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Instructions

Design and implement a generator of synchronous pulse sequences for a field-programmable gate array
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The work will include:
1. Research of existing solutions.
2. Choice of a suitable hardware platform for implementation.
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  - additional control signals for channels (the number will depend on the selected platform),
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  - programmable sequences (minimum 500 commands per channel),
  - configuration of individual sequences of all channels via a serial link,
  - playback of sequences will be triggered by an external signal.
4. Simulation and testing of the resulting design.
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Abstrakt

Předmětem práce je analýza dostupných technologií a následná implemen-
tace programovatelného vícekanálového sekvenceru pulzů za využití hradlo-
vého pole. Předmětem praktické části je samotný vývoj řešení v jazyce Verilog
a jeho simulace a následné nasazení na hradlové pole. Rozlišení dosahující 1 ns
bylo dosaženo za pomocí specializovanáno formátování instrukcí. Zařízení bylo
také doplněno komunikační aplikací.

Klíčová slova FPGA, Xilinx, asembler, generátor sekvencí pulzů, Verilog,
serializér

Abstract

The objective of this thesis is to analyze of the available technology and
the eventual implementation of a programmable multichannel pulse sequencer
using a gate array. The goal of the practical part is the actual development
using the Verilog hardware description language, simulation, and the hard-
ware realization of said device. Resolutions reaching 1 ns were achieved using
specialized instruction formatting. The device is also accompanied by a com-
munication application.

Keywords FPGA, Xilinx, assembler, pulse train generator, Verilog,
serializer
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Introduction

The need for precise scientific equipment is rising as the research becomes
more focused on the minuscule features of our universe with every following
day. This equipment sometimes is not readily available and when it is, carries
a hefty price tag. The institutions that require these precision instruments
often have to develop them on their own. These appliances can be divided
into measurement and stimulus generation devices. This paper is concerned
only with the latter. One example of such a device, and also the subject of
this thesis, is the pulse train generator, also called the pulse sequencer, pulse
sequence generator, or many other takes on the same name.

Pulse train generators are used to generate stimuli for a variety of exper-
iments that require pulses of precise widths to be administered to inputs at
correct times. The precision required can even reach the magnitudes of pi-
coseconds. This makes the task vitally unattainable by microprocessor-based
systems whose speeds are currently about magnitude lower and therefore, re-
quire the use of more specialized technology.

The need for such a device was felt by the Department of Optics of the Fac-
ulty of Science at Palacký University. The order to design a similar device
that would surpass their in-house microprocessor design (which will be dis-
cussed in the following chapter) was therefore created. The main issue of their
design was the lack of high enough resolution and speed. The proposed design
aims to improve on their design with the use of a field-programmable gate
array, which is more suitable for the task due to its parallel nature akin to
the parallel nature of the task at hand.

The objective of this thesis is the research of available solutions to this
problem and available technology for improving on them. The goal is finding
a compromise between price and performance, followed by the implementation
of the said device. The implementation will be done in Verilog hardware de-
scription language and will also include supporting software to enable the ap-
pliance to be reasonably simple to interface with even for the researchers that
will be using it.
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Introduction

In the first chapter, the already existing solutions will be discussed. After
that, the problem will be analyzed from the perspective of memory, band-
width, and physical size and pin count of the utilized device. At the end of
this chapter, the analysis of the manufacturers and available hardware will be
conducted, and the final hardware is selected. The third and most involved
chapter is concerned with the design and implementation of the pulse box.
The design is discussed from all points of view. In the last chapter, the simu-
lations implemented during the development are demonstrated, and the device
is tested in real hardware.
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Chapter 1
Previous work

1.1 In-house solutions

1.1.1 UPOL Design

At the Palacký University, an attempt to create such a device was made
[1]. The device is based on a SAM3X microcontroller on an Arduino Due
board. The central part of their design was a program capable of generating
single purpose instruction sequences, which would toggle the output pins at
the correct times. The timing was implemented using simple delay loops and
interposed NOP instructions to improve precision. The main flaw of the design
is the lack of speed due to the utilization of an MCU instead of dedicated logic.
Arduino due runs on an 84 MHz clock [2]. This means that any changes to
the output pins can happen no faster than that. This means the minimal
theoretical output granularity is around 12 ns. This may prove insufficient for
faster experiments.

Figure 1.1: Arduino Due development board
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1. Previous work

1.1.2 Design by Ben Haylock and collective

Contrary to the previous, this design utilizes a Cyclone III FPGA [3]. The de-
vice, further called Haylock’s device, incorporates a single memory unit com-
posed of M9K primitives provided in the chip. The data is first preloaded in
the chip memory and sent out in parallel after the assertion of an external
trigger.

Figure 1.2: Schematic of pulse train generator by Ben Haylock and collective

It is also necessary to mention that the constraints for this design differ
from ours in a few key points. Our design only needs to produce monopolar
pulses only while Haylock’s device is capable of generating bipolar pulses.
Also, the required and variable channel power output is not a requirement for
our design.

1.2 Commercial devices

1.2.1 Tektronix HFS 9000

In the 90s, Tektronix presented the HFS 9000 Stimulus system, aimed at
various markets. It was supposed to be a universal and moddable platform for
any experiment. This particular device is included here due to the reasonable
pricing for the feature set provided. Despite being dated, the characteristics
are still relevant for experiments of today. The channels are implemented
using add-on cards HFS 9PG1 and HFS 9PG2. The speeds of the HFS 9000
greatly exceed the speeds expected from any in-house design. In the manual,
the claim is that 1 ps resolution can be achieved [4]. This device fulfills
the task requirements in all regards except for the number of channels. Also,
using the word available may be an oversight. Due to the age of the said
device, it is rather problematic to obtain one. Another drawback, should one
consider using said device for their experiment, is the rather outdated user
interface, consisting of a very simple text CRT display.

4



1.2. Commercial devices

1.2.2 Keysight 81134A

The dual-channel Keysight 81134A and the single-channel version 81133A are
the currently available instruments sold by Keysight. The devices boast out-
put frequency range between 15 MHz and 3.35 GHz [5] but have only up to
2 channels. These instruments represent the group of commercially available
devices very well. A complete package with full support, accompanying soft-
ware for PC configurable from a PC with a price of refurbished models around
40,000 USD.

Figure 1.3: Keysignt 81134A Pulse Pattern Generator
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Chapter 2
Analysis

The requirements for the device were initially set very broadly. The only
important parameter was the improvement over the design already used at
UPOL. We set our design goals to following.

• 1 ns resolution1

• 16 output channels

• >1000 stored output state changes2 for every channel

• 6 bit parallel outputs for some channels usable for connecting channel
attenuators

2.1 Memory
Let us concern ourselves with the memory requirements first. There are two
evident and naive approaches for storing the patterns in memory. The pattern
may be stored directly or through time intervals instead.

The first approach implements the sequence storage as raw waveforms
encoded as bits in the instruction memory. Every bit signifies the output
state directly. In the following figure, the sequence generated from the value
0xA5 can be observed. The bits are read from the MSB first.

