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Instructions

Explore the principles of random number generation (TRNG) on FPGAs. Implement a TRNG based on ring
oscillators [1] on an FPGA development board. The TRNG circuit will be an internal peripheral to a soft-core
CPU such as Xilinx Microblaze. The FPGA board will communicate with a PC using a serial interface (USB-
UART).
Create a program for the CPU that will send a random string generated by the TRNG to the PC.
Implement a simple test of the TRNG (frequency test and runs test) that will run interleaved with TRNG
generation and whose results will be sent to the PC.
Test the generator output under various physical environmental conditions (voltage, temperature).
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Abstract

This thesis deals with the implementation of a true random number generator
on FPGA development board building on pair of ring oscillators and explores
the influence of temperature and power supply changes on generated out-
put, evaluated by NIST-inspired tests. The results show that environmental
changes does not impact the ouput in any significant way.

Keywords TRNG, ROPUF, FPGA, randomness, testing randomness, en-
viromental tests, true random number generator
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Abstrakt

Tato práce se zabývá implementací hardwarového generátoru náhodných čísel
na FPGA vývojové desce, který staví na páru kruhových oscilátorů a zahr-
nuje testování vlivu změn teploty a napájecího napětí na generovaný výstup.
Vyhodnocení staví na NIST testech. Výsledky ukazují, že změny prostředí
neovlivňují výstup generátoru žádným významným způsobem.

Klíčová slova TRNG, ROPUF, FPGA, náhodnost, testování náhodnosti,
testování vlivu prostředí, hardwarový generátor náhodných čísel
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Introduction

As of ever-increasing emphasis on security, almost every device is required
to be capable of cryptographical utility to some extent. Many cryptographic
protocols require random numbers to provide secure encrypted data. However,
the challenge lies in the fact that computers are deterministic and usually
cannot give genuinely random numbers. There are a couple of ways how
to obtain a so-called source of entropy for True Random Number Generator
(TRNG), and their underlying principles are covered in this thesis.

At the same time, devices could be required to generate not random but
unique numbers. Either for their identification as a fingerprint of a particu-
lar device or to generate a private key for asymmetric ciphers. This could be
accomplished by Physically Unclonable Function (PUF), which uses imperfec-
tions and mismatches arising during the manufacturing process, causing every
device to be unique. PUF is being implemented similarly to TRNG. There-
fore the same circuit could be used for generating both random and unique
numbers. This thesis focuses on specific implementation [1] of PUF circuit
based on Ring Oscillators (RO) with an emphasis on it used as TRNG.

The aim of this is twofold. The first part consists of implementing above
mentioned PUF based on ROs (ROPUF) on Field-programmable gate ar-
ray (FPGA) board Digilent Cmod S7 in a way that it significantly simplifies
future research and development of given circuit. How to achieve it is to sim-
plify the ROPUF written in Very High-Speed Integrated Circuit Hardware
Description Language (VHDL) and handle as much as possible in a soft mi-
croprocessor core MicroBlaze programmed in C language. MicroBlaze would
then process data acquired from ROPUF and provide basic analysis. For
example, frequency and runs test. Part of the proposed solution consists of
a simple communication protocol over UART between FPGA and PC. The
second part deals with the behavioral analysis of ROPUF under various ex-
ternal conditions. Due to the nature of a discussed solution, the goal is to
determine whenever changes in, for example, temperature lead to changes
in quality of output. Given the example of temperature, the preposition is
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Introduction

that with increasing temperature, imperfections in electrical circuits become
more prominent, variation between different parts accumulate, and the level
of entropy should rise.

The thesis is laid out in the following manner. The opening chapter ex-
plores a general TRNG composition. Then it discusses available randomness
sources on FPGA and, lastly, currently existing prominent ways of TRNG im-
plementation built on mentioned randomness sources. The next chapter deals
with the specific design of ROPUF and gradually unravels the idea of PUF im-
plemented as TRNG. The closing part of this chapter deals with randomness
evaluation in general and how it is handled in this work. Those two chapters
account for the theoretical part of the thesis. The practical part is laid out
in chapter Design and Implementation and Measurements. The former briefly
describes used tools and then separately goes through circuit design, software
design for MicroBlaze processor, and software design of Python script running
on a computer. The latter explores obtained data and interprets them in the
context of carried out research. The last chapter concludes the whole thesis
with an evaluation of set goals and draws some implications concerning future
work.

2



Chapter 1
State-of-the-art

This chapter first describes the composition of a truly random number gener-
ator. Then it briefly describes randomness sources available to use on FPGAs,
and finally, it goes through various existing approaches.

1.1 True Random Number Generator Composition

TRNG can be broken down into four distinct parts: a source of entropy,
entropy extraction, post-processing, and built-in tests [2].

The entropy source is a physical process, too complicated or volatile. Such
a process would be nearly impossible to describe in a mathematical model.
Hence, it provides defense against predicting the following output sequence
and reconstructing previously generated numbers. Some examples of such
processes could be time between emissions during radioactive decay, quantum
random process, shot noise from Zener diodes, or user interaction.

The entropy extraction is rather straight-forward, although unnecessary
part. Its function lies in a regular sampling of analog signals generated by
entropy source and conversion into a digital one. Together with the entropy
source creates a source of digital noise.

Paradoxically, the randomness of digital noise introduces a problem in
itself. The output could be unbalanced, thus vulnerable to statistical anal-
ysis. The post-processing is there to solve precisely this. Usually, the post-
processing consists of deterministic function which aims to improve statistical
attributes of the output.

The built-in tests observe TRNG health. Even though some prototype of
TRNG is thoroughly tested before distribution, the quality of every single unit
is not guaranteed. Reasons are differences in the manufacturing process, aging
of components, the influence of the environment, or even an attacker’s active
effort to degrade the level of randomness. According to W. Schindler and
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1. State-of-the-art

W. Killmann [3], “. . .to detect such defects TRNGs should perform start-up
tests, online test and so-called tot1 tests while they are in operation”.

1.2 Randomness Source on FPGA
Without utilizing an external source, the only available physical processes on
FPGA are jitter and meta-stable states in logic circuits. The latter exploits
the fact that logic circuits such as D-type flip-flop require some time to settle
on either of logical levels. If this time window is violated, the circuit may
enter a meta-stable state. The meta-stability describes the fact output value
is not deterministic, thus suitable as a randomness source. However, this
method is not widely used considering high precession timing requirements
and uncertainty of meta-stable state even occurring. Instead of relying on
meta-stability, jitter is utilized.

Jitter is a term describing deviation in a periodic signal. If a digital clock
signal is considered, the edge does not occur at exact intervals. Rather, Gauss
distribution [4] around “ideal” timing is observed. This behavior is usually
undesired but can be used as a randomness source. TRNG implementations
drawing upon the usage of jitter as their source of randomness are doing so
usually through ring oscillators. The ring oscillator is a chain consisting of
logic gates in an odd number. A possible solution is to use an even number of
NOT gates and single NAND gate between, allowing for enabling/disabling
RO.

1.3 Existing Implementations of TRNG on FPGA
This section describes some of the existing and recently explored implementa-
tions of the true random number generator on the FPGA, focusing on various
approaches to previously mentioned principles of obtaining randomness.

1.3.1 TRNG Based on Meta-stability

Contrary to section 1.2, some designs using meta-stability exists. One of those
is described by Jean-Luc Danger and his colleagues [5]. They propose to design
TRNG capable of higher bit-rate then usual RO-based. Proposed structure
(see Figure 1.1) uses series of latches made by looped Look Up Table (LUT)
blocks. Both data and enable input are wired to a global clock with a purposed
delay for data input. This results in LUT entering a meta-stable state and
each at different times. Their output is then XORed and synchronized by pair
of D-type flip flops.

1total failure of the noise source
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1.3. Existing Implementations of TRNG on FPGA

Figure 1.1: Very High Speed TRNG based on an open loop structure [5].

Figure 1.2: TRNG composed of multiple ROs [6].

