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Abstrakt

Současný př́ıstup k diagnostice a hodnoceńı poškozeńı kloub̊u reumatoidńı ar-
tritidou je vizuálńı inspekce rentgenových sńımk̊u radiologem, která je obecně
drahá, časově náročná a subjektivńı. Aumtomatické hodnot́ıćı systémy jsou
jedńım ze sp̊usob̊u tyto problémy překonat a zavést do radiologických zpráv
v́ıce objektivity spolu s rychleǰśım vyč́ısleńım škody.

Možnost vytvořeńı takového systému bude ukázána na př́ıkladu účasti
v RA2 DREAM Challenge. V rámci soutěže na základě několika moderńıch
architektur konvolučńıch neuronových śıt́ı bude vyvinut systém, který později
bude ohodnocen na vypočetńım clusteru Cheaha University of Alabama at
Birmingham.

Kĺıčová slova strojové učeńı, neuronové śıtě, automatizované hodnoceńı,
medićınský software

Abstract

The current approach to the diagnosis and quantification of the joint damage
caused by rheumathoid arthritis is a manual radiographic image inspection
by a radiologist, which is generally expensive, time-consuming and subjective.
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Automated assessment systems are a way to overcome this problems and in-
troduce more objectivity into radiology reports, coupled with a faster damage
quantifying.

The possibility of such a system development will be shown on the example
of a participation in RA2 DREAM Challenge. As a part of the competition,
the system utilizing several state-of-art convolutional neural net architectures
will be developed and scored on the University of Alabama at Birmingham
Cheaha supercomputing system.

Keywords machine learning, neural networks, automated assessment, med-
ical software
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Introduction

The recent advances in Machine Learning open up new opportunities for au-
tomation of various fields. The versatility and power of learnable models cou-
pled with constantly increasing data volumes raise a question of work autom-
atization in the most demanding domains—business, finances and medicine.

Healthcare is the domain which assigns a rather large amount of work to
its employees, including various visual inspections and survey results regis-
tration. The medical data amounts to process are growing, and that brings
a significant load on a limited number of proficient medics. That’s why a
number of enterprises are interested in studying of possibilities of adopting
machine learning methods, and a well-recommended form of such exploration
is a public challenge.

This work describes development of a system within the RA2 DREAM
Challenge. The challenge purpose is to develop a system which will score ra-
diograph images according to the rheumatoid arthritis joint damage observed.
Rheumatoid arthritis (RA) is a systemic inflammatory autoimmune disease
affecting 0.5 to 1 % of adult people in the developed world. This disease at-
tacks the synovium, results in swollen and painful joints and, in severe cases,
leads to disability.

Similar tasks were already been addressed by applying convolutional neural
networks on ultrasound images[16], conventional machine learning methods
on radiograph images[17], shallow CNNs on radiograph images[18] and other.
About all of these works it could be said that the results are promising.

The thesis complies with the following structure: the Background intro-
duces the Machine Learning and describes most its methods in common to set
the stage for further descriptions; the State-of-Art chapter describes individ-
ual techniques employed to solve the task in details; finally, in the Practical
Part chapter the task solution is being introduced and the results are being
discussed.
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Chapter 1
Background

This chapter introduces the basic methodology used to solve the related task.
Beginning with the supervised learning basics, continuing with the explanation
what the deep learning is and what are its distinctive attributes, and finalizing
with convolutional neural networks working principle, the general methods
will be described there to serve as a base for the more detailed technique
explanation provided in the next chapter.

1.1 Machine Learning

1.1.1 What is Machine Learning?

Machine learning (ML) is the study of computer algorithms that improve
automatically through experience[19]. This interdisciplinary study lies on the
border of mathematical statistics, mathematical optimization and classic math
disciplines. However, it has its own specifics related to the practical applica-
tion of such algorithms, like computational efficiency and overfitting.

Machine Learning is often being seen as a subset of artificial intelligence.
Indeed, the machine learning model is being created by learning on examples
instead of an explicit programming. This principle allows to approach prob-
lems being impractically or extremely difficult to program manually, such as
image recognition, medical diagnosing, financial analysis and many others.

To learn, a data set is needed to experience the model on. Data set is a
set of individual samples, each sample describing one object or one situation.
Depending on the data set shape and a task being solved, machine learning
methods may be divided to:

• Supervised learning, which is one of the most common ML techniques,
standing on the usage of labeled data sets

• Unsupervised learning, using unlabeled data and trying to under-
stand their structure itself

3



1. Background

• Reinforcement learning, where machine learning system interacts
with a certain environment and tries to understand its rules

• More exotic branches, such as semi-supervised learning, meta-learning
and others

Description of the whole variety of machine learning approaches is out of
scope of this thesis, and the attention will be given to the supervised learning
techniques.

1.1.2 Supervised Learning

Supervised learning stands on using labeled datasets, where an every sample
is coupled with a ground truth value:

X = ((x1, y1), (x2, y2), (x3, y3), . . . , (xn, yn))

where xi is an ith sample and yi is a desired model output after taking xi as
input. The goal of a supervised learning algorithm is to find such parameters
of a model f that will approximate the unknown underlying distribution yi =
f̂(xi)[20], or fit the training set.

Supervised learning tasks can be divided further depending on the output
values space:

• If the set of valid outputs is finite, it’s about the classification task
(”yes/no” or category assignment)

• If the set of valid outputs is ordered and large enough to consider it infi-
nite, or numeric, it’s about the regression task (age, price estimation)

Ranking (ordering an input data) and forecasting (prediction of subsequent
elements of a certain sequence) tasks also may be distinguished, albeit they
heavily intersect with the previous two.

To define how good the model approximates the given data, the loss func-
tion (or simply loss) is being defined based on the difference between the model
output and the ground truth. With a proper function choice, the learning task
may be defined as a loss function optimization with respect to the model pa-
rameters. This allows to employ powerful numeric optimization algorithms.

The key difference between supervised learning and a straightforward nu-
merical optimization is that optimization algorithm cares only about the
model output over the training data, regardless the generalization. This may
lead to the so-called overfitting problem, when the model memorizes data
instead of learning a pattern.
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1.1. Machine Learning

1.1.3 Overfitting

Low loss function value over the training data doesn’t guarantee good perfor-
mance over unseen samples. The plain example is a model, which memorizes
the training data set during training and returns known/random label in re-
spond to the memorized/unseen input respectively. This example graphically
shows the difference between memorizing and generalizing.

Ergo, overfitting may be defined as a case when the model fits training
data too tightly, trying to explain not only general data patterns, but also
noise and outliers. Overfitted model performs well on training set, but poorly
on unseen data. In other words, it fails to generalize.

Figure 1.1: A toy overfit example. Red points represent two-dimensional linear
data with some noise. While linear model explains the data not perfectly, it
achieves a good generalization. The more powerful seventh degree polynomial
model fitted the data ideally, but failed to generalize.

To detect the overfitting, one needs to test a model over data not included
into the training set. Thus, not all data are being fed into the model during
training, but some part is being left untouched until it comes to the estimator
performance evaluation. This piece of data is often referred as a test set.

Overfitting is a frequent situation when powerful models, such as artificial
neural nets, are being used. These models may represent a very large set of
different functions, including more complex than is necessary to describe the
distribution from which the training set was drawn. The problem is in dense
relation with the Occam’s Razor, and an overfitting occured implies violation
of the principle[21]—the model tries to describe the data by inferring patterns
which don’t exist.

To combat overfitting, variety of methods is being applied:

5



1. Background

Figure 1.2: Typical loss-by-iteration training graph. The blue graph represents
training loss, which monotonically (in practice with some oscillation) decreases
the more training iterations the model passed. The yellow graph represents
validation loss, which starts to grow at the same time the model starts to
overfit

• Gathering more data. More samples from the same distribution
means that during training the model will see more diverse and densely
located data points, and will be less prone to memorizing instead of
pattern extraction. One should pay attention to the data quality while
collecting them: low-quality and noisy data may decrease the model
performance.

• Usage of a simpler model. It’s possible to design a model power-
ful enough to explain data, but too weak to yield an overcomplicated
function, since noise’s pattern is random and therefore more complex.

• Regularization. Regularization is a process of adding additional con-
straints to the model. This technique is densely related to the previous
point—regularized model’s representative power is being limited to fit
the data but not the noise.
Model weight norm is usually being penalized to produce smoother func-
tions; artificial neural nets may be regularized by zeroing output of a
random neuron during training (so-called dropout). Further regulariza-
tion techniques also exist.

• Data augmentation. Data augmentation is a technique of an artificial
samples number increasing without collecting more data. This involves

6



1.1. Machine Learning

transforming a sample without changing its semantic. A typical example
is an image mirroring and rotation: if the task is to classify a cat photo
as ”Cat”, the mirrored or rotated image still will contain the cat on it
and may be appended to the training set under the same label.

It’s worth to mention that underfitting also may occur when the model:

• Wasn’t trained enough and needs more training iterations to fit the data

• Too weak to fit the data

The second case may be illustrated by fitting the quadratic data with linear
regression model. Model weakness usually appears as similar, unsatisfying and
not improving performance on both training and test data. The solution is
straightforward: more complex model.

1.1.4 Models and Hyperparameter Tuning

Machine learning model is a parameterized function used to approximate
and generalize the underlying data. This function may be represented by
a mathematical function (linear regression), set of rules (decision trees) or
more complex methematical structure (neural networks). The model itself
may represent multiple specific functions depending on its parameters, and
the training process is being run to automatically pick them.

But there are values responsible to the shape of model, such as a polynomial
degree in polynomial regression, tree depth in decision trees or an entire neural
network architecture. These values cannot be learned since they have to be
defined before the model instantiation, and should be picked by a machine
learning specialist. These values are called hyperparameters and the process
of picking the right hyperparameter value is called tuning. Tuning stands on
analysing the model performance on unseen data after training.

Hyperparameters cannot be tuned on the same data the model perfor-
mance is being estimated on. By picking the best hyperparameter after testing
it on a certain data set, one adapts the model to this specific piece of data,
and the model performance on it will be biased towards the better result.
Thus, one has to tune hyperparameter on a validation data set disjoint from
training and test sets.

Summary:

• On the training set the model is being trained

• By performance on the validation set the best model is being chosen

• The model performance on the test set is an unbiased estimation of its
performance in practice

7
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1.2 Deep Learning

1.2.1 What is Deep Learning?

Deep learning is a subset of machine learning relying on deep artificial neural
networks (ANN) application. The word ”deep” refers to the large number of
hidden layers of the neural networks being used.

Deep Learning is notably different from the rest of machine learning meth-
ods, primarily due to the unique ANN capabilities. The key differences are:

• No feature engineering required. Classic ML algorithms heavily
rely on the initial process of constructing more representative features
from the raw data. This approach is problem-specific and often requires
an expertise in a related domain. One of the most important (if not the
most one) of the ANN advantages is a capability to infer high-level fea-
tures by themselves, simplifying the data preparation and letting the ML
specialist to approach a problem without a domain-specific expertise.

• DL approach can produce end-to-end solutions. Classic ML ap-
proach requires a problem breakdown to several subtasks, which are
then being individually approached with different models and a manual
feature engineering. Deep Learning allows to produce a monolith model
able to produce output directly after being fed with data. This not only
simplifies the model development, but also ensures that the model is
being trained as a whole, forcing its components to adapt to each other.

