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Abstrakt

Tato práce pojednává o základech strojového učení a dále se zaměřuje na
moderní techniky strojového vidění v oblasti lékařských zobrazovacích metod.
Součástí práce je implementace prototypu pro klasifikaci rentgenových snímku
z MURA datasetu.

Klíčová slova Strojové vidění, lékařské zobrazovací metody, prototyp, MURA

Abstract

This work apprises the reader with the basics of machine learning. Further-
more researches the current state-of-the-art approaches used in machine learn-
ing in medical imaging. As a part of the theis, the prototype for classification
of MURA dataset is trained.

Keywords Computer vision, medical imaging, Prototype, MURA

vii





Contents

Introduction 1

Goal of thesis 3

1 Machine learning 5
1.1 Supervised × Unsupervised learning . . . . . . . . . . . . . . . 5

1.1.1 Supervised learning . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Unsupervised learning . . . . . . . . . . . . . . . . . . . 6

1.2 Testing and Validation . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Hyperparameter optimization . . . . . . . . . . . . . . . . . . . 9
1.4 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Artificial neural networks . . . . . . . . . . . . . . . . . . . . . 11

1.5.1 Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5.2 Multi-layer Perceptron . . . . . . . . . . . . . . . . . . . 13

1.5.2.1 Evaluation . . . . . . . . . . . . . . . . . . . . 13
1.5.2.2 Learning . . . . . . . . . . . . . . . . . . . . . 14
1.5.2.3 Adam . . . . . . . . . . . . . . . . . . . . . . . 16

1.5.3 Activation function . . . . . . . . . . . . . . . . . . . . . 17
1.5.4 Loss function . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.5 Droupout . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.6 Convolutional neural network . . . . . . . . . . . . . . . . . . . 19
1.6.1 Layers of CNN . . . . . . . . . . . . . . . . . . . . . . . 19

1.6.1.1 Convolutional layer . . . . . . . . . . . . . . . 19
1.6.1.2 Pooling layer . . . . . . . . . . . . . . . . . . . 20

1.6.2 Deep convolutional neural network . . . . . . . . . . . . 21
1.6.3 Batch normalization . . . . . . . . . . . . . . . . . . . . 21
1.6.4 Architectures . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6.4.1 VGG-16 . . . . . . . . . . . . . . . . . . . . . . 22
1.6.4.2 ResNet . . . . . . . . . . . . . . . . . . . . . . 22

ix



1.6.4.3 DenseNet . . . . . . . . . . . . . . . . . . . . . 23
1.6.5 Grad-CAM . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.7 Ensemble model . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.8 Machine learning in Medical imaging . . . . . . . . . . . . . . . 25

2 Analysis and design 27
2.1 MURA dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.2 Pre-processing and augmentation . . . . . . . . . . . . . 29
2.2.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.4 Test set . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.5 Architectures . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.5.1 Baseline model . . . . . . . . . . . . . . . . . . 30
2.2.5.2 ResNet-34 . . . . . . . . . . . . . . . . . . . . 31
2.2.5.3 ResNet-101 . . . . . . . . . . . . . . . . . . . . 32
2.2.5.4 DenseNet-C-169 . . . . . . . . . . . . . . . . . 32

3 Experiments 35
3.1 Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Less down-sampling (lds) . . . . . . . . . . . . . . . . . . . . . 37
3.3 Aggregation of images using maximum . . . . . . . . . . . . . . 37
3.4 Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Results 39
4.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Used technologies 41

6 Conclusion 43
6.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Bibliography 45

A Acronyms 49

x



List of Figures

1.1 Graphs displays behaviour of the mapping function f̂ of overfitted
model (left) and well generalized model (right) based on training
dataset. Note that datasets on both images are the same, but the
scales are different for representational purpose . . . . . . . . . . . 7

1.2 Graphs display behaviour of the mapping function f̂ based on
training dataset and parameter n . . . . . . . . . . . . . . . . . . . 8

1.3 Segmentation of a dataset with individual segments purpose . . . . 8
1.4 Illustration of cross-validation folds . . . . . . . . . . . . . . . . . . 9
1.5 Example of data augmentation . . . . . . . . . . . . . . . . . . . . 10
1.6 Neuron model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7 Illustration of Multi-layer perceptron with 2 hidden layers of width=5 14
1.8 Illustration of issues which comes with suboptimal selections of

learning rate for learning of one parameter h . . . . . . . . . . . . 16
1.9 Illustration of 2D convolution application on feature maps . . . . . 20
1.10 Illustration of max pooling applied on feature maps . . . . . . . . 20
1.11 Illustration of a residual block . . . . . . . . . . . . . . . . . . . . . 23
1.12 Illustration of a dense block . . . . . . . . . . . . . . . . . . . . . . 24
1.13 Examples of Grad-CAM visualization applied to sample from MURA

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1 Heatmap representing results of the ResNet-34 grid search . . . . . 32

3.1 Comparison of augmentation strategies . . . . . . . . . . . . . . . . 35
3.2 Comparison of basic augmentation approach with test time aug-

mentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Impact of histogram equalization. Left to right: Raw image, Equal-

ized image, CLAHE equalized image . . . . . . . . . . . . . . . . . 37

4.1 Possible wrongly labeled sample from training dataset. The image
contains hardware that is highlighted by Grad-CAM. . . . . . . . . 40

xi





List of Tables

2.1 Distribution of studies with respect to limb part, set type and label 27
2.2 Used augmentation strategies . . . . . . . . . . . . . . . . . . . . . 29
2.3 Baseline model architecture . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Table displaying architecture of ResNet used in this work . . . . . 33

4.1 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

xiii





Introduction

Deep artificial neural networks have gained great popularity in recent years.
Advancements of recent years in computational hardware, big data collection
and learning algorithms allowed their development which contributed to ma-
chine learning spread into our daily life. Also many industries have adopted
machine learning to improve quality or efficiency or reduce personnel costs.

Healthcare industry is not an exception, we can see growth of machine
learning applications used for prediction of diseases and computer-aided diag-
nosis. Advances have been made in tasks of breast cancer detection, prediction
of eye diseases, early detection of acute diseases and more. Nevertheless, de-
ployment of machine learning in such a delicate industry, where a mistake
might cost the highest price, raises a lot of ethical and legal questions[1, 2, 3].

Determining whether X-Ray study is normal or abnormal is crucial for
patients’ health and requires an expert to carry out its analysis. Application
of deep learning models in Computer aided diagnosis can reduce risk of error
caused by human expert’s mistake.

This thesis researches current state-of-the-art machine learning techniques
used in medical imaging. Theoretical part of this thesis introduces the reader
to techniques of machine learning, and to its applications in medical imaging
domain. Practical part describes training and results of my own models made
for classification of MURA dataset samples. The MURA dataset comprises
14,863 X-Ray studies of seven different parts of upper the limb classified as
normal or abnormal [4].
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Goal of thesis

There are four goals of the thesis.
Research of current state-of-the art techniques that are used for prediction,

classification and segmentation tasks in medical imaging domain, focus on X-
Ray images.

Implementation of prototype model for classification of MURA[4] dataset.
Performance of the model will be compared with other models trained on the
same dataset. Thesis will contain discussion over their attributes, pros and
cons.

Compare the performance of your model with reference results from liter-
ature or existing models and discuss the pros and cons.

Publish your prototype code and make sure your results are reproducible.
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Chapter 1
Machine learning

The goal of Machine learning (ML) is development of algorithms which are
being improved through experience. Machine learning is often applied in cases
where conventional algorithms are very hard to implement like computer vi-
sion, spam filtering, etc. [5].

ML algorithms extracts patterns from the data and projects them into
mathematical model (trains model). Trained model makes predictions of input
data based on similarities and differences between input data and the dataset.

1.1 Supervised × Unsupervised learning
ML algorithms are divided into several classes by the type of task they are
meant to solve. Most common classes are supervised and unsupervised learn-
ing.

1.1.1 Supervised learning
Supervised learning process is done with labeled data. It means the dataset
consists not only samples, but also desired output (label) for each sample.

In this thesis samples will be referred as X, labels as Y , predictions as Ŷ
and Loss (Cost) function as C : (Y, Ŷ ) → R.