1.3.2 TRNG Using Multiple ROs

Multiple implementations were proposed during recent years. However, the
trend started with a paper by Sunar, Martin, and Stinson [6]. Their contri-
bution simplified the following designs significantly while solving many issues
introduced by their predecessors. The key idea (see Figure 1.2) is to have
several ROs, and their output then hashed into a single bit by XOR gate,
supposedly realized as a binary tree structure. Because the desired jitter oc-
curs only during the rising edge of the RO output signal, the amount of entropy
is reasonably limited. Naturally, increasing the number of ROs saturates the
percentage of jitter compared to the deterministic part of the signal. The au-
thors found out the best results are achieved when the length of RO is constant
across all of them, which was then successfully demonstrated [7]. Nevertheless,
potential performance shortcomings surfaced concerning the XOR gate. The
following subsection 1.3.3 describes improved design addressing this issue.

5
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Figure 1.3: Improved design of TRNG composed of multiple ROs with addi-
tional D-type flip flop circuits [8].

1.3.3 Improved TRNG Using Multiple ROs
The problem with TRNG put forward by Sunar et al., is that the DFF circuit
cannot handle transitions from all the ROs properly, consequently causing
it to enter a meta-stable state. Moreover, even though a random number
generation is in a picture, this behavior is undesired in this case, because it
reduces the amount of entropy significantly. Proposed solution [8] considers
using additional DFF for every RO before its signal runs through XOR (Figure
1.3). This prevents the propagation of unwanted state through XORs binary
tree structure.

1.3.4 TRNG Utilizing Phase-locked Loop
Another approach to utilize jitter as a randomness source builds on a Phase-
locked loop (PLL). The difference lies in that the PLL is part of the built-in
circuitry and not synthesized inside the FPGA. Rather it needs to be available.
For example, the Spartan-7 chip has three PLL available to use. The PPL
generates a clock signal, which is phase-locked onto the input clock signal. The
output frequency can differ. The general principle of PLL is shown in Figure
1.4. ”[V]arious noise sources cause the internal voltage controlled oscillator
(VCO) to fluctuate in frequency. The internal control circuitry adjusts the
VCO back to the specified frequency, and this change is seen as jitter.” [9]

The same paper then proposes a method to extract this jitter by using
a D flip flop circuit followed by a decimator that filters the actual random
bits. The PLL output frequency is determined as fout = fin ∗ KM /KD, where
GCD(KM , KD) = 1. The decimator applies KD value, thus defining the

6
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:m

:n

fin⋅(m/n)
fin

Phase
comparator

Voltage-controled
oscillator

Figure 1.4: The phase-locked loop.

output rate. The conclusion shows the best results are obtained when KD is
an odd number with fin < fout. The following work [10] focuses on further
optimization and uses the genetic algorithm to get the most efficient parameter
configuration.

1.3.5 Chaos-based TRNG
Even though digital noise is usually obtained from a physical process, some
authors believe an oscillator composed of a chaotic system can be entertained.
Chaos theory proposes some functions deterministic in their nature are consid-
erably sensitive to their input, making the output practically unpredictable.
Such a system is then described in the differential equation set. An example of
this approach is set forth by the implementation of the Lorenz chaotic model
on FPGA in purely digital fashion [11]. While the random generator passed
standardized tests based on a chaotic oscillator [12], it is unclear whenever
true randomness is obtained. To conclude, the chaos-based design is men-
tioned because of the increasing interest but would fall into the category of
pseudo-random number generator, unless further research proves otherwise.
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Chapter 2
Analysis

This chapter continues the theoretical part of this thesis. It goes through an
explanation of the physically unclonable function and one concrete design that
uses a ring oscillator pair to obtain the output. Then it explores the idea of
using this concrete PUF as a truly random number generator. The last part
of this chapter describes the evaluation methods utilized in this thesis.

2.1 Ring Oscillator-based Physically Unclonable
Function

This section deals with explaining the principle behind the physically unclon-
able function and the concrete design using ring oscillator pairs.

2.1.1 Physically Unclonable Function
Previous chapter 1 discussed popular approaches to implementing TRNG on
FPGA. However, this thesis carries forward a different method proposed in
a paper by S. Buchovecká et al. [1]. Their design uses PUF circuit [13] and
employs it in the form of TRNG.

PUF is a function exposing the inherent properties of an electronic circuit,
determined by the manufacturing process. Moreover, because a function re-
quires input value, the same holds for PUF. The value is called a challenge.
PUF then can be described as a function that returns a unique response to the
same challenge for each device. This behavior is useful for generating private
keys in a zero-trust environment because the key is not stored in memory,
which limits the possibility of compromise significantly. Due to the nature of
PUF, not only manufacturing aspects cause a difference in output, but also
properties of the current environment. For that reason, some extra steps need
to be taken in order to ensure a stable response for a specific challenge across
time.

9



2. Analysis

Figure 2.1: Structure of RO-based PUF [14].

2.1.2 The Main Principle of Proposed ROPUF

Proposed design [13] uses a pair of ROs, each connected to a counter. Both
counters start simultaneously counting up until one of them overflows. The
overflow of one causes both to stop, resulting in a specific value present in the
other counter. This value is ultimately subject to the physical properties of the
RO pair. A circuit layout supposes some delay between overflow detection and
disabling counters. However, this delay is constant for both counters, meaning
constant positive offset for the considered value. Finally, the design uses
multiple RO pairs connected to multiplexers instead of counters directly. The
consequence is RO pair selection through multiplexer serves as the challenge
for a PUF. The schema shows Figure 2.1.

2.1.3 The Attributes of ROPUF Output

Now each acquired bit position for a selected RO set has an attribute called
stability. A definition for the stability shows Equation 2.1 [13].

si(RO) =
{

P (bi = 1) if P (bi = 1) ≥ 0.5
1 − P (bi = 1) if P (bi = 1) < 0.5

(2.1)

P (bi = 1) stands for a probability of i position being set. The probability
is an average of k times measured value. Whenever a given position is suitable
for PUF shows the average stability across every RO pair.

The second attribute crucial for consideration is entropy. For ROPUF,
entropy renders how much differs the output of the same challenge for different
devices. The paper [13] puts forward two parameters, Hintra and Hinter, see

10



2.2. ROPUF as TRNG

Equation 2.2 and 2.3.

Hintra(i) = − 1
m

m∑
j=1

1∑
k=0

pj(k)log2(pj(k)) (2.2)

Hinter(i) = − 1
n

n∑
j=1

1∑
k=0

pt(k)log2(pt(k)) (2.3)

What Hintra describes is “[t]he average entropy of bit position i within each
FPGA separately”, where pj is probability of bit being either set or clear. pj

averages major measured output for each RO pair. Hinter differs in that pt

averages across each FPGA for same RO pair. Hence Hinter considers the
average entropy across FPGAs for n pairs.

2.2 ROPUF as TRNG
This section lays out how the ring oscillator-based physically unclonable func-
tion can be utilized as a truly random generator. It also highlights the differ-
ence between those two and how to account for them when implementing the
TRNG.

2.2.1 Evaluation of ROPUF Output Behavior
The previous section 2.1.1 talks about a different topic then TRNG. But the
described principle is strikingly similar to other TRNG designs discussed in
chapter 1 before. Further evaluation of bit stability and bit entropy attributes
bridges the gap. ROPUF output is an internal value of a counter or, in other
words, a binary representation of a number. That means every position further
from LSB changes twice less than the previous one. Therefore it trivially
implies stability increases towards MSB, and by contrast, the near-LSB area
displays high volatility. Both, Hintra and Hinter, behave in the same way –
MSB position displays almost zero entropy and LSB just the opposite.

2.2.2 Difference Between PUF and TRNG
Now, PUF requires stable bits with good entropy. Ideal value would be 1,
although compromise must be met considering the conflicting nature of those
attributes. Thorough measurements show position 7-8 [13] are the most suit-
able2. At the same time, stability is an unwanted behavior when considering
TRNG. That means PUF and TRNG differ only in a single requirement, which

2Improved version [14] deploys gray code as a form of post-processing, which results in
the twice as long usable window of position 7 to 10.
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Figure 2.2: Ideal bit position for PUF functionality [14].

makes it that TRNG output selection is considerably easier to determine. An-
other case could be made for PUF having input while the only random number
generator which has input is PRNG.

