Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Control Engineering

Robotic Lawn Mower

Lukas Bauer

Supervisor: Ing. Jan Drchal, Ph.D.

Field of study: Cybernetics and Robotics
Subfield: Cybernetics and Robotics

May 2020

ii

cTu MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details
s N
Student's name: Bauer Lukas Personal ID number: 456970

Faculty / Institute: ~ Faculty of Electrical Engineering
Department / Institute: Department of Control Engineering

Study program: Cybernetics and Robotics

Branch of study: Cybernetics and Robotics

Il. Master’s thesis details

4 N
Master’s thesis title in English:

Robotic Lawn Mower

Master’s thesis title in Czech:

Roboticka sekacka

Guidelines:

The task is to integrate state-of-the-art Al techniques to a robotic lawnmower platform:

1) Research current state-of-the-art robotic lawnmowers, and what techniques they use, to navigate the environment.
2) Research alternative methods for using perimeter wire around the target area. Consider localization solutions based
on GPS/Galileo.

3) Propose a robotic platform, computing platform as well as sensors needed for the security of operation and additional
features. Aim for low-cost solutions.

4) Design and implement the controller. Focus mainly on localization and visual recognition of lawn grass.

5) Perform and evaluate experiments with the platform.

Bibliography / sources:

[1] Codol, Jean-Marie, et al. "Safety robotic lawnmower with precise and low-cost L1-only RTK-GPS positioning." Proceedings
of IROS Workshop on Perception and Navigation for Autonomous Vehicles in Human Environment, San Francisco,
California, USA. 2011.

[2] Schepelmann, Alexander, et al. "Vision-based obstacle detection and avoidance for the CWRU cutter autonomous
lawnmower." 2009 IEEE International Conference on Technologies for Practical Robot Applications. IEEE, 2009.

[3] Schepelmann, Alexander, et al. "Visual segmentation of lawn grass for a mobile robotic lawnmower." 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE, 2010.

Name and workplace of master’s thesis supervisor:

Ing. Jan Drchal, Ph.D., Artificial Intelligence Center, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Date of master’s thesis assignment: 23.01.2020 Deadline for master's thesis submission:

Assignment valid until:
by the end of summer semester 2020/2021

Ing. Jan Drchal, Ph.D. prof. Ing. Michael Sebek, DrSc. prof. Mgr. Petr Pata, Ph.D.

Supervisor’s signature Head of department’s signature Dean’s signature

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

lll. Assignment receipt

The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgements

I would like to thank my family and col-
leagues for the support provided to me
during my studies and to my supervisor
for all the help and advice given to me.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, date 20. May 2020

Abstract

Robotic lawn mowers are ever increas-
ing in popularity. Unfortunately, lower
cost robotic lawn mowers usually lack ”in-
telligence” and move in the designated
mowing area randomly. In this thesis,
multiple low cost localization options, to-
gether with a terrain classification method
are presented. These methods are im-
plemented as Robot Operating System
(ROS) nodes and integrated to a DIY
open source, open hardware robotic lawn
mower platform Ardumower. The pro-
posed filtered odometry and SLAM meth-
ods are then evaluated during multiple ex-
periments and their error with respect to
the ground truth, available from Whycon
external localization method is measured.
Both methods are able to achieve relative
error with respect to the ground truth
of less than 10%. After further correc-
tions of the SLAM method, this method
is able to achieve relative error with re-
spect to the ground truth of less than
5%. The proposed terrain classification
method classifies images to one of two
classes. These classes are grass and non
grass. The classifier achieved 98% accu-
racy on the evaluation dataset.

Keywords: robotic lawn mower,
localization, visual classification, ROS,
robot operating system

Supervisor: Ing. Jan Drchal, Ph.D.
Artificial Intelligence Center, FEE

vi

Abstrakt

Robotické sekacky se tési stale vétsi popu-
larité. Bohuzel levnéjsi robotické sekacky
obvykle postradaji ”inteligenci” a pohy-
buji se vyhrazenym prostorem nahodné.
V ramci této préace je predstaveno néko-
lik levnych lokaliza¢nich method spolu s
klasifikatorem terénu. Tyto metody jsou
implementovany v ramci Robot Opera-
ting System (ROS) a integrovany do DIY
otevfené robotické platformy Ardumower.
Navrhnuté metody lokalizace pomoci fil-
trované odometrie a SLAM jsou poté vy-
hodnoceny béhem nékolika experimentu
a je zmérena jejich chyba, vic¢i ground
truth, ktera je dostupné z externi lokali-
zace pomoci Whycon. Obé metody dosa-
huji relativni chyby, vzhledem k ground
truth mensi nez 10%. Po dalsich tpravach
metody SLAM, tato metoda dosahuje re-
lativni chyby vaci ground truth mensi nez
5%. Navrhnuty klasifikator terénu klasifi-
kuje obrazky z kamery do jedné ze dvou
trid. Tyto tfidy jsou grass a not grass.
Klasifikator dosahuje 98% presnosti na
testovacich datech.

Klicova slova: roboticka sekacka,
lokalizace, vizudlni klasifikace, ROS,
robot operating system

Pteklad nazvu: Roboticka sekacka

Contents
1 Introduction 1l
1.1 Thesis overview 1

Part |
Related work

2 Available low-cost robotic mowers 5

2.1 Ardumower 5l

3 Available low-cost localization

methods 7
3.1 Odometry
3.1.1 Visual odometry

3.2 Global Navigation Satellite System

3.2.1 Differential GPS 8|

3.3 Simultaneous localization and
10012110 0) 101 P 9l

3.3.1 Robotic mapping 9

3.3.2 Simultaneous localization and

MappPing. .. ovvv v, 10|
3.4 Whycon

vii

4 Terrain classification

4.1 Neural networks

Part 11

Ardumower setup and enhancements

5 Ardumower setup and ROS
integration

5.1 About ardumower

5.2 About Robot Operating System

5.2.1 ROS TF Library

5.3 ROS with ardumower

6 Implementation of robot
localization methods

6.1 Odometry + IMU

6.1.1 GNSS module

6.2 RGBd camera + SLAM

6.3 Whycon

6.3.1 Odometry 4+ IMU for
orientation estimation

7 Implementation of a terrain
classifier

8 Experiments 31

8.1 Localization results 33
8.2 Terrain classification results 45
9 Future work 47|
9.1 Controller implementation
9.2 Charging station..............

9.3 Dedicated computing platform .

10 Conclusions 49
Appendices
A Bibliography 53

viii

Figures

4.1 Structure of a CNN [I]

5.1 Assembled ardumower PCB [18
5.2 Assembled ardumower with a
laptop for controll
6.1 An example image from the
camera calibration with the
calibration pattern present at the
bottom of the frame. The pattern
appears smaller at the bottom. . ..

6.2 An example image from the
camera calibration. The distortion of

the lens is clearly seen.
7.1 Selected region of interest
7.2 Training and validation losses of

the final model 29
8.1 Coordinate frames chain 32|

8.2 Path of the robot according to
different available localization
methods after the first of two loops

8.3 2D pose of the robot according to
different available localization
methods, loop closure occured for the
SLAM method

ix

8.4 Difference of the SLAM and
odometry localization methods with
respect to the ground truth, ground
truth for orientation is the SLAM
method........................