The relation between X and Y can be expressed as a mapping function
f : X → Y . Loss function is used as a measure of difference between labels
and predictions. Task of supervised learning is to infer a mapping function
f̂ which f̂ ≈ f , not only for the dataset but for all inputs relevant to the
problem. That is done by minimization of loss function C[6].

Classification represents methods which train a model to make predic-
tions of input sample’s belonging to one of discrete classes. For example,
determining the type of patient’s diabetes based on his anamnesis is a clas-
sification problem. Well known methods for classification are: Decision tree,
Logistic regression.
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1. Machine learning

Regression represents methods which train a model to make non-discrete
predictions. One of regression problems is determining risk of infant’s suffering
from autism based on it’s EEG or/and his parents anamnesis [7]. Well known
methods of regression are: Linear regression, Polynomial regression.

1.1.2 Unsupervised learning
Unlike Supervised learning, Unsupervised learning dataset does not contain
labels. Since there are no labels there is also no mapping function f to ap-
proximate. In general, task of Unsupervised learning algorithms is to anal-
yse patterns in dataset. Since patterns are known, algorithm can determine
whether a sample fits some of patterns or is an outlier (anomaly) [8, 6].

Clustering or Cluster analysis represents methods used for creation groups
in the dataset based on similarities between samples. The principle of Clus-
tering is often used in recommendation systems where a sample of dataset
represents user’s ratings of products. Method is trying to find groups of sim-
ilar users (users with similar ratings). Assuming that users in a group have
similar desires, the system recommends user products which were favoured by
other users in the group. Well known examples are Hierarchical clustering,
K-means [6].

1.2 Testing and Validation
Once the model is trained, it is required to evaluate it’s performance.

Let’s assume following example. We want to predict Alice’s test score
based on the time she takes to study. We have got a labeled dataset consisting
of information about students who already took the test. Using Polynomial
regression (PR) we’ve trained a model whereas least mean squared roots loss
is used. The value loss function is almost zero. We assume that the model
is well trained and we can use it to make the prediction. Although the loss
function was almost zero, the prediction model made is a big negative number.
Therefore the prediction is not sane.

The problem is that the model is overfitted. Instead of finding general
patterns from the field of the problem, the model was learnt to predict well
only data from the dataset. Thus being said the model performs well only
while evaluating data from training dataset, while predictions of other inputs
are often very poor as it is displayed on figure 1.1 left.

Common practice is splitting dataset into training dataset and testing
dataset. While the model is trained on the training dataset, the testing
dataset is used solely for it’s evaluation. Because the model was never trained
on the testing set, loss function calculated over predictions of the testing set,
serves a true evaluation of model’s ability to predict general cases (if the
dataset is a proper generalized specimen from the field of the problem).
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1.2. Testing and Validation

Figure 1.1: Graphs displays behaviour of the mapping function f̂ of overfitted
model (left) and well generalized model (right) based on training dataset.
Note that datasets on both images are the same, but the scales are different
for representational purpose

Difference between errors of training and testing datasets is called a gener-
alization gap. Two conclusions can be made, based on the generalization gap
. (i) If the generalization gap is small the model well generalizes the problem
domain. (ii) If test loss is considerably bigger than train loss the model suffers
from overfitting [6].

Let’s return to the previous example. We randomly split our samples into
train and test datasets in ratio 3 to 1. We have trained the model in same
the fashion as before but using solely the train dataset. Afterwards, we’ve
evaluated losses of both datasets. Training error is again ≈ 0, while test error
is very big. It is very clear that the model is overfitted. Training process of
Polynomial regression has a parameter n which states the degree of polynom
used in the PR model. In previous training we used n = 13 which caused
heavy overfitting. We will address overfitting by adjusting n = 2.

Model trained with n = 2 has no longer train loss ≈ 0. Although, the
model is considered better because testing loss is much lower. The model
works well even for samples not included in the training process (model is
generalized). Also testing loss is close to training loss (the decision whether
two losses are close to each other depends on the domain problem), thereby
the overfitting problem is fixed. Yet, the example contains a new problem.
Value of parameter n was determined by testing loss. Doing so, the model is
no longer trained on testing data only, therefore testing loss is not objective.

Parameters like n which are set before training are called Hyperparam-
eters (HP). Two basic techniques are used to evaluate the quality of hyper-
parameters.

The basic one is a simple split of the dataset into three sets. Next to
train and test sets, the validation set is created, solely for evaluation of

7



1. Machine learning

Figure 1.2: Graphs display behaviour of the mapping function f̂ based on
training dataset and parameter n

hyperparameter configuration quality.

Figure 1.3: Segmentation of a dataset with individual segments purpose

The other approach is called k-fold cross-validation. The training set
is randomly split into k equal subsets called folds. The validation loss is
expressed as an average of k different estimates. Each estimate is done by
evaluation of the model on one fold, while remaining folds are used for train-
ing. Approach when k = number of samples is known as leave-one-out cross-
validation [6].

The advantage of cross-validation is, all data are gradually used for valida-
tion thus lowers chance of validation loss being based on misfortune selection
of validation samples which doesn’t generalize the dataset properly. Disadvan-
tage is, the training process has to be performed k times. Repeated training
represents a problem for methods with a long training process where high k
will cause even longer training and smaller k drastically lowers the number of
samples.
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1.3. Hyperparameter optimization

Figure 1.4: Illustration of cross-validation folds [9]

1.3 Hyperparameter optimization
Selection of hyperparameters is crucial for the training process. The process in
which hyperparameters are selected is called Hyperparameter optimiza-
tion (HPO). HPO algorithm determines which configurations of hyperparam-
eters should be tried. For those configurations the model is learnt on a training
dataset and their evaluated on a separate data samples.

The space of all hyperparameter configurations is called Hyperparame-
ter space, where each hyperparameter represents one dimension. There are
several algorithms used for hyperparameter optimization.

Grid search is an algorithm used for full exploration of Hyperparameter
space. The space is represented as a grid where each column in the grid rep-
resents one configuration of hyperparameters. The algorithm explores every
single column. Grid search is usually used for optimization of problems where
single trial is computationally cheap and/or where are few configurations to
try.

Random search evaluates predefined number of random hyperparameter
configurations. Although it is a primitive way of hyperparameter optimization,
it often performs well for problems with an expensive trial where it is not
possible to do full exploration of Hyperparameter space using Grid search.

Hyperband is the state-of-the-art algorithm for hyperparameter opti-
mization. It extends the idea of the Successive halving and addresses its
problematic need of a priory selection of parameters (so-called ”n versus B/n”
problem) [10].

Successive halving uniformly allocates budget B (might be time, epochs,
etc.) among n random hyperparameter configurations used for iterative train-
ing methods. Once the budget is depleted, half of configurations are thrown
away and the budget is redistributed among remaining configurations. This is

9



1. Machine learning

iteratively done until only one configuration remains. The problem is that for
fixed budget B it is not a priori clear whether should be used big n (many con-
figurations with small budget) or small n (few configurations with big budget)
[10].

Hyperband runs the successive halving algorithm for more times, with
different n for each iteration. It accepts parameters R (maximum amount of
resource per configuration) and η (controls portion of discarded configurations
in each iteration of Successive halving) [10]. See Hyperband original paper [10]
for further details.

1.4 Data Augmentation
Data augmentation is a technique used for production of more training sam-
ples. Based on existing data the technique derives more data samples which
might be different in properties minor for the task while keeping relevant key
features present. Additional samples can lead to improvement of model gener-
alization. Data augmentation is widely, but not exclusively used in Computer
vision. This section is dedicated to image data augmentation.

Figure 1.5: Example of data augmentation. First row displays raw images
from the MURA dataset [4]. Second row shows images after preprocessing
and augmentation (The used augmentation technique is described in Section
2.2.2 as strong augmentation)

Rotation is probably the most commonly used augmentation technique.
Rotating images in relevant range makes model rotational invariant - different
angle of features does not affect model outcome. Shifting image makes model
positional invariant. Flipping along axis is also very useful, since it creates very
different image without a risk of key features loosing. Zoom provides feature
size independence and shear can help with features recorded in different angles.

10



1.5. Artificial neural networks

Augmentations are not limited only to geometric transformations. There
are operations with colors like brightness shift or channel shifts. Another used
technique is adding noise to image. These are commonly used techniques,
nevertheless any image operation can be used as long as it does no harm to a
relevant features.