2.2.3 Adjusting ROPUF to Work as TRNG

Finally, everything is laid out for the utilization of ROPUF as TRNG. The
first correction lies in changing the stability requirement. Ideal value is then
si(RO) = 0. Close to zero stability has been proven [1] to exist in bits 1 to 3,
with the least significant position zero performing worse.

Considering the excess of input, some other method of RO pair selection
other than from the outside needs to take place. This presents no challenge
to accomplish. The general approach, though, should aim for the simplest
algorithms only. Additional complexity would not influence the entropy level
as it is determined by the entropy of each RO pair. It would only introduce
another difficulty when analyzing the final design.

2.3 Methods of Evaluation

This section goes into detail of the tests used to evaluate the true random
number generator output.

2.3.1 NIST Test Suite

The method of evaluation lies in determining whenever generated output per-
forms as random or not. Conversely, true randomness cannot be determined
similarly. For establishing true randomness, a mathematical model of the
physical process must exist, which is out of the scope of this thesis. Instead,
“trueness” is assumed, and only statistical tests run for the output. This paper
relies upon tests specified in NIST SP 800-22 [15]. Different tests are applied
to the obtained values, but two are discussed in detail due to the nature of
implementation, frequency, and runs tests. Furthermore, this should provide
some idea of how NIST tests are framed.
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2.3. Methods of Evaluation

2.3.2 Frequency Test
The frequency test supposes randomness of a bit sequence whenever the num-
ber of ones and zeros is roughly the same. The function requires mapping the
bit values to (−1, 1) ∈ Z range. The procedure is:

1. Get the sum of n-sequence Sn

2. Calculate sabs = |Sn|√
n

3. Compute P-value = erfc
(

sabs√
2

)
, where erfc is a function from the

standard C math library for the complementary error function

The decision rule states that “[i]f the computed P-value is < 0.01, then
conclude that the sequence is non-random” [15]. P-value is erfc function for
every test, only the parameter differs. Same applies to the decision rule.

2.3.3 Runs Test
A run is defined as a bit sequence of the same value without interruption
bounded by the opposite value on both ends. Thus, the runs test checks if
the number of runs is adequate for a random string. The prerequisite for this
test is passing the frequency test first. Test statistic in this case is Vn and is
defined as:

Vn(obs) =
n−1∑
k=1

r(k) + 1 (2.4)

Where r(k) = 0 for k-bit value being equal to the of following and 1
otherwise. The way the P-value is stated, the test is sensitive for changes
between one and zero occurring too often or too scarcely.

2.3.4 Test Results Interpretation
The statistical tests in general aim to conclude if a null hypothesis H0 is correct
in the contrast with a alternative hypothesis HA. For that it is necessary to
define a critical level which would encompass test results with low chance
of occurring. The already mentioned P-value is the probability of exceeding
the critical level under the condition of H0 being true (Type 1 error). By
definition, if random variable is tested multiple times, the P-values must be
uniformly distributed over the [0, 1] interval.

Given the fact that the sequence consists of a finite number of discrete val-
ues, the P-value is also discrete and thus not continuous. To properly evaluate
the observed set of P-values, the NIST proposes to either evaluate histogram
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2. Analysis

of the P-values with ten subintervals or by applying the χ2 test and deter-
mining if the P-value correspond to the Goodness-of-Fit Distributional Test.
”If P-value ≥ 0.0001, then the sequences can be considered to be uniformly
distributed” [15].

Complementary approach is to define confidence interval and observe the
proportion of passed tests (again, the generator output is split into multiple
sequences tested separately). ”The confidence interval [is] calculated using a
normal distribution as an approximation to the binomial distribution” [15]. If
the pass ratio is lower or higher, the output is presumably not random.

2.4 External Conditions
Due to the nature of the randomness source, it is worth exploring the impact
environmental changes have on the quality of output. Not only that resulting
the TRNG would run in different conditions, but also an attacker could try
to rig generated noise. This kind of active attack aims to diminish the level
of entropy, thus making the output predictable. A number of tests exist.
For example, placing the TRNG into the oscillating electromagnetic field and
observing the impact of various periodical frequencies. However, this thesis
focuses on the influence of temperature changes and supply voltage variances.

The tests utilize a dynamic climate chamber, BINDERMK 56 [16]. Similar
work is described in a paper [17] focusing on thermal changes influencing the
PUF functionality. The paper concludes how rising temperature deepens the
frequency difference in the RO pair. The determining aspect is the length of
the signal path for given RO. Their respective output expresses the following
equation:

CNT = f1
f2

× 216 (2.5)

Considering both of those facts, it is clear that temperature changes are
more prevalent for ROs with significantly different signal paths as output de-
pends on frequency ratio. Naturally, PUF recognizes this as problematic, so
some countermeasures must take place. The authors of the paper propose
symmetric RO design, which diminishes unwanted output variations greatly.
TRNG has no such requirement, aiming actually for zero stability. To con-
clude, an area worth exploring is around lower temperatures, which might
stabilize output and degrade TRNG into PUF. This fact would significantly
compromise the security of the whole system. For analysis sake, the symmetric
design is preferred as variable stability would be limited, and only potentially
unwanted changes remain.

Next, supply voltage needs to maintain a proper level within defined
bounds. Because the development board contains a switched power supply, a
slight modification would allow for a change of this value. The switched power
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Figure 2.3: The schematic of a configurable voltage divider.

Choice 0 1 2 3 4 5 6 7
Voltage [V] 1.118 1.078 1.038 0.998 0.958 0.918 0.879 0.839

Table 2.1: Voltage levels for the respective choices.

supply is a circuit with a feedback loop. This feedback builds on wanted volt-
age level and is realized as a simple divider. The power supply can be forced
into adjusting the voltage on different than the designed level by modifying
the ratios of the divider. Even better would be to use linear power supply al-
lowing for continuous change, but the current version does not allow for that.
So by fixing external temperature and changing the supply voltage within pre-
scribed bounds, its feasible to observe a change of stability. The expectation
is to see decreasing stability when the voltage differs from the proper level.

The measurements are conducted in the environment portrayed in Figure
2.4. The Arduino board controls the modified power supply circuitry (see
Figure 2.3), and together with the FPGA board is connected to PC via a
USB hub. The FPGA board is placed inside the climate chamber, as well as
the voltage divider. The temperature sensor is placed directly onto the FPGA
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Temperature
sensor

FPGA board

USB
hub

Arduino
board

Climatic chamber

Voltage
dividerPC TCP/IP

USB

Figure 2.4: Diagram which shows the experiment configuration.

chip and is linked with the climatic chamber. The chamber then communicates
with the PC over the TCP/IP. Table 2.4 shows measured voltage values at a
fixed temperature according to various voltage divider setup as controlled by
the Arduino board.
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Chapter 3
Design and Implementation

The implementation uses the FPGA development board Digilent Cmod S7
with the Spartan-7 FPGA chip from the Xilinx family. The board contains a
serial to USB converter, which significantly simplifies the usage of said board.
The board is fully supported by Xilinx Vivado Design Suite 2019.2, which
encompasses tools needed for developing both circuitry and software.

3.1 Hardware
The general approach for functional implementation requires not only the
TRNG circuitry itself connected to the MicroBlaze processor, but also some
other peripherals. Those ensure complete functionality of the final product.
The whole block design is shown in Figure 3.1.