• ANNs often can be transferred to solve similar problem. An
already trained ANN can be used as a baseline for an another task
solution. By partial or full re-training this ANN on a new data the
better and faster result may be achieved. One of the most common
applications of the transfer leraning is an image recognition[22].

• ANNs often require huge amount of data for training. . . This
disadvantage is related primarily to classification/regression ANNs, since
the only accompanying information they get with a sample during train-
ing is a single value. If the model gets an image with a ”Cat” label, it
has to infer by itself what is needed to classify this image as ”Cat”. Since
most state-of-art deep learning models got millions of parameters, this
requires proportional data amount to not overfit.

• . . .but sometimes they not. At the same time, several ANN architec-
tures (for semantic segmentation, object detection, . . .) during training
recieve a ground truth map instad of a label. This map contains a tar-
get value for an every pixel. Such amount of related information may
be enough to train a model from scratch on tens of images, like the
well-known U-Net[23].
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• ANN training requires a lot of computational power. ANNs are
based on numerous matrix multiplications, which are memory-hungry
and require specialized hardware such as GPU or TPU for speeding up.
This disadvantage limits ANN combination with several time-consuming
techniques like cross-validation or ensembling.

• ANNs are hard to interpret. Another major advantage of conven-
tional ML approach and the reason why it still dominates in several sec-
tors. While it’s pretty easy to interpret and visualize linear regression
models or decision trees, ANN makes its decisions through numerous
matrix multiplications which are hard to depict graphically and explain
in human terms.
Neural network interpretability is a wide field for research. There is a
certain progress[24][25], but the problem hasn’t yet been solved exhaus-
tively.

1.2.2 Artificial Neural Networks

Artificial Neural Network (ANN), or a connectionist system, is a
mathematical model and its implementation inspired by the biological neural
networks. The ANN building principles were initially formalized by McCul-
loch and Pitts[26], while the Hebbian theory[27] became the basis of the ANN
learning. Initially emerged as attempts to simulate the mechanisms of the
brain, ANNs evolved to one of the most powerful tools in data analysis nowa-
days.

1.2.2.1 Artificial Neuron as a Model

The primary ANN building block is an artificial neuron. Its prototype is a
biological neuron, which receives input signals via its dendrites and transmits
its output through the single axon. The axon later branches and connects to
another neurons’ dendrites via synapses. Depending on the synaptic strength
and its direction (excitory or inhibitory), input signal received through a cer-
tain synapse may increase or decrease the postsynaptic potential. If this poten-
tial exceeds a certain threshold, the neuron fires and sends an output signal
through its axon. The information the neuron transmits is being encoded into
the neuron’s fire rate.

The artificial neuron models that process by accepting several numeric
signals (e.g. xi) which interact with corresponding synapses (e.g. wi) multi-
plicatively (e.g. xiwi). The synapse connection strength and direction corre-
spond with the wi (or ith weight) absolute value and sign respectively, and
define how one neuron influences another. The postsynaptic potential then is
a weighted sum of input signals. This potential is later being summed with
the bias term modeling the fire threshold, and the fire rate is being modeled
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1. Background

Figure 1.3: A comparison of a biological neuron (top) and its matematical
model (bottom). Pictures taken from the CS231n course[1].

by the non-linear activation function. The main assumption there is that
neuron’s weights are learnable, same as synaptic strengths between biological
neurons.

The artificial neuron output formula may be written as:

y = σ(xTw)

where y is the neuron’s output, σ is an activation function, w is a neuron’s
weight vector and x is an input vector with additionally defined x0 as 1:

x = (1, x1, x2, . . .)

which allows to encode the bias as w0.
It’s important to mention that this model of a biological neuron is very

coarse. Both axons and dendrites perform non-linear computations over sig-
nals instead of simple transmission; synaptic connections are not linear but
complex and dynamic; the fire rate encoding without taking timing into ac-
count is also a rough approximation. Specifically this mathematical model
is not intended to model the biological neuron in details, but to represent
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a computing unit suitable for building both expressive and computationally
efficient models. Keeping it in mind, further in this work an artificial neuron
will be referred simply as a neuron.

1.2.2.2 Feedforward Neural Networks

A single neuron itself may represent a binary linear classifier. By using a
Heaviside step function defined as:

H(x) =
{

0, if x < 0
1, if x ≥ 0

as an activation, a neuron can split an input space with an affine hyperplane
and thus with proper weights perfectly classify linearly separable data.

Nonetheless, most of data one can meet in practice are not linearly separa-
ble. To introduce more complex functions rather than linear ones, neurons are
being arranged so that output of several neurons propagates to other neurons.
There is a wide variety of different network arrangements[28], but one of the
most common and simple is a feedforward neural network (FFNN).

Figure 1.4: Example of a FFNN with two hidden layers. Visualized using
NN-SVG[2].

FFNN consists of neurons arranged into layers. Layer is a tuple of neu-
rons, each of which gets the same input vector as others. In respond to the
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input, the layer’s neurons produce their own outputs which are then being
composed into the layer’s output vector and being sent to the next layer. The
information flows from the previous layer to the next one without cycles until
reaches the output layer. FFNN layers may be split into:

• Single input layer. Each element of the input layer is not a neuron but
an input vector value being propagated to the all neurons of the next
layer.

• Several hidden layers. These get an input from the previous layer and
send their output to the next one

• Single output layer. Output of this layer is being considered as a neural
network decision. It may contain a single neuron with an identity ac-
tivation function for regression or n neurons with linear or softmax[29]
activation function for n-ary classification.

Let d(i) be the dimensionality of the ith layer output and let d(0) be the
neural network’s input dimensionality. The ith layer then may be defined as
a function li : Rd(i−1) 7→ Rd(i):

li(y) = σi(yTWi)

where y is the layer’s input, σi is the layer’s activation function and Wi is the
layer’s weight matrix with d(i) columns and d(i − 1) rows. nth column there
corresponds to the weight vector of the nth neuron.

Note that the y is being one-padded before multiplication, same as in the
neuron formula defined before:

y = (1, y1, y2, . . .)

The first row of Wi therefore corresponds to the biases of certain neurons.
Using this definition, the n-layer feedforward neural network output may

be defined as a composed function F : Rd(0) 7→ Rd(n):

F(x) = ln ◦ ln−1 ◦ . . . ◦ l2 ◦ l1

The non-linear activation function is crucial. Without it, the whole neural
network could be expressed by the single matrix multiplication, and wouldn’t
be more powerful than linear classifier. Thanks to the non-linearity and
layered structure, FFNN with a single hidden layer represents a universal
approximator[30][31, Chapter 4].

1.2.2.3 Backpropagation

The most widely used learning algorithm for neural networks is the back-
propagation, or backprop. The words ”backpropagation” and ”gradient
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descent” can be very often met together, and their meanings mostly intersect
with each other. Basically, backprop may be defined as a neural network vari-
ation of the gradient descent and a way to compute the gradient efficiently by
applying the chain rule[32].

Figure 1.5: Gradient descent visualization. The two-dimensional variable
space represents model parameter values; z-axis is the training loss function
value. Starting at some point (pre-trained or randomly initialized), the train-
ing algorithm computes the gradient at this point, multiplies it by the learning
rate and subtracts it, yielding the new point with the lower loss function value.
In case of a real ANN, a variable space is being million-dimensional with a
non-trivial relief.

The method basis is to iteratively compute the loss function gradient with
respect to the model’s weights, and use it to perform the weight update. The
iteration step may be written as:

W (i+1) = W (i) − γ∇L(W (i), X )
where:

• W (i+1) is the vector of all model weights at the (i+ 1)th step

• ∇L(W (i), X ) is the gradient of the mean loss function value over the
dataset X with the model weights W (i) computed with respect to W (i).
The term is negative since the gradient points to the steepest growth
direction; during training the aim is the loss minimizing instead.

• γ is the learning rate (LR) parameter responsible for the step size
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The learning rate is very important. A too high value won’t let the model
approach the minimum, forcing it to ”bounce” near it; it also may ”kill”
neurons using ReLU as an activation function, which will be discussed later. A
too low value is impractical and will inefficiently consume computing resources.
The common practice is an initial LR value in range 10−4—10−5, which is
varied through the training.

Figure 1.6: Low and high learning rate toy examples. A too low LR value
(above) slows the training down and sometimes may lead to being stuck in a
shallow local minimum (not illustrated). A too high LR value (below) leads
to several another problems, one of which is overshooting loss minima.

To compute the gradient, the chain rule[32] is being employed. It allows to
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Figure 1.7: Example computational graph of a single neuron with the sigmoid
activation function. On the forward pass the neuron receives inputs and com-
putes an output. During the backward pass the differentials of all nodes are
being numerically computed using the forward pass values and gradients of
their nodes-successors. The computational graph receives an initial gradient
value of 1.0, since this is the derivative of the computational graph output by
the computational graph’s last node output (which are the same).

compute gradients of earlier layers re-using the previously computed gradients
of later layers. To describe and implement the information flow inside the
ANN, the computational graph conception is being used.

Computational graph is a directed graph representing a composed func-
tion. A graph node is a differentiable mathematical operation, while node
inputs are values—produced by previous nodes or input constants. Further
in the chapter it will be assumed that computational graphs are acyclic—all
considered architectures don’t contain cycles.

By plugging in the input values with weights and traversing through the
graph along the connection directions, the output value is being computed.
This is called the forward pass.

During the model training, it’s needed to compute the global differential of
a certain model weight—the differential of a whole model output with respect
to this weight. The computational graph conception allows to break this task
down to computing several local gradients and multiplying them with each
other:
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y(x) = f(g(x)) =⇒ ∂y

∂x
= ∂f

∂g

∂g

∂x

According to the computational graph conception, the gradient computing
may be interpreted as traversing the computational graph backwards:

1. The graph node receives through its output edge the gradient of the
whole model with respect to this node value. If there are more than one
gradients received, they are being summed.

2. The local gradients (of this node output with respect to each of this
node inputs) are being computed.

3. Each local gradient is being multiplied by the gradient received by node
to get the global gradient.

4. The obtained gradients are being sent further, towards the earlier model
layers.

X

W ∗

b

+

σ

XW

XW + b

σ(XW + b)

∇σW T

XT∇σ ∇σ

∇σ′

σ(∇F )� (1− σ(∇F )) = ∇σ

∇F

Figure 1.8: Matrix form of the FFNN layer computational graph with the
sigmoid activation function, where ∇F is a global gradient by the layer’s
output. The ”+” node is defined as ”add the b vector to the every XW row”.
∇σ′ therefore means mean value of ∇σ rows—a sum of b gradients scaled
down to be not dependent on the input batch size.

During training, the initial gradient value received by the neural net will
be the gradient of the mean loss function value over the training dataset
with respect to the neural net output. The word ”gradient” is being used in
this subsection often to mention that practical implementations operate with
tensors, not individual values themselves.
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In practice, due to memory issues its impossible to feed the whole dataset
into the neural network at once. Instead, data are being fed by batches ran-
domly sampled from the dataset. This variation of the algorithm is called
Stochastic Gradient Descent (SGD). ”Stochastic” means that that batches
are randomly selected and meant to approximate the input data distribution.

1.2.2.4 Activation Functions

Since the neural network is being trained by computing its gradient, it’s cru-
cial that the activation function must be differentiable. Elder models
used tanh and sigmoid functions, which are differentiable for all arguments
and their derivatives for any specific arguments may be computed using their
values. Minor drawback of a sigmoid function is that its output is not zero-
centered which negatively influences the model training, but the major issue
why sigmoind and tanh are not being used widely is that they saturate.