There are two approaches to augmentation called online and offline. Using
online augmentation samples are augmented during training process, requir-
ing more computational resources, while offline augmentation uses samples
augmented before training began and saved, requiring extra storage capacity
[11].

Although the data augmentation is meant to create more training samples,
it can be also used for validation/testing data. This application adds more
robustness to model since augmenting test samples makes them ”closer” to
augmented samples from the training dataset. Yet augmenting input comes
with a trade-off in the speed of the model, therefore it can not be effectively
used in real-time systems, like autonomous cars where the reaction time is
required to be as low as possible [11].

1.5 Artificial neural networks
Artificial neural networks (ANN) represents a machine learning model based
on the idea of the neural network of an animal’s brain. In their early days
Artificial neural networks raised a big wave of enthusiasm, since it presents
a powerful model which can be used for a wide selection of problems. Yet,
the lack of a good training algorithm and big computational power did not
allow effective use of large neural networks and the field ANN became stag-
nant. Interest in ANNs was restored in 1975 by introduction of Werbos’s
backpropagation algorithm [12].

Today there are lot of types of Artificial neural networks e.g. Convolutional
neural network, LSTM, Generative adversarial network etc. ANNs are used
in variety of fields like Computer vision, Medical diagnosis, and many others
[13, 4].

ANNs are often seen as a ”black box” model, since the reasoning of its
output is often inexplicable. Nevertheless ANN is the state-of-the-art ap-
proach for many areas of machine learning, since it can be used for solving
very sophisticated tasks and sometimes it even achieves better results than
humans.

Yet, learning of a big artificial neural network is often challenging, since it
requires a lot of training samples, computational power and time. Even meet-
ing these requirements does not guarantee a smooth learning process, since
there are many decisions to make that are crucial for the learning process
and can’t be made a priori, since there is no way to proclaim with certainty
that the decision will be beneficial. Among such decisions are selection of
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1. Machine learning

ANN architecture, hyperparameters, preprocessing techniques and many oth-
ers. Sometimes all of these decisions are considered hyperparameters. How-
ever, development of ANN is not a complete wander in the dark type of pro-
cess. There are lot a of good practices and rules of thumb that are commonly
applied which might lead to an improvement of the model.

General properties of artificial neural network, it’s evaluation and it’s
learning process are described on an example of Multi-layer perceptron, yet
these properties are applicable even for different feed-forward multi-layer Ar-
tificial neural networks.

1.5.1 Perceptron
The perceptron (or single-layer perceptron) represents the simplest form of Ar-
tificial neural network, since it practically consists of a single neuron. Percep-
tron is a linear classifier, i.e. it can be used for classification of linear separable
sets. The algorithm learns the model vector of weights W = (w0, w1, ..., wn).
Activation (output) of a single neuron is expressed as:

Ŷ = f(ξ) where ξ = w0 +
n∑

i=1
wi · xi,

f is an activation function, x = (x1, ..., xn)T is an input vector; see Figure 1.6.
ξ is called a potential of a neuron or an intermediate quantity. Weight w0 is
commonly referred to as bias (b). The bias performs a linear shift of neural
potential.

Figure 1.6: Neuron model

Perceptron uses a threshold function as an activation function:

f(ξ) =
{

1 if ξ ≥ 0
0 if ξ < 0

12



1.5. Artificial neural networks

1.5.2 Multi-layer Perceptron
Multi-layer Perceptron (MLP) is a feed-forward ANN sometimes referred to
as a ”vanilla” ANN since it uses the basic idea of ANN.

It consists of neurons arranged into more then two ordered fully connected
layers (also called Dense layers). First layer consists of input neurons while
the last layer consists of output neurons. Therefore they are called Input and
Output layers. Note that model inputs are projected as activation of the Input
layer without any change. Layers in between are called hidden layers. Depth of
network is denoted as L and it represents a number of layers (including input
and output layers). Number of neurons in a single layer is called layer width.
Every neuron is connected by connections to all neurons of the previous layer
and accepts their activations as inputs. Unlike single-layer perceptron which
uses solely threshold function as an activation function, activation function of
MLP is selected from more options.

i-th neuron in layer l is referred to as a
(l)
i (the same expression may also

refers to an activation of the neuron). Inputs x = a(l−1) = (a(l−1)
1 , ..., a

(l−1)
n )T

(where n is a width of layer l−1) into every neuron in layer l are activations of
layer l − 1 (the previous layer). Therefore all neurons in one layer share same
input yet they react differently according to their weights and bias. Weight
of connection from neuron a

(l)
i into neuron a

(l)
j is represented as w

(l)
j,i .1 Input

weights of neuron a
(l)
i are denoted as W

(l)
i = (w(l)

i,0, ..., w
(l)
i,n). Bias of neuron

a
(l)
i is referred to as b

(l)
i (unlike w0 in context of single-layer perceptron).

See Figure 1.7 for better overall understanding of connections in ANN.

1.5.2.1 Evaluation

Evaluation of the Neural network is called forward pass. For evaluation of
each neuron works the same rules as for the single-layer perceptron. Yet there
are small adjustments in expressions. May depth of layers l and l − 1 be dl

and dl−1. Then:

a
(l)
j = f(b(l)

j +
dl−1∑
i=1

w
(l)
j,i · a

(l−1)
i )

The expression can be altered into expression of matrix operations:

a
(l)
j = f(ξ(l)

j ) where ξ
(l)
j = W

(l)
j · a(l−1) + b

(l)
j

Therefore the matrix expression for evaluation of one layer is:

a(l) = f(ξ(l)) = f(W (l) · a(l−1) + b(l)) =
1Order of neuron indices might seem strange, yet it’s justified by it’s later usage in

matrix expression
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1. Machine learning

Figure 1.7: Illustration of Multi-layer perceptron with 2 hidden layers of
width=5

= f
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where the activation function f is applied element-wise: f(ξ(l)) = (f(ξ(l)
1 ),

. . . , f(ξ(l)
dl

))T

By this recurrent expression, the network is evaluated layer by layer up to
the output layer.

Matrix way of expression is not only shorter and well-arranged, but most
importantly, it is much more efficient in practice, since computational hard-
ware is very well optimized to perform matrix operations.

1.5.2.2 Learning

Artificial neural networks learn by adjusting their parameters. There are two
types of learnable parameters in Multi-layer perceptron, which affects output
of the model: Weights and Biases. Learning of feed-forward Artificial neural
networks is done by Backpropagation algorithm and some form of Stochastic
gradient descent (SGD) [14].

At first, the ANN is provided training samples and they are used for eval-
uation of loss function C. Backpropagation is used for finding gradient ∇C
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1.5. Artificial neural networks

with respect to all weights and biases. After that the gradient descent modifies
weights and biases to minimize the loss with respect to ∇C [14, 15].

In order to calculate gradient ∇CX for training sample X it’s necessary to
calculate partial derivative of CX with respect to all weights w and biases b:

∇CX =
(∂CX

∂b
(1)
1

,
∂CX

∂w
(1)
1,1

, . . . ,
∂CX

∂w
(L)
dL,dL−1

)T

In following text δ
(l)
j will represent error in ξ

(l)
j of neuron a

(l)
j . Backpropaga-

tion offers procedure to calculate this error. For neuron in output layer it is
expressed as:2

δ
(L)
j = ∂CX

∂a
(L)
j

f (L)′(ξ(L)
j ) =⇒ δ(L) = ∇aC ⊙ f (L)′(ξ(L))

where ∇aC represents vector of ( ∂CX

∂a
(L)
1

, . . . , ∂CX

∂a
(L)
depth(L)

)T and ⊙ Hadamard prod-

uct (element-wise multiplication of matrices). Next recurrent equation repre-
sents dependency of error δ(l) on next layer’s error δ(l+1).

δ(l) = ((W (l+1))T δ(l+1)) ⊙ f (l)′(ξ(l))

Error of any neuron can be evaluated using these two equations. Therefore:

∂CX

∂b(l) = δ(l)

This equation seems natural, since δ is difference between ξ and desired neu-
ron’s potential and bias performs independent linear shift. At last:

∂CX

∂w
(l)
j,k

= a
(l−1)
k δ

(l)
j

These four equations express everything needed for construction of gradient
∇CX . Gradient ∇C is then calculated as an element-wise average of gradients
of all samples from the training dataset [15].

