their corresponding responses. This
process must take place in a secure environment as these responses are crucial
in the security of our usage.

Trusted environment

Challenge
Response

pair

Challenge

AA

DB

Response

Security
device

Enrollment

Figure 2.3: Design of the enrollment process between the AA and security
device.

2.2 Authentication protocol
Let’s summarize what our expectations of the proposed protocol are and how
it works. We expect the protocol to provide at least confidentiality and in-
tegrity and to force the devices to use PUF as it will be the main source of
identification.

We expect that both parties A and B use their PUF for key extraction
from the helper data provided by AA. That means except for the security
devices itself, the only external entity is the AA that has access to all the
challenges and responses of these devices across a given domain.

14

2.3. Synthesized design on the FPGA

We expect this protocol to be able to resist replay attack since every session
starts with a random nonce, the nonce is part of the encrypted message from
the AA and no one except for the AA could potentially encrypt it this way.

We have to make sure both A and B have the same shared key; there is
a simple exchange of an encrypted random number, where the issuer has to
increase the numbers by one and encrypt them and send them back, so the
receiver knows the other side has the same key.

Despite the beginning, where we had nothing, we have correctly designed
a protocol, which provides integrity and confidentiality and basic protection
against simple attacks. As from the discussed protocol, we have now defined
what we want to achieve and need to design and to implement it successfully.

1. Hello

2. B, NonceB

3. A, NonceA, B, NonceB

4. EKA(NonceA, KAB),ChallA, HelperDataA, HMACKA,
EKB(NonceB, KAB), ChallB, HelperDataB, HMACKB

AA
3.1 Generates random KAB

3.2. Randomly selects CRPA
and CRPB

3.3 Generates KA,HelpA, KB,
HelpB

A
5.1 A sends ChallengesA to PUFA

5.2 A receives RespA
5.3 With use of HelperDataA and
responses from PUF reconstructs

key KA

B
5.1 B sends ChallengesB to PUFB

5.2 B receives RespB
5.3 With use of HelperDataB and
responses from PUF reconstructs

key KB
5.4 X := random value

5. EKB(NonceB, KAB), ChallB, HelperDataB, HMACKB

6. EKAB(X), HMACKAB

8. EKAB(Secret communication), HMACKAB

7. EKAB(X+1), HMACKAB

PUFA

RespA

ChallengeB
RespB

PUFB

ChallengeA

Figure 2.4: Initialization of the communication from device A to the device B
using AA

2.3 Synthesized design on the FPGA

The first of the two components of our security device is the FPGA, in the
fig. 2.4 shown as PUF only. This device contains the implementation of the
required hardware, such as a control block, a PUF and more. In this section,
we will discuss the HW design and its implementation. We expect our design
and implementation to work only with an external clock source as we want

15

2. Design and implementation

every operation to be synchronized to this source. In the following subsections,
we discuss only the essential parts of the proposed solution. In the fig. 2.5 we
can see our design of FPGA.

Even though we want everything synchronized to the external clock, we
have an asynchronous reset. This reset clears all flags, counters and memory.
The need for this is more elaborated in the implementation of the security
device in section 2.8.

FPGA

PUFControl block

SPI

ESP8266

Figure 2.5: FPGA design containing SPI interface and PUF

2.3.1 Data transmission

All of the signals, MOSI, CLOCK, MISO, used in this section, are part of the
SPI interface. All received data are stored into an 8bit shift register. Every
received bit from the MOSI wire is saved upon the rising edge of the CLOCK.
The data are then propagated to the other components, which need to work
with incoming data. During every rising edge, already received data are then
shifted left, and the new bit is concatenated from the right. As a result of
this, the first bit we receive is treated as the most significant bit in the data
as can be seen in fig. 2.6.

01

? ? ? ? ? ? 1 0

Data

CLK

10

? ? ? ? 1 0 0 1

Data

CLK

Figure 2.6: An example of receiving 2bits of data followed by another 2bits.

16

2.3. Synthesized design on the FPGA

Sending data, on the other hand, is different than storing. We send only
the PUF responses and PUF’s state. As the PUF responses have two bytes,
we send it in two parts. For this, we have a send selector, which is controlled
from the control block as the security device asks for it. Every bit of the
sending data is ready to be sent on the rising edge of the clock, and as it gets
to the falling edge, it puts the n-th bit of a byte on the MISO wire.

2.3.2 Control block

We have decided to implement the control block as a finite state machine(FSM).
In the project implementation, this control block is called Automat. To com-
municate with the control block, we use a set of commands that then decide
where does the FSM go and what happens with the received data. In the
fig. 2.7 we can see the design of the FSM.

wait computing

save_chal send_resp
gap

0xFD

0x8?
data

received 0xFE - finished
puf	state

sent

0xFE - not finished

data
sent0xA?

Figure 2.7: The final design of the finite state machine of the control block.

Let’s first take a look at the commands, that define the behaviour of the
FSM and what we want to achieve with them.

• 0x80 – changes the FSM state into save_chal, selects the most significant
byte of the challenge and waits for the data. After the byte is received,
the FSM state changes to wait.

• 0x81 – changes the FSM state into save_chal, selects the least significant
byte of the challenge and waits for the data. After the byte is received,
the FSM state changes to wait.

• 0xA0 – changes the FSM state into send_resp, selects the most signifi-
cant byte of the PUF response and on next eight ticks of the clock sends
the data. After the byte is received, the FSM state changes to wait.