3.1.1 Minimal MicroBlaze Processor Generation
The environment simplifies the designing process considerably, as every nec-
essary part which the processor needs for proper function generates and inter-
connects automatically. For that reason, it is not necessary to discuss every
detail, and only a brief explanation suffices. The created blocks are as follows:

• Clock Wizard

• BRAM Module

• AXI Interrupt Controller

• AXI Interconnect

• Microblaze Debug Module (MDM)

The Clock Wizard [18] provides a configurable wrapper around external
clocking primitive (e.g., a crystal oscillator). Although not utilized in this
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3.1. Hardware

design, the circuit allows for dynamic reconfiguration through the AXI bus.
Another advantage is the possibility of having multiple (up to seven) output
clocks with a defined phase relationship. Relevant is a feature focused on
minimizing output jitter and increase tolerance to input jitter as well.

The Processor System Reset [19] is another wrapper similar to the previous
one. The difference is trivially in a type of signal handled. This module
ensures proper timing and pulse length for individual IPs. Its function can
be summarized as synchronization of an external reset signal to the slowest
clock. For this concrete implementation, such a clock is the only output of the
Clock Wizard. It is worth mentioning that external signals sys_clock and
reset are not connected even when using the auto-connect function.

The BRAM (Block RAM) Module is not always needed. But because the
Cmod S7 board does not have any physical RAM, it is necessary to synthesize
one directly inside the FPGA. The module consists of five other IPs. Those
are two Local Memory Buses (LMB), two LMB BRAM Controllers [20], and a
single Block Memory Generator. From the practical point of view, this block
is likely not to be configured at all. The reason is that the amount of available
memory handles the Address Editor window. Available memory is specified by
the address range, which is also done during the configuration of MicroBlaze
Processor Wizard.

The AXI Interrupt Controller [21] provides an essential capacity for mul-
tiple interrupt handling. Although current software implementation does not
utilize interrupts in any way, the hardware is capable of doing so. The Mi-
croBlaze processor is equipped with only single interrupt input, which can
be extremely limiting for even simple designs. The role of the AXI Inter-
rupt Controller lies in the concentration of multiple (up to 32) interrupts and
communicates them through a single AXI interface. In the case of even more
demanding designs, the IP supports cascading and thus makes it possible to
exceed the basic number of inputs.

The AXI Interconnect [22] is the most used module in this design. Its
function is rather simplistic, though, as it can be described as a multiplexor
for the AXI bus. The processor has only a single AXI interface, so it is un-
avoidable to use this IP. From the designer’s perspective, it is very convenient
the support for auto-connect, which makes adding AXI modules seamless. Pe-
ripherals are then accessed through memory operations. The Address Editor
allows for review and reconfiguration of those addresses.

3.1.2 Mandatory Peripherals
The following modules are not part of the ROPUF circuitry per se but are
indispensable nevertheless. Those two modules are:

• AXI Uartlite

• AXI Timer
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3. Design and Implementation

Although the board itself provides an interface to facilitate UART, it does
not provide anything on top of that. That means only the raw RX and TX lines
are available, and the communication protocol must handle FPGA completely.
Different ready-to-use IPs exist, but the current implementation goes with AXI
Uartlite [23]. The main advantage is a fairly straight-forward connection to
the processor through the AXI bus. Of the same significance is a fact that the
Uartlite has a comparatively small physical footprint. The current design does
not run into such limitations, but this kind of precaution can prove useful in
future work. There are some drawbacks, but nothing of critical importance.
The most visible is the impossibility to configure a transfer speed dynamically.
The transfer speed is “hard-coded” into the hardware, and at the same time,
the choice is somewhat limited. The last potential problem might be a limited
size of input and output buffers. Both of them are defined as a 16 bit register
without the possibility to adjust that size. But as the buffers exist to allow
for asynchronous communication, which the current implementation does not
utilize, it proves insignificant.

Some techniques to implement timers only in software exists, but those
are generally somewhat inaccurate. Moreover, as it might suffice for different
scenarios, this one by its nature requires a high level of accuracy. The AXI
Timer [24] allows for a wide range of applications. The IP is timer and counter,
although such thing goes for nearly all hardware timers. The interesting part
lies in two 32 bit timers/counters included in a single IP with the possibility
to run in a cascade mode, allowing for the total width of 64 bits. When it
goes to the actual usage, it would be possible to make it run in Capture mode
with the Capture Trigger Input connected directly to the Ready Ouput of the
ROPUF. However, the timer is used not only for measuring the ROPUF run
time. Therefore the utilization limits itself to a simple stoppable count-up
timer available from the program.

3.1.3 ROPUF Inteface Circuitry
Before the ROPUF Module is discussed in detail, the way it is connected to
the MicroBlaze deserves more attention. The building blocks go as follows:

• AXI GPIO

• Slice

• Concat

First, it is worth pointing out that different, somewhat more sophisticated
methods of connection could have been used. That is, ROPUF module can be
reworked in such a way to provide the AXI interface directly. Although this
would simplify the final design greatly, it goes beyond the scope of the thesis.
Especially as the current implementation does not diminish re-usability, only
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the block design is slightly more complicated. Therefore, the current approach
goes with utilizing a simple general-purpose input/output hook-up. The ad-
vantage lies in the ability to work with the ROPUF module signals separately,
which gives the possibility to connect other circuitry in the future.

The central role holds the AXI GPIO module, which allows accessing GPIO
through the AXI interface in the way of memory operations. The IP can
operate in either single or dual-channel mode, with both channels having
configurable width up to 32 bits. Now, the ROPUF module has twenty inputs
and thirty-three outputs, meaning a total of 53 signals3. Those could easily
fit into single two-channel AXI GPIO, but the problem lies in the splitting
and connecting of separate wires. So it is necessary to use two of these IPs.
Slice and Concat do what their names imply, simply splitting selected part of
a bus or joining it together.

The first GPIO module handles only output signals and the other inputs to
keep the final design intuitive. Their naming considers the perspective of the
processor, as the generator act as a slave device. So axi_gpio_out handles
signals coming from the processor into the generator and it goes the opposite
with axi_gpio_in. Also, the signals are concatenated in the same order they
enter the module optically.

3.1.4 ROPUF Module
Finally, the ROPUF module in itself is written in VHDL and split into multiple
files. The original source code was provided by Ing. Kodýtek and modified
by Ph.D. Buček to match needs of this thesis. The main file ROPUF.vhd puts
all the other together into a single functioning module. The others are simple
building blocks and go as follows:

• COUNTER.vhd is a 16 bit count-up counter which stops at maximum value
indicates such event.

• RO.vhd is a ring oscillator consisting of four negations and single NAND
gate serving as an enable (see Figure 3.2).

• RO_SET.vhd generates 150 ring oscillators and takes 8 bit input for their
selection.

• SR_LATCH.vhd is an actual SR latch.

• SYNCHRONIZER.vhd synchronizes async_input to a clock.

• TFF.vhd is a T flip-flop.

With all the mentioned parts, the ROPUF consists of two symmetrical
lines, which is expected due to its nature. The general function of the ROPUF

3Not including the clock signal.
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Figure 3.2: The ring oscillator defined by RO.vhd.
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Figure 3.3: The ROPUF implementation defined by ROPUF.vhd.

was already discussed in Chapter 2, so it is worth going through pinout only
and how does it connect to specific functionality. Both RO_select0 and
RO_select1 are 8 bit input signals serving for specific RO pair selection. As
maximum index value tops at 149, any value exceeding that one is binary
stripped at MSB places (i.e., 150 would map to 22). The RO_enable con-
trols whenever the ring oscillator are active (set) or not (clear). The clear
signal empties both counters when it is set and should only be used when
counters are not active. The rising edge needs to go into start input to start
the generation process, but ROs need to be enabled first. The clk input is
obviously for a clock signal, and that is all for input pins. The output ac-
counts for cnt_val0_out and cnt_val1_out which are raw counter values
and cc_enable_out – this one signals whenever the ROPUF is still running
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(set) or not (clear). The diagram of described implementation is shown in
Figure 3.3. All the the blocks hold their respective names with a description
of their instance name.