8.5 An image from the start of the run,
most of the the tracked features
(green squares) is more than 10
Meters away . . . ovovvvvenn

8.6 Closer objects resulted in
localization error of the SLAM
method..............

8.7 2D pose of the robot according to
different available localization
methods, loop closure did not occur
for the SLAM method

8.8 Difference of the SLAM and
odometry localization methods with
respect to the ground truth,
orientation error of the odometry

method is corrected 38
8.9 Path of the robot according to

different available localization

methods along the long pre-defined

route 39

8.10 2D pose of the robot according to
different available localization
methods along the long pre-defined

route. ... 40
8.11 Path of the robot according to

different available localization

methods, GNSS data are also

included in the odometry

8.14 The tilt of the camera also
resulted in much more common loss
of tracking,

8.12 2D pose of the robot according to
different available localization
methods, the camera tilt resulted in
much smaller SLAM error 42|

8.13 Difference of the SLAM and
odometry localization methods with
respect to the ground truth, the
camera tilt resulted in much smaller

SLAM erroro ...

8.15 Path of the robot according to
different available localization
methods, GNSS data are also
included in the odometry

8.16 2D pose of the robot according to
different available localization
methods, the camera tilt resulted in
much smaller SLAM error

8.17 An example of classified images
from the evaluation dataset, the
model was able to successfuly classify
all the images...................

Tables

8.1 Absolute and relative error of both
methods with respect to the ground
truth at the end of the first
experiment. 133

8.2 Absolute and relative error of both

methods with respect to the ground
truth. ... 136

8.3 Absolute and relative error of both

methods with respect to the ground
truth., oo 38

8.4 Absolute and relative error of all
methods with respect to the ground
truth. The camera for SLAM is tilted
slightly towards the ground.

8.5 Absolute and relative error of all
methods with respect to the ground
after moving along longer path. The
camera for SLAM is tilted slightly
towards the ground.

8.6 Confusion matrix of the model on
the evaluation dataset

Chapter 1

Introduction

Robotic lawn mowers are ever increasing in popularity. Unfortunately, lower
cost robotic lawn mowers usually lack ”intelligence” and move in the desig-
nated mowing area randomly. To avoid obstacles, ultrasonic sensors are used.
Furthermore, most of the currently available robotic lawn mowers require
wire buried around the mowing area. This wire is then detected by the robot
and marks the boundary of the area[2]. Most of the robotic lawn mowers also
cannot differentiate between grass and flower garden and such non mowing
areas cannot be inside the mowing areal[3].

In this thesis, DIY robotic lawn mower platform Ardumower is presented,
for this platform, multiple low cost localization options are implemented,
that could be used as a substitution for a buried wire. These options are
implemented using Robot Operating System (ROS) and tested on the chosen
robotic platform during multiple experiments. Secondly, a simple, fast visual
terrain classifier is presented, that can differentiate between mowing and non
mowing areas.

. 1.1 Thesis overview

In the first part of this thesis, currently used localization and obstacle detection
methods used on robotic lawn mowers are researched. Secondly, multiple
localization options, that could be used instead of the currently used methods
are researched. Finally, terrain classification methods are listed.

1. Introduction

In the second part of this thesis, a DIY robotic lawn mower platform
Ardumower is presented, this platform is then used, together with a Robot
Operating System as a base robotic platform for all experiments. The chosen
localization methods are implemented as ROS nodes and integrated together
with Ardumower driver node. Finally, an implementation of a chosen terrain
classification method is described. All localization methods and terrain
classification method are then tested on multiple experiments and their
performance is evaluated.

In the final chapter of this thesis, future work options, that are needed for
a fully functional robotic lawn mower are proposed.

1. Introduction

Part |

Related work

Chapter 2

Available low-cost robotic mowers

Currently available low-cost autonomous lawn mowers unfortunatelly have
only very basic reactive behaviour with no currently available state-of-the art
mapping and planning algorithms used. Lawn mowers use GPS for position
estimation. For dead reckoning, sonar, laser scanners, cameras or differential
GPS is used [2]. Some of these techniques will be described in the next section
of this thesis.

Most of the available lawn mowers use buried perimeter wire for the
detection of the area boundary. This techinque works by sending signal to the
wire, which is then received by the robot if it approaches the area boundary.
Same method can also be used when there are multiple robots in the same
mowing area[2]. Some mowers use humidity sensors for boundary detection.
This method works by detecting the change in the humidity of the terrain
when mower reaches lawn boundary. This method unfortunately works only
when the area is completely bounded by differently humid terrain (i. e. a
sidewalk) and the robot will not avoid gardens or other similiary humid areas.
One of such mower is for example the Ambrogio L60[3]. Other option is to
use already mentioned GPS.

. 2.1 Ardumower

Ardumower is an open source, open hardware robotic lawn mower project.
The idea of this project is to allow everyone to add in their own ideas for

5

2. Available low-cost robotic mowers

autonomous lawn mowers. The core of this platform is an ardumower PCB
with an Arduino. This board supports input for many different sensors either
via I12C bus, or TX/RX. Adittionally, it also supports attachable bluetooth
and wifi modules for wireless controll and configuration. The ardumower
firmware also already has Robot Operating System (ROS) integration, where
most of the sensor data is sent over USB to a connected computer and from
which the robot accepts input to the motors. [4]

The original ardumower uses perimeter wire for boundary marking, the
wire also serves as guidance to the charging station. For collision detection,
sonars or pressure sensors are used.

Chapter 3

Available low-cost localization methods

B 31 Odometry

Very low-cost localization option is to use wheel encoders to obtain an absolute
position of robot’s wheels. The change in the position of a wheel can be
obtained as

_ 27Anr

Ax = N (3.1)

where An is the difference between initial and end reading from a wheel
encoder, r is the radius of a wheel and N is the number of generated signals
from the encoder for one wheel revolution. The average distance travelled by
both wheels is then used for estimation of the new position of a robot. It’s
orientation difference is then obtained as

A:L’R — A.TL

Ap = atan ;)

(3.2)

where Axzp is the distance travelled by the right wheel in the last step, Axy,
is the distance travelled by the left wheel in the last step and [is the distance
between the two wheels. The absolute pose can then be obtained as the sum of
all previous steps. The major drawback of this approach is that irregularities
in surface can cause errors and even small changes in the direction of the
robot can lead to large differences between estimated and real pose due to
the accumulation of errors over time. Odometry errors can be reduced by
comparing the results with an absolute position, that becomes new initial
position for further computation. [5]

3. Available low-cost localization methods

B 3.1.1 Visual odometry

Robot position can also be estimated from a camera, mounted on the platform.
Both monocular [6][7] and stereo cameras can be used for motion estimation.
Approaches are based on either dense optical flow or sparse feature tracks.
Using stereo images for motion estimation tends to be more stable and well
behaved than when using monocular camera, but feature correspondences
need to be found. These feature points are triangulated and then used to
estimate 3D motion. [§] [9]

In [9], a couple of stereo cameras were used for robot localization. Corner
feature points were extracted from the left image of each stereo camera. These
features were then triangulated based on stereo correspondences. Three of
these points are then chosen for motion estimation. Absolute pose is obtained
by chaining relative motions together. The initial pose is taken from wheel
odometry, IMU and GPS data. The IMU and wheel encoders were also used
when visual odometry failed. This method eliminates the problem of wheel
slippage and outperforms wheel odometry by factor of two.