• 0xA1 – changes the FSM state into send_resp, selects the least signifi-
cant byte of the PUF response and on next eight ticks of the clock sends
the data. After the byte is received, the FSM state changes to wait.

17

2. Design and implementation

• 0xFD – changes the FSM state into computing. When this is enabled,
all previous commands are ignored.

• 0xFE – by default does not change the FSM state, as long as the PUF
process did not finish, then it changes its state into wait. This command
is available only during PUF computing and sends PUF state on next
byte.

And now arises a little problem, we want to process everything during the
rising edge, but during the last rising edge, we just have the data prepared and
not yet processed. That causes us to use a filling block of eight bits for only
one tick of the clock. So from now on, all commands should have an additional
filling byte of data, and their content is not determined. The additional byte
will is omitted in the commands, that send data from the FPGA, where we
can utilize the sending immediately on the first falling edge.

2.3.3 Physically unclonable function

For our physically unclonable function (PUF), since we are using FPGA, we
have chosen the RO PUF. We chose this type of PUF because it can be im-
plemented on the FPGA and already is implemented in Physically unclonable
functions on an FPGA[5]. This implementation is then connected using its
modified interface to our control block, from where we furthermore control the
action flow. We have made a series of our own measurements with this PUF
that can be seen in the chapter 3 and we used these results as some building
blocks for our next work.

Figure 2.8: Implementation of RO PUF using [5] realization.

18

2.4. Encryption, decryption, integrity

2.4 Encryption, decryption, integrity

For the use of encryption and decryption, we decided to use the advanced
encryption standard (AES). For integrity, we use HMAC with the same secret
key as is used in encryption, respectively decryption.

For this purpose, we chose a lightweight crypto library [28] that provides
this functionality. This library offers many utilities such as AES with key
length 256 bits, SHA256 hash and more. This library is made especially for
ESP8266 which we use.

Since AES requires not only the secret key but as well the initialization
vector, we decided to leave the initialization vector as simple as possible, thus
leaving it as a vector of zeroes, so devices do not need to send additional
data. We use this cipher with 128bit long key, alongside as stated before with
initialization vector of binary zeroes. The cipher uses CBC mode. Although
AES encrypts in blocks of a fixed length, so it might sometimes need to use
extra padding, we chose to use no extra padding after the cipher text so we
can store everything in prepared structures, see listing 2.1. There is the only
requirement that all sizes are divisible by sixteen, as the library requires that.
After every encryption, we create a control HMAC block, with use of the secret
key, which we send together with the data, as we do the integrity check of the
message upon decryption. That ensures if any malicious third party were to
change transmitted data, we would know about it and act accordingly; for
example, we always close the connection.

struct INIT_DATA_RECV;
struct SESSION_DATA;
struct KEY_AGREED;
struct MESSAGE;

Listing 2.1: Data structures which work with encrypted data.

2.5 Replay

According to [29], secret keys, in our purpose, could be called session keys,
are possible to be vulnerable to attack. We have to ensure that even if some
adversary does cryptanalysis and could potentially break the secret key, has
only access to as fewer sessions as possible. Thus every run of the protocol
should generate a new secret key between all parties. A new secret key is a
must since we do not want any potential adversary to use old setup messages
to change the secret key to one of their choice and if they tried to do that, we
would detect that.

For this, we use a random nonce of length 128bits, that gives us a lot of
usages, which we randomly generate using fizziness of PUF response. The
random nonce is sent to the initiator of the session as well as later sent to

19

2. Design and implementation

the AA. We expect this nonce to be part of the encrypted message alongside
the secret key. We trust, only the AA has access to the first secret key, which
is generated by her, and only the AA has access to the PUF responses from
the SDs. So the secret key we get from the encrypted message from the AA
must be valid new key if and only if we decrypted our unique random nonce
from the message. If this message contains an incorrect nonce, we discard the
session.

As from this part, we can assume, we always have a fresh new secret key
for our sessions.

2.6 Error correction code

Since the responses from the PUF can vary and we want to use the PUF
responses to establish a shared key between two entities, we have to ensure
we get the same response every time or at least a close response as possible
to the original one. Instability of the PUF leads us to the need to implement
an error correction code (ECC). One of the simplest ECC is a repetition code
as written in section 1.3. The repetition code simply repeats a bit, a block of
data, respectively, n-times.

We do not want to correct the PUF response. We instead want to transfer
somehow securely secret key from the AA to the security device. We use the
PUF response to enrich the shared secret key as helper data, which nobody
else, except for the legitimate receiver, can reproduce. So we form our h :=
helper data in the form of XORed r := response with k := a secret key as
shown bellow.

r0 . . . rn−1
⊕ k0 . . . kn−1

h0 . . .hn−1

2.6.1 Encoding

As written in section 2.3.3, we have three bits from each response of the PUF.
That goes in hand with our chosen repetition code with a majority of nine. As
discussed in section 2.4, we use 128bit long key for encryption and decryption.
This combination leads us to the total length of 1152 bits long helper data.

Since manipulation of individual bits is expensive and could slow down
this process, we have decided to work with them as words, rather than bits.
Suppose we have 32bit size words, next fig. 2.9 explains in detail how it works.
The first step is to repeat the secret key n-times, then we use ⊕ to enrich this
key with PUF response, so the secret key is safe from all malicious parties.