Figure 2.1: Output waveform for raw instruction storage scheme

1Minimal pulse or gap duration
2Pulses or gaps of minimal width
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2. Analysis

This approach is very naive. While simple to implement, much mem-
ory is wasted for sparse sequences. The only advantage could be the speed.
The sheer simplicity of the design may increase the maximal clock frequency
and, therefore, the resolution. Another problematic point would be adding
the data for the parallel outputs. Due to the simplistic nature of the encod-
ing, or more precisely, the lack thereof, the parallel output value would have
come with every bit effectively multiplying the memory requirements 7-fold
(1 bit for on/off, 6 bits for parallel value).

The other possible approach is to separate the sequences into instructions
containing 3 fields, the output value, the time it should be displayed for,
and the parallel output. This approach makes sure no memory is wasted
for sequences with fewer transitions as only the transitions themselves are
encoded. On the other hand, this means that narrow pulses or gaps would
require whole multi-bit instructions for their realization, and if more dense
pulse sequences are required, then memory is wasted.

Assuming 32 bit instructions, 1 bit dedicated to the output value, 6 bits
to the parallel output value, and 25 bits for the duration, the sequence from
the previous figure can be encoded using eight instructions. A single byte
now suddenly takes up 256 bytes! It is obvious that implementing either of
the naive approaches would lead to a severely inefficient encoding scheme.
We can use the examples to roughly estimate the memory usage though. For
the first scenario, the calculation is straightforward:

Memory = 1bit · 16ch · 1000commands = 16000bit = 15.615Kbit

And with parallel output data:

Memory = (1bit + 6bit) · 16ch · 1000commands = 112000bit = 109.375Kbit

Should the purely timed approach be used, the resulting memory usage
approximation is as follows:

Memory = 32bit · 16ch · 1000commands = 512000bit = 500Kbit

The raw scheme is much more efficient for storing dense sequences but
is wasteful when the sequences are sparse. The timed approach has exactly
the opposite characteristics. This means a hybrid approach could be ideal and
would allow the appropriate encoding scheme to be used for each use case.
The exact implementation shall be discussed in greater detail in the design
chapter.

8



2.2. Bandwidth

2.2 Bandwidth

Calculating the total throughput will be simple as well. The worst case,
independent of any encoding, is that the output bit would change on every
clock edge. This means the data is presented to the outputs every nanosecond.
The throughput for the 16 channels is then calculated as follows:

Throughput = 1b
1ns · 16ch = 16Gbit/s

Had the processing been done entirely in series, the hardware would need to be
clocked at 16 GHz! This may seem like a colossal number, but it may not be
as problematic as it may seem. The processing can be done in parallel at many
levels. If every channel is processed independently, we already get a decrease
to 1 GHz. If we process the data in bigger chunks, for example, bytes, and
utilize some form of serialization at the end, the internal logic frequency drops
to 125 MHz, a value completely reasonable for an FPGA. The details on how
this was implemented will be discussed further in the design chapter.

2.3 Pin count

This design requires a significant number of output pins. There are a few
considerations to take into account. The frequencies transmitted from each
channel are very high, and therefore the signals can be easily impaired. The es-
timated pin counts for each case can be seen in the table 2.1.

Differential output Attenuator Pin count
No No 19
Yes No 35
No Yes 115
Yes Yes 131

Table 2.1: Pin counts required for various configurations

2.4 Available technology and hardware selection

Since the minimum pulse and gap width requirement was set to 1 ns, it was
decided very early in the design process that FPGA would be the most suit-
able for the task. Using an MCU would inherently lead to design in many
ways similar to the one realized at UPOL and would also lack the flexibility
that we wish to achieve. Another major factor was the general availability
of knowledge and hardware. Depending on the availability of resources and
one’s manufacturing facilities, one may decide to incorporate the chip into

9



2. Analysis

direct daughterboard

Footprint smaller larger
Ease of design harder easier
Price cheaper more expensive
Support circuitry power, communication,

program flash, clock, ...
power, clock (depending
on application)

Assembly BGA packages require
reflow soldering

depending on board can
be hand soldered

Signal integrity as good as possible impaired by connectors

Table 2.2: Comparison between direct and daughterboard FPGA designs

the design directly or on a daughterboard. The first approach gives the de-
signer the most flexibility but comes with a higher required level of electronics
design knowledge. The second enables the designer to focus better on the task
at hand but comes at the cost of lower feature and routing flexibility, accom-
panied by the bulkier size. For the design of the pulse box, the decision had
to be made as well. In the table 2.2, we can see a more organized comparison.

In the end, the decision was made for us. The FPGAs of today come almost
exclusively in BGA form. This means the pins are on the underside of the chip
and can not be soldered with a handheld soldering iron. To affix the FPGA
to the PCB, the chip is first fitted with solder balls and placed on the PCB.
The entire assembly is then heated in a specialized oven. The chip is now fixed
to the board. This technology is not readily available to us, and setting up
a reflow soldering process would require a significant time investment. Because
this was not an option, there were two other options left. Choosing an older
FPGA (such as Cyclone IV from Altera/Intel), which is available in less dense
and more flexible packages or the utilization of a daughterboard. The former
was decided against due to the time constraints imposed on the design, thus
leaving us with the second option.

2.4.1 FPGA Manufacturers and available hardware

In the FPGA space, there are two main manufacturers. Intel3 and Xilinx.
These two manufacturers hold over 80% of the market share [6]. The choice to
utilize gate arrays from either of the manufacturers was made due to the well-
established user space and general ease of access to documentation. Other
manufacturers were not considered.

3until 2015 Altera
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2.4. Available technology and hardware selection

Intel FPGA portfolio

Intel currently markets 5 device families. Agilex, Stratix, Arria, Cyclone and
Max [7]. The Agilex family is the Intel’s newest offering, built on a 10 nm
process that promises to do everything better than its predecessors both in
terms of performance and power consumption. Since there was no need for
either of those, the price increase was not justified.

Skipping ahead to the Max family, these FPGAs are Intel’s offering when it
comes to non-volatile, also called flash-based, FPGAs. The advantage of flash-
based FPGAs is the very rapid start-up time and simpler electronic design as
they do not need additional configuration memory. Because the chip does not
need to pull the bitstream from a flash memory device, the operation may
begin almost instantly after powered. This was not a requirement for our
design either and has therefore ruled out this family due to the price increase
as in the previous case.

The Stratix, Arria, and Cyclone are Intel’s conventional FPGA families.
The memory sizes commonly found in FPGA devices will not be a limiting
factor as long as the most simple chips are avoided. The only requirement
was the capability to output a signal of sufficient frequency. Because a signal
of period as low as 1 ns must be transmittable, directly driving the FPGA
pins from the fabric is out of the reach. This means the data has to be
serialized in some fashion. For this exact reason, the chips are equipped with
a so-called SERDES circuit [8], which is pre-built in hardware (not in FPGA
fabric but directly in silicon) and can, therefore, be clocked to frequencies
highly exceeding the ones attainable in the FPGA fabric. SERDES circuits
are commonly found in all the families of the FPGAs, which in turn means
that any device with sufficient memory and pin count can be used.

Xilinx FPGA portfolio

With Xilinx, the situation is somewhat similar. Their portfolio consists of
the Virtex, Kintex, Artix, and Spartan families, sorted from the largest and
most advanced to the smallest and cheaper. The families are further sub-
divided into generations. As mentioned before, the preference was to utilize
a more modern FPGA. This rules out the Spartan-6 family, currently the only
supported 6th generation chip. The case with Xilinx is the same as with In-
tel. The vast majority of the devices are acceptable feature-wise, which means
the deciding factor will be the availability of development kits and the support.