B 3.2 Gilobal Navigation Satellite System

The greatest advantage of using a Global Navigation Satellite System (GNSS)
for localization of a mobile robot is an availability and cost of GNSS modules.
Cheaper modules can be obtained for less than $100, which is very important,
when looking for low-cost localization options. One of the disadvantages of
these cheaper modules is their accuracy. For our task, we need less than 1m
accuracy, to be able to follow reliably the boundary of a designated area.

B 3.2.1 Differential GPS

Some of the inaccuracy of GNSS localization comes from the transition of
GNSS signals through the atmospere, or from slight error in satellite’s orbit.
This then results in slightly longer time, that it takes the signal to reach
a GNSS satellite and therefore in erroneous position estimation. Some of
these errors can be corrected by having a second GNSS module, that sends
correction data to cancel out GNSS errors. This can result in centimeter-level
positional accuracy. The greatest disadvantage of this approach is much

8

3.3. Simultaneous localization and mapping

greater cost, which is caused by the need for the second module. Also, to
reach centimeter-level accuracy, dual-frequency GNSS modules are usually
needed, which further increases the cost beyond what is affordable for this
case.

There have already been attempts to use Real-time Kinematic GPS (RTK-
GPS) for localization of lawn mowers. In [10], a pair of cheaper Ll-only
receivers was used. Using statistical approach to Ll-only RTK-GPS, the
robot was able to successfully mow the area without the need for buried wire.
The robot was also able to return to the charging station, where accuracy of
+ 5cm was needed to reach an electrical plug.

B 3.3 Simultaneous localization and mapping

B 3.3.1 Robotic mapping

All of the methods described to this point, assumed some prior knowledge of
the environment, where the robot is operating (position of obstacles, boundary
of the area). Generally, that is not the case and some method of mapping
is needed. Robotic mapping comes with several challenges. A key challenge
arises from the nature of the measurement noise, because the noise of the
measurement is statistically dependent. This is because errors in controll
accumulate over time and they affect the way future sensor measurements
are interpreted. Another problem is the correspondence problem. This
means determining if sensor measurements taken at different points in time
correspond to the same physical object in the world. Another problems are
high dimensionality and dynamic environment. [11]

Very popular approach to the environment mapping is using occupancy grid
maps. Using this method, maps are usually represented as two-dimensional
grids, where each cell holds the probability of an obstacle present on the
location. Standard occupancy grid mapping algorithm is a version of Bayes
filters, just like any other major mapping alogrithm. [11][12]

9

3. Available low-cost localization methods

B 3.3.2 Simultaneous localization and mapping

The mapping problem is often in conjunction with the localization problem,
because we need information about robot position for building the map.
Simultaneos localization and mapping (SLAM) tries to simultaneously build
a map of the environment and localize the robot in this map [II]. There
are many different methods for SLAM. One available option is to use sonar
measurements for building a map of the environments. Sonars are very cheap,
but the obtained measurement data are very sparse. In [13], a ring of sonars
was used to build a feature based map of the environment. The feature
based approach to map building allows to make characterization and relative
positioning of features with uncertainty near the level of a measurement noise.

B 34 Whycon

Evaluation of the performace of tested methods needs another, more precise
localization system, that will be used as ground truth. One of such precise,
external localization systems is Whycon. Whycon is able to localize and track
black and white circular pattern in an image[I4]. Using given camera intrinsic
parameters and known size of the pattern, it is then able to determine its 3D
position and orientation. This position can be transformed to user defined 2D
or 3D coordinate system after performing simple calibration. This tracking
algorithm was proven to achieve sub-pixel precision. Another advantage is
that its computational complexity is not dependent of the image size, because
the search for the pattern can be initiated from any position within the image.
This means that if a prior pattern position is known, the search is initiated
from this position. [14][I5]

10

Chapter 4

Terrain classification

In previous chapter, various methods of mobile robot localization were pre-
sented. Most of these methods do not carry any information about the
environment, in which the robot is located. In this chapter, some possible
methods for terrain classification are presented. These methods could be
used to implement more complex behaviour for the final robot, for example
avoiding flower gardens, ponds or recognizing already cut grass.

Visual based approach is the most common one used as cameras are very
cheap to buy. The biggest issue is the processing power needed, to process
images from the camera in real time. There has already been an attempt to
use camera on board of an off-the-shelf autonomous lawn mower. This camera
was used for image segmentation to grass and non grass areas. Pixel was
classified as grass, if the pixel hue was in range [Amin, hmaz| and saturation
exceeded S;in. This method was available to run onboard on an added low
cost compute board. To tackle the issue of different lighting conditions and
changing weather, closed loop between the camera control and color-based
grass segmentation algorithm was used. This allowed the optimization of the
visibility of the grass by taking into account the grass segmentation output.
This method was able to achieve 88% accuracy in the performed small scale
test [L6].

In [I7] a visual feature-based terrain classification is presented. This method
uses bag of visual words (BOVW) created from features extracted by speeded
up robust features (SURF) extractor and clustered together by k-means

algorithm. These features are then classified using support vector machine
(SVM).

11

4. Terrain classification

. 4.1 Neural networks

Most of the current state-of-the-art image classificators are based on a Con-
volutional Neural Networks (CNN). CNN is a special type of multilayer
feedforward neural network [I8]. These are composed of multiple stages. The
input and output of each stage is called the feature map [19]. There are two
main modules of a CNN, the feature learning module and the classification
module [I8]. The feature learning module can contain multiple 3-layer stages,
composed of a filter bank layer, a non-linearity layer and a feature pooling
layer [19][20].

Filter bank layer extracts visual features from an input image. The con-
volution conv(e) is a dot product of the input image, I and the convolution
kernel, K. The convolution kernel slides over the input image to produce a
convolved feature map as output [18][20].

First the convolutional layer detects low level features from an image.
The output from a convolutional layer is called the activation map. The
next convolutional layer applies its filters on the activation map from the
current layer. This results in the detection of higher level features that are
an abstraction of several lower level features found by the previous layer.
Non-linearity layer traditionally consits of a sigmoid function, such as the
hyperbolic tangent[18][19][20].

The feature pooling layer subsamples the feature map to reduce its spatial
dimensionality, thus producing a more compact feature representation [18][20].

Fully-
connected
layer

Input image Convolution Maxpooling
(feature maps)

Figure 4.1: Structure of a CNN [I]

CNNs can be used for image classification, object detection or image seg-
mentation. One of the more recent image segmentation network architectures
is for example SegNet. It uses first 13 layers from a VGG16]21] network,

12

4.1. Neural networks

together with corresponding decoder layers, that upsample features from max-
pooling layer and a fully connected layer at the end for pixel-wise classification

Deep convolutional neural networks are usually accelerated using a GPU,
which might not be available for a given task. MobileNet however is an
example of a neural network, aimed to run at weaker computing platforms.
It uses a 3x3 depthwise separable convolution, which uses between 8 to 9
times less computation than standard convolutions at only a small reduction
in accuracy. It also introduces 2 hyper-parameters, width multiplier and
resolution multiplier. The former allows to thin a network uniformly at each
layer. The number of input channels M becomes aM and the number of
output channels N becomes ao/N. The latter allows to scale down the input
image resolution[23].