Figure 1.9: Three common activation functions illustrated. While logistic
sigmoid and tanh functions saturate in both directions, ReLU saturates in
only one. ReLU is also easier to compute both during forward and backward
pass.

With growing argument’s absolute value, the derivative of tanh and sig-
moid quickly decreases to small values. If the neuron using such function pro-
duces large enough postsynaptic potential, the activation function becomes
saturated and the gradient flow through this neuron is being multiplied by
the value close to zero. As seen on the equations above, layers interact with
each other multiplicatively, and several saturated activation functions may
paralyse training.
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To get around this, the Rectified Linear Unit (ReLU)[33] and its
variations are being used by the most state-of-art models. ReLU value is
defined as

ReLU(x) = max(0, x)

It’s not differentiable for x = 0, the derivative at this point may be defined
as 0 or x. Its output is not zero-centered also. But it doesn’t suffer from
saturating and is computationally more efficient than sigmoid functions.

ReLU’s major drawback is that it introduces the dying neurons problem.
With a too high learning rate, the neuron may get such a weight update that it
will never fire again on the same data. The gradient flow through this neuron
is being zero, and it will not get a new weight update. Lower learning rates
help to avoid it, while some ReLU variations[34], such as leaky or exponential
ReLU, don’t suffer this problem.

1.2.2.5 Dropout

Earlier in this chapter it was mentioned that ANNs are easy to overfit. While
another methods include weight norm constraints and reducing the number
of free parameters[35], Siravastava et al.[3] introduced another technique of
achieving a better ANN generalization—a so-called Dropout.

Overfitting of an ANN is often being shown as a high absolute value of
certain weights. This means that the layer actually uses only small subset of
its inputs to produce an output. Once a certain feature is not present in an
input sample, the neural network makes a wrong decision.

To combat this and force the neural network use more of its inputs, Sir-
avastava et al. proposed to zero random values of a layer input during training
with a certain chance p. By doing this, the neural network is being forced to
take into account a possible absence of a certain feature and rely on more of
its inputs rather than on limited subset.

This technique has got a lot in common with the L2 regularization (which
will be discussed later)—both methods work primarily against high weight
norms, and produce more diffuse weight vectors.

The important detail of a dropout realization is that once the dropout is
being applied, the input is being multiplied by 1/(1 − p). This is needed to
keep the neuron outputs during train (when dropout is being applied) and
test/inference (when all inputs are in place) time at the same scale.

In terms of mathematics, dropout is a Hadamard product of an input with
a dropout matrix. This matrix has a zero cell with a chance of p or a 1/(1−p)
cell otherwise. Therefore, during backpropagation a local gradient will be a
dropout matrix applied during the forward pass.
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Figure 1.10: Illustration taken from the Dropout paper[3]. During train-
ing time only fraction of ANN connections is being subsampled and properly
rescaled. During test time neurons see all their inputs. One of the proposed
Dropout interpretations says, that during the test time different models sam-
pled from the original one are being averaged.

1.2.3 Convolutional Neural Networks

Convolutional Neural Network (CNN) is a special ANN architecture
proposed by Yann LeCun in 1989[36]. While FFNNs originated as simulations
of the brain mechanisms in common, CNNs borrow a lot from the visual
cortex[37]. Thanks to their properties, they became one of the most effective
models for visual recognition, and still keep the position of the state-of-art
model family.

1.2.3.1 Motivation

While FFNNs had shown themselves as flexible and powerful models, they
have their own drawbacks which don’t let to directly apply them in certain
domains:

• FFNNs poorly scale for images. FFNN’s first hidden layer accepting
a 128×128×3 image would have 49152 weights per neuron, and a single
bias. A typical FFNN has got several layers of hundreds and thousands
of neurons, and a total parameter count for image recognition tasks can
quickly grow out of limits.

• FFNNs don’t take spatial information into account. The only
interaction input value participates in layer is a weighted sum with all
another input values—no input correlations are being tracked, while an
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image semantics mostly depends on such correlations. FFNN is also not
invariant to the image shift—the feature learned from the one image may
be not detected on the shifted image, even if shifted image semantics is
the same.

1.2.3.2 Convolutional Layer

To overcome this issues, CNN introduces several new building blocks for work-
ing with a spatially-arranged information.

The main building block of a CNN is a convolutional layer, or Con-
vLayer. Instead of a weight vector, its neuron uses a learnable two- or three-
dimensional filter, or kernel. While one-dimensional ConvLayers are also
being used (in natural language processing, for example), further in this sec-
tion it will be assumed that convolutional layer operates with two spatial
dimensions and a single depth dimension.

Convolutional layer produces its output by performing a discrete convolu-
tion operation of its kernels over an input image. Kernels are 3D (assuming
a multi-channel image as input) tensors, being typically small along spatial
dimensions (3×3, 5×5 or 7×7) but having the same depth as an input image.
Convolution of a kernel with an input image may be defined as ”sliding” the
filter across the width and height of the image and computing a dot product
of the kernel weights and image values.

The result of the convolution is a two-dimensional feature map, which
may be interpreted as a distribution of some distinct feature (being represented
by the filter) over the image. Since ConvLayer typically contains tens or
hundreds of kernels (mostly powers of two in range 32-512), an output of the
convolutional layer is also an image with the depth equal to the kernel count.
Such a layer organization brings several benefits:

• Parameter re-use. A ConvLayer parameter count is much lower due
to low filter sizes across spatial dimensions. This is possible thanks to
the assumption that a certain feature is not tied spatially to a certain
location on an image.

• Neuron activation is translation invariant. Since a kernel is being
applied to a whole image region-by-region, the feature it represents will
be detected on the shifted image too—it will just appear at another
place of the output map.

• ConvLayer may accept images of different shapes. The only
difference is a number of dot product computations and an output spatial
size.

• Natural semantics. Applied researches[38] show that each filter repre-
sents a certain feature which (primarily for first ConvLayers) may be vi-
sualized. Convolution outputs a feature map, which may be interpreted
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as a spatial distribution of a certain feature across the image, and may
be also easily visualized and used for the neural network behavior study.

Figure 1.11: VGG16[4] architecture illustrated. Taking a 224× 224× 3 image
as input, by an alternating application of 3 × 3 filters, non-linearities and
MaxPools the model gradually shrinks the data spatially, adding more and
more of a high-level information and stacking it along the depth axis. The
later layers operate a high-level information, relying on features extracted by
previous layers and capturing a significant spatial context.

In addition to the filter count, convolutional layer has got several another
important hyperparameters:

• Filter size. Spatial kernel size defines a filter’s receptive field—a
region of an image the kernel convolves at the same time. Before the
VGG-Net[4] was introduced, it was common to have 7 × 7[38] or even
11×11[39] filters at first ConvLayers. VGG-Net later showed that several
combined filters of lower size introduce both more flexibility and lesser
parameter count at the cost of additional layers. Nowadays, most of Con-
vNets still keep homogenous 3× 3 filter pattern across the whole model,
except first layers where larger kernel sizes are often being present.

• Padding. Since the convolution operation changes input’s spatial size
(except layers with 1 × 1 kernels), padding is often being employed to
keep it constant. Padding prevents maps from shrinking after passing
multiple convolutions, and simplifies a model design by eliminating the
need to re-compute the output size after each convolution.

• Stride. Stride is a step size when moving a filter during convolution.
Using strides larger than one aggressively reduces an output map size,
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and is mostly being used at first ConvLayers for the dimensionality re-
duction.

1.2.3.3 Another New Building Blocks

Figure 1.12: Pooling layer illustrated. The 4 × 4 grid represents an image,
while 2×2 grids represent Max (top) and Average (bottom) pooling operation
results. Precisely, max/average 2× 2 pooling with stride 2.

Convolutional layer is not the only spatial-specific layer being used in Con-
vNets.

Pooling layers are used to spatially reduce an image. The most common
are Max and Average Pooling layers, which divide an image spatially into cells
of a certain size (typically 2 × 2 or 3 × 3) and take a maximum or a mean
value respectively. The cells may be disjoint (stride is equal or larger than a
cell size), or may have an intersection (e.g. 3× 3 pooling with stride 2).

It’s common to place a pooling layer after several convolutions—pooling
layer rejects weak activations (for Max Pool) or combines them (for Average
Pool), and a spatial reduction of a feature map increases a receptive field of
preceding convolutional layers.

Spatial Dropout is a modification of a Dropout technique for using with
2D feature maps. Original Dropout works poorly on regularizing models work-
ing with correlated values—zeroing a random input won’t affect it’s neigh-
bours, and they still will activate the filter. The Spatial Dropout solves this
by zeroing an entire feature map instead.

This is similar to the original Dropout working mechanism in FFNN—
zeroing a random input of FFNN layer may be interpreted as excluding a
certain feature from the input. Sice in CNNs, instead of distinct values, fea-
tures are being represented by feature maps, to exclude a certain feature from
an input it’s needed to exclude a whole feature map.
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1.2.3.4 Implementation and Backprop

Convolution operation is computationally heavy. To accelerate it, it is usually
being implemented as a matrix multiplication by using so-called im2col or
im2row operations.[

w11 w12
w21 w22

]
−→

[
w11 w12 w21 w22

]
= W

0 0 0 0
0 x11 x12 0
0 x21 x22 0
0 0 0 0

 −→


0 0 0 0 x11 x12 0 x21 x22
0 0 0 x11 x12 0 x21 x22 0
0 x11 x12 0 x21 x22 0 0 0
x11 x12 0 x12 x22 0 0 0 0

 = X

WX =
[
y1 y2 y3 y4 y5 y6 y7 y8 y9

]
−→

y1 y2 y3
y4 y5 y6
y7 y8 y9


Figure 1.13: im2col possible implementation illustrated. The arrows denote
im2col operation and its inversion.

These operations transform an input image into matrix, where each con-
volution region (region for which the dot product will be computed) is being
stretched into a vector and placed as a matrix column or a row respectively.
This allows to accelerate the convolution operation by using a hardware opti-
mized for matrix multiplications, at the cost of some memory redundancy (if
convolution regions overlap).

It can be proved, that the gradient of the convolution operation is also a
convolution operation. But im2col or im2row employment allows to compute
the gradient during backpropagation also as a matrix multiplication.

Since pooling and dropout layers got no parameters, they get no updates
and only reroute an input gradient:

• Max pooling global gradient is an upsampled input gradient with cor-
responding gradient’s values placed at cells which passed through the
max function during a forward pass. Another cells are zeroes, since on
forward pass they were zeroed. It’s needed to keep in memory positions
of maxima during a forward pass; they are called switches.

• Avg pooling global gradient is an upsampled input gradient with corre-
sponding gradient’s values copied over a whole pooling cell, and divided
by a cell elements count.

• Spatial Dropout global gradient computation is analogous to the orig-
inal Dropout.
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1.3 Common Performance Improvement
Techniques

Aside from better architectures and larger data sets, there are another tech-
niques that may increase the model performance which are not being tied
densely to the model type.

1.3.1 Regularization

Regularization is a process of adding additional constraints to a model. Earlier
in this chapter it was mentioned, that justification of a regularization is trying
to enforce the compliance with the Occam’s Razor principle. It may be also
viewed from the Bayesian point as a propagation of a prior information about
data distribution to a model.