In regards to the support, both of the manufacturers run a forum full of
employees and members who are more than willing to help with any aspect of
the design. Also, the general availability of documentation is comparable.

11



2. Analysis

Intel development kits

Kits equipped with Intel FPGA’s are primarily manufactured by Intel them-
selves and by Terasic. At this point, it can be easily said that the vast majority
of FPGAs manufacutred will be able to cater to our needs. The deciding factor
will then have to be the form factor of the kits available.

The kits from Intel are of no real use to us. The intended use for these kits
is the early prototyping and education. The boards are either in the format
PCIe cards or user-friendly development kits with a lot of unnecessary features
such as ethernet transceivers, displays, LEDs, and other. Other manufacturers
do not have much more to offer, either. Terasic has a very similar offering,
albeit with some boards that could be of use to us. [9]

Figure 2.2: Terasic TR5 development kit

Setting the price aside, the TR5 development kit offers 2 HPC and 2 LPC
FMC connectors and a FPGA more than sufficiently powerful. The main de-
sign disadvantage, and one of the reasons any solution involving FMC connec-
tors was not implemented in the end, is the fact that the soldering techniques
used for mounting such connectors are the same as for BGA chips. This means
a commercially produced board would have to be used.

The LPC FMC connector contains 72 user utilizable signals, and the HPC
variant has 200 [10]. This is a sufficient amount for our application. Breakout
boards could then be used. The majority of available boards look alike to
FPGA Mezzanine Card (FMC) LPC Breakout Board by IAM Electronic.

With these boards, the issue could be the signal integrity and the possibly
haphazard nature of the final wiring. The focus was turned to breakout boards
with SMA connectors. An example was selected from HiTech Global. While
more suitable, the price is higher, and the number of outputs is only 32. This

12



2.4. Available technology and hardware selection

Figure 2.3: IAM Electronic breakout board

means a single SMA card like this could cover only the channels and more
outputs would be necessary.

Figure 2.4: 8-Port SMA / 34 Differential Pair FMC Module (Vita57.1) from
HiTech Global

Xilinx development kits

The availability of suitable Xilinx based hardware is somewhat better. With
kits manufactured by Xilinx themselves, the story is somewhat similar with
the boards manufactured by Intel. Again, we find kits aimed primarily at
the early prototyping stage of electronics development and the education sec-
tor.

13



2. Analysis

Looking at the other manufacturers, such as Digilent, we find that three
types of boards are available. The first type is aimed strictly at the education
sector. One can find devices such as the Basys or Nexys. The second type
are boards, again, for prototyping. The third are system on module boards,
such as the Cmod A7 from Digilent. The purpose of this board is to be
easily connectable in a breadboard but can also be integrated into a more
complicated design. The design idea implemented in this device is right for
us, but the module has a lack of I/O pins we need, and the FPGA used has
a very limited internal memory of only 225 KB.

Figure 2.5: Cmod A7 development board

The manufacturer that made the most sense, in the end, was Trenz Elec-
tronic. The company manufactures a variety of development kits and a big
part of that are systems on module. The modules can be divided into 2 dis-
tinct groups. The first group are modules equipped with the high-density
Razor beam connectors. The modules are rather small and high density. This
makes them suitable for use in larger volume devices than ours. An example
of such a module is the TE0712 as seen in the Figure 2.6.

Figure 2.6: TE0712 FPGA module by Trenz Electronic
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2.4. Available technology and hardware selection

The next type of module is the TE0725. This module is equipped with
standard 2.54 mm pin headers and can be therefore interfaced much more
easily. Overall, the feature set of the two Trenz kits is the same. Both have
the same FPGA and are equipped with a flash memory device. Both are also
sold with an HyperRam chip, which is not going to be used in the design.
The difference is only the form factor. For the prototype stage, this variant
was used. In the future, should the signal integrity prove to be insufficient or
the module too large, the electronics can be redesigned, and the FPGA code
will be compatible.

Figure 2.7: TE0725 FPGA module by Trenz Electronic
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Chapter 3
Design and implementation

In the first part of this chapter, the rough design of the entire hardware
is presented. This is followed by actual design for the FPGA. In the end,
the TE0725LP board with the Xilinx Artix-7 XC7A100T-2CSG324C FPGA
was incorporated as the core element in the pulsebox. The device was chosen
due to the reasonable size of the chip’s BRAM and the wish to use a modern
FPGA, which 7-Series from Xilinx definitely is. The hardware description is
followed with chapters about the sequence assembler software and interface
application.

3.1 Design approaches
There were multiple design approaches that could have been taken. Princi-
pally, the data independent of encoding or design strategy enters the pulsebox
via a single communication interface connected to a personal computer and
has to be stored in some way. Then, this data is split into the individual
channels and is sent out. A point where the data splits must therefore exist
and can be placed in 2 possible locations of the design, before the instruction
memory or after.

Splitting the datapath after the memory would lead to a design where
a single block of memory has to be read by multiple channels, often at the same
time. This means the memory would have to have multiple read ports or be
accompanied by some form of arbitration circuitry. Data buffering would also
be necessary to make sure all the channels are supplied with data without
interruption. The BRAM blocks found in the FPGAs are usually designed in
a rigid fashion with a single read and write port set. Implementing multi-port
ram with them is therefore impossible and would be accomplishable only with
external memory device or a lot of wasted resources due to the necessity to
duplicate the data between ports.

This leads us to the arbitration approach. The memory could be organized
in larger words, and the data can then be cached. This approach can seem even
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more suitable when the reading is purely sequential, and therefore general-
purpose cache can be replaced with a simple FIFO. Also, the arbitration
circuit could be replaced by an automaton, which would only make sure that
none of the FIFOs go empty. This approach would be necessary if an external
memory was used instead of on-chip BRAM. This could be, for example,
due to the capacity required being too high. Another reason to implement
a memory arbiter would be a design where all of the channels need to access
the entire memory. The channels in our design access only their portion of
memory and do not interfere with each other. This could become a problem
if an optimization in the instruction set, which would enable the channels
to read in the entire sequence memory, were introduced. Such optimization,
for example, could be the ability to define pulse sequences (analogically to
functions in standard programming) and permit access to them from all of
the channels. For our use case, this does not, therefore, make much sense as
a much simpler and direct approach is available

The other approach assigns a separate memory block to each channel.
The most time-constrained and highly synchronous part of the design is the chan-
nel logic. The channels must be granted access to the instructions at any time,
as the failure to do so would lead to skipping in the sequence currently played
back. That is unacceptable. This solution takes the uncertainty, which would
be introduced with a memory arbiter, outside the time-critical part of the de-
sign and into the write part. It is assumed that the operator of the pulsebox
will upload the sequence data prior to starting the playback. The write part
of the design is then limited only very vaguely and is only required to process
the data in a reasonable time. Delays in writing lead only to longer user wait-
ing times, and no data errors are generated. This is the design that will be
implemented.