Terrain classification can also be done without the need for an onboard
camera as presented in [24]. Terrain classification was done using already
present sensors on the chosen robotic platform (Inertial Measurement Unit
(IMU), sensors for measuring motor torque and power consumption, IR range
sensor etc.). All classification experiments were performed based on just
one single sensor modality at a time. Feed-forward neural network was used
for the classification between different types of terrain (gravel, grass, sand,
pavement and dirt).

13

14

Part ||

Ardumower setup and
enhancements

15

16

Chapter 5

Ardumower setup and ROS integration

. 5.1 About ardumower

For this thesis, complete ardumower kit was used. This kit includes:

1. ardumower PCB v1.3

2. 3x ultrasonic sensors

3. 2x wheel motors + drivers

4. 1x mower motor

5. GY-801 Inertial measurement unit (IMU)
6. Arduino DUE

7. Bluetooth module

Some other parts, for example perimeter sender and receiver were not used.
This kit also includes no battery. The PCB takes a 24V DC input. For this
14 Li-ion 18650 cells were used (7 connected to the series, 2 sets parallel).

The ardumower PCB first needs to be assembled and properly configured
based on what sensors will be used. For this, series of jumpers are present on

17

5. Ardumower setup and ROS integration

the board, that set voltage level or enable certain attached modules. After
the board is assembled and jumper configuration is made, firmware needs to
be uploaded to the used Arduino.

The ardumower firmware allows configuration, testing and calibration by
multiple methods. First, but very limited method is via the console from a
connected computer. This method allows to test wheel encoders, calibrate
IMU gyro and compass and setup bluetooth or WiFi communication. When
bluetooth or WiFi is set up, a user can also connect via provided mobile app.
This method is the main method for configuring, or debugging the ardumower
firmware, as it allows to configure every parameter used by the mower, log
errors and values and even plot them.

Figure 5.1: Assembled ardumower PCB

B 52 About Robot Operating System

Robot Operating System (ROS) provides libraries and tools to help developers
create robot applications. The main component of the ROS framework is a
ROS node. ROS nodes are able to communicate with each other using both
synchronous and asynchronous communication. For asynchronous commu-
nication, ROS Topics are used. Any node can publish a ROS message to a
ROS Topic, where multiple other nodes can listen for these messages. ROS
Services are used for synchronous communication, where one Node calls the
service, advertised by a different node.

18

5.3. ROS with ardumower

Bl 5.2.1 ROS TF Library

One of the tools, provided by ROS are the TF and TF2 libraries. These
libraries allow to transform ROS messages, that carry information about a
position of some object between different coordinate systems (ROS frames).

More about ROS can be found in [25][26].

. 5.3 ROS with ardumower

The experimental version of the ardumower firmware comes with support for
ROS. The integration works by sending values, read by sensors connected
to the board, over the USB to a connected computer which runs the main
ardumower node. This node then parses the data and saves them to variables.
The original ardumower node only uses odometry readings to create odometry
message and appropriate transformation from the odom frame to the base_ link
frame, that is attached to the body of the robot and had to be modified heavily
to work together with localization methods, used in this thesis. Secondly, the
node listens to messages, published to the cmd_ vel node and sends commands
for the motors to the PCB.

For better control over the robot, another node was created. This node
provides a service for simple path following. The currently used localization
method could be changed by simply changing the parameter of the source
frame. All transformations and frames were defined according to REP-105[27].
This allows for redundancy if any more complex localization method fails
as the node will only lose the information about an error made by another
method with respect to the main one.

19

5. Ardumower setup and ROS integration

Figure 5.2: Assembled ardumower with a laptop for controll

20

Chapter 6

Implementation of robot localization
methods

In this chapter, the implementation of selected localization methods will be
described. The selected methods are

1. Odometry
2. SLAM
3. Whycon

B 6.1 Odometry + IMU

Since ardumower kit already comes with an IMU and motors with encoders,
the first method used for robot localization was fusing odometry and IMU
data together. For this, robot localization node was used. This node
uses an extended Kalman Filter (EKF) to fuse multiple localization inputs
together. Possible inputs include Odometry, IMU and visual odometry[28].
To be able to use this node, data from IMU need to be published onto ROS
topic as IMU message type. Also, both odometry and IMU messages should
have their covariance matrices for each sensor set. As there were no available
information about any of the sensors used, these values were set at some
small, nonzero positive values on the main diagonals of each matrix.

21

6. Implementation of robot localization methods

After the messages are prepared, the robot localization node needs to be
configured. The configuration is done by providing a configuration file in
YAML format. The parameters in the config file set up what information
is available from each message and on which topic the message is being
published. There is also an option to assume only 2D space, which was set to
true. The list of values provided by odometry is

I::B’ y? j”? y’ 0]7 (6.1)

where x is the X coordinate of the robot, y is the Y coordinate, &,y respective
velocities and 6 the angular velocity of the robot. The list of values provided
by IMU is

0,0, &, §]. (6.2)

The IMU was also set to a relative mode, which means, that the first mea-
surement is treated as "zero point” for all future measurements.

The set up robot localization node publishes filtered odometry messages
together with a transformation information from the odom coordination frame
to the base_ link frame, that is attached to the body of the robot.

B 6.1.1 GNSS module

There is also an option to launch a second node, provided by the robot
localization package, that uses information from a GNSS module and publishes
odometry messages to a separate topic, but with lower frequency (approx.
1 Hz). This topic subscribes to a GNSS Fix message, that is published
for example by nmea navsat driver package, that can connect to a GNSS
module via USB. The module used for this was U-blox ZED-F9P integrated
onboard of a Sparkfun GPS-RTK board.

. 6.2 RGBd camera + SLAM

Another method implemented was combination of a depth camera and SLAM
algorithm. The camera used for this was Intel RealSense D435, that can
be used together with Intel RealSense ROS node to publish all necessary
information to ROS topics. The depth and image information was then used
by ROS implementation of the ORB-SLAM?2 algorithm[29], that publishes
position and orientation of the camera with respect to the map frame and

22

6.3. Whycon

transformation to the camera_ link frame from the map frame. The ORB-
SLAM2 algorithm publishes 3D position and orientation of the camera. For

this case, the Z coordinate, together with roll and pitch of the camera was
ignored.

B 63 Whycon

Last localization method, that was later used as ground truth in experiments,
was external localization using whycon and external camera. To use this
method, a camera first needs to be calibrated to compensate for its lens
distortion. The calibration is done using a black and white board with
checkered pattern. Given known size of one square, it is possible to estimate
the projection matrix of the camera.

Figure 6.1: An example image from the camera calibration with the calibration
pattern present at the bottom of the frame. The pattern appears smaller at the
bottom.

23

6. Implementation of robot localization methods

Figure 6.2: An example image from the camera calibration. The distortion of
the lens is clearly seen.