Figure 1.14: Regularization illustrated by the polynomial regression example.
The blue graph shows 7-degree polynomial with no regularization; the orange
one is being yielded by the similar model, but with an added L2 regularizer.
The second function is smoother, and intended to generalize better. Note,
that it fits the training data worse.

Aside from model-specific methods like Dropout, regularization is mostly
being implemented as a penalty to model weights:

L+(W,X ) = L(W,X ) + λR(W )

where L is a loss function and R is a regularization term dependant on model
weights norm. During training of a regularized model, their sum L+ is being
optimized instead. Parameter λ determines the balance between optimizing
a loss or a model weight norm. In practice models with a lower weight norm
tend to generalize better.
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The most widely used regularization terms are L1 and L2 weight norms. L1

directs individual weights towards zero, producing sparse weight vectors, while
L2 produces diffuse vectors of small values; sometimes their sum λ1||W || +
λ2||W ||22, also known as Elastic regularization, is being used.

1.3.2 Cross-Validation

Cross-Validation is a more advanced technique of obtaining a model perfor-
mance estimation on validation data. Instead of a strict train/validation split,
data are being divided into k folds—pieces of roughly the same size. During
a cross validation process, a model is being k times trained on k− 1 folds and
validated on the last one, different from used in previous iterations.

Figure 1.15: 5-fold cross-validation illustrated.

The mean value of k estimations obtained during the cross validation is
expected to be more precise and less biased overall model performance estima-
tion. The models obtained during cross validation are also may be combined
into an ensemble.

1.3.3 Model Ensembling

Ensembling is a technique commonly used with conventional ML methods,
such as decision trees or Bayesian models. The point is to train several models
and aggregate them in a certain way—output mean, majority vote, AND
or OR rules, etc. While there are wide variety of a model combining, even
primitive majority vote method can be beneficial.

Let the A(x) = {fi(x)}, i ∈ N̂ be the ensemble of N models which perform
a binary classification. Let xi = I[fi classified wrong] ∼ Bernoulli(p) be the
random variable. E[xi] = p, σ2[xi] = p(1−p). Define X = 1

N
∑N

i=1 xi. Assum-
ing that all fi(x) misclassifications follow the same distribution Bernoulli(p):
E[X] = p, σ2[X] = p(1−p)

N .
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1. Background

By adding more and more models to the ensemble the error distribution
will tend to constant. If p < 0.5, the error probability will decrease the more
models there are in the ensemble. While the two assumptions made there—
identical error distributions of all individual models and their independency—
are naive, in practice ensembles tend to generalize better.

Figure 1.16: Model averaging illustrated. By averaging several models a
smoother function may be obtained.

Another explanation why ensembling works is that individual models rep-
resent noisy functions. By averaging several complex-relief functions the
smoother function is being obtained. Same as in case of regularization, smoother
functions tend to generalize better.

Another practical observation is that ensembles tend to work better if their
individual models are more diverse. Therefore, individual estimators are being
trained on differently sampled data and/or with different hyperparameters, or
sometimes they are being represented by completely different architectures.

26



Chapter 2
State of the Art

In the previous chapter basic Machine and Deep learning techniques were
introduced. Leaning on those basics, now specific model architectures can
be described along with enhanced training techniques. In this chapter the
attention will be given to the models employed to solve the task together with
the Adam optimizer and Batch Normalization.

2.1 Batch Normalization

2.1.1 Motivation

Covariate shift is a situation when a learning system receives an input from
a distribution it wasn’t trained on[40]. This negatively affects a model per-
formance both during training and inference time, since the model starts to
re-adapt to a new distribution or to yield biased results respectively.

Szegedy and Ioffe[5] extend this definition and apply it to individual neural
network parameterized layers. A neural network output may be viewed as an
output of several nested subnets:

l(u) = F2(F1(u,Θ1),Θ2)

where F1 and F2 are two arbitrary transformations and Θ1 with Θ2 are their
weights. Learning Θ2 may be seen as training a subnet F2(x,Θ2) on F1 out-
puts. Assuming x = F1(u,Θ1) a gradient update after a SGD step will be:

Θ2 ←− Θ2 −
λ

m

m∑
i=1

∂F2(xi,Θ2)
∂Θ2

which is exactly equivalent to updating a neural network with weights Θ2
taking xi as input. Therefore, a constant input distribution is desirable not
only for a whole system, but also for all its subparts.

The authors of the paper named this problem an internal covariate shift.
The cause of this problem is that an output of a layer is heavily dependent
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on weights of all preceding layers. Any small change applied to weight of
a previous layer may significantly affect an input distribution of succeeding
layers, and the effect will amplify with a neural network depth. Fluid input
distribution slows training down and fluctuates weights, wasting resources on
re-adapting to a new input distribution every time it changes.

Another problems they address are vanishing and exploding gradients.
While vanishing gradients were briefly described in the previous chapter, gra-
dient explosion wasn’t mentioned yet. It’s a situation when during backprop-
agation a gradient exponentially grows from layer to layer. This mostly occurs
due to too high initial weight values, which lead to high activations and thus
high multipliers to the gradient during backprop. Architectures utilizing skip
connections are more resilient to this problem[41]; another solutions include
proper weight initialization[42][43].

2.1.2 Problem Addressing

The method proposed by Szegedy and Ioffe involves addressing the problem
directly. Before feeding a data batch to next layer, it is being artificially
standardized:

x←− x− x̂√
V ar(x) + ε

where x̂ is a batch mean, V ar(x) is a batch variance and ε is a smoothing added
to avoid division by zero. According to LeCun’s ”Efficient Backprop”[44], this
method is meant to speed up convergence.

Plain data standardization may hurt performance of models which utilize
sigmoid activation functions. This transformation restricts data range to a
linear segment of such a function. To restore the model representational power,
the authors added trainable data scale and shift:

x←− γ x− x̂√
V ar(x) + ε

+ β

where β and γ are trainable parameters. Note, that this parameters allow to
re-learn original data distributions in case they were optimal.

All operations performed by a Batch Normalization (or BatchNorm, BN)
are differentiable, and BN may be inserted into a neural network as a further
layer. This layer, as well as Dropout[3], works differently during training and
test time. During training time, mean and variance estimations are being com-
puted based on a batch statistics. In parallel, the layer updates exponential
moving averages of data mean and variance:

µ←− mµ+ (1−m)x̂

σ ←− mσ + (1−m)
√
V ar(x)
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2.1. Batch Normalization

Figure 2.1: Comparison of BN-accelerated models with the baseline taken
from the BN paper[5]. The baseline model was the Inception[6]; BN-baseline
is the Inception with BN before each non-linearity; BN-x5 is the BN-baseline
modified to accelerate training (no dropout, reduced L2 regularization, ×5
larger initial LR, more aggressive LR decay, etc.); BN-x30 is BN-x5, but
with LR increased by factor 30 instead of 5; BN-x5-Sigmoid is the BN-x5
but with ReLUs replaced by sigmoid non-linearity. BatchNormalized models
show significant boost both in terms of training speed and accuracy relative
to the baseline model.

where m denotes momentum, a value in range between 0 and 1, typically
0.99. Moving averages are needed for using in inference time, since it’s more
common then to feed an ANN with individual samples.

2.1.3 Pros and Cons

Explicit data normalization brings following benefits:

• BN addresses vanishing and exploding gradients. The influence
of parameter scale is being significantly reduced, since an information
passed through is being normalized to a certain scale. This prevents
a model from being stuck into saturated regimes of its sigmoid non-
linearities, and keeps gradient scale in range during backpropagation.
This stabilizes training and allows to give less attention to the weight
initialization.

• BN enables higher learning rates. Higher weight values lead to
smaller gradients:

∂BN((aW )u)
∂W

= ∂BN((aW )u)
∂(aW )

∂(aW )
∂W
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∂BN((aW )u)
∂(aW ) = 1

a

∂BN((aW )u)
∂W

Coupled with the fact that BN prevents gradient explosion, higher weight
values will gradually decrease their updates, allowing to multiply them
with the higher learning rate.

• BN applies a slight regularization effect. An individual sample is
being influenced by another samples in batch through standardizing by
common mean and variance estimations. Thus, during training trans-
formations of this sample are not deterministic.

• BN accelerates training. Aside from increased learning rates, regu-
larizing effect caused by BN may be sufficient to decrease Dropout rate
or to exclude Dropout completely, same as other regularization methods.

Despite the significant benefits brought by BN, it has its own drawbacks:

• BN sets a lower bound to the batch size. To get precise mean
and variance estimations, batch sizes have to be higher than a certain
threshold. At the same time, large batch sizes are not always possible
for RAM-hungry architectures

• BN works differently during training and inference time. While
Dropout is being just turned off during inference, BN continues to inter-
fere into the data flow inside the model. This may complicate the model
interpretation and architecture tuning.

Ultimately, it’s may be concluded that the benefits outbalance named
drawbacks, since BN has begun a very common element of neural network
architectures.

2.2 Adam Optimizer

While the gradient descent guarantess non-negative progress if being fed with
the whole dataset, it has got some space for further improvements both in
terms of convergence speed and stability.

2.2.1 Momentum and Nesterov

SGD method is often being met accompanied by ”rolling down the hill” anal-
ogy. But this analogy isn’t completely accurate—SGD updates weights using
the gradient value directly. The more correct analogy would be ”sliding down
the hill”, since once the loss value gets on plateau, gradients become small and
training starts to stagnate. It’s worth to recall what the vanilla SGD update
looks like:

W ←−W − λ∇W
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The faster algorithm[45] may be obtained by utilizing the ”rolling” anal-
ogy. If several computed gradients point in similar direction, it’s likely that
following updates also will be in similar direction. Instead of memorizing n
last updates, the exponential moving mean of gradients is being used as a
compact way to obtain an estimation of update statistics:

v ←− µv + (1− µ)λ∇W

W ←−W − v

(1−µ)λ term is often being referred simply as λ. µ there denotes momentum, a
term responsible for the speed of accumulated statistics changing or, in terms
of the ”rolling” analogy, coefficient of friction.

While the Momentum variation of the standard SGD almost always enjoys
faster and more stable convergence (due to zig-zag tencencies suppression and
a potential to overcome plateaus), there exist further improvements. One of
them is the Nesterov Accelerated Gradient (NAG)[46] descent. NAG
computes the gradient at the coordinates after integration:

v ←− µv + λ∇(W − µv)

W ←−W − v

The idea is that update is to change weights approximately by the term µv.
Hence, computing the gradient at this point will allow to ”look ahead” and
move faster in case the of loss function relief going down steeper, or move
slower in case if it’s not.

2.2.2 Adaptive Methods

Another way to improve convergence is to vary the learning rate for different
weights according to their update statistics. The most simple example is the
Adagrad[47], which accumulates gradients to use them for per-parameter LR
scaling:

G←− G+ (∇W )2

W ←−W − λ ∇W√
G+ ε

where G is the cache of accumulated update statistics and ε is a smoothing.
The square root is necessary to prevent a too aggressive growth of G values.
To avoid a monotonic cache growth (and thus training slowdown), instead of
sum the moving mean of squared gradients is being computed:

G←− ρ ·G+ (1− ρ) · (∇W )2

where ρ is a hyperparameter. The algorithm with this modification is being
known as RMSProp[48].
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Per-parameter update scaling allows to be more robust against saddle
points—the points in space where the first derivatives by all parameters are
(almost) zero, but the second derivatives are not and vary in sign. While not
being (local) minima, they may lead to stagnation of training provided by
momentum-based algorithms.