3.2 Design outline

The entire design was done in Verilog HDL utilizing the Xilinx Vivado soft-
ware. The whole design, except the output serializer, runs on a single clock
generated by a PLL in the FPGA. The design is divided into 16 identical chan-
nel blocks, which provide a write-only memory-mapped interface to the upper
modules. The channels contain a 1024 word memory, which is being read
sequentially as the pulse sequence progresses. As mentioned before, to lower
the internal frequency and enable parallel processing, FPGAs commonly im-
plement some form of serializer/deserializer logic. The Artix-7 is no different
in that regard. This FPGA is equipped with the OSERDESE2 module, called
oserdes or serializer from now on, on the majority of the pins. This module
can be utilized to create signals that can easily be clocked at 1 GHz. This is
precisely what is needed for this application. The serializer can be operated
at various widths, 2, 3, 4, 5, 6, 7, 8, 10, or 14 bits to be exact, depending on

18



3.3. External interface

the operation mode. A decision had to be made in regards to which serial-
izer width would be selected, 14-bit serializer width was deemed incompatible
with the encoding scheme, which is built around 32 bit instruction length
and will be discussed in detail in further sections. With 14 bits, one instruc-
tion could either contain two output 14-bit words leaving 4 bits empty or one
output word and one 6-bit parallel output leaving 12 bits unused. The next
logical step would be the 10-bit serializer width. This number was selected
as its the highest number for which the count of wasted bits is considered
reasonable.

Now that the oserdes width was selected, we can calculate the internal
logic frequency required. First, let us pay attention to the clock used to drive
the oserdes. Because we are using 10-bit width, the oserdes can be operated
only in DDR mode per manufacturer’s specification. This means that data
is clocked out on every clock edge. The resulting clock must then be half
of the desired output frequency, 500 MHz. Let us now turn our focus to
the internal clock frequency. It can be calculated by dividing the serializer
frequency by the width of the serializer and multiplying by 2 because every
clock cycle, 2 bits are transmitted (a single bit on every clock edge). The re-
sulting clock is then precisely 100 MHz. There is one last caveat with using
the OSERDESE2. When the internal and output clocks are in sync, the man-
ual states that the delay between the input and output may differ by one
clock cycle and can not be controlled, this was solved with the clocks being
generated from one PLL and slightly out of phase, so that no edges would
coincide. This has proven satisfactory and has yielded deterministic results.

Now with the clocking scheme out of the way, we can concern ourselves
with the logic design. To begin with, the communication protocol must be
specified as it was the primary influence for the design in Verilog.

3.3 External interface

The only communication port beside the pulse outputs and a trigger input is
a serial interface. Simplicity was the main concern here, and therefore a UART
interface was chosen. To enable a modern PC not equipepd with a hardware
RS232 port to communicate with the pulsebox, an interface chip had to be
introduced. In the final design, the FT232 interface chip would be used. Using
a chip from FTDI has one added benefit too. Besides working as a simple
USB COM port interface in line with the standard specification, there are
also custom libraries available from the manufacturer. With these libraries,
a more advanced and professional interface program could be created. This
program would not then have to rely on the user to select a valid port and
speed for the device to communicate correctly. In the prototype, a different
approach was taken. An ATmega32u4 mounted on an Arduino Pro Micro
board was used. Using the default Arduino toolchain and libraries, the chip
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simply forwards all the data sent via the USB COM port to one of its UART
transceivers and vice versa.

With the lowest level of the communication interface described, let us
now proceed to the description of the protocol itself. At first, a very general
outline was laid out. The interface is a simple master-slave serial bus and
implements a simple stop-and-wait protocol. All the communication is initial-
ized by the PC (master) which, after sending a request, waits for an answer.
Because the device can execute all of the commands during the duration of
a single baud, it is capable of processing a continuous stream of commands.
The simple protocol was selected to improve reliability during development
and can be upgraded later. Because the protocol does never send more data
than is the size of any buffer along the data path, no flow control is necessary.
Implementing flow control would also have to be done on the protocol layer
and not with simple Xon and Xoff bytes since the protocol does not work with
text but binary data.

Now, we shall concern ourselves with the message format. Initially, the pro-
tocol was supposed to be designed such that the internal workings of the pulse
box are covered by an abstraction layer. Various commands would be defined
to upload the sequence, reset the device, retrieve the channel status, and ma-
nipulate the instrument in other ways. This command-oriented format can

Figure 3.1: Command oriented message format

be seen in figure 3.1. The command and answer message format would be
the same to keep the protocol more streamlined. First, a start byte is sent,
followed by a status byte used by the pulsebox to signal the result of the last
operation (similar to a return code in programming). The status byte would
always be 0 in the direction from PC to pulsebox. A command word is followed
by a block of command-specific general data. This can be, for example, an
address and data for writing into a channel sequence memory. The message is
terminated with a simple checksum, calculated by summing all message bytes
mod 256. While this message format is very versatile, it was soon realized that
there is only one necessary and 2 handy commands that can be implemented.
Before this realization, a message format specification was written. A refor-
matted version of the said specification can be found below. The complexity
may not seem to be that high, but the possibilities of the protocol are not
being utilized to the full extent. For example, the only command utilizing
the arguments is the command 0x04.
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Message format
-------------
| # | Byte | Information |
| ----- | --------------- | ----------------------------------------------- |
| 1 | Synchronization | Start byte: 0x55 |
| 2 | Status | Status code: 0x00-0xff |
| 3 | Function Code | Function code describing the~message: 0x00-0xff |
| 4 | Count | Number of bytes of arguments: n = 0x00-0xff |
| 4 + 1 | Argument | Argument byte [1] |
| 4 + n | Argument | Argument byte [n] |
| 5 + n | Checksum | Sum of all previous bytes: 0-0xff |
Messages towards the~device always have status equal to 0x00
Status codes
------------
| Status code | Description |
| ----------- | --------------------- |
| 0x00 | Ok |
| 0x01 | Wrong function code |
| 0x02 | Wrong checksum |
| 0x03 | Argument out of range |
Messages
--------
All messages (except for notification messages) are initiated by the~master (computer).
The~slave (pulse box) only responds.
| Code and description | #cmd | #ans | Arguments command | Arguments answer |
| ---------------------------------- | ---- | ----- | ----------------- | ------------------- |
| 0x00 | 0 | 0 | N/A | N/A |
| No operation | | | | |
| ---------------------------------- | ---- | ----- | ----------------- | ------------------- |
| 0x01 | 0 | 3 | N/A | 0 -> Status bits* |
| Retrieve pulse box status | | | | 1-2->Channel status |
| ---------------------------------- | ---- | ----- | ----------------- | ------------------- |
| 0x02 | 0 | 0 | N/A | N/A |
| Stop playback and reset the~device | | | | |
| ---------------------------------- | ---- | ----- | ----------------- | ------------------- |
| 0x03 | 0 | 0 | N/A | N/A |
| Start playback | | | | |
| ----------------------------------- | ---- | ----- | ----------------- | ------------------- |
| 0x04 | 6 | 0 | 0-1 -> 14bit addr | N/A |
| Writes a word into command memory** | | | 2-5 -> 32bit val | |
- * bit 0 = running/halted, others for future use
- ** Reading back now possible as of now due to the~design of the~used memory blocks

The simplified protocol relies on exposing an addressable interface to the com-
puter. The start byte, status word, and checksum are preserved, but the rest
of the message has been changed. The status byte is now followed by an ad-
dress and value having 16 and 32 bits, respectively. The operation (read or
write) is now encoded in the status code.