Now for the recapitulation of how to use the ROPUF module in its current
form. The first step is to select the ring oscillator pair and enable ring oscil-
lators. Next is to send pulse into clear input and then start input. Now,
the module is running which is indicated by set value on cc_enable_out pin.
When cc_enable_out clears, the output is available at cnt_val0_out and
cnt_val1_out. It is important to point out that the the ROPUF output is
the value of counter which is not filled. That means the ROPUF ouput can
be obtained with bitwise multiplication of both counter values. Also, input
signals need to stay set in the required state if not specified otherwise.

3.2 MicroBlaze Software
The modular approach is taken to assure the re-usability of the running pro-
gram. Thanks to such a decision, the currently running solution is ready to
use as it is, but when extensive changes take place, it is not necessary to scrap
everything, and individual libraries can be used as building blocks. This sec-
tion explores all the libraries and then the final product as a separate thing,
which uses all of the previously described parts.

When it comes to consistency, all the libraries are named by their respec-
tive names. They are split into a header (.h) and source (.c) file. Every
function starts with its library name and follows the “CamelCase” naming
convention. The constants use all-caps separated by underscores and vari-
ables low-caps with underscores. Every library revolves around an object of
a sort. Every object is C structure defined as a named datatype with a _t
suffix.

3.2.1 Analysis Library
The analysis library implements statistical tests for the randomness evaluation
following the NIST test suite. Currently, the library is equipped to perform
frequency and runs tests. The library object is stats_t, and compared to
the others is the only one expected to be created multiple times. Its role is
to hold statistical data about a specific bit sequence. It is worth pointing out
all the variables are unsigned 32-bit integers. The actual library consists of a
following functions:

• void AnalysisClearStats(stats_t *stats)

• void AnalysisLoadValue(stats_t *stats, u16 value)

• u8 AnalysisFrequencyTest(stats_t *stats)
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• u8 AnalysisIsFrequencyDirty(stats_t *stats)

• u8 AnalysisIsFrequencyPassed(stats_t *stats)

• u8 AnalysisRunsTest(stats_t *stats)

• u8 AnalysisIsRunsDirty(stats_t *stats)

• u8 AnalysisIsRunsPassed(stats_t *stats)

The first two provide general usage. The AnalysisClearStats function
clears attributes of respective objects and sets them to a default state. That
would account for setting test result flags into a TEST_FAILED state and dirty
flags to a DIRTY state. The DIRTY state signifies test result is no longer valid
and needs to be calculated again. The AnalysisLoadValue function works
as a setter. Its sole role is to update the state_t object properly with the
latest data from the observed sequence. Every call of this function makes test
results dirty.

The rest of the functions can be split into two parallel groups. Each triplet
deals with a separate test defined in the NIST test suite. AnalysisIsXPassed
functions serve as simple one-to-one getter of previously calculated X test
result. And similarily AnalysisIsXDirty functions are getters for the dirty
flag value. The argument expects the value of either one or zero, and anything
else does not guarantee proper function. Lastly, AnalysisXTest implements
the tests directly as described in NIST 800-22 [15]. Notation follows their
one as closely as possible without breaking naming conventions set for this
project. The return value does not reflect the test result directly. Rather, it
returns XST_FAILURE whenever a test cannot be performed (e.g., not enough
data are available) and XST_SUCCESS otherwise. The direct result is available
through a respective getter and can be either TEST_PASSED or TEST_FAILED.
The dirty flag is cleared to a ~DIRTY value when the function returns success.
All calculations run with float precision of four bytes.

3.2.2 Message Library
The message library encompasses communication protocol, which is directly
interlinked with the XUartLite library. That means some changes would be
required to replace the AXI Uartlite with anything else. At the same time, this
library heavily relies upon the timer library. The reason being the protocol has
built-in timeouts to ensure dead-lock avoidance and communication behavior
predictability. The protocol uses a form of packet communication, as shown in
Figure 3.4. The protocol overhead is three bytes per packet with a maximum
data size defined by MESSAGE_MAX_DATA_SIZE constant, which is calculated
from MESSAGE_BUFFER_SIZE with a default value of sixteen bytes. The ID
specifies what type of message is coming through and telling the receiver
what it should be parsing. The message length is part of the message itself,
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ID data	length
data

(optional)
CRC

1 byte 1 byte n bytes 1 byte

Figure 3.4: Message structure and respective data width.

providing flexibility in adjusting or expanding the protocol itself. Data length
has the maximum limit to prevent flooding. Every message ends with CRC
byte calculated as an XOR of all the previous bytes. The data part is optional,
with zero-length as a valid option.

The library object is msg_t and practically serves as a buffer sending and
receiving. The only other function is to hold a pointer to a timer library object
and XUartLite handler. The library provides the following functions:

• int MessageInit(msg_t *message, u32 device_id, tmr_t *timer)

• void MessagePointerReset(msg_t *message)

• void MessageBufferPush(msg_t *message, u32 data, u8 len)

• int MessageSend(msg_t *message, u8 msg_id)

• int MessageRecieve(msg_t *message)

• u8 MessageGetId(msg_t *message)

• u8 MessageGetSize(msg_t *message)

• u8 *MessageGetData(msg_t *message)

Again, those functions can be split into multiple groups. Starting with
the last one, the last three functions in a list are getters for respective values.
They provide access to values already held inside the object buffer and does
not communicate with the UART in any way. The message must be received
first to get any valid data through those functions. And that is role of the
MessageRecieve function. When called, it checks whenever data are available
through the UART bus and immediately returns XST_NO_DATA if not. Other-
wise, it performs whitelist check comparing obtained byte with a valid input
message codes. This is the only place requiring code change when expanding
the protocol of new messages. Failing to pass the check means flushing the
content of UART FIFOs and returning XST_INVALID_PARAM4. The next step

4All functions are typically returning set of codes from Xilinx header file xstatus.h.
That means sometimes they might sound not precisely appropriate.
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is to obtain the expected message length. This operation runs with a time-
out and can fail by either taking too long (XST_TIMEOUT) or its value being
too large (XST_ERROR_COUNT_MAX) in which case FIFOs flushing takes place.
When the value is valid, the function proceeds with receiving the indicated
amount of data plus CRC. This operation is again running under timeout and
returns the same error code if it fails. The last part is to compare incoming
CRC with a calculated one. Error is signaled as a XST_DATA_LOST.

The next group of functions deals with sending a message. The process
is split to stay universal without the need for excessive code changes when
modifying the protocol. The first step is to call MessagePointerReset, which
moves the internal buffer pointer to the beginning of the message data block
within the message buffer. Next, MessageBufferPush can be used to push
data inside the message buffer up to four bytes at a time. The drawback lies in
need for manual data splitting but, on the other hand, gives full control when
it comes to the endianness of the data and simplifies protocol modification, as
already mentioned. The last part is to transmit the message, which is done
by calling the MessageSend function. The argument is the message ID, which
is placed to the front of the message buffer. The data length is also calculated
here, and the same goes for the CRC. Finally, the function tries to transmit
the message under the active timeout. It can either fail with the error code
XST_TIMEOUT or succeed (XST_SUCCESS).

The only remaining function to discuss is MessageInit. Its purpose is to
make sure UART circuitry works as expected. The timer is not checked with
the presumption it was done beforehand.

3.2.3 ROPUF Library
The ROPUF library is the centerpiece of the whole project. The ropuf_t
library object ensures connection to the AXI GPIO modules and maintains
input values. Also, the library provides functionality only to read a con-
figured range of bits. Constants ROPUF_OUTPUT_LSB and ROPUF_OUTPUT_MSB
define the range. None of the following functions operates in a safe mode
to minimalize processing overhead. It means no checks of input validity are
performed. The programmer is responsible for the proper usage of this set of
functions. The functions5:

• int RopufInit(ropuf_t *ropuf, u32 gpio_in, u32 gpio_out)

• u8 RopufGetWord(ropuf_t *ropuf)

• u16 RopufReadOutput(ropuf_t *ropuf)

• u32 RopufReadCounters(ropuf_t *ropuf)
5The libraries may contain some other functions with an underscore prefix. Those are

meant for internal purposes only, but might be accessed too. go as follows
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• int RopufIsReady(ropuf_t *ropuf)

• void RopufStart(ropuf_t *ropuf)

• void RopufClear(ropuf_t *ropuf)

• void RopufDisableRO(ropuf_t *ropuf)

• void RopufEnableRO(ropuf_t *ropuf)

• void RopufSelectRO(ropuf_t *ropuf, u8 ro0, u8 ro1)

Again, the RopufInit function ensures both AXI GPIO modules are func-
tioning and return error code if not. It sets data direction on pins and it clears
input register.