Once the gradient ∇C is calculated it is applied to the weights. This is
done by Gradient descent algorithm which adjusts weights in a direction of
the gradient in order to minimize the loss function. Size of these adjustments
is controlled by hyperparameter η which is in the context of ANNs called
learning rate. Thus for combination θn:

θn = θn−1 − η · ∇C(θn−1)
2In the expression activation function f has layer index. It was omitted until now, yet

it is common for an ANN to use more different activation functions
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1. Machine learning

where n denotes number of step. Selection of learning rate is crucial and
often intricate. High learning rate results in divergence of the search, while
low learning rate makes requires lot of training iterations and is vulnerable
to ending in suboptimal result; See Figure 1.8. There are techniques that
address this problem like decaying learning rate during training, application
of momentum in descent, adaptive learning algorithms that adjust learning
rate during training, etc. or their combinations.

Figure 1.8: Illustration of issues which comes with suboptimal selections of
learning rate for learning of one parameter h

Once all training samples are used, the whole process starts all over again.
One such an iteration is called an epoch.

Since datasets used for training of ANNs are usually large and their learn-
ing process takes a very long time, the model is learnt on subsets of the
dataset called mini-batches (or batches). Therefore the weight changes are
applied more often which leads to faster convergence of loss and also increases
overfitting resistance. Application of gradient for every mini-batch is called
Stochastic Gradient descend (SGD).

1.5.2.3 Adam

Over the years, many optimization algorithms were designed to adjust steps
of SGD to make it robust against stranding in suboptimal minimum and make
the training quickly converging to optimum, yet all of optimization algorithms
has their cons and there is no optimization algorithm that performs best in
all cases. The adaptive momentum estimation algorithm known as Adam,
combines RMSProp algorithms and basic SGD with momentum. It is often
used because of its ability to find optimum very fast, however in some cases
it tends to converge into some local minimum [16].

Momentum technique works similar as the momentum in the world of
physics. If the ∇C is steep down it enlarges the step size in the direction of
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the gradient for next iterations while if it is uphill the momentum makes the
step size smaller, yet it can preserve previous direction for further iterations
(evade small local minimum). Basic step of SGD with momentum looks:

θn = θn−1 − η · zn , zn = βzn−1 + (1 − β) · ∇C(θn−1)

This technique requires only parameter β, that determines how strong mo-
mentum impact is.

RMSProp optimizes learning rate for each individual parameter, there-
fore the learning step is accelerated in the desired direction. It observes second
raw momentum (uncentered variance) of parameters and accelerates param-
eters with low variance (those which behaves steadily). To estimate the pa-
rameter momentum for the dataset (only the current mini-batch is available)
it uses moving average v of squared cost function:

pn = pn−1 − η
√

vi + ϵ

∂C(θn−1)
∂p

, vn = βvn−1 + (1 − β)(∂C(θn−1)
∂p

)2

where pn is the parameter in step n, β is hyperparameter that controls the
exponential decay rate of the moving average and ϵ guarantees computational
stability. Therefore, if the parameter oscillates then the moving average of
variance is high and further steps of the parameter are small while monotonous
changes causes small variance and bigger steps [17, 16].

Adam takes up on the idea of RMSProp but also uses first momentum
(mean) with all parameters. The step Adam makes is:

pn = pn−1 − ηẑn√
v̂n + ϵ

where and are bias-corrected moment estimates3 and zn is has modified form
for a single parameter (∂C(θn−1)

∂p replaces ∇C(θn−1)).
There is also variation of Adam that incorporates Nesterov momentum

called Nadam. This algorithm turned out to decrease cost even faster than
its predecessor. See Nadam original paper for more information [18].

1.5.3 Activation function
Until now, form of activation functions (AF) were omitted with the excep-
tion of single-layer Perceptron. There are several requirements for activation
function. It has to be differentiable. Otherwise it would not be possible to
apply backpropagation algorithm for learning. Activation function should be
non-linear. Although it is possible to use linear activation function it would
demote the model into form, which could be represented as a model with a

3Technique that prevents momentum estimate from being dragged to zero too harshly;
See original paper [16] section 3 for further details.
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single hidden. Such network would not be able to identify high level features,
therefore it is not suitable for complicated problems [14].

One of activation functions used in hidden layers is hyperbolic tangent.
It was often used in past.

f(ξ) = eξ − e−ξ

eξ + e−ξ

ReLU (rectified linear unit) is currently the most usual activation function
for hidden layers.

f(ξ) = max(ξ, 0)

For regression tasks identity function f(ξ) = ξ is used in the output layer
as an activation function.

Sigmoid function (logistic function) is an activation function used in the
output layer for binary classification models.

f(ξ) = 1
1 + eξ

Output of model is P (Y = 1|X = x) = f(ξ) and P (Y = 0|X = x) =
1 − P (Y = 1|X = x).

Softmax function is an activation function used in the output layer
for multi-class classification models. It guarantees that all activations of the
output layers will be in interval (0; 1) and sum of all outputs will be equal 1.

f(ξk) = eξk∑K
j=1 eξj

for all k ∈ {1, . . . K} where K denotes number of classes. Output of model is
then P (Y = k|X = x) = f(ξk) (The likelihood of x’s belonging to class k).
Prediction of model is class with highest likelihood of belonging [6].

1.5.4 Loss function
Loss function (or cost function) measures the difference between real labels
Y and output of the model Ŷ . Selection of loss function is significant since
it determines what the model is actually learning. Like an activation func-
tion, it has to be differentiable. Otherwise the backpropagation would not be
applicable. There are commonly used losses for different tasks [15, 19].

Squared error is typical for regression tasks. It harshly penalizes big
deviations.

L(Y, Ŷ ) = (Y − Ŷ )2

Binary cross-entropy is used of binary classification tasks.

L(Y, p̂) = −Y log p̂ − (1 − Y ) log(1 − p̂)

where p̂ = P̂ (Y = 1|X = x).
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1.6. Convolutional neural network

Categorical cross-entropy is used for multi-class classification tasks:

L(Y, p̂) = −
K∑

j=1
1Y =j log p̂j

where K is number of classes, p̂ = (p̂1, . . . p̂K), p̂i = P̂ (Y = i) and 1Y =j = 1
for Y = j, 0 otherwise.

1.5.5 Droupout
Droupout is a one of techniques applied to ANNs to address overfitting. Dur-
ing the training process droupout causes deactivation of randomly selected
neurons in hidden layers. Thus, hidden layers can not completely rely on the
presence of other neurons. This prevents learning of complex features found in
only one single training sample. Dropout is often used between fully connected
layers since it provides a good way for regularization of the model [20].

1.6 Convolutional neural network
Convolutional neural networks (CNN) were used for visual tasks since the
late 1980s. However their application was not used widely becouse of a lack
of big computational power and insufficient sizes of available image datasets.
These both conditions changed for the better in the mid 2000s. The most
significant rise of interest they encountered in 2012, when CNN model won the
ImageNet challenge (ILSVRC) and with record breaking results. Nowadays
CNNs represents state-of-the-art approach for computer vision tasks since they
significantly outperforms other known methods [20].

Convolutional neural networks represent a type of feed-forward ANN and
it’s the state-of-the-art method for Computer vision, yet it has found an ap-
plication in other fields like natural language processing [20].

The principle of CNNs is based on an assumption that individual inputs of
a neural network are positionally related, thus inputs which are close together
share some context. Image is a textbook example of such input.

In the following sections, principles are explained with 2D image data, yet
they can be generalized for N-dimensional data.

1.6.1 Layers of CNN
Unlike multi-layer perceptron, CNNs are built from several different types of
layers.

1.6.1.1 Convolutional layer

The convolutional layers serve as feature extractors. Neurons in a convolu-
tional layer are arranged into feature maps. Each neuron has its receptive field

19



1. Machine learning

(kernel). The neuron is connected to neurons within the receptive field in all
feature maps of the previous layer. All neurons within a single layer share the
same weights. Therefore feature map can be seen as product of application of
convolution filter (represented by weights) on feature maps of previous layer
[20].

Figure 1.9: Illustration of 2D convolution application on feature maps. Kernel
shape = (3, 3), stride = 1 [21]

Stacking of convolutional layers results in behaviour where early layers
learn to extract low level features like edges and corners while deeper layers
infer more complicated features from combinations of previous feature maps
[13].