20

2.6. Error correction code

k0 k1 k2 k3

k0,0 k0,8 k3,0 k3,8

r0 r8 r26 r35

h0 h8 h26 h35

Random
key

Encoded
key

PUF
response

Helper
data

Figure 2.9: Key encoding using a random key k, divided into four groups, and
a PUF response r to form helper data h.

2.6.2 Decoding

For the decoding part, we now have the unmodified helper data and we have
a freshly generated PUF response, which is a possibly little bit different than
the response, we used in the encoding part. This new response furthermore
labelled as r’ is going to be used to recover the secret key to its original form
partly. We have k′ := h⊕ r′. After this part, we need to create a mechanism,
that will allow us to choose if the bit is one or zero, applying this on the whole
k’ reveals original key k. For illustration purposes, we use only one bit as it
can be simply replaced with a word of a different size than one to work the
same way.

We now face the problem where we have nine bits, and we need to deter-
mine if there are over five ones or not. A naive approach is to construct a
function, where we use all nine bits at the same time and use a logical expres-
sion to determine whether there is the result one or zero. For the majority of
three, the formula looks like this:

f(a, b, c) = (a&b)|(a&c)|(b&c)

For more complex, as we use the majority of nine, we would need the formula
to check if any five of the nine inputs are ones and set the result appropriately.
The formula for this majority looks like this:

f(a, b, c, d, e, f, g, h, i) = (a&b&c&d&e)|(a&b&c&d&f)|(a&b&c&d&g)
|(a&b&c&d&h)|(a&b&c&d&i)|(a&b&c&e&f)

|(a&b&c&e&g)|. . . |(d&e&f&g&i)|(e&f&g&h&i)

This formula is constructed using 4 × (9
5) = 504 and operators and 125 or

operators. As this formula would be very ineffective, we have used another
approach.

A better approach comes with an easy solution as we can use binary adder,
exactly for three input bits. The fig. 2.10 shows precisely the implementation

21

2. Design and implementation

of the fully binary adder and the complete connection of the individual adders
to construct a 9-4 parallel counter which input is nine single bits and the
output is a binary number as a count of ones. The fig. 2.11 shows how to
handle the result of the 9-4 parallel counter to decide if the threshold was
crossed as the bit is then one or zero, respectively, what every bit of a given
word is. Everything is implemented in the context of a logical circuit but on
software. The resulting formula is then for the fully binary adder as follows.

Carry = (a&b)|(a&c)|(b&c)

Sum = a⊕ b⊕ c

For the result of the majority threshold, as shown in fig. 2.11, we use the
following formula:

f(s3, s2, s1, s0) = s3|(s2&s0)|(s1&s0)

a b c

Carry

Sum

s

s3 s2

c

s

sc

c

sc

ss ccc s

0

0

b0b1b2 b3b4b5 b6b7b8

s1 s0

Figure 2.10: Implementation of the full binary adder and 9-4 parallel counter.

f(s3, s2, s1, s0)

s3

s1

s2

s0

0 0

0 1

00

11

1 1

X X

XX

XX

Figure 2.11: Karnaugh map for treshold of the 9-4 parallel counter.

22

2.7. Authentication authority

As we now established all the tools for decoding, we show an example of
decoding using a 2bit word as longer could be a little bit confusing. We have
a word {10}, and this word is first encoded into a new word {10 10 10 10 10
10 10 10}. We add some fuzziness, so the numbers are not always the same,
and we end up with {10 11 10 01 11 10 10 10 01}. Usually, we would have to
work with single bits, but bit operations are able to work with whole vectors
of bits as if we do the operation & on a vector of bits {10} and {11}, the result
is also a vector of bits {10}.

We divide the word into three groups {{10 11 10}0{01 11 10}1{10 10 01}2}.
We use the full binary adder (FBA) to form a result vector of carries and sums.
We apply it to all groups.

FBA({10 11 10}0) =
{
carry (10&11)|(10&10)|(11&10)
sum 10⊕ 11⊕ 10

}
= {{10}c0, {11}s0}

FBA({01 11 10}1) = {{10}c1, {10}s1}

FBA({10 10 01}2) = {{10}c2, {10}s2}

As we look at the carries part, this part now shows not that there is a one,
but there are two ones, as it represents higher order. If we continued more
times, we would construct a binary number telling us how many ones there
are in every position. To continue with the process, we present the solution
{00s311s210s110s0} to be a vector of four two-bit words, representing the num-
ber of ones in the artificially noisy sequence. If we take a closer look at the
result, we can take the first bit from all words, then the second bit from all
words and reconstruct it as a binary number. The first is 01112 = 710 and
the second is 01002 = 410. From that, we now decide, if the majority of
nine threshold was crossed. Now we can use the 9-4 parallel counter and its
formula.

f(00s3, 11s2, 10s1, 10s0) = 00s3|(11s2&10s0)|(10s1&10s0)
= 00s3|10s2,s0|10s1,s0 = 10

We have now finished the decoding process and we end up with {10} which
was our original sequence.

2.7 Authentication authority
For our purposes, we are using a PC as a server. The server and the SD have
some parts of the code in common. The shared functionalities are in a separate
header file “common.h” and implementation file “common.cpp”. As for part
being, there are some Arduino based functionalities which had to defined or
redefined to work in the AA environment.

