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Abstract

Restoring damaged regions in image data is a relevant and difficult problem,
which gets proportionally harder with the severity of the damage. In the last
few years we have seen promising progress in tackling this issue using deep
learning models. This thesis verifies and compares different approaches to
handling the image inpainting problem. Since generative adversarial networks
are one of the most inventive and promising architectures, a survey on current
methods was performed and two selected methods were reimplemented. Our
implementations are compared to other inpainting methods using classification
models. The presented results reflect the influence of damage type and damage
severity on the ability of each of the considered methods to successfully inpaint
a damaged image.

Keywords image inpainting, autoencoder, image corruption, generative ad-
versarial networks, deep learning
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Abstrakt

Obnovení poškozených oblastí v obrazových datech je aktuální a náročný pro-
blém, jehož obtížnost roste se závažností a velikostí daného poškození. V po-
sledních pár letech lze pozorovat značný pokrok při řešení tohoto problému za
pomoci hlubokých neuronových sítí. Tato práce se zabývá ověřením a srovná-
ním různých přístupů k doplňování obrazových dat. Jelikož generativní adver-
sariální sítě jsou jednou z nejslibnějších architektur, byl v této práci zpraco-
ván přehled aktuálních metod a dvě z nich byly reimplementovány pro účely
dokreslování. Naše implementace neuronových sítí jsou srovnány s jinými me-
todami za pomoci klasifikačních modelů. Prezentované výsledky vypovídají
o vlivu typu a rozsahu poškození na schopnost jednotlivých metod provést
úspěšné dokreslení.

Klíčová slova dokreslování obrazu, autoenkodér, poškození obrazu, genera-
tivní adversariální sítě, hluboké učení
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Introduction

One of the problems that keeps coming up over and over again ever since the
discovery of a camera is that images can become damaged in various ways
and it is often essential to repair them. The task of image inpainting requires
us to fill in a specified region in an image based on the rest of the picture.
Historically, this would be done by a professional artist, who may spend hours
or even days restoring a single image or painting. Thankfully, due to recent
advances in computer science, there are other methods that can aid us in
restoring image data. In addition, we can use inpainting techniques to per-
form complex image editing, such as the removal of objects, watermarks and
even various types of noise.

This thesis is intended for a reader who has a respectable knowledge of the
machine learning field. Introductory information about key concepts can be
found in other publications [1].

Motivation

Most standard methods used to perform computer-aided inpainting rely on
local features such as colours and textures, but they fail to consider the global
semantics of the image. These methods work well for cases where image
corruption is minor or straightforward to fill in, but not so well for cases with
more significant damage, failing to produce reasonable or plausible outcomes
[2]. When presented with a solution that respects the semantics of the image,
we can for example generate an entire person’s face based on an outline of
the head. This is not easily done through standard algorithms which are used
daily by graphic designers in tools such as Adobe Photoshop. Thus, we can
see there might be a desire for a solution that can take on such a feat.
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Introduction

Objectives
A significant number of state-of-the-art methods use deep neural networks
and their results look very promising. One of the ways of creating globally
well-organised and coherent images is by introducing a second neural network,
an adversary, that tries to decide whether the produced results look artificial
or genuine. The original generating network can learn to produce results that
are much less likely to be discarded as artificial using information from this
adversary network. Such networks are called generator and discriminator.
This type of architecture called Generative Adversarial Networks (GAN) was
proposed in 2014 in [3].

The main aim of this thesis is to:

• survey current state-of-the-art methods, focusing on models that make
use of an adversarial discriminator,

• implement two models that use adversarial training,

• experiment with different damage mask settings on various datasets,

• perform a comparison of different approaches.

The performance is demonstrated on different datasets that were damaged in
various ways, such as having a missing square region or having pixels dropped
based on random noise.

Structure of the Thesis
This work consists of 6 chapters. Chapter 1 aims to thoroughly introduce the
image inpainting task and present the outline of two machine learning mod-
els, which are a common foundation for many of the state-of-the-art methods
presented in the survey in Chapter 2. In Chapter 3, we discuss the needed
terminology and notation and follow up with a detailed description of the
two models chosen for reimplementation. The technologies used and the steps
taken during the design and training of the models are summarised in Chap-
ter 4. As described in Chapter 5, once the models are trained, we perform
several types of experiments and evaluate them. These results are then shown
and discussed in Chapter 6.