Figure 3.2: Memory oriented message format

The channel memory has been assigned the lowest 16K of the address
space. Above that, addresses for the reset and status bits are located. This can
be observed in the updated protocol specification below. This is the version
implemented.
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Command format
-------------
| # | Byte | Information |
| --- | ---------------- | ------------------------------------------- |
| 0 | Synchronization | Start byte: 0x55 |
| 1 | Command/Response | Command / Response byte |
| 2-3 | Address | 16 bit address |
| 4-7 | Value | 32 bit value |
| 8 | Checksum | Sum of all previous bytes: 0-0xff |
All values are sent MSB first.
Command/Response codes
----------------------
| Status code | Description |
| ----------- | ----------------------------- |
| 0x00 | Command: Read |
| 0x01 | Command: Write |
| 0x02 | Response: OK |
| 0x03 | Response: Address not defined |
| 0x04 | Response: Address read only |
| 0x05 | Response: Address write only |
| 0x06 | Response: Bad checksum |
| 0x07 | Response: Bad command |
| 0xFF | Response: Logic error |
For read operation, results are given in the~"Value" field accompanied by source
address.
Address ranges
--------------
| Start | End | # | Function |
| ------ | ------ | ---: | ------------------ |
| 0x0000 | 0x03FF | 1024 | Channel 0 program |
| 0x0400 | 0x07FF | 1024 | Channel 1 program |
| 0x0800 | 0x0BFF | 1024 | Channel 2 program |
| 0x0C00 | 0x0FFF | 1024 | Channel 3 program |
| 0x1000 | 0x13FF | 1024 | Channel 4 program |
| 0x1400 | 0x17FF | 1024 | Channel 5 program |
| 0x1800 | 0x1BFF | 1024 | Channel 6 program |
| 0x1C00 | 0x1FFF | 1024 | Channel 7 program |
| 0x2000 | 0x23FF | 1024 | Channel 8 program |
| 0x2400 | 0x27FF | 1024 | Channel 9 program |
| 0x2800 | 0x2BFF | 1024 | Channel 10 program |
| 0x2C00 | 0x2FFF | 1024 | Channel 11 program |
| 0x3000 | 0x33FF | 1024 | Channel 12 program |
| 0x3400 | 0x37FF | 1024 | Channel 13 program |
| 0x3800 | 0x3BFF | 1024 | Channel 14 program |
| 0x3C00 | 0x3FFF | 1024 | Channel 15 program |
| 0x4000 | 0x4000 | 1 | Control word |
| 0x4001 | 0x4001 | 1 | Status word |
Special address spaces
----------------------
Channel programs (Write only)
Direct access to channel program memory, instructions are executed from the
lowest addresses first.
Control word (Read / Write)
| Bits | Meaning |
| ---- | ------------- |
| 0 | Reset/Running |
Status word (Read only)
| Bits | Meaning |
| ---- | ------------------------------------------------------ |
| 0-15 | Done status of individual channels 1->Done, 0->Running |
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The main advantage of the updated message format is the fixed message
size. Before, when the message included a variable-length argument array,
the receiving and transmitting circuitry had to contain a dedicated block of
memory to work with the arguments. The automaton responsible for the re-
ception of the messages was also made more complex. With the omission of
the aforementioned variable-length element, all the control automaton has to
do is to read nine bytes of data beginning with 0x55 from the serial line and
store them in appropriate registers. Simple as that.

3.4 Top level design

The architecture, as implemented in the prototype, will be discussed in this
section. All the design iterations and previous versions have their roots in
the design of the communication protocol and the instruction format, and will
therefore be discussed in their respective sections.

Figure 3.3: Pulsebox top level simplified schematic
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The top module pictured in figure 3.3 can be divided into three distinc-
tive parts. The communication interface located on the left side is responsi-
ble for handling the communication between the pulse box and the PC. On
the receiving side, the serial data is first read and passed into the protocol
parsing automaton in a parallel fashion. Then the address and data words are
output to their respective buses, and necessary control signals are asserted.
Had the message been parsed successfully, either the read or write signals
are asserted. The memory map controller is then tasked with carrying out
the command. In the case of a wrong command or bad checksum, the respec-
tive error signal is asserted, and the control is handled directly to the message
transmitter. The transmitter then responds with a corresponding status code.

Now, let us return to the Memory map controller pictured in the cen-
tre of the schematic. Its main job is the uploading of the pulse sequences
to the channel blocks. When an address between 0x0000 and 0x4000 is to be
written, the data is passed into the channel data output alongside the address,
and a write signal is asserted. The block also contains a register responsible
for starting and stopping the channels. The reset can be controlled via a write
to the lowest bit in the address 0x4000, or it can be unset through the external
trigger signal. The last function of this block is to pass the channel status to
the PC. Each channel provides a single bit output denoting its state. The user
can then see if a channel is still running and replaying the programmed se-
quence or if it has finished (or has been stopped).

The block on the right contains all of the 16 channels and logic responsible
for splitting the 14 bit input address bus into sixteen 10 bit busses for each
channel. This means all the channel program memory can be accessed through
a single unified bus. The details of the channel logic will be discussed in
a separate section.

3.4.1 Communication application

To provide a user friendly interface to the pulse box, an interface application
written in Python was created. The application enables the user to control
the pulsebox from the comfort of a more user-friendly interface. As of the last
version, only the command line interface is available, but the intent is to create
a GUI application based on Tkinter or some other simple GUI framework.
Instead of listing the functions manually, let us have a look at the help message
incorporated in the software.
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pulse_box_app v0.2.0 on linux
usage: app.py [-h] -c COM [-b BAUDRATE] [-p] [-s] [-w] [-r] [-u [UPLOAD]]

[--start] [--stop] [--speedtest] [-a ADDRESS] [-d DATA]
[-f FILE] [--nogui] [-v]

optional arguments:
-h, --help show this help message and exit
-c COM, --com COM set serial, on linux /dev/tty???, on windows COM?
-b BAUDRATE, --baudrate BAUDRATE

baudrate
-a ADDRESS, --address ADDRESS

address for manual R/W, 0x prefix for base 16
-d DATA, --data DATA data for manual write, 0x prefix for base 16
-f FILE, --file FILE program file for uploading
--nogui run without gui
-v, --verbosity console logging verbosity

tasks:
-p, --ping task: test communication with the~PB
-s, --status task: get PB status
-w, --write task: manual write to PB address
-r, --read task: manual read from PB address
-u [UPLOAD], --upload [UPLOAD]

task: upload channel sequence, add comma delimited
number list to specify channels to be upload or "all"

--start task: start sequence playback
--stop task: stop sequence playback and reset channels
--speedtest task: test communication speed

The core functions that are utilized by the other ones are read and write.
Provided with address and, in the case of write with data, the pulsebox 16 bit
address space can be accessed. All checking, including read/write permissions
and the availability of the memory location, is done in the FPGA and is
signalled back into the application. This ensures that no matter what changes
are made to the hardware design, as long as the communication protocol stays
the same, the ability to interface with the hardware will remain on at least
the most general level.