Convolutional layer has several attributes like number of feature maps
(kernels), shape of the receptive field (kernel shape), stride, padding. Size
of the receptive field determines how many and which ”surrounding” neurons
from previous layers are connected to the neuron. Stride can be seen as a size
of convolution shift. Applying stride down-samples feature maps. Padding
determines how neurons should be interpreted if the receptive field overflows
outside the previous layer feature map [22].

1.6.1.2 Pooling layer

Pooling layers are used to reduce the resolution of feature maps (down-sampling).
This leads to positional/rotational invariant feature extraction and reduction
of computational difficulty. Initially, Average pooling was used as a common
practice, yet recent models usually use Max pooling which leads to better
results in practice [20].

Figure 1.10: Illustration of max pooling applied on feature maps. Pool shape
= (2, 2), stride = 2 [23]
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1.6. Convolutional neural network

Special case of pooling layer is global pooling layer. Such a layer aggregates
the whole feature map into a single neuron. Global pooling layer is often used
as a last layer which uses feature maps and the flow is followed up by fully
connected layers [20, 13, 22].

Attributes of the pooling layer are pool shape, which determines the field
of neurons for aggregation. Stride works just like in case of Convolutional
layer[20, 22].

1.6.2 Deep convolutional neural network
Development revealed that CNN’s depth plays a key role in improving model
performance. Deeper CNNs naturally integrates higher level features, there-
fore are applicable even to more complex tasks [24].

Unfortunately training of deep networks suffers from a problem called
Vanishing gradient problem. Vanishing gradient refers to a phenomenon
in which the early layers have gradients near zero because high layers are al-
most saturated. Even opposite phenomena can appear. It’s called Exploding
gradient and it is characterized by propagation of huge gradient into early
layers, making them completely unstable [20].

1.6.3 Batch normalization
Although batch normalization can be applied even in other types of neural
networks, it is listed in CNN section because it presents inseparable part of
Deep CNNs today [20, 13, 25].

Another problem of deep ANN learning is a phenomenon called Internal
covariate shift. It is caused by changes of distributions of each layer’s inputs
caused by weight changes in the previous layers. Therefore training such
network requires use of a lower learning rate which results in slower training
[26, 13].

This problem is addressed by Batch normalization (BN). Batch normal-
ization normalizes each output of the layer with respect to mean and variance
of the mini-batch in the output. The normalized values are then applied to
outputs before application of non-linearity (activation function) in order to
keep input distribution of the next layer the same. Yet plain normalizing of
output might bring some undesired phenomenons, for example change of bias
in the neuron alone does not change its distribution at all, therefore bias would
affect the potential in any way. To avoid this, batch normalization is applied
by linear transformation: ξ̂ = γ · BN(ξ) + β, where γ and β are trainable
parameters [26].

The batch normalization also works as a regularization method, improv-
ing generalization of the model. In experiments it was found that BN can
substitute or reduce the need of usually used dropouts. Application of batch
normalization was proposed to be done before activation function, yet later
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research showed that the batch normalization of the flow just before convolu-
tional layer can is a more effective approach [26, 27].

1.6.4 Architectures
Since the introduction of CNNs many architectures have been derived. ”Basic”
CNN architecture comprises several convolutional layers continuously down-
sampled by pooling layers or a stride. At the end feature maps are either
reduced by global pooling or passed as they are to a stack of fully-connected
layers.

In the following sections are presented architectures which brought ground-
braking novels to the field.

1.6.4.1 VGG-16

The VGG-16 architecture was introduced in 2014. It consists of 16 layers,
13 convolutional and 3 fully connected. Usual CNN’s had about 5 layers by
that time. The novel is an idea that increasing depth of CNN leads to model
improvement [28].

1.6.4.2 ResNet

ResNet is the network that popularized the use of batch normalization and
residual mapping and introduced very deep networks [13].

It is built from residual blocks. Every block contains stacked non-linear
convolutional layers with ReLU activation function and batch normalization.
Original order of these operations is Conv > BN > AF , yet further research
invented different arrangements which led to better results [27]. Every residual
block comes with a so-called shortcut connection4. This connection represents
a flow of activations, parallel to the stack of layers and their feature maps
are added together; See Figure 1.11. Therefore every block applies residual
mapping xl = F (xl−1) + xl−1 where xl is vector of block activations, xl−1
is previous block activations (output of the shortcut connection) and F (x)
represents activations of stacked layers based on the xl−1. Down-sampling
through network is done by 1×1 Convolution with stride [13].

Let H(x) be desired mapping done by a few stacked layers and x input
activations to them. Idea of ResNet assumes if the stacked layers can learn
mapping H(x) then it can also learn F (x) := H(x)−x =⇒ H(x) = F (x)+x.
Therefore it should be possible to add blocks without enlargement of training
error since the optimizer can drive weights of new stacked layers to zero in
order to perform as an identity mapping. Residual mapping speeds up learning
the process by increasing resistance to the vanishing gradient problem [13]. See
original paper [13] for closer residual mapping description.

4Do not confuse with connections between individual neurons
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Figure 1.11: Illustration of residual block [13]

Shortcut connection is usually done by identity. Yet it can’t be used if
the stack of layers does a down-sampling because feature maps of the stack’s
activation and shortcut would not match. In that case is used a projection
which down-samples shortcut to the same dimension by 1×1 Convolution with
stride [13].

There are several models of different depth presented in the original ResNet
paper [13], based on the idea of residual connections. From all architectures
the 152 layer deep ResNet had the best performance in most cases. ResNet
paper also introduced 1202 deep architecture. It performed well but suffered
more from overfitting [13].

1.6.4.3 DenseNet

Nowadays DenseNet represents state-of-the-art architecture which takes up
the idea of shortcut connections and extends it furthermore [25].

Dense net is built of dense blocks which consists of several layer stacks.
Each stack has a shortcut connection (identity), yet feature maps are not
added to feature maps of the stack but they are contacted unlike ResNet.
Therefore each stack produces feature maps which are propagated into next
layers of dense block without any change, providing better flow between all
layers and resistance to the vanishing gradient problem. Number of feature
maps with which a stack contributes to the flow (Growth rate) is denoted as k
and the number of output feature maps in l-th block is expressed as k0 + k · l,
where k0 is the number of feature maps passed to the block. Each stack
comprises BN > AF > 1 × 1 Conv > BN > AF > 3 × 3 Conv operations.
The 1×1 convolution, also referred to as bottleneck layer, reduces the number
of feature maps (concatenation of all stack outputs may lead to a great number
of feature maps in later layers, depending on k) for 3 × 3 convolution which
contributes its features to the flow [25].

All dense blocks are separated by a transition layer which down-samples
feature maps and comprises BN > AF > Pool or Conv. Usual choice is
pooling, yet convolution might be used if compression of model is desired (the
DenseNet which uses convolution compression is denoted as DenseNet-C) In
that case parameter 0 < θ ≤ 1 denotes compression rate and the convolutional
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Figure 1.12: Illustration of a dense block [25]

layer reduces the number of feature maps to ⌊m · θ⌋, where m denotes the
number of feature maps of the previous dense block.

1.6.5 Grad-CAM
The reasoning behind a prediction made by a artificial neural network is often
unclear. Therefore the user can not tell whether the prediction is based on
a relevant feature in data or for example some kind of anomaly unknown to
the from training data. Such model is completely unacceptable in many fields
including medical imaging where performing treatment based on ”black-box”
diagnosis is unthinkable.

Class activation map (CAM) is a map of the analyzed image what high-
lights places in the image based on the influence they contributed to the
decision [29].

Figure 1.13: Examples of Grad-CAM visualization applied to sample from
MURA dataset evaluated by one of the implemented prototypes, highlighting
areas that most affected the decision [4]

Grad-CAM is an algorithm for classification CNNs used to find Class acti-
vation maps. The algorithm watches the gradient flowing into the last convo-
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lutional layer and assigns importance of values to each neuron for the desired
class [29].

1.7 Ensemble model
Ensemble techniques are methods used to combine more different machine
learning models into one model in order to get more robust predictions. This
can be especially useful for good models that are varied in the way they per-
ceives the input data and makes predictions based on different features, thus
can mutually compensate weaknesses. Ensemble models are very popular
nowadays since they often reduce the generalization error. Nevertheless there
are no guarantees that the ensemble model will perform better then its indi-
vidual submodels. In practice ensembles are built from three to ten models,
usually the more the better, nevertheless it is good to keep in mind that with
10 models, the time needed for evaluation will also rise 10 times (assuming
that individual models have similar prediction time requirements) [30].