23

2. Design and implementation

The primary purpose of the AA is to generate random numbers and take
care of the PUF challenges and responses. We now know, to encode one secret
key, we need many PUF challenges and responses. Since it would not be space-
efficient, to save all challenges for one enormous challenge, we have decided to
save some space, to keep only the first challenge, since we can derive all other
challenges, of the enormous challenge and the whole PUF response. The fact
to save challenge space also benefits the ESP8266, since we are constrained.

The AA is a socket server, which can accept multiple connections at once.
For every connection, it will fork itself to a new process and handle that
connection. After the connection finishes in any way, either prosperous or
not, the process ends as well.

Since we are using a strong PUF, but with very limited amount of chal-
lenges and response length, we should treat it as a weak PUF and use every
PUF challenge-response pair only once. But on the other hand, we do not
present raw responses from the AA to any other party. The responses are
always XORed with the random key we just generate for the SDs, and this
means we can repeatedly use the challenge-response pairs.

The AA follows the protocol. It generates two required random keys.
The first is encrypted with attached random nonce from SD using the second
key. Then the second key encodes using encoding from section 2.6 and using
⊕ with random challenge-response pair to assemble the helper data, of course
attaching the challenge to the message. And after it finishes the whole message
for the first device, using the second key creates the HMAC for integrity
control. In the end, when the AA completes assembling data for one SD and
then the same process for the second SD, the AA sends back the required
data.

If the AA does not receive correct data, for example, it gets a request for a
non-existing device, does not receive some data, it will immediately drop the
connection, as it can no longer serve the request.

2.7.1 Enrollment

The first meeting point between the AA and SD is when we want to add new
SD into our database. This is happening in a secure and trusted environment,
where no secret data can leak. Although we expected in fig. 2.3 the AA
will send all challenges to the security device, we left the generation of the
challenges on the security device.

The first step is to upload software for the security device in an enrollment
mode. Before uploading the software, an administrator has to assign a number,
so-called ID, to the device, which is going to be used in the future for its
identification and during the enrollment process for saving the generated data.
Turning-on the SD while in enrollment mode will print on the serial output
challenge-response pair in hexadecimal numbers. Then the authority has a
folder structure for its devices:

24

2.8. Security device

• dataFiles,

• deviceFiles.

The folder dataFiles contains data in plain text hexadecimal numbers, most
likely UTF-8 or ASCII. The names of devices do not matter in this case, but
the administrator should be able to assign the files to their correct devices. The
folder deviceFiles contains binary data, the same as data saved in dataFiles,
the data must not be changed. If associated files from deviceFiles and dataFiles
should be compared, there is no difference.

The files in the folder deviceFiles must follow a strict naming convention.
It is compulsory to use this format “device-ID[.bin]” or change configuration
in the authority source code. An example of correct names “device-00.bin”,
“device-24.bin”, “device-1”. An example of a wrong name, “device24.bin”.

2.7.2 Start

The server in its initialization expects to have all enrolled devices passed in
an argument list upon its start. As it gets harder, with a growing number of
enrolled devices, to manage and always run the AA with all its SDs and we
need to ensure we still use the correct version of the software. For this, we
created a makefile that contains sufficient functions for this use. The functions
calls are as follows:

• make compile – only compiles the project if any of the required files were
changed,

• make clean – remove all compiled files,

• make run – starts the server and passes to the argument list all devices
from the deviceFiles folder.

2.8 Security device
For our security device, we use, as discussed in section 1.7, a Wemos D1 mini
v3 with ESP8266 enabled WiFi chip. In the fig. 2.2 we can see our design of
the security device. As for the second part of the security device, we need to
maintain a few things. The first is to connect the device to the FPGA, so we
are able to manage and use the PUF. The SD will communicate over SPI with
the FPGA. Our security device has multiple modes. For our use, we need the
following modes:

• enrollment,

• server,

• client.

25

2. Design and implementation

Afterwards, our security device needs to communicate over TCP/IP. For that,
we connect the SD to any WiFi network. In this network, the SD modes will
start their respective functions, such as a web server as an interface for client
mode or a WiFi client for server.

2.8.1 Serial peripheral interface

The SPI is before its first use adequately initialized. That means, as our FPGA
is configured see section 2.3.1, we have to configure the SPI accordingly. We
use the library provided by Arduino, and its documentation is available online
[30]. The SPI is available in all SD modes. The configuration is set to send
the most significant byte first and is in SPI_MODE0 mode, that means all
output is set on falling edges, and all data captures are received on rising edge.
Unfortunately, after every reset of the device, there is a short CLK signal sent,
so the FPGA receives a CLK on its clock, this must be handled appropriately;
thus we implemented a reset function which after all initialization of the SPI
we use. Its job is to reset the FPGA to initial state.

As we can see the pinout in [31], we have to connect necessary pins from
the SD to the FPGA. As using wires for each individual pin would be time-
consuming and could lead to potential hazards, we have a hardware connector,
where we can place the SD and which can be inserted into the FPGA. All three
devices can be seen in fig. 2.12. The connection between every pin of the SD
and the FPGA is specified in the FPGA project directory, in the top_view.ucf
file of the FPGA implementation.

Figure 2.12: Digilent Basys 2 with FPGA, hardware connector, Wemos D1
mini with ESP8266.

26

2.8. Security device

2.8.2 Enrollment

This device mode is designed for every new device we want to add to our
network of security devices. This mode is used in a trusted environment as
there is a potential risk of losing secret responses of the new device. In this
device mode, the device has access to only the SPI connection to the FPGA
and the serial output. As this mode is for initial purposes only, it does not
need any other tools to work appropriately. And the generation function is
called only once.