2.2.3 Adam

Adam[49] (from ”adaptive moment estimation”) emerged as an algorithm try-
ing to combine advantages of both momentum and adaptive algorithms. It
utilizes estimations of first (like the Momentum SGD algorithms) and second
(like the Adagrad algorithm family) gradient moment estimations. A simpli-
fied Adam update may be written this way:

m←− β1m+ (1− β1)∇W

v ←− β2v + (1− β2)(∇W )2

W ←−W − λ m√
v + ε

where β1, β2 and ε are hyperparameters (the paper recommends 0.9, 0.999
and 1× 10−8 respectively).

One of the Adam novelties is the bias correction mechanism introduced
to obtain unbiased first and second gradient moments estimations. Being
initialized with zeros, they suffer from biasing towards zero until they ”warm
up” after a certain number of updates. To avoid this, additional step is being
required for an each moment update before using it for a weight update.

The full weight update may be written as:

m(t) ←− β1m
(t−1) + (1− β1)∇W (t−1)

v(t) ←− β2v
(t−1) + (1− β2)(∇W (t−1))2

m(t)
c ←−

m(t)

1− βt
1

v(t)
c ←−

v(t)

1− βt
2

W (t) ←−W (t−1) − λ m
(t)
c√

v
(t)
c + ε

where m(t)
c and v

(t)
c represent unbiased first and second moments estimations

at the tth iteration.
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2.2.4 Adam Features

• Adam combines both adaptivity of Adagrad family and update
speed of Momentum algorithms. Thanks to accumulated first gra-
dient moment statistics, Adam is able to get through plateaus and shal-
low local minima, while the per-parameter update scaling coupled with
stochastic jitter allow to quickly escape saddle points.

• Update step is bounded and independent on gradient scale.
The update step is basically −λ · E[∇W ]/

√
E[(∇W )2]. Since for the

random variable X there is a relation |E[X]/
√
E[X2]| ≤ 1, the update

step is approximately limited by λ:

∆W ≈ −λ · E[∇W ]√
E[(∇W )2]

=⇒ |∆W | / λ

• Adam doesn’t require careful hyperparameter tuning. The pro-
posed values for β1, β2 and ε work well in most of tasks and could be left
untouched. At the same time, thanks to the update scale bounding it’s
easier to pick the right learning rate.

2.3 Deep Residual Networks

Figure 2.2: Degradation problem illustrated, plots taken from the paper[7].
The plots clarify that the problem isn’t related to overfitting, since deeper
models are harder to optimize for training data.

After the AlexNet[39] won the ImageNet in 2012, researches studied the
possibilities of further expanding of CNN capabilities. It appeared, that a
model depth is very important[4][6] for its expressive power, along with vertical
scaling being easy to implement to design models for different purposes.

But the sequential layer arrangement limits training capabilities of CNNs—
it appears, that sequential CNNs have an upper bound of layer count, beyond
which their performance starts to decrease. CNNs, which suffer from this kind
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of degradation, cannot achieve not only same validation results as shallower
ones—their training results are also worse.

The degradation problem may be explained as a situation when during
training first n model layers extract as much useful features as it is possible,
and the optimal transformation the rest of layers can learn is an identity.
But learning such a simple transformation by a sequence of nonlinear layers
appears not to be possible.

He et al. in their breakthrough work[7] addressed this problem by intro-
ducing a residual block. Instead of non-linear transformation y = F({Wi}, x)
a layer block can learn a residual transformation:

y = F({Wi}, x) + x

where y is a block output, x is a block input and F({Wi}, x) represents a
transformation of input by a sequence of ConvLayers. The + operation is
mostly being implemented by an element-wise sum of two tensors—this is
computationally efficient, introduces no additional parameters and is enough
to address the problem; albeit another implementations may exist, like con-
catenation followed by 1× 1 convolutions.

Figure 2.3: Comparison of two CNN pairs—plain 18-layer, plain 34-layer and
their residual variants. Plot is taken from the paper[7]. Skip connections
bypass every two layers. While providing no additional parameters, residual
networks show better results.

Skip connections allow to learn a non-linear transformation if it yields a
better result, or to learn zero weights if identity mapping is the best mapping
that could be learned—and thus to not degrade an ANN performance in the
worst case. This concept allows to train CNNs of an arbitrary depth—the
ImageNet 2015 winner was an ensemble of 152-layer ResNets, while He et al.
in their work explored models with more than 1000 layers.
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Figure 2.4: A 5-layer dense block with growth rate = 4. Picture from the
DenseNet paper[8].

2.4 Densely Connected Convolutional Networks

2.4.1 Motivation

DenseNet[8] is a further successor of ResNet, expanding its original concept
to setting a skip connection between each pair of layers of matching size. The
dense connectivity enhances an information flow and decreases a number of
parameters, which allows to train the network with more ease and achieve
better results than sequential or residual networks.

The network emerged as a distillation of several methods[7][50][51], em-
ployed to allow to build more deep neural networks. While being different,
most of them shared a thought of introducing skip connections between cer-
tain pairs of layers. The authors of DenseNet went further, and installed a
skip connection between all pairs of layers which were possible.

The counter-intuitive benefit is that the new model contains less parame-
ters than comparable sequential and residual ones. The authors’ explanation
is that a CNN layer passes to next layer both newly generated feature maps
and maps preserved from previous layers. This significantly increases param-
eter count, dedicating some of parameters to learning re-encoding an infor-
mation to be preserved. DenseNet introduces an explicit distinguish between
newly generated and preserved feature maps—its convolutions, while taking
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all previously generated feature maps as input, produce relatively shallow out-
put (typically 4-32 feature maps), which is then being added to the common
stack. The final layer makes its decision leaning on all feature maps generated
by the model.

Another big advantage of the proposed architecture is that during back-
propagation gradient flows directly from the last layer to an each layer in the
network, speeding up the training significantly and, according to the paper,
applying a slight regularizing effect.

2.4.2 Key Architecture Elements

Each CNN consists of several non-linear transformations, each of which is
mostly being a combination of a convolutional layer, batch normalization and
a ReLU activation function. Such a combination authors of the model refer
as Hl(·), where l is a layer index. With denoting a lth layer output as xl, a
sequential CNN transformation may be written as xl = Hl(xl−1).

As it was mentioned, Residual Networks compute a sum of a non-linear
transformation and a residual block input:

xl = Hl(xl−1) + xl−1

But the authors of the paper[8] argue that a skip connection implemented as a
sum may impede the information flow. Instead, they propose to apply a non-
linear transformation to concatenated outputs of all previous transformations:

xl = Hl([x0, x1, . . . , xl−1])

where [x0, x1, . . . , xl−1] denotes feature maps produced by previous transfor-
mations, concatenated along the depth axis.

The non-linear transformation there is being implemented as Batch Nor-
malization + ReLU + 3 × 3 Conv layers—the layer block utilizes the pre-
activation scheme, which is intended to improve generalization[52]. The H(·)
output depth is kept constant, and is being referred as a network’s growth
rate, or k—a hyperparameter responsible for a model ”width”.

The authors also found it useful to insert a ”bottleneck” transformation
before mentioned 3×3 convolutional block to decrease both a parameter count
and computational complexity. This transformation also utilizes BN + ReLU
+ Conv scheme, albeit with 1 × 1 convolution producing 4k feature maps.
The BN-ReLU-(1×1 Conv)-BN-ReLU-(3×3 Conv) composed transformation
further will be referred as a convolutional block.

The DenseNet is divided into several dense blocks. A dense block is a
sequence of convolutional blocks which accept and produce feature maps of
a specific size. Since spatial sizes of the feature maps are identical, they can
be freely concatenated. Each convolutional block in a dense block accepts an
input, produces its output and concatenates it with its input. The new stack
obtained will be sent to the next convolutional block as input.
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The information compression between dense blocks is being implemented
by transition blocks. Transition block is composed of BN-ReLU-(1×1 Conv)-(2
× 2 Avg Pooling) layers. While average pooling shrinks data spatially, the 1×1
convolutional layer compresses data along the depth axis, producing less layers
than it accepts. Being a trainable dimensionality reductor, it additionally
enhances the network compactness.

2.4.3 Pros and Cons

The novel architecture brings following benefits:

• Accuracy. DenseNet appeared to be a very powerful architecture,
beating[8] state-of-art architectures at the moment of the paper pub-
lication.

• Training Ease. DenseNet trains itself faster and more reliably thanks
to the low parameter count and more efficient layer arrangement.

• Simplicity. DenseNet doesn’t contain gates as Highway Nets or re-
cursive patterns as FractalNets. Its architecture pattern is only slightly
more complex than ResNet’s is.

While exceeding state-of-art models in most of benchmarks, DenseNet suf-
fers significant RAM consumption. DenseNets are relatively deep in com-
parison with competitive models, and that leads to the higher RAM consump-
tion during training, since it’s needed to keep more feature maps in memory
during backpropagation. This limits maximum batch size and thus may limit
BN performance, while the model is relying heavily on them.

2.4.4 Specialized Dropouts

While state-of-art models mostly rely on Batch Normalization, skip connec-
tions and extensive data amounts to avoid overfitting, some tasks may re-
quire training on smaller data sets and thus explicit regularization. There
is a work[53], which describes a DenseNet-specific technique of the Spatial
Dropout layer arrangement leading to higher generalization using the prior
knowledge of how the model works.

The first intuition behind the work stands on analysis of how DenseNet
convolutions are arranged. In particular, channel counts with which convo-
lutions operate grow gradually from start to end of a dense block. Skipping
feature maps at a dense block beginning may hurt the model’s performance,
so it makes sense to skip them with increasing probability along the dense
block. That led to the scheme which places the Spatial Dropouts before each
convolution block with an increasing dropout rate the further the ConvBlock
is from its input transition layer. The authors of the paper refer this scheme
as v1.
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Another intuition originates in observations made by the DenseNet au-
thors, reflected in their paper[8]. Later dense blocks tend to assign lower
weights to transition block outputs, while feature maps generated ”locally”
tend to gain higher attention. Furthermore, the weights assigned by the fi-
nal layer to inputs tend to be higher for newer feature maps. That led to
another dropout scheme, which skips feature maps before each convolution
block depending on the distance between this feature map source and the
ConvBlock—the ”elder” the feature map is, the higher will be chance of it
being skipped. This preserves newly generated feature maps from skipping
along with getting rid of old and supposedly redundant information. This
scheme is being referred as v3 in the paper.

According to the paper, v2, which was the inverse of v1, with decreasing
dropout rates meant to keep the number of dropped feature maps constant,
didn’t improve the model. But models with v1 and v3 both exceeded original
results, with v3 being the best. Furthermore, the authors extend their ap-
proach to other models, such as AlexNet, VGG16 and ResNet variants, and
show that v2 analog which is intended to reduce the total randomness brought
by dropout layers helps to improve generalization of the models.

2.5 Mask R-CNN

2.5.1 Purpose

While the previously described models were designed for image classification
or regression, the computer vision tasks do not end there. Most of them can
be split into four sorts:

• Classification. Given a certain input, yield a single value or a vector
according to the image semantics. Regression and multi-class label as-
signment arguably can be also attributed there (ResNet, DenseNet,. . .).

• Semantic Segmentation. Classify an every pixel on image. Image
regions, belonging to the same class but different class instances, are
not discriminated (SegNet, U-Net,. . .).

• Object Detection. Detect all objects on image, classify and find their
bounding boxes (Regions with CNN, Fast R-CNN, Faster R-CNN).