There are several ways to implement ensembling in practice. The basic one,
also called ”committee of networks”, is simple averaging of the model outputs.
Despite its simplicity, this approach is still most commonly used to this day.
Another possible approach is weighted averaging of model predictions, where
the weights are represented by success rate of the individual models. Lastly,
the Stacking ensemble needs training unlike previously presented methods.
Stacking ensemble uses the outputs of submodels and learns from them a new
model on top of them to combine their predictions into the prediction of the
ensemble [30].

1.8 Machine learning in Medical imaging
Medical imaging is a set of tests used to create internal images of patient body
parts. These techniques greatly improved healthcare, physicians can perform
patients internal diagnosis without invasive intervention and provided us valu-
able information about the human body. Among medical imaging techniques
are X-ray, computed tomography (CT), magnetic resonance imaging (MRI),
positron emission tomography (PET), mammography, ultrasound and others
[31, 32].

Finding informative features is a key to a successful medical analysis. In
early applications of machine learning in medical imaging meaningful fea-
tures were designed mostly by human medical experts on the basis of their
knowledge. Thus did not allowed non-experts to contribute to the field. Al-
though, there has been attempts of feature extraction based solely on data,
true breakthrough was done by expansion of deep learning, incorporating the
feature extraction into a learning step [32].
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Nevertheless, deep learning methods usually requires large dataset to learn.
That represents a problem, since the medical imaging field does not collect
such data in an employable form (the data are unlabeled). There are tech-
niques that can help overcome this problem. For example labels can be inferred
from the associated radiological reports using natural language processing, like
it was done with ChestX-ray8, the currently biggest open dataset of X-ray im-
ages [32, 33, 34].

Data augmentation is a matter of course for practically any computer
vision tasks, yet the impact of basic augmentations on training for smaller
datasets is limited. Generative neural networks (GAN) gained a lot of atten-
tion lately, since they are able to create new data samples that represents the
target domain well [35, 34].

Another approach to compensate a small number of samples is using a
model learnt on different dataset, for example a dataset of natural images.
Although such a model does not know features from the task domain, it has
been found that low level features are fairly similar across different domains.
Therefore continuing model training with different dataset can reduce overfit-
ting for the target domain and speed up the training process. This approach
is referred to as Fine tuning. There are some networks specifically designed
to benefit from pre-training like DeTraC, which is used for classification of
X-ray images. Such a network requires only a small number of samples from
the target domain to work well [36, 11, 37].

Lately the U-net network architecture has gained great popularity as a
model for image segmentation5 in the medical imaging area, since the model
is capable of learning from very little data and resistant against overfitting
[38].

Nevertheless in these days new bigger medical imaging datasets arise (es-
pecially in cases of more common disorders like fractures), making training of
CNNs much easier [32].

5The computer vision task with the goal of splitting the image into several segments
where every one of them consists a desired feature
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Chapter 2
Analysis and design

In this chapter I will present MURA dataset - the labeled dataset comprises
more than 40,000 X-ray shots. Using this dataset I have trained several CNN
prototypes and conducted experiments with the prototypes that are also de-
scribed in this chapter. Since the dataset is fairly big (especially for a medical
imaging dataset) it is possible to use more conventional models that leverages
from a large number of samples [4].

2.1 MURA dataset
MURA (musculoskeletal radiographs) dataset is a large open dataset contain-
ing 40,561 images from 14,863 radiograph studies of upper extremity, where
each study is labeled as either normal or abnormal. Classified parts of limb are
elbow, finger, hand, humerus, forearm, shoulder and wrist [4]. See distribution
of studies at Table 2.1.

Study Train Validation TotalNormal Abnormal Normal Abnormal
Elbow 1094 660 92 66 1912
Finger 1280 655 92 83 2110
Hand 1497 521 101 66 2185
Humerus 321 271 68 67 727
Forearm 590 287 69 64 1010
Shoulder 1364 1457 99 95 3015
Wrist 2134 1326 140 97 3697
Total No. of Studies 8280 5177 661 538 14656

Table 2.1: Distribution of studies with respect to limb part, set type and
label [4]

MURA dataset is one of the biggest open dataset of radiographic imaging.
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Thus makes the problem Unfortunately, the test set is not publicly available,
nor is it possible to get your own model evaluated on test data at the moment.

The data was collected from the Picture Archive and Communication Sys-
tem of Stanford Hospital with respect to patients personal data. Images in the
dataset were scaled down, while preserving their aspect ratio. Original clas-
sification of all samples was manually done by 6 board-certified radiologists
from the Stanford Hospital. To get a better understanding of the nature of
injuries, the radiologists also described findings of 100 abnormal studies. Re-
sults were: ”53 studies were labeled with fractures, 48 with hardware, 35 with
degenerative joint diseases, and 29 with other miscellaneous abnormalities,
including lesions and subluxations” [4].

2.2 Prototypes
As prototypes I chose 4 Convolutional neural network architectures. I com-
pared their attributes, advantages and disadvantages with each other and with
the model proposed in the MURA original paper [4].

The baseline model is a 8 layer deep of basic CNN architecture. It sets a
baseline for other models and demonstrates differences in the training process
of basic and residual architectures.

Another architecture I used was ResNet-34. Its fast and undemanding
training process allowed me to perform many experiments with data augmen-
tation, down-sampling strategies and more, before bringing the technique to
the deeper models.

At last I trained ResNet-101 and DenseNet-C-169 models, deep networks
that represent state-of-the-art approaches for image classification of large sets.

In order to get a better understanding of model predictions I use Grad-
CAM.

2.2.1 Metric
As a metric of quality I use Cohen’s kappa as it is used in the original MURA
paper. Cohen’s kappa is a metric of inter-rater reliability (agreement) between
two raters for categorical predictions. It’s value is in range -1 to 1, where 1
represents a perfect match of predictions, -1 complete contradiction in predic-
tions and 0 represents plain random inter-rater reliability. Value lower than
0.4 indicates poor agreement, between 0.4 and 0.75 indicates good agreement
and more than 0.75 represents great agreement. Cohen’s kappa is expressed
as:

K = Pr(a) − Pr(e)
1 − Pr(e)

where Pr(a) is agreement among raters (Accuracy) and Pr(e) is an estimate
of random agreement among raters [39].
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Unlike accuracy Cohen’s kappa is well suited even for evaluation of unbal-
anced distribution of labels (In case of MURA it is 6:4). For example if all
samples in the dataset of rare disease that consists of 1 positive to 99 negative
cases are predicted as negative then the accuracy is 0.99 while Cohen’s kappa
is 0.

2.2.2 Pre-processing and augmentation
The images of MURA dataset vary in resolution and aspect ratio, yet it is
guaranteed that the longer dimension is 512 pixels long. However CNN with
Global pooling layer is able to process images of any shape, the batch training
of more than 1 sample per batch would not be possible.

During pre-processing the images are resized to 224 x 224 or 320 x 320
(based on application), preserving the aspect ratio. Areas uncovered by image
are padded with zeros. Values of pixels are re-scaled by 1/255 as it is a known
good practice for neural networks.

The augmentation is applied online – during training. As augmentation
transformations I applied rotation, shift, zoom, brightness change, shear and
horizontal flip. The possible extent of the transformations (like angle of rota-
tion) is defined as a value from a given range of values. Every image during
training is alternated by the transformations with randomly generated param-
eters in the bounds of the ranges for every epoch.
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Modest augmentation 30° 0.15 0.9–1.1 0.9–1.1 0.05 yes
Strong augmentation 30° 0.2 0.7–1.1 0.7–1.2 0.05 yes

Table 2.2: Used augmentation strategies

Two strategies I used are described in Table 2.2. The Modest augmentation
is designed to apply transformation only to the point where the augmented
image is still very similar yet brings invariance to the trained model. The
Strong augmentation strategy applies more radical changes to images that
can make the dataset more flexible and represent a bigger variety of cases
from the field. For the Strong strategy I have considerably expanded the
ranges of zoom in and brightness changes. The decision to magnify zoom in
range is based on facts that the key features are usually in the middle of an
image and the images pre-processed with padding are shifted closer to the
center. Nevertheless, in extreme cases the radical changes to an image might
make features harder to find, for example by big a decrease of brightness in
an outlier image that is already very gloomy.
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2. Analysis and design

Impacts of the augmentations strategies had on learning are described in

2.2.3 Training
To keep the training process simple I train models on individual images with
labels corresponding to its original study. Nevertheless, to predict studies as
a whole, images of the study are evaluated independently and the average of
the outcomes represents the output of the model for the study.