The next three functions all provide an interface to the ROPUF output.
Both RopufReadOutput and RopufReadCounters functions simply read val-
ues available on the ROPUF module output pins. The former returns XORed
content of both counters with the previously mentioned range applied as a
mask and shifted down to the least significant position. The other simply
returns the content of both counters joined together as a single 32 bit un-
signed integer. The RopufGetWord function is the only active one in the sense
that it runs the ROPUF module. It does not check whenever the ring os-
cillators are enabled, so mishandling it may lead to dead-lock. It uses the
RopufReadOutput function to extract value from the ROPUF module, which
is run in a loop to extract eight bits of data. It may run extra time, so it is not
advisable to use during analysis for not missing any data. The RopufIsReady
function technically accesses the output too. It is just the single bit signalizing
whenever the module is running, but the value is negated, so it returns true
when the generating process is over.

The RopufStart and RopufStop functions are an interface to respective
inputs and send in just the pulse (this goes back to the discussion of how the
ROPUF module works).

The last three functions all interact with the ring oscillators. The ROs start
in a disabled state and need to be enabled with RopufEnableRO first. Oth-
erwise, the program may fall into dead-lock when waiting for RopufIsReady
returning true. The countermeasure would mean using a timeout, but since
controlling the ROPUF module is reliable, it is sufficient to merely enabling
ROs first. The RopufSelectRO function handles ring oscillator selection of the
pair with a default choice of first (index zero) oscillators. The input values are
not checked, but the previous section explored how this situation is handled
by the module and is not causing any undefined behavior, let alone damaging
the circuitry.
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3.2.4 Timer Library
The last library stands out in that the message library directly uses it. That
means it can be considered part of that library, but its usefulness goes beyond
the communication area. It is separated for that reason, and it also neatly
revolves around a new library object. The object for the timer library is tmr_t,
and it is just a handler for the AXI Timer module with a single extra variable
holding the previously saved timer content. The way how to use the timer is
to turn it on and save its content. Then run the metered operation, and after
it is done, reread the timer and calculate the difference. Those functions are
available to simplify such process:

• int TimerInit(tmr_t *timer, u32 device_id)

• u32 TimerStart(tmr_t *timer)

• void TimerStop(tmr_t *timer)

• u32 TimerGetDifference(tmr_t *timer)

• u32 TimerGetValue(tmr_t *timer)

The TimerInit function makes sure the respective module works and sets
it to the proper mode with the XTC_AUTO_RELOAD_OPTION flag. The flag
means the timer continues running after overflowing. The TimerStart and
TimerStop functions realize what their names imply. The start function up-
dates the last value to the current state after starting the timer and returns
it.

The TimerGetValue function returns the current content of the timer.
That makes it useful during a multistep measuring procedure or a cycle.
With that in mind, the programmer must ensure that running time is prop-
erly calculated when the timer overflows. There might prove helpful the
TIMER_MAX_VALUE constant. The TimerGetDifference is somewhat more
complex, which means it has longer execution time, and therefore the function
is more fitting for single event measurement or the run time of the observed
event is comparatively longer than of the function. It returns the amount of
time passed since the last call of either TimerStart or itself with the overflow
adjustment. That means it rewrites the last measured timer value (in opposite
to the TimerGetValue behavior).

3.2.5 Final Program
Now, with the explanation for all the libraries done, it is proper to go through
the final program. Technically, the program consists of a single main function,
which is split into two parts. The first one is meant to run only once, and
then the program enters an infinite while loop. All the library objects exist
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as a global variable, except for the stats_t object. The reason is that they
represent part of the hardware and are relevant throughout the whole program.
Contrary to that, the stats_t object is just a variable without any hardware
base. And that goes with the decision to utilize local variables only.

Conceptually, those two sequences perform as initialization and main pro-
gram loop, respectively. The initialization is responsible for making sure all
the circuitry is ready to use. If any of the Init functions return anything
else then XST_SUCCESS the program is terminated with the XST_FAILURE er-
ror code. Such behavior detects a debugger only, but the program targets
for a laboratory environment and, as such, does not require any form of sig-
nalization to the user directly. In case of successful hardware initialization
it moves onto stat_t objects. The way the current implementation works
counts with sixteen instances – one for every bit of the ROPUF output. This
reflects the decision of how the output randomness is evaluated, that is, every
bit separately. The initialization ends there, and after instancing a couple of
variables, the program enters the main program loop.

The main program loop bears a relatively simple structure. There are
only two condition structures one following the other. The first one (Figure
3.5) handles the ROPUF module and perform statistical tests, and the second
implements the inward part of the communication protocol. The runs variable
serves as a counter which holds the information of how many times the ROPUF
should run. In the case of non-zero value and the ROPUF being done with
generating the output, runs the following code. First, it reads the ROPUF
output, and pushes it into a message buffer together with the runs variable.
Then, it decreases the value of the runs variable and starts the ROPUF over
if the value is larger then zero. If not, it disables the ring oscillators. The
next step is to send the result of the current run, and if that fails, it sets
the runs variable to zero. Last step consists of loading the output bit values
into their respective stats_t structures. The values are obtained through
RopufReadOutput function call (see Section 3.2.3 for the implications).

The alternative branch only runs if no other output is being generated,
and bit statistics are not updated yet. The branch iteratively goes through
the statistical tests for one bit per the main program loop cycle. It does so
only if enough data are available, and the test results have the dirty flag set.

The second condition structure deals exclusively with the communication
protocol. For that reason, only some technical details follow, and the protocol
is described in the following section. There are three branches. The first
one is executed when a message comes in. The second one is active when no
data comes through the serial port and currently performs no function. Every
other scenario falls withing the last branch, and it means some kind of error
arisen when receiving the message (see Section 3.2.2). The individual message
handlers are part of a switch-case structure with the message IDs as separate
cases.
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Figure 3.5: The first part of the main program loop. The dash lines show data
dependency across multiple blocks.

3.2.6 Communication Protocol

The communication protocol defines six message types toward the FPGA
board and seven response message types. Every message has a unique ID
except for the HELLO message, which has the same ID for both directions (or
it can be seen as the only message valid in both directions). Every message
operation has a five-second timeout, which is reset by every received byte.
That means it may take up to ten seconds for the HELLO message to come
through in the case of deplorable conditions. Data longer than single-byte
are transmitted with the little endianness. The FPGA board behaves as a
slave device towards the computer and only response to received messages.
The following part describes those challenges and how the board reacts to
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them. The Challange ID describes the ID of the message, the length does
not account for mandatory parts (ID, length, and CRC) and the Response ID
lists possible responses and does not account for an error, which always yields
MESSAGE_ID_OUT_NOK (0x99) response.

HELLO

• Challenge ID: MESSAGE_ID_IN_HELLO (0xAA)

• Length: 0 bytes

• Response ID: MESSAGE_ID_OUT_HELLO (0xAA)

This message type performs the function of a ping and simply respond
when asked. The usage is to validate whenever the board is responding.

SET RO

• Challenge ID: MESSAGE_ID_IN_SET_RO (0xF3)

• Length: 2 bytes

• Response ID: MESSAGE_ID_OUT_OK (0x66)

The message carries the RO pair selection as two unsigned byte variables.
The first byte makes the selection from the RO_SET0 and the second form the
other. It always responds with the OK message even if the selection overflows
the 150 value.