For one enormous challenge for encoding and decoding, all the challenges
follow incrementally by one. For our generation of the enormous challenge, we
need to use 384 (0x180) challenges as we get only three bits from each response.
So for the first enormous challenge-response pair, we use challenges 0x0000,
0x0001, 0x0002, . . . , 0x0180. For the next enormous challenge-response pair,
we start with the first challenge 0x0181. During this process, the first 16bits
of the output is the first challenge, and then it is followed with 288 hexadeci-
mal numbers, this is repeated fifty times, so we have a total of 50 challenge-
response pairs for the AA.

2.8.3 Server

This device mode is for servers which can contain sensitive information, such as
data from sensors, secret information, etc. . . These devices are using multiple
tools. They are using the serial port for debugging and logging purposes, SPI
for communication with the FPGA, WiFi for connection to the WiFi network
and at last it uses WiFi server so that other devices in client mode can connect
to this server. Documentation to these tools is available online at [32, 30].

The server provides a connection to all devices but serves only one device
at any given moment. When the communication is over, the server can then
handle another client. Because of this, the server can be a target of an attack
by a DOS-type attack. When a connection is received, it immediately starts
following the designed protocol and starts exchanging data with the other de-
vice. If any part of the communication is unsuccessful, such as decrypting, or
not receiving all required data, the connection is closed. That begins with an
unsafe communication, but with successive stages, it becomes a safe commu-
nication with a shared secret key between both security devices. Since this
work is to use a PUF for securing the communication, not designing all possi-
ble communication protocol, after the initiation of secure communication, the
server sends secret data to the client and ends the connection.

When the server starts up, it first connects to a defined WiFi access point
and prints its IP address on the serial output. Then it waits for any incoming
connection.

27

2. Design and implementation

2.8.4 Client

The client mode is very similar to the setup of the server mode, except now we
do not need a WiFi server to where we would be connecting. The IP address
of the client is first shown on the serial output. For more comfortable use, we
could use DNS records and reserve IP addresses for the SDs and name them
appropriately, but we do not use it. The client is able to connect to the server,
and all stages of the communication are logged, including the secret message
from the server, which is our goal.

To demonstrate the usage of the client, as we need a direct connection to
the client, we have created a web interface, which all users can use to try to
connect from the client to the server. For this web interface, there is a running
web server on the SD, and this server is available only in client mode. The web
server contains an interface containing a simple form where we need to insert
an IP address or an URL of the server we want to connect to. In any possible
scenario, the interface shows all important steps during the communication,
including the secret message, if received correctly.

2.9 Authentication
There is no direct authentication between the SDs and the AA. The AA is only
a trusted third party, from where we receive a secret key for communication
between the SDs. Indirect authentication to the AA comes in play in two
steps. The first when the SDs have successfully checked that their messages
were not modified using HMAC. The second decrypted their messages and
got their random nonce, which is the same as they generated, and the shared
secret key for communication between SDs A and B. From this point, the
SDs believe they received the message and thus the random shared secret key
from the AA.

Since the SDs are now indirectly authenticated to the AA, they also have
to authenticate themselves. The server B, who is receiving communication,
generates random numbers of length 128bits. These numbers then encrypt
with the shared secret key and send them to the client A. The client A proves
herself with decrypting the received numbers and incrementing them by one,
as well as encrypting them and sending them back to the server. When the
server gets correctly incremented numbers, the client A has just authenticated
to the server A. The server now knows they have acquired the same secret
key and communicate safely.

28

Chapter 3
Measurements

In this chapter, we will measure the usability of our PUF and its usage in the
implementation. Also, we will test the complete functionality of our protocol.
For PUF measurements, we used six FPGA boards to determine the difference
between PUF stable bits and stable bits for all devices. For some measures, we
used only the SD with one FPGA since we needed to observe its capabilities.
In the end, we tested two SDs alongside with AA, to measure the acceptance
ratio of the proposed protocol.

3.1 Physically unclonable function

In this section, we will mainly focus on the PUF and its response generation.
We test the stability bits, difference across the responses from the stable bits
and time spent generating responses.

3.1.1 Stable bits

In the first table 3.1 we can see, that the bits labelled 0 – 8 are for many PUFs
stable almost over 93%. Bits 9 – 10, as shown in the table, are getting less and
less stable, the rest of the bits are even less stable. Next step is to determine,
what bits are the same for all challenges and from where they start to change.
We expect to have about 50% difference of the bits among the responses, to
consider them stable for the challenge and not the PUF. For that, we have
created table 3.2. From here we can see, that the bits on positions 0 – 4 do
not change most of the time. The first major changes can be seen from the
bit 5 and 6, which have the potential to change to one in 47% times, followed
by 52.9% change to change to one on bits 7 and 8. These four bits are good
enough, and we will use them in the next measurement.

29

3. Measurements

Device
Bit stability in %
From MSB to LSB

0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.
B-00 100 100 100 100 100 100 100 99 96.4 92.1 78.6
B-21 100 100 100 100 100 100 100 99.2 97.6 91.3 82.6
B-24 100 100 100 100 100 98.2 98.2 98.5 89.2 84.5 71.1
B-26 100 100 100 100 100 98.6 96.1 96.1 93.4 87.8 78.7
B-35 100 100 100 100 100 100 100 98.6 97.7 84.4 80.7
B-37 100 100 100 100 100 100 100 100 93.7 85.9 74

Table 3.1: PUF response bit stability.