The imbalance of MURA dataset is addressed by application of class
weights. Weights are calculated to make the sample weighted average of the
dataset equal 0.5, therefore w0 = N1/N , w1 = N0/N where N is number of
samples and Ni is number of samples labeled as i.

As a lost function I used weighted binary cross-entropy as it is a standard
for weighted binary classification tasks.

2.2.4 Test set
To overcome the problem of the missing test dataset I have randomly picked
201 studies from the training dataset - approximately the same size as the
testing dataset used in the original paper. Test dataset distribution of sample
results and limb part is same as the distribution of training dataset [4].

2.2.5 Architectures
In this section are closer described used architectures and their initial perfor-
mance.

2.2.5.1 Baseline model

The baseline model is a 8 layer deep of basic CNN architecture. It sets a
baseline for other models and demonstrates the differences in training process
of basic and residual architectures.

Properties of layers adopts trends from ResNet/DenseNet in the sense
of convolution size, numbers of convolutional filters and feature map down-
sampling based in relation to feature map size to make difference between
baseline and other networks slighter to stress out the differences of shortcut
connections and batch normalization. The baseline is regularized mostly by
strong dropouts to prevent overfitting. See Table 4.1.

I have trained the baseline model using Nadam optimizer with learning
rate = 1e − 4 with batch size = 32, until the learning curve6 plateaued. The
images were resized to the 224×224 resolution and augmented using the Mod-
est strategy.

6Learning curve is a curve representing the history of model training. Rising (for max-
imization) curve suggests improvements in the model while the plateaued curve indicates
stagnating learning
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2.2. Prototypes

Layer Properties Output size∗ Dropout
rate

1. Conv layer 7 × 7 conv ×64, stride = 2 112 × 112 × 64 0
Max pooling 3 × 3 pool, stride = 2 56 × 56 × 64 0
2. Conv layer 3 × 3 conv ×128 56 × 56 × 128 0.3
3. Conv layer 3 × 3 conv ×128 56 × 56 × 128 0.3
Max pooling 2 × 2 pool 28 × 28 × 128 0
4. Conv layer 3 × 3 conv ×256 28 × 28 × 256 0.4
5. Conv layer 3 × 3 conv ×256 28 × 28 × 256 0.4
Max pooling 2 × 2 pool 14 × 14 × 256 0
6. Conv layer 3 × 3 conv ×512 14 × 14 × 512 0
G. Avg. pooling global pool 512 0.5
7. Dense layer 1000 0.3
8. Dense layer 1 0

Table 2.3: Baseline model architecture
∗order size represents: Width×Height×Number of feature maps

The model achieved 0.521 CK for individual images and 0.568 CK for
studies on the test set.

2.2.5.2 ResNet-34

34 layer deep ResNet, same as the proposed architecture for ImageNet in
the original paper [13] but instead of standard residual block the 2 layer full
pre-activation block is used as it is introduced in paper [27].

In order to get a better understanding of hyperparameter space I con-
ducted a grid search for the learning rate for Nadam optimizer and batch size.
Every combination of hyperparameters as they are shown in Figure 2.1 was
tried at least 5 times. The images were resized to the 224×224 resolution
and augmented using the Modest strategy. The training was limited to 50
epochs and used 10 epochs early stopping7. The results represent the average
maximum score achieved by the configuration.

For further training of ResNet-34 I used the most successful configuration
which is learning rate 0.0001 and batch size equal 64. This configuration
not only achieved the best score but also its learning curve was still steadily
increasing. I trained this model further until the curve plateaued.

The model achieved 0.567 CK for individual images and 0.568 CK for
studies on the test set.

7Early stopping stops model training if the model does not show any improvement in
last n epochs
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2. Analysis and design

Figure 2.1: Heatmap representing results of the ResNet-34 grid search

2.2.5.3 ResNet-101

101 layer deep ResNet, that is just likethe previous model inspired by orig-
inal paper architecture for ImageNet, comprises full pre-activation, 3 layer
bottleneck blocks. Yet I utilized several amendments that I found useful dur-
ing experiments with the ResNet-34. They are closer discussed in Chapter
3.Unlike original architecture [13] this architecture uses only 2 down-sampling
blocks instead of 3.

For training I used SGD optimizer with momentum which converges slower
then Nadam but in many cases is able to achieve a smaller generalization gap.
The initial learning rate is set to 0.1, the momentum is 0.9, and weights are
decayed by 0.95 factor every 5 epochs. Moreover the learning rate schedule is
applied that divides learning rate by 10 if the model does not report improve-
ment for 13 epochs. The images are in 320×320 resolution, augmented by
Strong augmentation strategy for training samples and the Modest for valida-
tion dataset. The model was trained until the learning curve plateaued and
achieved 0.51 (95% CI 0.498 to 0.522) CK for individual images and 0.573
(95% CI 0.567 to 0.579) CK for studies on the test set.

2.2.5.4 DenseNet-C-169

169 layer deep DenseNet-C with parameters k = 12 and m = 0.5. It’s other
properties are same as it is proposed in the original DenseNet paper

For training I used SGD optimizer with initial learning rate = 0.01 and
momentum 0.9. Learning rate was decayed by 0.95 factor every 5 epochs.
Moreover the learning rate schedule is applied that divides learning rate by
10 if the model does not report improvement for 13 epochs. The images
are in 320×320 resolution, augmented by Strong augmentation strategy for
training samples and the Modest for validation dataset like the ResNet-101.
The model was trained until the learning curve plateaued. The model achieved
0.502 (95% CI 0.483 to 0.521) CK for individual images and 0.562 (95% CI
0.543 to 0.581) CK for studies on the test set.
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2.2. Prototypes

Table 2.4: Table displaying architecture of ResNet used in this work
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Chapter 3
Experiments

This chapter describes experiments I have conducted, mostly on the ResNet-
34 model. These experiments are performed on the ResNet-34 architecture
with properties that are described in Section 2.2.5.2 to make their application
fast.

3.1 Augmentation
The way I tried to reduce overfitting most is image data augmentation. There
are several techniques I tested.

Augmentation strategies – application of Modest and Strong that are
described in section 2.2.2 were the first technique I tried. Figure 3.1 shows
the learning process of models with different strategies.

Figure 3.1: Comparison of augmentation strategies
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3. Experiments

Unsurprisingly, the model without augmentation is very quickly drastically
overfitted. Nevertheless Modest and Strong strategy performs very similarly
without big differences with exception of the initial training error, although
this can be only a coincidence. Since both strategies performed similarly I used
Strong strategy in next prototypes since it should provide better generalization
for classification of samples outside the defined boundaries of the dataset.

Test augmentation – This experiment addresses the option to augment
images outside the training cycle. At Figure 3.2 I applied Strong augmentation
to training data and Modest augmentation to validation. This training is
compared with a model that applies Strong augmentation for samples.

Figure 3.2: Comparison of basic augmentation approach with test time aug-
mentation

The augmentation of all samples turned out to be beneficial, although
slightly. Therefore I used this technique in next prototypes.

Image histogram equalization – Image histogram is a representation
of a contrast distribution in the image. Histogram equalization is a technique
that redistributes contrast uniformly , therefore makes the image features
easier to distinguish. Small contrast is often a problem of X-ray shots.

Therefore I tried to apply Modest strategy with histogram equalization
(without brightness shift). Despite high hopes, the model did not perform
well and achieved a poor score (0.51 CK on individual images from valid
dataset). Closer examination of equalized images revealed that their dull noise
is often magnified by augmentation into extreme noise, severely damaging
image features. See Figure 3.3.