After the camera calibration is finished, the whycon node is able to estimate
3D position and orientation of a black and white circle pattern. To obtain
point’s position in a 2-D user defined plane, further calibration is needed.
This calibration is done using 4 circular patterns in a rectangle. These circles
represent coordinates [0,0], [1,0], [0,1] and [1,1] of the 2-D plane. Scale
parameter can be input for both x and y axises, if the distance between circles
differs from the desired distances. After the calibration, 2-D coordinates
of the tracked target are known. It’s orientation unfortunately cannot be
estimated by this method because of the circular shape of the pattern. For
this, another method has to be used.

B 6.3.1 Odometry + IMU for orientation estimation

In order to estimate robot’s orientation, another method has to be used
alongside Whycon. For this, orientation estimation from was used. The
orientation of the robot from[6.1]is given with respect to the odom coordination
frame. To be able to use the orientation information, first the orientation
difference between the whycon 2-D plane coordinate system and the odom
coordination system has to be found. The difference can be found as

Y2 — Y1
— _00 om s 6.
(o) = b (6.3)

A = atan

24

6.3. Whycon

where yo is the y coordinate of the robot with respect to the whycon frame
after some movement has occured, y; is the origin y coordinate of the robot
with respect to the whycon frame, xs,z; are the final and origin x coordinates
of the robot with respect to the whycon frame and 6,4, is the orientation of
the robot with respect to the odom frame. The orientation of the robot with
respect to the whycon frame is then

ewhycon = eodom + Al (64)

25

26

Chapter 7

Implementation of a terrain classifier

The chosen approach was to use an image classifier to classify terrain into one
of two classes - grass and not grass. Images were taken from already present
Intel RealSense camera. This camera however had to be slightly tilted towards
the ground. Furthermore, a region of interest had to be extracted from an
incoming image. This region was a 224x224 square in the bottom center of
an image. This resolution was chosen, because it is the input resolution of
the selected image classifier.

Figure 7.1: Selected region of interest

Image classification was done using transfer learning method. When using
this approach, a pre-trained convolutional neural network model is repurposed

27

7. Implementation of a terrain classifier

for a different task. This results in reduced training time and training dataset
needed, because some layers of the model can be frozen. This method was
chosen because the training dataset, available at the time of writing this
thesis, is too small to be able to train a given model, so that it would achieve
better performance, than when using transfer learning method. The chosen
model was MobileNetV2[30], that was pretrained on the ImageNet[31] dataset.
The final fully connected layers were replaced by the following structure:

1. Fully connected (in: 1280, out: 320)
2. ReLU

3. Dropout

4. Fully connected (in: 320, out: 2)

5. log Softmax

The training images were labeled as belonging to one of the two defined
classes, grass and not_ grass. All images, that belong to one class were stored
in one directory. The name of the directory was then the name of the class.

For training, first 12 layers of the model were frozen. The model was trained
for 11 epochs with 0.0001 learning rate and with weighted loss function, with
weights 1 for grass and 3 for non grass. The dataset consisted of approx.
270 images of grass and 80 images of other objects for non grass class. This
dataset was split to training and validation datasets with 4:1 ratio.

The final trained classifier was then implemented as a set of 2 ROS nodes.
The first node takes an image from a Intel RealSense camera as an input
and extracts region of interest for the classifier. The second node takes the
extracted region of interest and performs a classification. The result of the
classification is then published to a ROS topic.

28

SSOT

7. Implementation of a terrain classifier

0.7 1

0.6

0.5 1

0.4 A

0.3 1

0.2 A

0.1+

0.0

—— Training loss
—— Validation loss

0 2 4 6 8 10 12
steps

Figure 7.2: Training and validation losses of the final model

29

30

Chapter 8

Experiments

In order to perform experiments, all localization methods had to be connected.
Each localization method publishes robot’s position and orientation with
respect to a different frame (odom for odometry, map for SLAM and world
for whycon). Since the pose of the robot is known with respect to each frame,
their respective transformations can be found. According to REP-105[27],
the chain of coordinate frames was defined as

world — map — odom — base_link, (8.1)

where base_link is the coordinate frame attached to the body of the robot.
The transformation from map frame to base_ link frame can be obtained as

Tt = Tans Ty (8.2)

where T, is the transformation from map frame to base_link frame and Ty is
the transformation from odom frame to base link frame. The transformation
from the world frame to the map frame can be obtained as

Twm = TwtTop Taer (83)

where Ty, is the transformation from the world frame to the base_ link frame

31

8. Experiments

Figure 8.1: Coordinate frames chain

The definition of relations between different localization methods allows
for redundancy. If some of the more high level localization method fails, the
robot is still able to localize itself as the only information, that is lost is the
error of the lower level localization method with respect to the higher level
one. All transformations and relations were implemented using ROS TF2
library.

For evaluation of the implemented localization methods’ precision, two
experiments were proposed. In both of the experiments, the robot moves
along pre-defined closed loop. The evaultaion of the performance of all the
tested localization methods is done by measuring the final distance of the
robot’s position estimated from the tested method to the position according
to the ground truth. All paths were defined as closed loop to eliminate any
coordinate scale errors, that could be made during the calibration of the
whycon localization method. In the first experiment, the robot was following
a short, pre-defined path. This path was designed so the robot would always
be visible to the whycon camera, that was used as ground truth and so the
ground truth would be present throughout the whole experiment. The second
experiment was run on a longer pre-defined path with ground truth being
available only at the beginning and at the end of the path.

In order to compare the methods, all pose information, that are given with
respect to each localization method’s frame, had to be transformed to a one
common frame. This frame was the world frame.

32

8.1. Localization results

. 8.1 Localization results

In the first experiment, robot was performing 2 subsequent runs along the
short pre-defined path. This was done to allow SLAM to perform loop closure.
During this run, compass was not working properly due to the interference
from the environment. This was also true for all later experimental runs and
calibration of the sensor did not fix this issue. Therefore, the orientation
information for the whycon frame was taken from the SLAM. Furthermore,
for all later runs, orientation information from the IMU was not used.

odometry | SLAM
distance travelled (m) 16.08
distance from GT (m) 0.24 0.36
relative error (%) 1.5 2.2

Table 8.1: Absolute and relative error of both methods with respect to the
ground truth at the end of the first experiment.

—— odometry
o] —— slam
—— ground truth

Figure 8.2: Path of the robot according to different available localization methods
after the first of two loops

33

8. Experiments

0.50
—— odometry
— slam

0.004{ — 9ground truth

0.25

-0.25

X[m]

-0.50
-0.75
-1.00
-1.25

0 20 40 60 80 100 120
tls]

odometry
slam
ground truth

1.0

0.5

Y[m]

0.0

0 20 40 60 80 100 120
tls]

odometry
slam
ground truth

th
=)

t[s]

Figure 8.3: 2D pose of the robot according to different available localization
methods, loop closure occured for the SLAM method

0.2 —— odometry
— slam

01

0.0

-0.1

X[m]

0 20 40 60 80 100 120
tls]

029 sdometry M
— slam M
0.0 n

-0.2

Yim]

-0.4

0 20 40 60 80 100 120
tls]

14 —— odometry

12 — slam
1.0
0.8

£
0.6
0.4
0.2

tls]

34
Figure 8.4: Difference of the SLAM and odometry localization methods with
respect to the ground truth, ground truth for orientation is the SLAM method

8.1. Localization results

As can be seen in figure the position estimation from the odometry
did not deviate too much from ground truth in the first loop, but the error
of the SLAM method in the Y coordinate started to increase rapidly in the
middle of the first loop. This was because the robot was facing towards much
closer objects, than at the start of the loop. The depth accuracy of the Intel
RealSense camera is dependent on the distance of the objects in front of
the camera. At the start of the run, the opposite building and fence were
more than 10 meters away, while in the second part, trees and stomps seen
in the image are only 2-3 meters away. The error from the inaccurate distant
readings was corrected using information from odometry, but when facing
closer objects, it resulted in the error, seen on the presented figures.