Challenge Binary response Challenge Binary response
0xFCD9 110 000 011 00x 0x58C8 101 101 101 001
0xEF6B 101 111 101 11x 0x567A 110 011 011 xxx
0xC80F 110 101 100 111 0x4BA6 110 110 100 01x
0xB513 110 100 110 1xx 0x4A4F 111 111 100 10x
0xABCD 110 000 010 1xx 0x49AF 110 000 000 0xx
0xAB47 100 110 001 10x 0x3A09 110 011 011 0xx
0xAAA1 110 000 011 xxx 0x36E8 101 111 010 1xx
0x7646 101 111 011 110 0x3220 110 110 110 0xx
0x5A99 110 110 101 01x

Table 3.2: PUF responses from the same PUF.

3.1.2 Response differences

Since we know, we need to uncover the secret key with the PUF response
before decoding; we also need to know what is the maximum of wrong bits
in the generated response. We are using a majority of nine. That means, we
can always have at most four bits out of nine wrong. In that case, we have an
upper bound of wrong bits at 4

9 ≈ 44, 4%. But this is an optimistic view, and
we would have to be lucky.

On the other hand, pessimistic view on this is we can have only four wrong
bits at most to be able to decode the secret key correctly, that is maximum
error rate at 4

1152 ≈ 0, 35%. Also, for this view, we would have to be extremely
lucky.

From section 3.1.1 we know, what stable bits we can use. As we want
to use at least three bits of the response, we first measure the percentage of
wrong bits using bits 5 — 7, then bits 5 – 8 and at the end bits 6 – 8. From
the results in the table 3.3 we can see, the best option is using bits 5 – 7.

30

3.2. Response generation times

First bit Last bit Wrong bits
5 7 1,64%
5 8 5,25%
6 8 5,92%

Table 3.3: PUF response difference using different bits.

3.2 Response generation times

One of the most time-consuming activity, excluding the time spent waiting
for other devices, is the PUF response generation time. We want the time to
be as low as possible, and we could achieve that removing a few invertors in
the RO PUF of the cost of stable bits. We have made a series of tests on this
topic, that revealed the actual time of the generation.

For one 16bit challenge, we ran 1000 runs to get a more precise result. For
the enormous challenge consisting of 384 small challenges, we ran 100 runs,
but it also includes the time spent on parsing bits. The table 3.4 shows the
results. The measurements were measured separately.

challenges\time[µs] EX σ

1 791,5 0,31
384 295038,95 192,09

Table 3.4: Time measurements of a response computing in µs.

3.3 Authentication of the security device

In this section, we measured how many times it happens, that we successfully
establish a connection between two security devices. A successfully established
connection is considered, when the client receives a secret message, everything
else is considered to be a failed connection. In this test, we ran 1000 attempts
from the test client to the server. Meanwhile, we tested using different bits
of the response, to determine, which bits are most stable and guarantee the
connection.

First bit Last bit Successful authentication
6 8 28.4%
5 8 40.3%
5 7 96.7%

Table 3.5: Successful authentication using different bits.

31

3. Measurements

In the table 3.3 we can see, that even with nearly 4% difference of re-
sponses, makes a massive difference in the successful connection attempts as
we can see in table 3.5. We do not want to use more stable bits, as we would
be at risk of having false acceptance, which we do not wish to.

32

Conclusion

The aim of the thesis was to study the usability of physically unclonable
functions to secure wireless communication. Implement a system consisting of
at least two security devices and authentication authority, and together they
are communicating over the TCP/IP protocol using a designed authentication
protocol.

The goal of this thesis was fulfilled; we designed an authentication protocol,
which we then used to describe the communication. The security devices were
properly programmed in multiple modes and can be easily switched between
modes from the source code using constants in the header file of the security
device. Authentication authority is able to enrol new devices into its database
and provides authentications means to all enrolled devices when they ask for
it.

In the beginning, the reader was introduced to the theoretical background.
In this chapter, we discussed physically unclonable functions and their use in
a real environment, and then we discussed all the necessary tools for the
authentication protocol to work safely. After this part, we moved on the
second part, and we discussed all the design and implementation of all the
blocks before we assembled them into a security device. In the end, we could
see measurements, such as the success rate of the authorization protocol.

The designed protocol is able to protect itself from attacks like replay
attack and man in the middle attack for devices that are not part of the
domain. The security devices can detect any tampering with the data from
unauthorized entities because of the use of HMAC. Unfortunately, the server
is vulnerable to DOS type attacks as it is waiting for the communication and
is able to handle only one connection at a time.

33

Bibliography

[1] Dumas, J.-G.; Roch, J.-L.; et al. Foundations of coding: compression,
encryption, error correction. Book, Whole, Hoboken: Wiley, 2015.

[2] Stallings, W. Cryptography and network security. Boston: Prentice Hall,
fifth edition, c2011, ISBN 978-0-13-705632-3.

[3] Martin, K. M. Everyday cryptography. Oxford, United Kingdom: Oxford
University Press, second edition edition, 2017, ISBN 978-0-19-878800-3.

[4] Wikipedia. Message authentication code — Wikipedia, The Free Ency-
clopedia. https://en.wikipedia.org/wiki/Message_authentication_
code, [Online; accessed 03-June-2020].