GET COUNTERS

• Challenge ID: MESSAGE_ID_IN_GET_COUNTERS (0x05)

• Length: 2 bytes

• Response ID: MESSAGE_ID_OUT_OK (0x66),
MESSAGE_ID_OUT_COUNTERS (0xA0)

The behavior is slightly more complex than the previous cases. The carried
data is an unsigned 16-bit integer, which defines how many times the ROPUF
output should be generated. If the value is non-zero, it enables the RO pair,
clears the current content of the ROPUF, starts it, and responds with the
OK message. After that, it keeps sending the COUNTERS responses requested
amount of times. It stops doing so if the response delivery is unsuccessful.
The COUNTERS response has a length of six bytes and contains a run ID and
both ROPUF counters value obtained by the RopufReadCounters (see Section
3.2.3). All of those values are unsigned 16-bit integer variables. The run ID
is counted downwards (e.g., if the challenge requests 1000 outputs, the first
response has ID 1000, the second 999, . . .).
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RESET STATS

• Challenge ID: MESSAGE_ID_RESET_STATS (0xFC)

• Length: 0 bytes

• Response ID: MESSAGE_ID_OUT_OK (0x66)

The internal statistics do not clear their value between GET COUNTERS runs.
It has to be done manually through this challenge.

GET STATS

• Challenge ID: MESSAGE_ID_RESET_STATS (0x0C)

• Length: 0 bytes

• Response ID: MESSAGE_ID_OUT_STATS (0x30),
MESSAGE_ID_OUT_TESTING (0x31), MESSAGE_ID_OUT_NO_STATS (0x32)

Because the statistics have some requirements, the response is a bit more
complicated. If the statistics are ready, they are sent with the STATS code as
two unsigned 16 bit integers. The first one contains the frequency test results,
and the second the runs test results. The results are single-bit values with
one indicating passed test and zero failed test. The bit position aligns with
the observed ROPUF counter bit position. The second possibility is that the
test results are not yet ready. In that case, the response is TESTING without
any data. The last case scenario means not enough data are available, so the
test cannot run, and the NO_STATS is sent.

TIMEOUT

• Challenge ID: MESSAGE_ID_GET_TIMEOUT (0x09)

• Length: 2 bytes

• Response ID: MESSAGE_ID_OUT_OK (0x66),
MESSAGE_ID_OUT_TIMEOUT (0x60)

The name may be somewhat misleading, but the sole purpose is to measure
how long it takes to generate ROPUF output. Passed data consists of a single
unsigned 16-bit integer value, which indicates how many times the ROPUF
should run. Zero is a valid choice and simply means the DEFAULT_SAMPLE
constant defines the number of runs. The handler for this message is unique
in that it clogs the main program loop until it is done. For that reason, it first
replies with the OK message, then starts the algorithm, and then it replies with
the result, which is an unsigned 32-bit integer value consisting of additive run
time.
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3.3 Computer Software
The computer software is not necessarily part of the thesis per se. However,
it plays a vital role as a master device for the FPGA slave operation mode.
It loosely follows the example of the previous section and puts together three
libraries. The difference represents the choice of a programming language and
the paradigm as a whole. The part running on the computer is articulated as
a Python script. The libraries are three separate classes, and the final product
is a script tailored to the current requirements.

3.3.1 Arduino Class
The Arduino class controls the power supply. It establishes a serial link with
the Arduino board, which controls the modified power supply through a series
of resistors as described before.

3.3.2 Chamber Class
The chamber class controls and observes the temperature levels. The commu-
nication runs over the IP protocol. The socket is created for each exchange
separately for a simple reason that the chamber is unable to maintain the
communication open properly. The chamber is in an idle state by default.
The idle state must be disabled first to maintain the temperature at a specific
level. The chamber reports two values. The first one is the temperature inside
the chamber, and it is the value set. A sensor reports the second one. The
sensor is placed on the FPGA chip.

3.3.3 FPGA Class
The FPGA class contains the communication protocol. It implements a gen-
eral mechanism for transmitting and receiving messages and also the concrete
message types. Because the protocol is thoroughly described in Section 3.2.6,
it remains to mention the method receiving messages returns a tuple of the
message ID and data as a list.

3.3.4 Main Script
The main script is divided into three parts, not counting header with a shebang
and includes. The first part contains the script parameters such as working
directory, used serial ports, and IP address of the chamber. The second part
represents the current experiment parameters. Those are the RO pairs, ob-
served voltage levels, and temperature levels. The last part is the code itself.
It is essentially a multilayered loop that first cycles through temperature set-
tings. Inside it changes the voltage levels, and finally, then it goes through
specified ring oscillator pairs. Every pair generates SAMPLE amount of values.
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The script generates a log file that contains timestamps of every step and
also temperature levels for every RO pair set of runs. The reason the tem-
perature is not saved for every generated value springs from the relatively
long running time of the request coupled with the speed (or lack thereof) of
temperature changes.
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Chapter 4
Measurements

This chapter discusses NIST 800-22 statistical test suite [15] application to
data generated by the ROPUF. The test results provided by the FPGA di-
rectly are not analyzed here. The reason is that the test suit provides wider
range of tests already implemented and allows for multiple evaluation of single
set of data. The chapter is split into sections where each deals with a different
approach.

4.1 Single RO Pair
The experiment configuration accounts for a single RO pair under fixed envi-
ronmental conditions with a large number of samples. The goal is to determine
general behavior in the context of which bits are worth exploring further. This
test uses one million ROPUF cycles, which took 13 minutes to obtain. The ex-
periment ran under the temperature of 25 °C and standard voltage (0.998 V).
Every bit position is evaluated separately, although only seven least significant
bits are taken into account.

The reason is the failure of tests at the fifth bit with dramatically degrading
results even further (See Table 4.1). The table shows how many bitstreams
passed the respective test. Each bitstream has a length of 10000 bits, which
accounts for a total of 100 results per test type. According to the NIST 800-22,
the number of passed tests for a random sequence under current conditions
should stay above the value 95. The first test failing that condition is runs
test at bit position three. The next bit of position fails in every test. That
means only position 0 to 3 is worth exploring further.

The second part of the experiment consider the same data set, but now
with multiple bit positions concatenated into a single bitstream. The Table 4.2
shows three considered ranges. All three ranges pass the same battery of tests
with nearly identical results. Marked numbers show which tests failed at the
P-value uniformity test, even though they succeeded at the proportion test.
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Bit position 0 1 2 3 4 5
Frequency 98 99 98 99 38 5

BlockFrequency 99 100 98 98 0 0
CumulativeSums 99 99 98 98 27 1

CumulativeSums II 99 99 98 98 30 0
Runs 99 100 100 81 0 0

LongestRun 99 98 100 97 1 0
FFT 99 97 100 99 75 45

NonOverlappingTemplate 94-100 93-100 94-100 91-100 0-100 0-100
ApproximateEntropy 98 98 100 98 0 0

Serial 98 98 99 99 0 0
Serial II 99 98 100 100 81 0

Table 4.1: Test results of six lowest bit positions under fixed enviromental
conditions. Failure to pass the proportion and uniformity test is indicated by
the red color.

Bit range 0-2 1-3 0-3
Frequency 98 100 100

BlockFrequency 99 98 98
CumulativeSums 99 100 100

CumulativeSums II 99 99 99
Runs 98 97 97

LongestRun 97 100 100
FFT 99 95 95

NonOverlappingTemplate 95-100 94-100 94-100
ApproximateEntropy 99 98* 98*

Serial 98 100 100
Serial II 97 100 100

Table 4.2: Test results of three concatenated bit ranges under fixed enviro-
mental conditions. The failure to pass the uniformity test is signified by the
yellow color.

The results imply that the three lowest bits indicate random behavior
independently, which allows for three times higher output rate when combined
into a single bitstream.