SLAM MODE | KFs: 1, MP

Figure 8.5: An image from the start of the run, most of the the tracked features
(green squares) is more than 10 meters away

35

8. Experiments

Figure 8.6: Closer objects resulted in localization error of the SLAM method

During the second loop, a discrete jump in the Y position of the SLAM
method can be seen. This occurs, if the SLAM algorithm recognizes the
current image as already previously visited place. The algorithm can then
estimate an error in position and propagate it back through the map. This is
called loop closure.

The orientation error of the odometry method, visible in figure is the
result of erroneus compass readings and was corrected for later runs.

At the end of the first experiment (table , the final odometry error was
smaller, than the final SLAM error. This was in part because of the large
SLAM error in the Y coordinate, but also in part, because odometry tends to
be very accurate on small distances if set up correctly. Both methods however
have their final error less than 1 meter, which is the desired precision for this
task.

odometry | SLAM
distance travelled (m) 14.48
distance from GT (m) 0.05 1.07
relative error (%) 0.3 7.4

Table 8.2: Absolute and relative error of both methods with respect to the
ground truth.

In the second run (table 8.2)), loop closure did not occur for the SLAM

36

8.1. Localization results

0.4

—— odometry
— slam
0.0 — ground truth

0.2

-0.2

-0.4

X[m]

-0.6
-0.8
-1.0

=12

0 20 40 60 80 100 120
tls]

—— odometry
— slam
— ground truth

[20 40 60 80 100 120
ts]

31 — odometry
— slam

24 — ground truth
1

0

ts]

Figure 8.7: 2D pose of the robot according to different available localization
methods, loop closure did not occur for the SLAM method

method. This resulted in the final error of this method being more than 1m.
The corrected odometry performed extremely well during this run, with the
final distance between odometry position estimation and the ground truth of
only 5cm. The orientation estimation from the odometry started to deviate
from the orientation estimation of the slam method in the middle of the run.
There can be also seen spikes in the odometry orientation estimation during
the whole run. These might be a result of wrongly set up robot localization
node, or erroneous readings from the IMU. The IMU was still used as an
input source for the angular speed of the robot, which is then integrated by
the robot localization node to estimate orientation.

In the final experiment, the robot was expected to move twice along longer
pre-defined path. This experiment however was not finished as the robot
crashed at the end of the second run. This was more in part because of
wrongly chosen path, that expected the robot to move very close to an obstacle
at one part of the run and any slight error in localization could result in
the robot crashing into the obstacle. The results presented in table are
therefore after the first run along the path.

37

8. Experiments

— odometry
02 — slam
0.1
0.0

X[m]
s 5
[

Y(m]

~1.01 — odometry
— slam

0 20 40 60 80 100 120
ts]

0.25 ~—— odometry
— slam

ts]

Figure 8.8: Difference of the SLAM and odometry localization methods with
respect to the ground truth, orientation error of the odometry method is cor-
rected

odometry ‘ SLAM
distance travelled (m) 35.91
distance from GT (m) 2.41 1.68
relative error (%) 6.7 4.7

Table 8.3: Absolute and relative error of both methods with respect to the
ground truth.

As can be seen in figure and , during the longer run the error of the
odometry is larger than the error of the SLAM method at the end of the first
loop. This is to be expected as any errors of the odometry accumulate over
time. Both methods deviated from the ground truth more than 1 meter at
the end.

In all of the previous runs, GNSS module was not working properly and
therefore was not used as another input for the odometry filter. Furthermore,
the orientation of the SLAM camera proved to be unusable for any reliable

38

8.1. Localization results

—— odometry
— slam
—— ground truth

Figure 8.9: Path of the robot according to different available localization methods
along the long pre-defined route

terrain classification as the bottom of the camera view is too far in front
of the robot. Therefore, the Intel RealSense camera was tilted down. This
resulted in the need for another transformation as the position and orientation,
obtained from the SLAM method does not correspond exactly to the position
and orientation of the robot. The definition of the transformation from the
map frame, presented in eq. [8.2, to the odom frame needs to be redefined as

Trio = TucT5, Toy (8.4)

where Tg. is the transformation from the base_link frame to the camera
frame.

odometry | SLAM | GPS

distance travelled (m) 13.77
distance from GT (m) 0.34 0.23 2.03
relative error (%) 2.5 1.6 16.4

Table 8.4: Absolute and relative error of all methods with respect to the ground
truth. The camera for SLAM is tilted slightly towards the ground.

Thanks to the tilt of the camera, the SLAM method proved to be more
accurate, than in previous experiments. This is mainly because more features
are tracked on the ground. These features are much closer to the camera and
do not move towards camera. This further helps the accuracy as the features
also change their position in the image and not only their distance from the
camera. GNSS however was by far the most inaccurate localization option
tested with error in range of meters. This was expected as no RTK-GPS was
used.

39

8. Experiments

—— odometry
— slam
81 — ground truth

X[m]
IS

—— odometry
— slam
—— ground truth

0 50 100 150 200 250 300 350 400
ts]

—24 — odometry
— slam
~3{ — ground truth

0 50 100 150 200 250 300 350 400

Figure 8.10: 2D pose of the robot according to different available localization
methods along the long pre-defined route

During the longer run, the final error of the SLAM method stayed the same,
as during the previous longer run with camera oriented parallel to the ground.
This is because the distance of the tracked features is mostly consistend
throughout the whole run and the error, visible in the first experiment did
not show.

40

8.1. Localization results

2l odometry + GPS
XGPS only

— slam

—— ground truth
1
0

E X%
> =14 XXy
x
xxx x «
XX, X X
2 X x
x
x X X x
x XX X
x
—34 %
x % X
X XX X
X xx X
x

44

-35 -3.0 =25 -2.0 -15 -1.0 -0.5 0.0 0.5

Figure 8.11: Path of the robot according to different available localization
methods, GNSS data are also included in the odometry

Figure 8.14: The tilt of the camera also resulted in much more common loss of
tracking

41

8. Experiments

o o
S
%,
-1 X X
Pl X
- XX)o(XX
E 5 »”
< % XX o0 X
-3 X 3ol 2o 0K e X
0o %,
— odometry + GPS x do00tg X Xxxxx 0¥
-4 x Gpsonly 0K
Hallpioh «
o
—5 — ground truth XK X
3 P P P P Y
tls]
2
! M
0
- 0 00
o
Eal e X% P
X X X
= 00005 "x 2 % s 0007 x
p XX X% x —— odometry + gps.
9 060" e X X GPs only
-3 o xX Xy xx — slam
X000 XX 30X —— ground truth
-
B P w e % i
ts)
N [
—l
2] Srouna tran
Ny
£ 0
N
-
"

tis]

Figure 8.12: 2D pose of the robot according to different available localization
methods, the camera tilt resulted in much smaller SLAM error

odometry ‘ SLAM ‘ GPS
distance travelled (m) 31.70
distance from GT (m) 1.47 1.32 9.5
relative error (%) 4.6 4.2 29.9

Table 8.5: Absolute and relative error of all methods with respect to the ground
after moving along longer path. The camera for SLAM is tilted slightly towards
the ground.