Now, let us proceed with an overview of the program capabilities. All
the ping task performs is a read from address 0x4000. This was chosen ar-
bitrarily. A successful response signifies communication has been established
correctly. Start and stop commands, as their names suggest, affect the run-
ning state of the hardware. Asserting the external trigger has the same effect
as the start function. The upload function is the main reason for the program.
The input is a binary file that will be uploaded to the pulsebox precisely as
is, with the only difference being the remapping of each 4 bytes into a single
32 bit word used in the program memory.

The last function, speedtest, was created because of the rather slow com-
munication speeds noticed during the development. The speeds measured were
about 32 Kbit/s, which is rather slow for UART with 2 Mbit baudrate. This
function simply sends 4096 ping commands, and from the time the communi-
cation takes, it can calculate the real speed and estimate the time necessary
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to upload the whole sequence to all of the channels. While this proved use-
ful, the reason for the significant slowdown was not explained yet. To rule
out any slowdowns caused by the PySerial library used, a simple, absolutely
barebone program written in plain C was created. This program has shown
exactly the same results. This meant the problem is somewhere in the OS or
in the hardware. An oscilloscope was hooked up to the serial output of the in-
terface chip, and it was noticed that there are wide gaps between the bytes.
This is probably caused by the slow Atmega32u4 processor, not being able to
process the data fast enough. Also, the communication with the USB device
directly (when FT232 is used) instead of relying on a virtual COM port driver
could improve the speed. Further investigation was not done in this matter
as the speeds were satisfactory for this prototype stage.

3.5 Instruction specification and assembler

The inner workings of each channel were crafted around an instruction speci-
fication, which was done very early in the design process. As it was mentioned
in the requirements and specifications chapter, there are multiple ways of en-
coding the sequences, and a combined approach was implemented.

At first, it was decided that the instructions would have a constant width,
which was decided to be 32 bits. 8 bits would be way too small as the serializer
width is higher than that. 16 bits seem plausible, but considering the attenu-
ator data is 6 bits wide, there are no bits left for the differentiation between
instruction types. 64 bits seemed like an overkill. Encoding up to 6 chunks
without attenuators into one instruction seemed nice, but using this amount
of bits for storing time interval seemed rather wasteful. The possibility of
needing a sequence lasting just shy of 6 years (the longest possible interval
that can be encoded with 54 bits) is negligible.

Now that we have set the instruction length, let us proceed with the enu-
meration of all the parts that have to be incorporated into the sequence. First,
a small number of bits have to be dedicated to the identification of each in-
struction. Then, for the timed instruction, an output value, attenuator value,
and the time have to be added. Incorporating the value into the attenuator
(such that >0 means 1 and 0 means 0) would not work because the user might
want to set the attenuator in advance without setting the output. For the raw
instruction format, the bit patterns and attenuator must be added. After
a few iterations, the protocol was defined per following specification.
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Instruction encoding
====================

End instruction
---------------
Halts the~pulse box channel from reading any further instructions. Used as the
last instruction in the~sequence.

| Name | Bits | Values | Description |
| ---------- |:-----:|:------:| ---------------------------------------------- |
| Null | 0-31 | 0 | Ends program |

[0,1] Long instruction
----------------------
This instruction sets output (value based on opcode) for time specified in
*"Time"* part of the~instruction. Unit of time is 10 ns.

| Name | Bits | Values | Description |
| ---------- |:-----:|:------:| ---------------------------------------------- |
| OpCode | 0-1 | [0,1] | Select instruction. Value also denotes output |
| Time | 2-25 | * | Time the~output will be held for |
| Attenuator | 26-31 | * | Attenuator setting |

[2] Precise instruction w/ attenuator
-------------------------------------
This instruction serializes the~bit pattern/s specified in *"Pattern n"* parts
of the~instruction. Single bit sets the~output for 1 ns. Length of the~pattern
may be selected by bit 22 to 10 or 20 bits.

| Name | Bits | Values | Description |
| ---------- |:-----:|:------:| ---------------------------------------------- |
| OpCode | 0-1 | [2] | Select instruction. |
| Pattern 1 | 2-11 | * | Output pattern 1 |
| Pattern 2 | 12-21 | * | Output pattern 2 |
| P2 Enable | 22 | * | Enable pattern 2 (Switch 10 or 20 bit pattern) |
| N/A | 23-25 | N/A | Not used |
| Attenuator | 26-31 | * | Attenuator setting |

[3] Precise instruction w/o attenuator
--------------------------------------
This instruction serializes the~bit patters specified in *"Pattern n"* parts
of the~instruction. Single bit sets the~output for 1 ns. The~length is always 30
bits. The~attenuator value is not affected by this instruction.

| Name | Bits | Values | Description |
| ---------- |:-----:|:------:| ---------------------------------------------- |
| OpCode | 0-1 | [3] | Select instruction. |
| Pattern 1 | 2-11 | * | Output pattern 1 |
| Pattern 2 | 12-21 | * | Output pattern 2 |
| Pattern 3 | 22-31 | * | Output pattern 3 |
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In the final format, the first two bits have two functions. The first is
the identification of the instruction, and the second is the output value during
the timed instruction. This way, all the four possible values are used, and
a separate bit need not be used to set the timed instruction output. The timed
instruction then follows the previously set outline. A 6 bit attenuator value
is placed at the end of the instruction, and the 24 remaining bits in between
are left to the time. This means the longest time sequence coverable by one
instruction is calculated as follows:

M = 224 · 10ns = 167772160ns = 167.77216ms

This number is more than satisfactory for this application. Continuing with
the raw instructions, it was soon evident that some of the bits would be
inevitably wasted. This was partly mitigated by the split into two separate
instructions. One enabling pattern lengths of 10 and 20 bits with attenuator,
the second encodes 30 bit sequences at the cost of no attenuator setting due to
all the 30 remaining bits being used. In the former instruction, the attenuator
value is placed at the end of the sequence, in the same place as in the timed
instruction. To distinguish between 10 and 20 bit pattern lengths, bit 22 is
used.

While the instructions are not complicated, and the program could be
assembled by hand, the effectiveness of such an approach is disputable. To
prevent mistakes and countless hours of debugging resulting in considerable
frustration of the user, an assembler program was created.

3.5.1 Assembler and programming language

The assembler was created in the C++ programming language and provides
a basic command line interface. The version as of the making of this docu-
ment is capable of ingesting custom, line-oriented programming language and
output the bytecode, which can be directly uploaded to the program memory.
The syntax was designed to mimic somewhat the syntax used by the assembly
languages used in processors.