• Instance Segmentation. Detect all objects on image, classify and find
their masks (Mask R-CNN).

The Mask R-CNN architecture is dedicated to solve exactly the last task.
Since Instance Segmentation presents a combination of previous tasks, such
as Object Detection and Semantic Segmentation, Mask R-CNN borrows a
lot from architectures designed for them. Before moving on Mask R-CNN
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Figure 2.5: The four CV tasks illustrated. Picture from[9].

architecture details, it’s worth to say a word about its predecessors, since this
architecture is a result of a gradual evolutionary development.

2.5.2 Predecessors

2.5.2.1 Regions with CNN

One of the first successful attempts of applying CNNs for object detection is a
Regions with CNN[10] architecture, or R-CNN. The algorithm was based on
a conventional region proposal method which extracted 2000 regions from an
input image. Every extracted region then was padded, resized and fed to a
pre-trained deep CNN. The CNN produced a 4096-dimensional feature vector,
used both for classification and bounding box regression.

Figure 2.6: The Regions with CNN scheme. The algorithm extracts region
proposals from an original image, feeds them to CNN and classifies them by
multiple SVMs. Picture from[10].
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The final class prediction was produced by binary-classifying SVMs for
each class. To predict a bounding box, the authors employed ridge regression
to predict four values: x, y, w, h. Those values are offsets of bounding box
center and sizes relative to the proposed region boundaries.

While being relatively effective in comparison with its competitors, the ar-
chitecture’s major drawback was its performance. It took roughly one minute
to process a single image due to the huge number of CNN applications, which
limited its usability.

2.5.2.2 Fast R-CNN

Figure 2.7: The Fast R-CNN architecture scheme. Instead of repeating CNN
applications, the model applies the CNN only once. The proposed regions are
being projected to the CNN output, pooled, fed to fully-connected layers and
finally passed to the two heads for classification and bounding box regression.
Picture from[11].

The computational overhead of R-CNN was caused primarily by numerous
CNN applications on overlapping region proposals. To optimize computations,
the Fast R-CNN[11] applies a fully-convolutional CNN on a whole image at
once.

This is possible due to the fact, that a certain region on an input image
corresponds to a certain region on a fully-convolutional CNN output. This
allows to map proposed regions to the CNN output instead of applying a
CNN on each region proposal distinctly.

Fast R-CNN performs such a mapping followed by the so-called RoI Pool-
ing operation. This operation performs a spatial split of a projected region
proposal (of size h×w) to H×W grid (with a cell of size h/H×w/W ). Each
feature map is then being max-pooled with respect to this grid and flattened,
resulting in a vector of a fixed size. To obtain a final RoI feature vector,
the pooled and flattened values are then being fed to several fully-connected
layers.

The rest of the model branches to the two heads: one head for classification
and one for regression, and the network is being trained by optimizing a sum
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of two losses. In result, the Fast R-CNN architecture is being trained end-
to-end, instead of multi-stage original R-CNN preparation which was slow,
disk space-hungry and didn’t include model co-adaptation. What is more
significant is that Fast R-CNN showed itself roughly 200 times faster at test
time, with the main bottleneck becoming a region proposal algorithm.

2.5.2.3 Faster R-CNN

While being faster than R-CNN, Fast R-CNN still utilized a conventional
region proposal algorithm, which limited its performance and didn’t make use
of features extracted by a CNN. The authors of a new architecture, Faster
R-CNN[12], proposed to generate RoIs by a neural network applied on CNN
outputs instead of raw images.

Figure 2.8: Left: The Faster R-CNN architecture brief scheme. The RPN
slides over the backbone output and utilises the extracted features to propose
regions. The proposed regions are then being processed similarly to Fast R-
CNN. Right: The RPN application example. On a certain position for each
of k anchor shapes it predicts 2k values for ”objectness” score (is there any
object or not), and 4k values for bounding box regression relative to the anchor
boundaries. Pictures from [12].

RPN, or a Region Proposal Network, is the main novelty introduced in
the Faster R-CNN paper. RPN is a fully-convolutional network which is being
slided over feature maps extracted by a ”larger” CNN, or a backbone. It
consists of a 3× 3 convolutional layer and two distinct output fully-connected
layers—box-regression layer (reg) and box-classification layer (cls). Outputs
of these layers are based on so-called anchors. An anchor is a box region of a
certain scale and aspect ratio, which is centered at the current sliding window
position.

For an every sliding window position, RPN predicts 4k values by its regres-
sion layer and 2k values by its classification layer, where k denotes an anchor
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count. For an each anchor, reg produces 4 offsets of anchor box coordinates,
while cls produces 2 values indicating is there any object inside or not. The
authors of Faster R-CNN used 3 scales (1282, 2562 and 5122 px2 areas with
respect to an input image) and 3 aspect ratios (1:1, 2:1, 1:2) in the paper,
resulting in k = 9. Weights of both RPN heads are shared across an image,
and those layers are being implemented as 1× 1 convolutions with 4k and 2k
kernels respectively. Note, that RPN output is invariant to translation and
depends only on anchor context. It’s also worth to point to the amount of
context captured by RPN—a one pixel of VGG16 (used in the paper) output
corresponds with 16× 16 area on original image.

After the RPN application there are WHk possible proposals, where W
and H are the CNN output width and height respectively. Most of them are
overlapping and redundant, and the Non-Maximum Suppression (NMS)
procedure is being employed to get rid of noise. NMS takes a proposal list
sorted by cls-score and iterates over it, looking for overlapping groups. For
each overlapping group NMS selects the single proposal with maximum cls-
score and discards the rest which have intersection-over-union with it more
than a certain threshold:

IoU = A ∩B
A ∪B

> T

where A is a max-cls region, B is an another overlapping region and T is
a threshold. The rest of proposals is being sorted again and top-N values
(typically 2000) are being kept.

The rest of the model is being implemented similarly to Fast R-CNN—
obtained proposals are RoI-pooled, passed through fully-connected layers and
fed to the two final branches, predicting class and bounding box offset.

Ultimately, to train Faster R-CNN one has to train two CNNs: RPN
and Fast R-CNN. The authors of Faster R-CNN proposed several training
algorithms, but in the paper they used the following one:

1. Initialize the backbone with ImageNet weights and fine-tune backbone
+ RPN composed network.

2. Initialize Fast R-CNN (backbone + heads) with ImageNet weights and
train it using the RPN obtained from the previous step. Note that after
this step RPN and Fast R-CNN are not sharing backbone weights.

3. Fine-tune RPN with the frozen backbone. Now both networks share the
weights.

4. Freeze the backbone and fine-tune the Fast R-CNN heads.

These four steps are sufficient for most of tasks, and the authors observed no
significant improvements after more training iterations.
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Despite the sophisticated structure, Faster R-CNN presents both effective
and elegant solution in shape of the completely end-to-end trainable network.
While being computationally efficient (the authors report 10ms overhead dur-
ing test time), RPN also represents trainable algorithm utilizing the power of
a deep CNN.

2.5.3 Architecture Details

Figure 2.9: The Mask R-CNN architecture. Note the additional convolutional
layer sequence predicting the masks and the RoI Align layer. Picture from[13].

The Mask R-CNN[13] extends Faster R-CNN by an additional head—the
mask predictor. A mask is nothing more than a binary map of N + 1 depth,
where N is a number of classes, with an additional class for background.
”True” or ”False” on a certain position means that this pixel belongs to a
certain class. Hence, the mask predictor head is a fully-convolutional CNN
with the last layer being a 1 × 1 convolution. It’s worth to note, that the
head predicts masks independently on classification results—i.e. masks do
not compete with each other.

Another important change is a new operation employed to replace the
RoI Pooling. The original RoI Pool, while performing well for classifying and
bounding box prediction, provides a crude quantization of an input data. To
keep more spatial information, RoI Pool was replaced by the RoI Align layer
interpolating data instead of quantizing.

2.5.3.1 RoI Align

The original RoI Pool performs data quantization twice:

1. The proposed RoI of arbitrary size is being aligned to fit into feature
map region of an integer size

2. The aligned RoI is then being pooled into fixed number of bins
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Figure 2.10: Left: Bilinear interpolation illustration. To interpolate the point,
the four neighbours are needed. The interpolation is being computed along
the one axis firstly (producing points R1 and R2), and then along another
(using R1 and R2), resulting in three linear interpolations. Right: RoI Align
example. The solid line represents the proposed region being pooled, while
the stroke line delimits the backbone output. Each pooling bin has got four
sampling points, each of which gets a bilinearly interpolated values of the
feature map pixels. The pooling is being applied on sampling points, not on
feature map pixels. Pictures from [14] and [13] respectively.

To save more spatial information, RoI Pool was replaced by RoI Align layer
which doesn’t perform such quantizations at all. The RoI Align algorithm can
be described this way:

1. The proposed RoI is being placed over the feature map without align
(with corner coordinates being floating point numbers relative to the
backbone output)

2. The region is being divided into fixed number of bins, same as RoI
Pooling does

3. Fixed number of sampling points is being selected for each bin. The
authors used four sampling points located on intersection of bin thirds

4. The values for each sampling point are being computed using bilinear
interpolation of feature map pixels

5. Computed sampling point values are being pooled (e.g. with max or
average function)

Precise aligning and interpolation instead of quantizing allows to properly
align the predicted mask with the object on input image. The authors didn’t
observe result sensitivity to sampling points number or exact location until
no quantization is performed, while the replacing RoI Pool by RoI Align itself
showed drastic performance increase.
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2.5. Mask R-CNN

2.5.3.2 Mask Predictor Head

Figure 2.11: The proposed mask predictors for ResNet and Feature Pyra-
mid Network[15] backbones respectively. Arrows denote either convolution,
deconvolution or fully-connected layers as can be inferred from context. All
convolutions are 3× 3, except the output convolution which is 1× 1. Decon-
volutions are 2 × 2 with stride 2, all layers use ReLU non-linearity. Picture
from[13].

As it was mentioned, the mask predictor is a fully-convolutional CNN,
which is implemented similarly as FCNs for semantic segmentation. Nonethe-
less, the authors found it more profitable to decouple classification and mask
prediction processes, unlike how it is in most of semantic segmentation models.

During training, the loss function applied to the last layer is a mean per-
pixel binary cross-entropy of the correct class mask only. During inference,
the head predicts N masks for each class, while only nth mask is being yielded
as output, where n is the class predicted by the classifier head. Once the mask
is predicted, thanks to RoI Align it can be precisely re-projected to an output
image.
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Chapter 3
Practial Part

This chapter describes an approach used to solve the related task step-by-
step. The problem will be decomposed to the several subtasks, and for each
of them—from the data preprocessing to the joint scoring itself—the solution
will be designed using the methodology described in the previous two chapters.

3.1 Task Recapitulation

The goal of the RA2 Challenge[54] is to design a system able to perform a
joint damage assessment by the Sharp/van der Heijde (SvH) method. The
assessment system stands on examining selected hands, wrists and feet joints,
which are the typical RA targets. The system considers a joint erosion
(physical damage of the joint bones) and a joint space narrowing (JSE)
(reduction of the free space between joint bones). Each erosion and narrowing
region is being scored in range from 0 to 5 and from 0 to 4 respectively. The
whole scoring requires 86 examinations yielding the total score in range from
0 to 448.

Note that feet erosion scores are considered per side of joint, not the joint
itself; the actual feet joint erosion score range is from 0 to 10.