42

8.1. Localization results

e
e —C
0
e e
1 * -
Pix oo 2
o2 o2 2
B 565605 MX ”33(%
X 3 X, X 2 x
% X
-4 — odometry + gps WM
XGPS only X
-5
— slam W»(
0 20 40 60 80 100
tls]
0
—— RS s
1 iate
2%, 2% % %
" ‘< ok %
€ X X % &
= -3 X X
e et %, “
—a XXX X x
"6 B ¢ «
X —— odometry + gps
- X x P
5)X& WX?X%X KS&WX zai‘ only
-6
0 20 40 60 80 100
tls]
0.10
—— odometry + gps
0.05 — slam
Al I el
: T g
-0.05
ks
-0.10
-0.15
-0.20
0 20 40 60 80 100

tls]

Figure 8.13: Difference of the SLAM and odometry localization methods with
respect to the ground truth, the camera tilt resulted in much smaller SLAM

error

—— odometry
51 X GPSonly
— slam

—— ground truth

Xx
- ’ x %&iﬁ x&%xx
g -5 %S 2225 Nea
3 X3
« X
%% >§<<X &2
—10 § X X
B Xxx @gg
XX XX
_15 N
S 5 % o
XIm]

Figure 8.15: Path of the robot according to different available localization

methods, GNSS data are also included in the odometry

43

8. Experiments

X[m]

1T — odometry + GPS
—-104 X GPSonly

— slam

=159 — ground truth

0 50 100 150 200
tls]

-5 W W
—— odometry + gps X

X
_104 % GPS only
— slam
—— ground truth
—~15

0 50 100 150 200

Y[m]

—— odometry + gps
-2 — slam
| —— ground truth

0 50 100 150 200
t[s]

Figure 8.16: 2D pose of the robot according to different available localization
methods, the camera tilt resulted in much smaller SLAM error

Overall both tested methods managed to estimate robot’s position with
relative error with respect to the ground truth being less than 10%. The tilt
of the camera, used for SLAM eliminated the variation of the performance
based on the distance of the tracked features. The localization using the tilted
camera outperformed localization from odometry in both the experiments.
Furthermore, loop closure is able to bind the error of the SLAM method,
whereas odometry error will continue to increase over time.

Localization using GNSS only proved to be unusable in the current state.
The final relative localization error of the GNSS module during the longer run
was 30%. In order to improve performance of this method, second module,
mounted on a base station is needed to perform RTK-GPS localization. This
however further increases the cost of this method.

44

8.2. Terrain classification results

. 8.2 Terrain classification results

Evaluation of the terrain classification performance was done on a set of 60
images that were not used during the training of the model. The classification
was done using CPU only. The CPU used was Intel i5 5200U @ 2.2 GHz.
The model achieved 98% accuracy with an average classification time of 0.1s.

actual\predicted | grass | not_ grass
grass 42 0

not__grass 1 17

Table 8.6: Confusion matrix of the model on the evaluation dataset

grass:True grass:True

not_grass:True
iy

not_grass:True not_grass:True

grass: True grass:True grass:True

not_grass:True

grass:True grass:True grass:True not_grass:True grass:True

Figure 8.17: An example of classified images from the evaluation dataset, the
model was able to successfuly classify all the images.

45

46

Chapter 9

Future work

Implemented nodes and methods, presented in this thesis are only a foundation
of a fully functional robotic lawn mower. Therefore, multiple future work
options will be presented in this chapter.

B 9.1 Controller implementation

All nodes, implemnted for this thesis do not communicate with each other.
For this another node is needed. This node should take position information
from one of the localization methods and terrain information from the image
classifier to implement simple reactive behaviour.

Another option is to use point cloud, available from SLAM, together with
the information from the image classifier to build a map of the environment.
Using this map, planning and frontier exploration algorithms can be used to
navigate the environment. The robot can for example first map the boundaries
of the area and then calculate optimal mowing trajectories inside this area.

47

9. Future work

B o2 Charging station

Another topic, that was not researched in this thesis, but is essential for a
robotic lawn mower, is search of and return to the charging station. For
this, centimeter level localization accuracy is needed. This accuracy was not
achieved by any of the tested methods in this thesis and further improvement
of the localization precision or a different approach is needed.

B 9.3 Dedicated computing platform

Last, but not least a dedicated computing platform is needed. All the
experiments, made in this thesis were run on a connected laptop. In the
future, dedicated computing platform, presented all the time on the robot is
needed.

48

Chapter 10

Conclusions

In this thesis, multiple low cost localization methods were researched. These
methods were tested as a replacement for currently used localization methods
for robotic lawn mowers, which mostly use buried wire as a boundary of
the mowing area and a GPS module. The tested methods were odometry,
IMU and GNSS data fused together by an extended Kalman filter[28] and
an Intel RealSense D435 depth camera with ORB-SLAM2[29] algorithm. All
methods were tested using a DYI robotic lawn mower called Ardumower.
All localization methods were implemented as ROS nodes. To controll the
robot, another ROS node was implemented that took path information as an
input and outputed the desired linear and angular speed of the robot, that
was then processed by Ardumower ROS driver node. As a ground truth for
localization, Whycon external localization method[14] was used.

Both methods were able to achieve relative error with respect to the ground
truth lower than 10%. The SLAM algorithm with the camera tilted slightly
towards the ground proved to be more insensitive to the distance of the
tracked features and managed to achieve better accuracy, than odometry
with relative error with respect to the ground being less than 5% in both
experiments. Furthermore, if loop closure occurs, the localization error of
this method becomes bounded, whereas the localization error of odometry
will continue to increase over time.

If both methods are used together, the robot is able to switch to localization
using odometry, if the SLAM method fails to localize. The SLAM method
can also be used to correct the odometry error.

49

10. Conclusions

For better awareness of the environment, visual classifier of the mowed
terrain is presented. This classifier used the images from Intel RealSense
camera and extracted a region of interest, present in front of the robot. On
this region, classification to one of the two defined classes was made. These
classes were grass and not_ grass with the idea being to mow everything,
classified as grass and avoid everything, classified as not_ grass.

For the image classification, MobileNetV2[30] model was used. This model
was pretrained on the ImageNet[31] dataset, its fully connected layers were
replaced with custom structure, specific for the desired task. For training,
first 12 layers were frozen.

The final model achieved 98% accuracy on the evaluation dataset consisting
of 60 images, with an average classification time of 0.1s. This classifier
was implemented as a set of 2 ROS nodes, where the first node performed
extraction of the region of interest from the image and the second node
performed the classification.