The program recognizes two instructions, tim and raw. Each of the in-
structions recognizes a varying list of comma-separated arguments. Let us
proceed with an extract from the Instruction specification.
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Instructions
============

The~instructions are in format: NAME comma,separated,argument,list

Used terms
----------

uint: C formatted unsigned integer with maximal specified size (octal format not supported)

tim - Long (timed) instruction
------------------------------

| Field | Name | Values | Description |
| ----- |:-------------:|:------------:| ---------------------------------------------- |
| 1 | Output value | [0,1] | Output during the~instruction execution |
| 2 | Time | 24bit uint | Instruction execution time |
| 3 | Attenuator | 6bit uint | Attenuator value during execution |

raw - Precise (raw) instruction
-------------------------------

10/20 bit variant with attenuator

| Field | Name | Values | Description |
| ----- |:--------------:|:-------------:| -------------------------------------------- |
| 1 | # of bits | [10,20] | Number of following bits |
| 2 | Binary pattern | 10/20bit uint | Next 10/20 outputs |
| 3 | Attenuator | 6bit uint | Attenuator value during execution |

30bit variant w/o attenuator

| Field | Name | Values | Description |
| ----- |:--------------:|:-------------:| -------------------------------------------- |
| 1 | # of bits | 30 | Number of following bits |
| 2 | Binary pattern | 30bit uint | Next 30 outputs |

The program is written in C++14 consistent with OOP principles. Each
instruction is represented by a dedicated class derived from a common base
class. The software is therefore ready for the possible addition of new instruc-
tions. The software comes with a makefile capable of building and installing
the software. The binary is installed in /usr/bin directory, which is a location
consistent with the Unix filesystem structure. Let us now see an example
source be compiled into corresponding bytecode.
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$>cat example.pbasm
tim 1,0xaa,0x05
tim 0,0xaa,0x05
raw 10,0b1000000101,0x05
raw 20,0b10000001011000001101,0x05
raw 30,0b100000010110000011011000011101

$>pboxasm -vv example.pbasm -o bytecode.bin
pboxasm version 0.1.0
[INFO]: Reading source from "example.pbasm"
[DBG]: line 0 = tim 1,0xaa,0x05
[DBG]: line 1 = tim 0,0xaa,0x05
[DBG]: line 2 = raw 10,0b1000000101,0x05
[DBG]: line 3 = raw 20,0b10000001011000001101,0x05
[DBG]: line 4 = raw 30,0b100000010110000011011000011101
[INFO]: Writing binary to "bytecode.bin"
[DBG]: line 0 -> 0x140002a9 bin:|000101|000000000000000010101010|01|
[DBG]: line 1 -> 0x140002a8 bin:|000101|000000000000000010101010|00|
[DBG]: line 2 -> 0x14000816 bin:|000101|0000|0000000000|1000000101|10|
[DBG]: line 3 -> 0x14605836 bin:|000101|0001|1000000101|1000001101|10|
[DBG]: line 4 -> 0x8160d877 bin:|100000|0101|1000001101|1000011101|11|
[INFO]: All done!
$>hd bytecode.bin
00000000 14 00 02 a9 14 00 02 a8 14 00 08 16 14 60 58 36 |.............‘X6|
00000010 81 60 d8 77 |.‘.w|

First, the listing of the source can be seen. The compiler is then called
with increased output verbosity to show all the steps during compilation.
The source is parsed and then compiled into binary form. A hexdump of
the output binary follows. One can observe the relationship between the hex-
dump and the compiler output. Each of the 32 bit chunks corresponds to
individual instructions. The encoding has been made big-endian to enable
the user (and mainly the programmer during the development of this tool) to
easily distinguish each instruction in the hexadecimal listing. The byteorder of
the messages transmitted on the serial line has been derived from this decision
as well.

3.6 Pulse channel design

The architecture of the pulse channel has been heavily influenced by all the re-
search, followed by a substantial amount of trial and error. In the following
schematic, the different parts of the channel can be observed. In the top left
corner, the write interface of the internal RAM can be observed. It is avail-
able externally and can be used at any time, independent of the running state.
Besides the reset signal, this is the only interface controlling the channel.

After the deassertion of the reset signal, the first instruction is loaded.
The possible issue of loading 0x00000000 from the instruction register right
after reset is mitigated by the fact, that even though the channel is stopped
and address register is zeroed, the instruction register, instead of being ze-
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roed as well, keeps storing the provided value. Therefore when the reset has
been asserted for at least 2 clock cycles before, the instruction register will
contain the instruction at the start address. With the circuit being started,
let us now turn our focus to the timing part of the circuit. When the next
signal is asserted, the address register is advanced, and the instruction register
stores a new value. The counter also stores a new time interval to be counted
down. The interval is either constant (in the case of raw instructions) or taken
from the instruction (for timed instructions). The counter then counts down
the interval, and when the value reaches 0, next is asserted, and the cycle
repeats.

New data reaches the serializer on every clock cycle; this is assured by an
output multiplexer controlled by a block of dedicated combinatorial logic. At
idle or in the reset state, the serializer is set to output only zeroes. Because
the data inside the serializer is processed in some form of a pipeline, there is
a notable delay between the internal enable signal being asserted and the first
data leaving the module. This delay, presumably to set some internal states
and to fill the pipeline, is longer than the delay between the data input and
output when the module is running. To make use of this, the module is never
stopped, and only the data on the input is changed. When the channel is
stopped, the serializer is merely passed zeroes.
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Figure 3.4: Pulsebox channel schematic
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3.7. Electronics design

3.7 Electronics design
Initially, the development of the instrument was done on a Basys3 board from
Digilent. Able to be powered from USB and equipped with a suitable FT232
chip from FTDI, it enabled the development of the portion of the design
responsible for the communication. It was also used to test the channel using
the integrated logic analyzer.

Figure 3.5: Prototype motherboard schematic

To implement the device on the daughterboard from Trenz, which was
to be integrated into the final system, a prototype motherboard had to be
created. The board contains the sockets for the daughterboard, Arduino Pro
Micro as the UART interface and power source, linear regulator converting
the USB 5V power into 1.8V used by the FPGA, and some level shifting
circuitry for the UART. The programming interface is supplied by the XUP
USB-JTAG cable from Digilent connected directly to the daughterboard. To
access the outputs from the FPGA, an oscilloscope probe was directly at-
tached to the daughterboard pins. LVDS was selected as the I/O standard
for the pulse outputs as it was readily available in the FPGA and more than
capable of desired output speeds.

The board was built by hand on a piece of protoboard, also sometimes
called perfboard or Veroboard. Because the construction was rather flimsy
and prone to shorts when misplaced on conductive items commonly found on
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a workbench, the prototype was equipped with a 3D printed backing place
inspired by the ones fitted to Basys3 boards at FIT CTU.
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Chapter 4
Simulation and testing

During the development of the pulsebox, all the modules utilized inside the chan-
nel module were tested and simulated. This resulted in the discovery of nu-
merous bugs and mistakes early in the process and simplified the assembly
and testing of the entire channel. Let us start from the smallest components
and work our way up to the whole channel.
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4.1 Module simulations

Serializer module

First, the serializer is observed. In the beginning, the reset signal is deasserted, and the enable signal is asserted. During
normal operation, the enable signal is always active. It was found empirically that this does not affect the function of
the serializer. After a delay, the data is seen on the output. It can be observed that the data is clocked out LSB first.
The output data is synchronous with the faster clk, and the input is synchronous with the slower clkdiv clock.

Figure 4.1: Serializer simulation
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Memory module

The memory simulation is rather simple. The last five signals display the contents of select memory addressed that will be
used in the simulation. At first, all the values are correctly undefined. This is further checked by reading the addresses at
the beginning. After that, the addresses 1, 2, and 3 are written. The specified locations in the memory now have valid values
stored. The memory is read, and correct values emerge with a single clock delay from the rd_data port. The undefined values
in red are related to simulation only. When implemented in hardware, the memory will most probably contain all zeroes by
default, as no form of initialization is performed.