4.2 All RO Pairs
This experiment follows the previous one with a difference in that it analy-
ses every possible permutation of RO pairs (1502 in total). That fact puts
constrain on the amount of data generated. For practical reasons, each pair
provides only 10000 values. And even with those limitations, the run time
accounts for 50 hours. That limits significantly which types of tests can be
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Figure 4.1: Histogram showing number of passed test per bit position of failed
RO pairs.

run, although the main idea behind this experiment is to detect whenever
some pair shows ultimately non-random behavior. That is deducted by two
basic tests that require 100 values as a minimum. Those are frequency and
runs tests. The evaluation tests bits on position 0 through 3 separately and
looks for a failure of proportion test of either frequency or runs test results.
The experiment fixed the environment at 24.99 °C with the chip at 38.22 °C
and voltage level of 0.998 V.

Figure 4.1 shows histogram of passed test for each bit. It considers only RO
pairs with majority failure. Majority failure is a failure to pass the proportion
test for either frequency or runs at three or more bit positions. The highest bit
shows the evenest distribution across values. The other bits display a higher
proportion of passed tests, pointing in the direction of random behavior. Only
the combination of lower bit position and low number (less than 60) of passed
is interesting.

Five RO pairs with abysmal results are shown in Table 4.3 with the high-
lighted extreme of pair 141-40. It implies ring oscillator locking on each other,
thus yielding non-random data. Further examination did not reveal any espe-
cially interesting anomalies.

4.3 Environmental Impact
Some constraints are applied to test the environmental impact. The first con-
strain is limit on the number of RO pairs to 150 randomly selected. The second
is the total number of samples per pair capped at 10000. That allows for 100
bitstreams of 100-bit length. The analysis performs only frequency and runs
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Bit position 0 1 2 3
RO pair F R F R F R F R
4 59 53 53 35 35 13 13 6 5
28 51 58 58 42 42 31 30 16 15
135 101 48 48 29 29 23 22 7 4
141 40 0 0 0 0 0 0 0 0
141 50 53 53 43 42 35 35 24 23

Table 4.3: The test results of frequency (F) and runs (R) tests of failed RO
pairs.

Temperature Bit position 0 1 2 3
Chamber FPGA Test type F R F R F R F R

-0.03 °C 13.37 °C
0.958 V 150 138 148 135 150 144 63 38
0.998 V 147 139 149 138 147 141 70 39
1.038 V 150 141 149 147 148 138 72 44

20.05 °C 32.43 °C
0.958 V 150 138 147 134 149 134 62 38
0.998 V 149 137 147 135 147 130 65 42
1.038 V 150 141 149 137 148 137 76 45

40.01 °C 52.26 °C
0.958 V 147 139 150 146 147 141 68 36
0.998 V 149 139 150 133 149 140 71 44
1.038 V 149 141 147 145 148 140 77 56

Table 4.4: The test results of frequency (F) and runs (R) tests under various
environmental conditions in the selected 150 pairs.

tests for the first 4 bits separately. Each environmental condition is judged
by the number of pairs failing the proportion test for each bit separately.

Table 4.4 shows all the combinations of tested environmental conditions.
The table shows the number of RO pairs that passed the proportion test.
The displayed temperature account for the chamber inside temperature and
the temperature reported by the sensor on the FPGA chip. The generally
higher proportion of failed tests is due to small sample sizes. The proper
interpretation is to observe whenever significant changes take place between
the condition combinations. The results do not indicate such a thing, which
implies that neither the temperature nor the power supply level has any sig-
nificant impact.

That is further illustrated by Figures 4.2 and 4.3. Both show variance of
passed frequency tests per RO pair for three bit positions. The first graph
displays the variance across voltage levels at a fixed temperature, the second
just the opposite. Both graphs have highlighted the median variance values
across all pairs. The most interesting is the 27-61 pair with a high variance
for both evaluations, although it is not among the pairs showing a high failure
rate.
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Figure 4.2: Graph showing number of passed frequency tests per RO pair
variance across power supply levels.
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Figure 4.3: Graph showing number of passed frequency tests per RO pair
variance across temperatures.

39



4. Measurements

Figure 4.4: Generator cycle run time distribution across RO pairs (in µs).

4.4 Run Time
One of the metrics when it comes to random generators is the output rate.
This experiment focuses on the run time of a single TRNG run cycle, which
directly influences the output rate. The approach is to measure the run time
of a constant number of cycles for a specific RO pair. The run time of a single
cycle is deducted as the mean of those values. This procedure is repeated for
multiple RO pairs. Figure 4.4 shows standard distribution with extremes at
350 and 750 µs with the most prevalent value around 470 µs.
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The goal of this thesis is to provide reusable implementation of TRNG on
FPGA board connected to the MicroBlaze processor and observe the environ-
mental impact on the quality of the generated output.

Research showed various possibilities when it comes to obtaining random-
ness on FPGA. The chosen variant based on PUF circuitry proves to be a
viable choice not only for its dual functionality but also for some key advan-
tages such as generating multiple bits per single run or increased resistance to
environmental changes due to ratio-based design.

The resulting implementation provides a reasonable capacity for expan-
sion. The circuit design is simple yet reliable enough to be built on top of
it. Some decisions laid the foundation for encompassing interrupts, thus han-
dle the TRNG more effectively. Another possibility would be to provide the
TRNG with AXI capability directly, which would lead to even more consistent
design, but it would require some changes to the software as well. Unfortu-
nately, those changes were outside the scope of this thesis and are left as a
direction of possible improvement.

Now, considering the software running on a softcore processor only. There
are some decisions worth pointing out. The first is the modulative nature
of the whole program, making it (re)usable as a whole or just parts of it.
Another goes to the communication protocol. It is designed in a way to provide
capacity for a simple expansion without actually modifying the existing code.
The general idea revolves around packets with a length parameter and CRC
to ensure the safe transfer of data between the FPGA board and the computer
without unnecessary overhead.

Next, only two types of tests are implemented (frequency and runs), yet
it proves such capacity of the current design and reasonably straight-forward
extension path. The requirement of running tests interleaved with output
generation is limited to tests running when nothing else is. The reason behind
this decision lies in the nature of implemented tests. Those require a complete
output sequence to evaluate. Simultaneously, the tests are reasonably fast,
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accounting for just a few milliseconds, compared to hundreds of milliseconds
per TRNG cycle. In other words, such optimization might be unnecessary.

The analytical part primarily utilized the NIST test suit. The results
suggest that neither temperature nor power supply level has any significant
impact on the generated values. The main reason is probably the relative
design of the TRNG, which does not rely on some constant reference and
utilizes two clock sources, both under the same influence. The broader tests
imply that each generator cycle can provide up to four bits from position 0
to 3, although 0 to 2 shows overall better properties. With that said, some
form of post-processing might be applied to improve the statistical properties
of the output, which would lead to a decrease in output rate, and thus using a
wider range is preferable in such a scenario. The length of a single generator
cycle varies between 350 and 750 µs.

Finally, this thesis shows the potential of ROPUF as TRNG and its rea-
sonable stability despite varying environmental conditions. The implemen-
tation provides a simple interface to ROPUF, meaning to both PUF and
TRNG functionality. The possible direction is to add start-up and tot tests
and probably some form of determining which RO pairs are suitable for the
TRNG functionality the most. Another viable path would be to improve the
output generation in a way it would utilize the mentioned range instead of
single bits separately.
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Appendix A
Acronyms

CRC Cyclic redundancy check

DFF D-type flip flop

FIFO First in first out

FPGA Field-programmable gate array

GPIO general-purpose input/output

IP Intellectual Property

LMB Local Memory Bus

LSB Least Significant Bit

MDM Microblaze Debug Module

MSB Most Significant Bit

RNG Random number generator

PLL Phase-locked Loop

PRNG Pseudo-random number generator

PUF Physically Unclonable Function

RAM Random Access Memory

RO Ring oscillator

ROPUF PUF based on ROs (ROPUF)

TRNG True random number generator
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A. Acronyms

UART Universal asynchronous receiver-transmitter

VCO Voltage controlled oscillator

VHDL Very High Speed Integrated Circuit Hardware Description Language
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Appendix B
Contents of Enclosed Card

thesis.pdf................................the thesis text in PDF format
src.........................................the directory of source codes

hardware...........................the directory with Vivado project
harvester.....................the directory with the computer script
software.............................the directory with Vitis project
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