There is another approach to enhance contrast of the image. CLAHE is
an algorithm for contrast enhancement. Unlike standard HE, CLAHE does
not equalize histogram of the whole image but is concerned about individual
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3.2. Less down-sampling (lds)

Figure 3.3: Impact of histogram equalization. Left to right: Raw image,
Equalized image, CLAHE equalized image

image parts. Figure 3.3 shows the difference where CLAHE nicely brings out
the features without causing any collateral damage.

Unfortunately the CLAHE application is computationally expensive and
using it with online augmentation turned out to be unthinkable.

3.2 Less down-sampling (lds)
While I’ve been watching CAMs using Grad-CAM for ResNet I came across
phenomena where the produced CAM was highlighting area too big – even
wide surroundings of the abnormality. The problem is that the last feature
map, a key component for Grad-CAM, was too down-sampled. Therefore I
tried to removed the last down-sampling layer. This not only helped Grad-
CAM to perform better but also the resultant performed better then previous
ResNets. Therefore I applied this adjustment to ResNet architectures used in
the thesis. They are denoted as ResNet lds.

3.3 Aggregation of images using maximum
Each study comprises 1 or more images. Previous presented networks used
to combine predictions from individual images using average into the final
prediction. This comes with one pitfall. Let’s assume a study of 5 images, 4
of them are completely fine while 1 contains significant abnormality. Natu-
rally, this study should be declared abnormal, nevertheless a good classifier
for individual images with average would proclaim the study as normal, since
there is no way for 1 abnormal image to outweigh 4 normal images.

. As a reference I tried to evaluate the ResNet-34 model with maximum
as aggregation. It came out with 0.572 CK on the validation set (for com-
parison it achieved 0.606 CK for studies on the validation set using average
aggregation)

To make maximum a decent option I tried to train a model with higher
specificity at the expense of sensitivity. To achieve this I used weighted binary
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cross-entropy as a function with adjusted class weights. I performed a search
for the threshold parameter t that states class weights: w0 = t and w1 = 1 − t
using a Successive halving algorithm, with 80 epochs as β and n = 8 with
uniformly distributed values from 0.55 to 0.9. They were compared by their
CK score for study. Threshold 0.7 came out as the most successful one.

Nevertheless the final model achieved only 0.49 for studies on the test set.

3.4 Ensemble
At last I built a stacking ensemble model using a simple 4 layer deep MLP
where the hidden layers are 25 neurons wide. I used the 5 best performing
models with CK on validation set from 0.592 to 0.607. These models are 2 of
ResNet-101 type and 3 of ResNet-34 type, trained for images with 320×320
resolution. The model was trained using SGD optimizer with learning rate
0.1, batch size = 128 for 5 epochs.

The model achieved 0.562 (95% CI 0.553 to 0.571) CK for individual im-
ages and 0.605 (95% CI 0.588 to 0.622) CK for studies on the test set.

38



Chapter 4
Results

In this chapter I will summarize results achieved by selected prototypes and
compare them with the model presented by MURA original paper [4] called
Stanford baseline. For clarity, I will call the baseline model proposed by me
in Section 2.2.5.1 My baseline.

Model Test CK (studies)
My baseline 0.568
ResNet-34 0.568
ResNet-34 lds 0.568
ResNet-101 0.573 (95% CI 0.567 to 0.579)
DenseNet-C-169 0.562 (95% CI 0.543 to 0.581)
Ensemble 0.605 (95% CI 0.588 to 0.622)
Stanford baseline model 0.705 (95% CI 0.700, 0.710)

Table 4.1: Summary of results

4.1 Discussion

Stanford baseline is an averaging ensemble model of 5 169 layer deep DenseNets.
The submodels pre-trained on ImageNet dataset8. The submodels are trained
by Adam optimizer with learning rate 0.0001, batch size = 8 and the learning
rate is divided by 10 every time learning curve plateaus. The submodels are
trained like mine – from individual images without a study context. Training
samples are augmented by rotations of up to 30 degrees and random lateral
inversions.

8ImageNet dataset is a large dataset of more than 14 million images from 20 thousand
classes
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Unlike models presented by me, the Stanford model is fed by network whole
studies. Yet, since the Stanford model averages predictions of the images in
the study, it does not work with the context of the study.

The Stanford model outperformed the models presented by me. In my
opinion the better performance of the Stanford model is mainly caused by an
application of fine-tuning and probably by more careful setting of parameters.

Most other implementations of CNNs trained on MURA dataset I found
online were not very different from the Stanford model. Using ensemble models
created from CNNs pre-trained on ImageNet seems to be a common practice.
[40].

Interesting approach I found is a using unsupervised learning with GANs
using samples classified as normal to get an understanding of hand form in
order to make an abnormal study outlier to the domain. See original paper
[41] for further info.

Nevertheless it is unfortunate that the models can not be compared on
the same dataset, since I have some doubts regarding the quality of labels
of the original training dataset, from which I took testing samples. While
browsing the dataset I found some samples that look very abnormal for me,
as a non-doctor, yet they are classified as normal. See Figure 4.1.

Figure 4.1: Possible wrongly labeled sample from training dataset. The image
contains hardware that is highlighted by Grad-CAM.
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Chapter 5
Used technologies

This section summarizes the technologies I used for development and analysis
of the practical part.

The practical part is written exclusively in Python. Python does not need
to be compiled and a new code can be passed to a running interpreter, making
Python very suitable for experimenting. Another great advantage is the fact
that Python offers a great variety of libraries very well optimized for Machine
learning, data processing and visualizations and more.

Development of prototypes was done using Keras. Keras is an API writ-
ten in Python, running on top of a machine learning platform, with focus
on Neural networks. With Keras it is possible to quickly develop high level
components of the Neural network, train or evaluate it effectively and its
ecosystem provides handy features for data pre-processing and augmentation,
hyperparameter tuning and more. The platform under Keras used in this
thesis is Tensorflow 2.2. It is a machine learning platform for dataflow and
differentiable programming, that has gained great popularity in Neural net-
work development, although it can be used for a variety of tasks. Tensorflow
computations can use GPU as well as distribute computations among more
processing units, to considerably speed up its computations.

As an IDE I used a web application called Jupyter Notebook that allows
the user to pass new code segments to a running Python interpreter, generate
visualizations and more via an interactive environment. Although JN is very
effective for experimentation, its usage for long time running, computationally
demanding tasks is unsuitable. Therefore for model designing, visualizations
and other undemanding features the JN is used, while computationally hard
tasks are written as a plain Python script.
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Chapter 6
Conclusion

6.1 Contribution
There were four goals of the thesis.

The first goal was research of current state-of-the-art techniques used for
Computer vision tasks. First Chapter apprises the reader to machine learning
basics focusing Artificial neural networks and Computer vision. The end of the
chapter describes current aims to meet the task with the support of previously
introduced basics.

The second goal was to implement a prototype of a neural network for pre-
diction of MURA studies, a task I focused on the most. Although the proposed
prototypes did not match best performing methods, they performed quite well
achieving 0.6 CK. Their predictions can be visualized using Grad-CAM to un-
derstand . Second and third chapters are devoted to model designing and
investigate possible approaches to reduce the generalization gap.

The third goal was comparison of proposed prototypes with models trained
on the same literature. This goal was problematic since there are not many
published and well documented models and those who do use very similar
techniques.

The fourth goal was to publish the prototype code. All scripts used for
creation of the prototypes, training, evaluation and visualization are uploaded
on the enclosed medium, along with trained prototypes and the results are
reproducible.

6.2 Future work
There are a lot of possible options that could further improve the proposed
models. Among most promising I consider fine-tuning since it was frequently
used in other well performing prototypes I found online. Initially I consid-
ered the size of the MURA dataset sufficient for training CNNs from scratch,
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6. Conclusion

yet I was proved to be wrong. Another possibility I find tempting to try is
application of CLAHE as an augmentation technique.

As for the domain of computer vision in medical imaging there are some
interesting new techniques on the horizon. In my opinion capsule networks
represent one of the possible directions to which the field can go. Unlike
conventional CNNs, capsule networks perceive the world more like humans,
thus giving them great potential.
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Appendix A
Acronyms

AF Activation function

ANN Artificial neural network

BN Batch normalization

CNN Convolutional neural network

CK Cohen’s kappa

Conv Convolution / Convolutional layer

HP Hyperparameter

HPO Hyperparameter optimization

ML Machine learning

MLP Multi-layer perceptron

PR Polynomial regression

SLP Single-layer perceptron
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