The challenge consists of 3 subchallenges:

• Subchallenge 1: Predict an overall RA damage. Solution assessment
metric: weighted MAE

• Subchallenge 2: Predict joint space narrowing jointwise. Solution
assessment metric: weighted RMSE

• Subchallenge 3: Predict joint erosion jointwise. Solution assessment
metric: weighted RMSE

It’s worth to mention that metrics’ weights were not publicly available
during the challenge.
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3. Practial Part

Figure 3.1: Regions for which erosion or narrowing needs to be assessed. Left:
erosion regions. Right: narrowing regions.

The solution must be dockerized, pushed to the challenge repository and
submitted through the form; submissions are limited to the three per round
which is typically a week long. The container should be able to (optionally)
train itself and produce the output table; the ”Fast lane” unlimited submis-
sions are provided to run the container on a small subset of data and ensure
it yields a valid result.

3.2 Dataset Overview

The data set consists of CLEAR and TETRAD studies and contains left hand,
right hand, left foot and right foot images of 368 patients, giving 1472 im-
ages in total. The only labels available are 86 SvH scores and their ero-
sion/narrowing/total sums per patient. Images vary in size, contrast and
sharpness; all of them are oriented similarly per limb. Among the foreign
objects there are wrist bone plates, jewelry and labels on images.

The label analysis revealed that only 14% of narrowing and 9% of
erosion scores are non-zero. That significantly reduces the information
amount that could be extracted from the data, and dealing with a prevalence
of negative examples is a part of the challenge. There are also labels being
assigned only to few images (erosion scores 4 for hands, for example).

It’s important to note, that most of erosion and narrowing regions overlap.
The only significant difference is the carpal regions, which in case of region
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Figure 3.2: Label values distribution in log scale. Note that for some labels
only 1-31 labels are available.

extraction from image will have to be processed separately.

3.3 The Approach

The task may be split into two parts—joint extraction and joint-by-joint as-
sessment. In this work these tasks are being addressed by two different ap-
proaches and model architectures.

3.3.1 Joint Extraction

To extract joints from image, the Matterport implementation[55] of Mask
R-CNN was employed. The benefit of using a ready implementation is not
only a labour elimination, but also pre-trained weights which may be used for
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Figure 3.3: Example images of a left hand and a right foot from the dataset.

transfer learning. This implementation also comes with several tools for data
and model statistics visualization.

3.3.1.1 Data Preparation

Since the data don’t include any joint location labels, they were annotated
manually. To avoid the time-consuming and exhausting process of labeling
the whole dataset, the labeling went iteratively: the first 80 images were
randomly selected and labeled to be used for the model training. After that,
the all images were fed to the model and according to the visual inspection of
the model outputs additional images with certain features were included into
the training set.

The four distinct models were proposed to extract joints—for feet, hands,
wrist erosion regions and wrist narrowing regions. The feet detector extracts
five metatarsophalangeal (MTP) joints and a toe proximal interphalangeal
(PIP) joint; the hands detector extracts five PIP joints, five metacarpopha-
langeal (MCP) joints and a carpus region. The extracted carpus regions are
then being fed to the two wrist models—feeding a carpus RoI instead of a
whole image is intended to improve the detection accuracy.

So, the data preparation process goes in parallel with the model training
and may be described this way:

1. Select random 80 images

2. Train a model on them

3. Feed all images to the model

4. Visually inspect the model outputs and if they are unsatisfying, add
problematic images to the training set and go to step 2
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The hands detector model was used to obtain extracted carpus regions, which
where later being prepared in similar way for training the wrist models. To-
tally the 168 images were annotated for the feet detector, 152 for the hand
detector, 137 for wrist erosion and narrowing detectors.

An important step is the flipping the images of right or left limbs to obtain
a dataset only of left or right limb images. This step eliminated most of joint
misclassification issues and significantly increased a classification accuracy.

The all four data sets were augmented in the same way: 50% chance of
applying a Gaussian blur on 50% of image area (some images in data set are
blurry); linear contrast in range [0.75, 1.5] and multiplication in range [0.8, 1.2]
(the data set images noticeably vary in contrast); [-5, 5] percent translation
along both axis, [-20, 20] percent zoom and rotation in range [-15, 15] degrees.

The feet/hands images were resized to 512 × 512 size before being fed to
the model; the wrist models inputs were 256 × 256. From each dataset its
mean was extracted.

3.3.1.2 Training and Results

The Mask R-CNN implementation authors propose the two-step training—
train the heads first and then (optionally) fine-tune the whole model including
the backbone. In this work the fine-tuning wasn’t performed, and the further
text describes the heads-only training.

The models were trained with hyperparameters being mostly default. The
important hyperparameters which were overridden are Batch Size = 8 and
Detection Minimal Confidence = 0.0 (no region reject by the confidence score
lower bound). The learning rate was set to 0.01 with exponential decay 0.98
per epoch for hands/feet models and 0.99 for wrist models—this allowed to
accelerate the training with no significant negative effects in comparison with
the default fixed learning rate 0.001. The implementation uses the SGD with
momentum and gradient norm clipping (both left default).

All models were validated on 8 images. The best models were chosen by
their class scores (except the wrist erosion detector)—the joint misclassifica-
tion was considered the main issue at the joint extraction step. The wrist
erosion detector was chosen by the overall validation loss value to obtain a
model with a better bounding box prediction.

The Mask R-CNN showed a fine accuracy both in terms of classification
and bounding box regression. It was able to train itself on a relatively small
amount of samples by training only its heads, and yield a very good result
with a minimal count of misclassifications, which became a rare issue.

To further increase a joint detection accuracy, an additional step is being
performed after a result is being obtained. If the model output doesn’t contain
a certain class, in most cases that means that a model still detected it but
misclassified. The model output will have two or more instances of a certain
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Figure 3.4: The selected training plots of the detection models. Note the
absence of noticeable validation loss degradation during training.

class with different confidence score, and absent classes will be assigned to
redundant instances with lower confidence scores.

3.3.2 Damage Assessment

Once the joint detection task is solved, it’s now possible to actually assess the
joint damage. The main fact around which the assessment model was built is
a major label imbalance, which required some non-standard approach.

3.3.2.1 Data Preparation

The extracted joints were further split into three datasets—feet erosion scores,
hands erosion scores and narrowing scores, according to the score scale. Each
data set suffers a label imbalance and an extreme lack of samples for a certain
class.
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3.3. The Approach

The train/validation data split was applied individually on each class to
avoid some classes being completely absent in train or validation set. After
the split, the most common class was undersampled to a count of the second
most common class. The rest of classes the was oversampled.

The data augmentation consisted of [-10, +10] percent range zoom and
shift, and rotation. The two rotation ranges were tested—30 and 45 degrees.
The data were standardized sample-wise before feeding to a model. The two
image sizes were tested—128× 128 and 64× 64.

3.3.2.2 The Model

The DenseNet architecture was chosen to represent a joint damage estimator.
The main reason was that the DenseNet has got a low parameter count, which
coupled with the dense connectivity should provide a model robust against
overfitting.

As the baseline, the Keras built-in DenseNet121 architecture was chosen,
with some modifications:

• The input 7 × 7 convolution with stride 2 was replaced by 3 × 3 con-
volution with stride 1. This was intended to prevent a too aggressive
spatial sizes decrease, since input images were significantly smaller than
traditional ImageNet 224× 224.

• The last dense block was removed to simplify the model and decrease a
free parameters count (from 7M to 4M).

• Specialized Dropouts[53] were implemented by the scheme v3. The in-
put data amounts will be low, so it’s important to introduce external
regularization.

Ultimately, the proposed estimator is a DenseNet88 model with a (6, 12, 24)
dense blocks and a growth rate = 32. The rest of the model (except the final
layer) remained the same, allowing to use the pre-trained ImageNet weights.

As an alternative, the custom architecture was built with the following
differences:

• The growth rate was reduced to 16

• The input 3× 3 convolution was replaced by 7× 7 convolution stride 1.
The larger input convolution sizing was intended to increase the low-level
feature extraction, which is important for this task.

• ReLUs were replaced by Leaky ReLU:

LReLU(x) =
{
αx, if x < 0
x, if x ≥ 0

where 0 < α < 1 is a hyperparameter, which was chosen as 0.2.
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• The dense blocks were rearranged from (6, 12, 24) to (6, 12, 18).

This variant of a model provides only 0.8M of parameters and is intended to
generalize better in case the first model will significantly overfit. This model
variant won’t be able to use built-in pre-trained weights, so it has to be pre-
trained separately.

As an attempt to get around poorly represented labels, instead of classifica-
tion the regression approach was chosen. Being significantly more complicated
for deep learning models than classification, regression allows to overcome
absence of samples for certain classes and still produce continuous output.
Regression also takes label ordinality into account, so no artificial ordinality
propagation is needed unlike the case of classification. To force the output
stay in range, the sigmoid nonlinearity was used instead of linear, which is
default for regression models. All outputs the network will produce will be in
range [0, 1], which allows to easily re-scale them to obtain SvH scores.

3.3.2.3 Training and Results

To maximise the model performance on small data, the 5-fold cross-validation
was implemented. The models obtained were composed into ensemble by
averaging their outputs.

The first model variant was initialized by ImageNet weights from DenseNet121.
It was able to train itself only after forcing a high regularization—the higher
dropout rate bound was set to 0.75 before the model started to train itself,
and the best results were obtained with higher bound = 0.875. The L2 regu-
larization with λ = 0.0001 also showed itself beneficial for the training.

The best results were obtained by using the MAE as a loss function for
erosion models and logcosh for the narrowing ensemble:

MAE = 1
|X |

∑
(x,y)∈X

|x− y|

logcosh = 1
|X |

∑
(x,y)∈X

log(cosh(x− y))

where X denotes a batch. The models were trained using the Adam optimizer
with a fixed learning rate 0.0001. The models were tested on input images
resized to 64× 64 witch batch size = 128.

The second model variant was tested after training from scratch and after
initialization by pre-trained on CIFAR-10 weights. The higher dropout rate
bound was reduced to 0.25, while the lambda for L2 regularization remained
0.0001. The rest of hyperparameters remained the same, except the input and
batch sizes—the erosion ensembles were trained on 128× 128 with batch size
= 32, while the narrowing models were trained on 64× 64 images with batch
size = 128. The model used to obtain CIFAR-pretrained weights was trained
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Figure 3.5: Left: validation results. Right: test results. The tested models
include variant one and two trained with 30 and 45 degress image augmenta-
tion. The fifth model is a V.2 with 30-degree augmentation initialized with
CIFAR-pretrained weights.

using similar hyperparameters, except the input size 32× 32 and a batch size
= 256. The pre-training lasted 50 epochs.

The best results vary for different models. The second proposed model
showed a significant performance boost in terms of erosion assessment, while
performing roughly the same while scoring the joint space narrowing. The
best model overall may be considered the variant two trained on 30-degree
augmentation from scratch—while showing slightly worse test performance
than the 45-degree augmentation-trained one in terms of joint erosion, it per-
forms noticeably better on the joint space narrowing assessment.

Since the model output layer is a sigmoid, it will never yield zero values for
joints with no damage. Using the prior knowledge that most of joints assessed
will have zero score, the output SvH scores lower than a certain threshold
(0.5 was chosen) were overridden by 0.0 to allow a more precise overall scores
computing. Without thresholding, the overall scores will be biased outwards
zero due to the constant non-zero values of a joint-wise assessment.