Finally, multiple future work options were presented, that are needed for a
fully functional robotic lawn mower.

50

o1

10. Conclusions

Appendices

52

1]

2]

3]

[4]

[5]

[6]

Appendix A

Bibliography

“Introduction to convolutional neural networks.” |https://www

[vojtech.net/posts/intro-convolutional-neural-networks/| Ac-
cessed: 2020-05-17.

H. Sahin and L. Guvenc, “Household robotics: autonomous devices for
vacuuming and lawn mowing [applications of control|,” IEEE Control
Systems Magazine, vol. 27, no. 2, pp. 20-96, 2007.

“Is there a robot lawn mower without
perimeter wire?.” https://myrobotmower.com/|
[is-there-a-robot-lawn-mower-without-perimeter-wire/| Ac-

cessed: 2020-05-20.
“Ardumower - do-it-yourself robot lawn mower project.”

[ardumower.de/index.php/en/l Accessed: 2020-05-05.

M. Ben-Ari and F. Mondada, Robotic Motion and Odometry, pp. 63-93.
Cham: Springer International Publishing, 2018.

A. J. Davison, “Real-time simultaneous localisation and mapping with a
single camera,” in Proceedings of the Ninth IEEE International Confer-
ence on Computer Vision - Volume 2, ICCV 03, (USA), p. 1403, IEEE
Computer Society, 2003.

E. Royer, M. Lhuillier, M. Dhome, and T. Chateau, “Localization in
urban environments: monocular vision compared to a differential gps

sensor,” in 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05), vol. 2, pp. 114-121 vol. 2, 2005.

J. Campbell, R. Sukthankar, and I. Nourbakhsh, “Techniques for eval-
uating optical flow for visual odometry in extreme terrain,” in 200/

53

https://www.vojtech.net/posts/intro-convolutional-neural-networks/
https://www.vojtech.net/posts/intro-convolutional-neural-networks/
https://myrobotmower.com/is-there-a-robot-lawn-mower-without-perimeter-wire/
https://myrobotmower.com/is-there-a-robot-lawn-mower-without-perimeter-wire/
https://www.ardumower.de/index.php/en/
https://www.ardumower.de/index.php/en/

A. Bibliography

[14]

[15]

[16]

[19]

IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (IEEE Cat. No.04CH37566), vol. 4, pp. 3704-3711 vol.4, 2004.

M. Agrawal and K. Konolige, “Real-time localization in outdoor envi-
ronments using stereo vision and inexpensive gps,” in 18th International
Conference on Pattern Recognition (ICPR’06), vol. 3, pp. 1063-1068,
2006.

J.-M. Codol, M. Poncelet, A. Monin, and M. Devy, “Safety robotic
lawnmower with precise and low-cost 11-only rtk-gps positioning,” in
Proceedings of IROS Workshop on Perception and Navigation for Au-
tonomous Vehicles in Human Environment, San Francisco, California,
USA, pp. 69-72, 2011.

S. Thrun, “Robotic mapping: A survey,” in Exploring Artificial Intelli-
gence in the New Millenium, Morgan Kaufmann, 2002.

H. P. Moravec, “Sensor fusion in certainty grids for mobile robots,” Al
Magazine, vol. 9, p. 61, Jun. 1988.

J. D. Tardés, J. Neira, P. M. Newman, and J. J. Leonard, “Robust
mapping and localization in indoor environments using sonar data,” The
International Journal of Robotics Research, vol. 21, no. 4, pp. 311-330,
2002.

T. Krajnik, M. Nitsche, J. Faigl, T. Duckett, M. Mejail, and L. Preucil,
“External localization system for mobile robotics,” in 16th International
Conference on Advanced Robotics (ICAR), Nov 2013.

M. Nitsche, T. Krajnik, P. Cizek, M. Mejail, and T. Duckett, “Whycon:
An efficent, marker-based localization system,” in IROS Workshop on
Open Source Aerial Robotics, 2015.

M. Franzius, M. Dunn, N. Einecke, and R. Dirnberger, “Embedded robust
visual obstacle detection on autonomous lawn mowers,” in 2017 IEFEFE

Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pp. 361-369, 2017.

P. Filitchkin and K. Byl, “Feature-based terrain classification for little-
dog,” in 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 1387-1392, 2012.

M. Y. W. Teow, “Understanding convolutional neural networks using a
minimal model for handwritten digit recognition,” in 2017 IFEE 2nd
International Conference on Automatic Control and Intelligent Systems

(I2CACIS), pp. 167-172, Oct 2017.

Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional networks
and applications in vision,” in Proceedings of 2010 IEEE International
Symposium on Circuits and Systems, pp. 253-256, May 2010.

o4

[20]

A. Bibliography

L. Bauer, “Implementation of a computer vision algorithm for onboard
detection of unmanned aircraft,” bachelor thesis, Czech Technical Uni-
versity in Prague, 5 2018.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2015.

V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convo-
lutional encoder-decoder architecture for image segmentation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 39,
no. 12, pp. 2481-2495, 2017.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” CoRR, vol. abs/1704.04861,
2017.

L. Ojeda, J. Borenstein, G. Witus, and R. Karlsen, “Terrain characteri-
zation and classification with a mobile robot,” Journal of Field Robotics,
vol. 23, no. 2, pp. 103-122, 2006.

“Robot operating system wiki.” http://wiki.ros.org/| Accessed: 2020-
05-19.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Ng, “Ros: an open-source robot operating system,” vol. 3, 01
2009.

“Rep 105, coordinate frames for mobile platforms.” https://www.ros|
org/reps/rep-0105.htmll Accessed: 2020-05-09.

T. Moore and D. Stouch, “A generalized extended kalman filter imple-
mentation for the robot operating system,” in Proceedings of the 13th
International Conference on Intelligent Autonomous Systems (IAS-13),
Springer, July 2014.

R. Mur-Artal and J. D. Tardés, “ORB-SLAM?2: an open-source SLAM
system for monocular, stereo and RGB-D cameras,” IEEE Transactions
on Robotics, vol. 33, no. 5, pp. 1255-1262, 2017.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” 2018.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition, pp. 248-255, Ieee, 2009.

55

http://wiki.ros.org/
https://www.ros.org/reps/rep-0105.html
https://www.ros.org/reps/rep-0105.html

	Introduction
	Thesis overview

	Related work
	Available low-cost robotic mowers
	Ardumower

	Available low-cost localization methods
	Odometry
	Visual odometry

	Global Navigation Satellite System
	Differential GPS

	Simultaneous localization and mapping
	Robotic mapping
	Simultaneous localization and mapping

	Whycon

	Terrain classification
	Neural networks

	Ardumower setup and enhancements
	Ardumower setup and ROS integration
	About ardumower
	About Robot Operating System
	ROS TF Library

	ROS with ardumower

	 Implementation of robot localization methods
	Odometry + IMU
	GNSS module

	RGBd camera + SLAM
	Whycon
	Odometry + IMU for orientation estimation

	Implementation of a terrain classifier
	Experiments
	Localization results
	Terrain classification results

	Future work
	Controller implementation
	Charging station
	Dedicated computing platform

	Conclusions

	Appendices
	Bibliography