Figure 4.2: Channel memory simulation
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Channel counter module

The counter is the most important but also one of the simpler parts of the channel. Its job is to count down until the stored
value is zero, generate a signal which will advance the whole circuit, and load a new value from the instruction. This can be
seen in the simulation well. At first, the reset signal is deasserted, and the run signal is asserted. In the final design, they are
tied together with a simple not gate. Because the value stored is zero when the counter is held reset, after the deassertion,
a new value is immediately loaded. Then the cycle carries on as described.

Figure 4.3: Channel counter simulation
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4.2 Channel simulation
To test the functionality of the channel, the following sequence was devised. The sequence is divided into 4 distinct parts,
always separated by a 10 ns gap during which the output is set to 1. The example was designed to mimic the transmission
of the capital letter U (0x55 in hex) at varying baudrates. The value was chosen because of the alternating bit pattern.
The value 0xAA could have been chosen as well, but that would make the transmission symmetric, which was undesirable for
clarity. A signal with 3 ns bit width is followed by 2 ns and one 1 ns signal. The last is signal with 10ns bit lengths.

tim 1,1,0
raw 30,0b111000000111000111000111000111
tim 1,4,0
raw 20,0b11000011001100110011,0
tim 1,4,0
raw 10,0b1001010101,0
tim 1,4,0
tim 0,2,0
tim 1,1,0
tim 0,1,0
tim 1,1,0
tim 0,1,0
tim 1,1,0
tim 0,1,0
tim 1,2,0
tim 1,8,0
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The sequence makes use of all of the instructions available in the pulse box. All of the figures in this section are part of
one simulation. First, the sequence must be loaded into the channel. This can be seen in the Figure 4.4.

Figure 4.4: Pulse channel setup simulation

Figure 4.5: Pulse channel running simulation
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The logic is held reset while the address and data are presented on their respective buses. The write signal is asserted,
and the memory stores the value. This has been shown before in the memory simulation. Next, the pulses are played back.

After the deassertion of the reset signal, the channel springs to life, after a delay caused by the serializer, the data can be
seen on the output. The programmed pattern can be seen in the Figure 4.5. To demonstrate the channel can be restarted by
the asserion of soft_reset signal, the Figure 4.6 is provided.

Figure 4.6: Pulse channel restart simulation

After the reset is deasserted again, the channel starts playing the sequence from the start in the same fashion as before.
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4. Simulation and testing

4.3 Hardware testing
Seeing the channel perform correctly on a behavioral simulation is very useful,
but actually implementing the hardware in the FPGA and executing the se-
quence is much more valuable. In the oscilloscope capture in Figure 4.7, 3 sig-
nals are present. The cyan signal at the top is the reset, the green, and purple
signals are the positive and negative components of the differential output.

Figure 4.7: Output waveform oscilloscope capture

After the deassertion of the reset signal, the output waveform appears after
a delay. The delay as seen in Figure 4.8 is about 35 ns. The delay, as seen in
the simulation is about 16 periods of the fast clock. This equals to about 32
ns. The slight difference may be attributed to the possible time imprecision of
basic behavioral simulation or general lack of measuring precision. The trace
length may affect the time difference only minimally as the trace lengths on
the PCB vary maximally in the order of centimeters, and the propagation
delay will, therefore, be in the order of low hundreds of picoseconds.

Although the signal is heavily distorted due to the use of an oscilloscope
with lower than necessary bandwidth,
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4.3. Hardware testing

Figure 4.8: Output waveform start delay oscilloscope capture
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Conclusion

The thesis was focused on the design of a pulse train generator utilizing an
FPGA. For the creation of a design that would be of use in a real scientific
environment, the research of existing solutions and available technology had
to be done. This research resulted in the selection of appropriate development
platform and paved the way for the final design. To make the device to usable
for end users, a communication application written in Python and assembler
written in C++ were introduced.

The result is a functional prototype that can be interfaced using a custom
protocol implemented over the standard serial interface and expandable to
use a more professional interface incorporating FTDI D2XX drivers. The pro-
totype does not yet have the attenuators added. The device can be pro-
grammed with binaries created by a custom assembler. The source files con-
tain a straightforward line organized assembly language made specifically for
the project. In the end, all the requirements outlined in the requirements
section were met. The device is capable of outputting pulse sequences clocked
at 1 GHz using specialized instruction formatting. The interface application
is able to upload program binaries, control the reset state, and read the status
of each channel.

The development was faced with multiple issues, mainly in regard to
the electronic design. When the design was to be tested on the FPGA board
that would be in the final device, a temporary motherboard had to be fabri-
cated to provide the FPGA with power and all the necessary interface. An-
other batch of issues came from using Xilinx Vivado, which I never used
before. The rather steep learning curve has caused numerous delays, mainly
at the start of the design process.

In the future, the focus should be on creating the final electronics. The cur-
rent state is that the device can communicate, and the outputs can be mea-
sured with an oscilloscope. The device is not yet ready for full incorporation
into the scientific process. Another part would be the design of the GUI for
the communication application. Currently, only the console interface is avail-
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able. As the researchers in other fields that IT can not be expected to be
well versed in the use of the command line, the creation of a GUI would be
reasonable. Lastly, writing the programs for the device is not a simple task.
Having a graphical program where one could draw the output waveforms and
receive the compiled binary that can be uploaded would make great sense.
This functionality could also be incorporated into the communication appli-
cation.

Working on instruments that would be used in scientific research and would
indirectly help us understand the inner workings of our universe brings me
great joy. Advancing the boundaries of human knowledge has always been
one of the major forces that propelled me forward with my education and
subsequent career. Designing this very device may be the first step in that
pursuit, and I can only imagine where it will lead me.
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Appendix A
Acronyms

MCU Microcontroller unit

FPGA Field programmable gate array

NOP No operation (processor instruction)

CRT Cathode ray tube

MSB Most significant bit

BRAM Block RAM

HDL Hardware description

GUI Graphical user interface

BGA Ball grid array (chip package type)

LPC Low pin count (connector)

HPC High pin count (connector)

FMC FPGA Mezzanine Card

RAM Random access memory

LSB Least significant bit

MSB Most significant bit

49





Appendix B
Contents of enclosed CD

README.txt...........................file with CD contents description
app...............................directory with application souce code

speedtest ..............................C based speedtest program
compiler ................... assembler source code and compiled binary

build.....................................assembler build directory
example.......................pulse box program example directory
include.................................assembler header directory
source...................................assembler source directory
Makefile........................................assembler makefile
README.txt...........assembler readme, listing of 3rd party libraries

documentation ............................... documentation directory
xilinx_docs.............................Xilinx document directory
communication.md.............communication protocol specification
instructions.md...........................instruction specification
trenz_kit_pinout.pdf......................development kit pinout

source ......... pulse box Verilog implementation and simulation source
ip ......................................... IP core source directory
simulation ............................. simulation source directory

thesis............................thesis LATEX source code and images
BP_Nevrela_Vojtech_2020.pdf..............thesis text in PDF format
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