3.4 Discussion

The algorithm above is the result of a trial-error approach. In this subsection
the proposed approach details and hyperparameters choose will be discussed
along with the results explanation.
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3.4.1 Joint Extraction

• Object Detection instead of Semantic Segmentation. The first
approach for joint extraction was a semantic segmentation model (sev-
eral U-Net variants). This approach showed unsatisfying results, primar-
ily due to difficulties with producing a solid regions and a joint classifi-
cation. Unlike semantic segmentation models, object detection architec-
tures are designed for detecting individual and solid objects, considering
groups of pixels instead of individual per-pixel classification.

• Instance Segmentation instead of Object Detection. While in
this work masks had no use, the instance segmentation model is more
beneficial due to using more of label accompanying information—the
object mask brings more information about the object boundaries than
a simple bounding box.

• Partial model training. Only the Mask R-CNN heads were trained,
leaving the backbone untouched. The backbone training appeared to
be significantly computationally heavy while bringing no benefits and
letting the model to overfit. The training plots show that partial training
is very robust to overfitting and the validation loss won’t degrade as the
training progresses.

That may be explained by the fact that high-level layers (such as the
model heads) are difficult to overfit, since they operate with an abstract
information which is very similar for training and validation sets. The
backbone is responsible for extracting low- and mid- level features, which
may differ between sets and thus fitting the model for them will lead to
information memorizing.

• Low validation data amount. 8 images were considered enough for
validation since each image provides an information about the model
loss relative to the bounding box regression, classification scores and
mask predictions—i.e. providing much more information than could be
expected from classification or semantic segmentation model. Coupled
with the previous point about the overfitting robustness, this allows
to feed more samples to the model with no concern about validation
accuracy.

• High initial Learning Rate. The trainable part of a model is rel-
atively shallow, which allows to use learning rates in order or two of
magnitude higher than for the whole model. The training benefits from
such a ”quick start”, while the LR decay gradually decreases learning
rate to conventional values and allows to fit the data more precisely.
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3.4.2 Damage Assessment

• Low-level feature engineering. Despite the fact that deep learning
models are able to train themselves on raw data, small datasets may sig-
nificantly benefit from artificial construction of features more expressive
than raw pixels. In this work, no feature engineering was performed,
but the significant performance boost is expected if the proper feature
construction method would be applied.

• Data sampling. Since the data show massive imbalance between la-
bels, they have to be artificially balanced. The three approaches were
tested—sample weights, naive oversampling and combined under- / over-
sampling.
The sample weights were computed to keep their sums across the certain
class equal. E.g., if 1000 samples with a label A got a weight 0.001, 10
samples with label B will have their weights 0.1, while a single sample
with a label C will have a weight 1.0. Weights are used to multiply the
loss value of a model after applying on a certain sample.
The class weight approach didn’t significantly improved the model per-
formance. The next employed approach was an oversampling—duplicating
samples of more rare classes to obtain equal sample counts for all classes.
This approach introduces a proper balancing, while copied samples will
undergo data data augmentation which will differentiate then to a cer-
tain extent. The main drawback of the method is that it significantly
inflates the data set size—if the first and second maximum label fre-
quencies differ by m, at least m(n − 1) additional copies will be added
to the dataset, where n is a class count.

Figure 3.6: Oversampling and combined approach illustrated.

To address the performance issue, the oversampling method was com-
bined with the most common class undersampling. Only subset of the
most common class was sampled from the data set, with the rest of
data points oversampled. The most common labels in data sets are ze-
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ros, and zero-labeled samples introduce less features than any other, so
no significant performance decrease is expected from zero data points
undersampling.

• Sample-wise standardization over the dataset-wise. The dataset-
wise standardization (subtracting the dataset mean and scaling by the
dataset standard deviation) showed itself numerically unstable due to
the envoronment (Keras with Tensorflow backend) forcing to use float32
numbers. That led to the different statistics of train and validation sets
and degraded the model performance.

• Input Sizing. Input sizing is important for the models since they were
intended to be trained on the external computational cluster with a
limited training time. While the first model variant provided more layers
and parameters, its input size couldn’t be increased within staying in
time limits. The second model variant bypassed it by its significantly
reduced size and an erosion assessment got a huge accuracy boost.

• Augmentation. The 45-degree rotation showed itself more destructible
in comparison with 30-degree. Rotating an image too much makes it
significantly differ from the validation/test set images, especially if the
joint was already rotated on the original image (like thumb or hand
minimus joints).
The assessment accuracy is expected to be higher if all joint images
would be oriented similarly, which would allow to not infer duplicating
filters for differently oriented relevant features.

• Erosion and Narrowing accuracy. Erosion models (especially the
feet erosion one) experienced unstable and highly variying results, while
the JSN models showed training dynamics much closer to the ordinary
training tasks.
That may be explained by the fact, that erosion assessment includes
much more complicated and high-level features—looking for bone dam-
age requires looking for specks or pits, and requires an analyse of a
surrounding context. At the same time, narrowing requires only dis-
tance measurement between two bones. Joint erosion model requires
significantly larger training set to be properly trained and has to be
more complex to fit data. JSN models also don’t suffer performance loss
after input images downsizing—narrowing still will be well-visible while
erosion features occupy noticeably smaller image area.

• Loss function choice. A typical choice for regression models is MSE,
which multiplies the model output gradient by the error size. It could
be considered a proper choice for this task also, since the challenge test
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metric is a weighted RMSE. But the models showed best results using
MAE and logcosh for erosion and narrowing respectively.

Figure 3.7: Left: different loss functions illustrated. Right: their derivatives.

The possible explanation may be an accessible data amount, which is too
low for the proposed erosion models. MAE, while providing a constant
loss-by-model-output derivative value, is more robust to outliers and
noisy data, which the erosion data probably are. At the same time,
the narrowing models benefit from logcosh or similar function since the
narrowing data amounts are appropriate.
Since the MAE loss may be too ”rude” and yield a high update values,
the Leaky ReLU was introduced to the second model variant to avoid
the neuron death.

• Fixed Learning Rate. The learning rate is fixed since the annealing
showed no positive result, sometimes even degrading the performance.
The lower learning rate values degraded the performance due to the
possible complex multi-level loss function landscape. Decreasing the
learning rate makes the loss value more sensible to smaller landscape
details and allows to additionally decrease the training loss once it starts
plateauing. In most tasks this allows to additionally improve validation
results, but on small data sets this may lead to worse generalization,
since loss and validation loss function relief details differ more signifi-
cantly. The more data will be available, the more training and validation
loss reliefs will be similar and the lower learning rates may be used with-
out the issue.

• Regularization. The low data amount requires an external regulariza-
tion in addition to the Batch Normalization and skip connections. While
the L2 regularization with λ = 0.0001 showed itself beneficial for both
architectures, the first variant suffered a poor convergence with dropout
rates lower than a certain lower bound. It started to generalise with
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maximal dropout rate ≥ 0.75 and achieved the best performance with
maximal dropout rate 0.85-0.875.
The second architecture with the twice lower growth rate was designed to
address primarily this issue. The lower redundant feature maps count
allowed to reduce the maximal dropout rate to 0.25, which signalizes
about a more proper model sizing.

• Pre-training with no positive effect. The pre-trained model showed
a slight decrease in performance. The several possible explanations in-
clude the one similar with the previous point (training loss converges
faster to small landscape details), or the wrong features inferred on un-
related data set.
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Conclusion

In the first chapter of the thesis the common machine and supervised learning
methods were introduced. The Deep Learning, an important Machine Learn-
ing branch, was also presented with its peculiar properties. Finally, the key
model family—the Convolutional Neural Networks—were described with their
key principles, advantages and weaknesses. The chapter was finalized by some
additional common Machine Learning techniques intended to help a certain
model achieve a better result.

In the second chapter, the certain techniques which were employed to solve
the task were portrayed—model architecture building methods, model archi-
tectures themselves and methods of further improving of their performance.

Finally, in the most important Practial Part chapter the actual experi-
ments were described and their results were discussed with possible explana-
tions and heuristics used to solve the task. Despite the difficulties with the
low data amounts, the proposed method showed itself as an able to produce
meaningful results.

Limited data amounts are a common issue in a healthcare, but the overall
accessible data growth takes place in medical imaging also. The growing data
sets would allow to shift the focus from designing models for small data to
designing systems which fully utilize the power of big data sets and Deep
Learning methods. The tendency of providing more open data along with
rapid progress in the Deep Learning allow to look at the possibility of learnable
models adoption in healthcare with optimism.

For the further work on related tasks, it may be beneficial to couple the
deep learning methods with low-level feature construction. While the Deep
Learning models are designed to be applied on large amounts of raw data,
their flexibility may allow to use them in different way, like fitting smaller
amounts of well-expressed data. Another proper improvement that could be
done over the proposed method is a construction of a monolithic model, able
to train itself end-to-end.
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Appendix A
Acronyms

ANN Artificial Neural Network

BN Batch Normalization

CNN Convolutional Neural Network

CV Computer Vision

FFNN Feedforward Neural Network

JSN Joint Space Narrowing

LR Learning Rate

ML Machine Learning

MAE Mean Absolute Error

MCP Metacarpophalangeal (Joint)

MSE Mean Squared Error

MTP Metatarsophalangeal (Joint)

NAG Nesterov Accelerated Gradient (Descent)

PIP Proximal Interphalangeal (Joint)

RA Rheumatoid Arthritis

ReLU Rectified Linear Unit

RMSE Root Mean Squared Error

RoI Region of Interest

RPN Region Proposal Network
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A. Acronyms

SGD Stochastic Gradient Descent

SvH Sharp/van der Heide method
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Appendix B
Example Training Plot
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B. Example Training Plot

Figure B.1: Training plot for a second model variant trained from scratch on
30-degree augmented images
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Appendix C
Contents of enclosed CD

The sources also will be available at https://github.com/EternalSorrrow/
bak.
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C. Contents of enclosed CD

readme.txt ....................... the file with CD contents description
notebooks............the directory with Colab notebooks used for work

ra2 feet joint detection.ipynb..the notebook for feet joint model
ra2 hands joint detection.ipynb.....the notebook for hands joint
model
ra2 wrist erosion joint detection.ipynb.. the notebook for wrist
erosion regions
ra2 wrist narrowing joint detection.ipynb the notebook for wrist
narrowing regions
ra2 docker test.ipynb.the notebook used for the model training on
Colab

BP ..................... the directory of LATEX source codes of the thesis
BP Yorsh Uladzislau 2020.pdf.......the thesis text in PDF format
BP Yorsh Uladzislau 2020.tex...........the thesis text .tex source
images..................directory with the images used in the thesis

docker....................................the docker sources directory
Dockerfile............................the dockerfile for the project
run.sh .............................. the executable container script
script.py....the .py script which trains the models and produces an
output
test.py ............... test .py script used to test the GPU visibility
weights ...................... the directory with pre-trained weights

weights.h5 the CIFAR-pretrained weights for DenseNet76 (second
model variant)

trained models..................the pre-trained detectors directory
mrcnn feet mrcnn class loss best-160.hdf5..a pre-trained feet
joints detector
mrcnn hand mrcnn class loss best-200.hdf5.a pre-trained hand
joints detector
mrcnn we loss best-320.hdf5.a pre-trained wrist erosion regions
detector
mrcnn wn mrcnn class loss best-320.hdf5....a pre-trained feet
joints detector
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