[5] Kodýtek, F. Fyzicky neklonovatelné funkce na FPGA. Bakalářská práce,
České vysoké učení technické v Praze, Fakulta informačních technologií,
Praha, 2014.

[6] Wikipedia. Verilog — Wikipedia, The Free Encyclopedia. http://
en.wikipedia.org/w/index.php?title=Verilog, [Online; accessed 03-
June-2020].

[7] Wikipedia. VHDL — Wikipedia, The Free Encyclopedia. http://
en.wikipedia.org/w/index.php?title=VHDL, [Online; accessed 03-June-
2020].

[8] Bhunia, S.; Tehranipoor, M. H. Hardware security. Cambridge, MA,
United States: Morgan Kaufmann/Elsevier, [2019], ISBN 978-0-12-
812477-2.

[9] Xilinx, Inc. Basys 2TM FPGA Board Reference Manual. [Online; accessed
03-June-2020]. Available from: https://reference.digilentinc.com/
_media/reference/programmable-logic/basys-2/basys2_rm.pdf

35

https://en.wikipedia.org/wiki/Message_authentication_code
https://en.wikipedia.org/wiki/Message_authentication_code
http://en.wikipedia.org/w/index.php?title=Verilog
http://en.wikipedia.org/w/index.php?title=Verilog
http://en.wikipedia.org/w/index.php?title=VHDL
http://en.wikipedia.org/w/index.php?title=VHDL
https://reference.digilentinc.com/_media/reference/programmable-logic/basys-2/basys2_rm.pdf
https://reference.digilentinc.com/_media/reference/programmable-logic/basys-2/basys2_rm.pdf

Bibliography

[10] Xilinx, Inc. ISE Design Suite. [Online; accessed 03-June-2020]. Avail-
able from: https://www.xilinx.com/products/design-tools/ise-
design-suite.html

[11] Lim, D.; Lee, J.; et al. Extracting secret keys from integrated circuits.
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol-
ume 13, 11 2005: pp. 1200 – 1205, doi:10.1109/TVLSI.2005.859470. Avail-
able from: https://www.csl.cornell.edu/~suh/papers/tvlsi05.pdf

[12] Eiroa, S.; Baturone, I. An analysis of ring oscillator PUF behavior on
FPGAs. In 2011 International Conference on Field-Programmable Tech-
nology, 2011, pp. 1–4. Available from: https://ieeexplore.ieee.org/
document/6132673

[13] Platonov, M.; Hlaváč, J.; et al. Using Power-Up SRAM State of
Atmel ATmega1284P Microcontrollers as Physical Unclonable Func-
tion for Key Generation and Chip Identification. Information Secu-
rity Journal: A Global Perspective, volume 22, no. 5-6, 2013: pp.
244–250, doi:10.1080/19393555.2014.891279, https://doi.org/10.1080/
19393555.2014.891279. Available from: https://doi.org/10.1080/
19393555.2014.891279

[14] Jang, J.; Ghosh, S. Design and analysis of novel SRAM PUFs with em-
bedded latch for robustness. In Sixteenth International Symposium on
Quality Electronic Design, 2015, pp. 298–302. Available from: https:
//ieeexplore.ieee.org/document/7085443

[15] Kumar, S. S.; Guajardo, J.; et al. Extended abstract: The butterfly PUF
protecting IP on every FPGA. In 2008 IEEE International Workshop on
Hardware-Oriented Security and Trust, 2008, pp. 67–70.

[16] Oriyano, S.-P.; Solomon, M. Hacker techniques, tools, and incident han-
dling. Burlington, MA: Jones & Bartlett Learning, third edition edition,
[2020], ISBN 978-1-284-14780-3.

[17] PUB, NIST FIPS. 197: Advanced encryption standard (AES). vol-
ume 197, no. 441, 2001. Available from: https://nvlpubs.nist.gov/
nistpubs/FIPS/NIST.FIPS.197.pdf

[18] McMillan, T. CCNA security study guide. Indianapolis, Indiana: Sybex,
[2018], ISBN 978-1-119-40993-9.

[19] WeMos D1 Mini ESP8266 Arduino WiFi Board. Available from:
https://makersportal.com/blog/2019/6/12/wemos-d1-mini-
esp8266-arduino-wifi-board

[20] ESP8266 Pinout Overview. Available from: https://diyi0t.com/what-
is-the-esp8266-pinout-for-different-boards/

36

https://www.xilinx.com/products/design-tools/ise-design-suite.html
https://www.xilinx.com/products/design-tools/ise-design-suite.html
https://www.csl.cornell.edu/~suh/papers/tvlsi05.pdf
https://ieeexplore.ieee.org/document/6132673
https://ieeexplore.ieee.org/document/6132673
https://doi.org/10.1080/19393555.2014.891279
https://doi.org/10.1080/19393555.2014.891279
https://doi.org/10.1080/19393555.2014.891279
https://doi.org/10.1080/19393555.2014.891279
https://ieeexplore.ieee.org/document/7085443
https://ieeexplore.ieee.org/document/7085443
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://makersportal.com/blog/2019/6/12/wemos-d1-mini-esp8266-arduino-wifi-board
https://makersportal.com/blog/2019/6/12/wemos-d1-mini-esp8266-arduino-wifi-board
https://diyi0t.com/what-is-the-esp8266-pinout-for-different-boards/
https://diyi0t.com/what-is-the-esp8266-pinout-for-different-boards/

Bibliography

[21] Get started with Arduino [D1/D1 mini series]. Available from:
https://www.wemos.cc/en/latest/tutorials/d1/get_started_
with_arduino_d1.html

[22] Wemos D1 Mini. 2019. Available from: https://wiki.lvl1.org/Wemos_
D1_Mini

[23] Bishop, M. Computer security. Boston: Addison-Wesley, second edition
edition, [2019], ISBN 978-0-321-71233-2.

[24] Brooks, C. J.; Grow, C.; et al. Cybersecurity essentials. Indianapolis,
Indiana: Sybex, John Wiley & Sons, [2018], ISBN 978-1-119-36239-5.

[25] Socolofsky, T. J.; Kale, C. J. TCP/IP tutorial. RFC 1180, RFC Editor,
January 1991, http://www.rfc-editor.org/rfc/rfc1180.txt. Available
from: http://www.rfc-editor.org/rfc/rfc1180.txt

[26] CVE-2014-8361. Available from MITRE, CVE-ID CVE-2014-8361. Avail-
able from: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2014-8361

[27] CVE-2017-17215. Available from MITRE, CVE-ID CVE-2017-17215.
Available from: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2017-17215

[28] Ellis, C. ESP8266 Crypto. [cit. 2020-05-27]. Available from: https://
github.com/intrbiz/arduino-crypto

[29] Boyd, C.; Mathuria, A.; et al. Protocols for Authentication and Key Es-
tablishment. Berlin, Heidelberg: Springer Berlin / Heidelberg, second
edition, 2019;2020;, ISBN 3662581450;9783662581452;.

[30] Arduino. SPI library. Available from: https://www.arduino.cc/en/
reference/SPI

[31] Arduino. Wemos D1 mini pinout. Available from: https://
escapequotes.net/esp8266-wemos-d1-mini-pins-and-diagram/

[32] Arduino. WiFi library. Available from: https://www.arduino.cc/en/
Reference/WiFi

37

https://www.wemos.cc/en/latest/tutorials/d1/get_started_with_arduino_d1.html
https://www.wemos.cc/en/latest/tutorials/d1/get_started_with_arduino_d1.html
https://wiki.lvl1.org/Wemos_D1_Mini
https://wiki.lvl1.org/Wemos_D1_Mini
http://www.rfc-editor.org/rfc/rfc1180.txt
http://www.rfc-editor.org/rfc/rfc1180.txt
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-8361
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-8361
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17215
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17215
https://github.com/intrbiz/arduino-crypto
https://github.com/intrbiz/arduino-crypto
https://www.arduino.cc/en/reference/SPI
https://www.arduino.cc/en/reference/SPI
https://escapequotes.net/esp8266-wemos-d1-mini-pins-and-diagram/
https://escapequotes.net/esp8266-wemos-d1-mini-pins-and-diagram/
https://www.arduino.cc/en/Reference/WiFi
https://www.arduino.cc/en/Reference/WiFi

Appendix A
Acronyms

PUF Physically unclonable function

AES Advanced encryption standard

ECC Error correction code

HDL Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VHDL VHSIC HDL

PUF Physical Unclonable Function

NVM Nonvolatile memory

CRP Challenge Response Pair

SRAM Static Random Access Memory

BPUF Butterfly PUF

ECB Electronic Code Book

CBC Cipher Block Chaining

CFB Cipher Feedback

CTR Counter

IDE Integrated development environment

USB Universal Serial Bus

SMS Short Message Service

PIN Personal Identification Number

39

A. Acronyms

IoT Internet of Things

DoS Denial of Service

DDoS Distributed DoS

MAC Message authentication code

HMAC Hash-based message authentication code

MD Message digest

SHA Secure hash algorithm

TCP/IP Transmission control protocol/Internet protocol

AA Authentication authority

SD Security device

FPGA Field-programmable gate array

PC Personal computer

RO Ring oscillator

FSM Finite state machine

MOSI Master out, slave in

MISO Master in, slave out

SPI Serial peripheral interface

XOR Exclusive OR

FBA Full Binary Adder

40

Appendix B
Contents of enclosed CD

data..................................the directory with measured data
scripts.................................scripts for statistic calculation
src.......................................the directory of source codes

authority the source code of the authentication authority
FPGA......................................the project for Xilinx ISE
secureDevice the source code of the security device
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
Frantisek_Kovar_BT_2020.pdf the thesis text in PDF format

41

	Introduction
	Analysis
	Field programmable gate array
	Physically unclonable function
	Arbiter PUF
	Ring Oscillator PUF
	SRAM PUF
	Butterfly PUF

	Error correction codes
	Random number generator
	True random number generator
	Pseudo random number generator

	Data Encryption
	Block cipher modes

	Data integrity
	Hash functions
	Message authentication code

	ESP-8266
	Authentication
	Communication over internet

	Design and implementation
	Basic structure of the system
	Authentication protocol
	Synthesized design on the FPGA
	Data transmission
	Control block
	Physically unclonable function

	Encryption, decryption, integrity
	Replay
	Error correction code
	Encoding
	Decoding

	Authentication authority
	Enrollment
	Start

	Security device
	Serial peripheral interface
	Enrollment
	Server
	Client

	Authentication

	Measurements
	Physically unclonable function
	Stable bits
	Response differences

	Response generation times
	Authentication of the security device

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