2



Chapter 1
Image Inpainting

This chapter introduces the image inpainting problem and concepts related to
it. We also describe two important types of models that many methods build
on in order to tackle the image inpainting task.

1.1 Problem Definition
Restoring image data is a task that has recently been in the spotlight for
many researchers all over the world. Many different kinds of images can have
areas that we might want to repair or replace. These types of data anomalies
include, but are not limited to: blurred areas, watermarks, unwanted objects
or even widespread noise. To perform a successful image inpainting, we need
to provide a seamless and plausible replacement for a specific region of pixels
in the image.

Depending on the usage and meaning, image inpainting is similar to other
tasks, such as data imputation or image denoising. The former addresses a
more general problem of filling in missing data and the latter aims to reduce
noise and improve the sharpness of images. We need to differentiate two basic
types of inpainting, blind inpainting and non-blind inpainting. For blind in-
painting we do not explicitly say what part of the image needs to be inpainted,
the model decides on its own. This can be beneficial for tasks such as remov-
ing noise or text from the image, where creating a mask for the designated
regions can be complicated. Non-blind inpainting requires the user to specify
the area of the image that needs to be changed, which is analogous to how
modern graphics editors work when retouching image imperfections.

A lot of methods can be used to solve the task. Most traditional algorithms
rely on finding the nearest neighbours and synthesizing textures from the rest
of the undamaged data [5]. In order to surpass their results, recent meth-
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1. Image Inpainting

ods often learn a representation of global context. Working only with local
features often ends in results that do not reflect the structure of the original
image well. Such an extension of image inpainting to large non-trivial areas
is called semantic image inpainting [6].

Even though there are many existing approaches to solving image inpainting,
this thesis is mostly focused on more recent state-of-the-art methods with an
emphasis on neural networks, such as generative adversarial networks. These
kinds of models have a larger learning capacity which enables us to fill in
large areas in an image, while preserving a higher level of context. For more
information about the other methods, see [5].

1.2 Generative Adversarial Networks
This section introduces and discusses the architecture and principles behind
GAN-based models. The main concepts and an outline of the training process
is provided.

In machine learning we differentiate between discriminative and generative
models. The key difference is that discriminative models seek to learn only
the boundary between different classes in the data, while generative models
try to capture the actual distribution of the data. Thanks to approximating
the training data distribution, we can sample from it and generate new data
points, hence the name generative models.

One such type of a generative neural network design was proposed in 2014 by
I. Goodfellow [3]. Based on insights from game theory, the training is per-
formed in a way similar to a competition between two networks. The networks
are called the generator G and the discriminator D and each has a specific
role in the training logic.

Generator G’s goal is to be able to output artificial data points, that appear
to originate from the same distribution as samples from the original training
set. On G’s input, there is a vector of random noise variables z, that makes it
possible to generate diverse samples. D then tries to differentiate between real
samples from training data and data points generated by G. On its output
there is a single scalar that represents the probability of the input being real
rather than generated.

The networks are trained in a competitive adversarial manner. By produc-
ing more plausible outputs, the generator G tries to confuse discriminator
D, which in turn learns to improve itself at correctly identifying generated
samples. Let LD and LG denote the loss that D and G try to minimise, re-
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1.3. Denoising Autoencoders

spectively. Additionally, x represents a real sample from training data and z
is the aforementioned random noise vector.

LD = − log D(x) − log (1 − D(G(z)))

LG = log (1 − D(G(z)))

Both of these are basically the same loss function, which one network max-
imises and the other minimises. The only difference is that G has no direct
relation to real data x, so the log D(x) term is left out in the LG loss.

Unfortunately, the adversarial architecture is known for its troublesome learn-
ing [7]. We need both networks to be well synchronised to ensure learning
convergence. Since the only way G learns is through D’s opinion, when the
discriminator reaches near-perfect results, the gradients start vanishing to a
point where it provides no useful information. Another way the model may
fail to produce sound results is called mode collapse. It is a scenario where G
needs to learn a multi-modal distribution, but instead it maps various real-
izations of z to a single output. It should be noted that this particular point
can alter between different modes during training.

Even though GAN was originally introduced with multilayer perceptrons in
mind, most applications for image data make use of deep convolutional layers
[8, 9], as we might see in Chapter 2.

1.3 Denoising Autoencoders
This section briefly introduces the autoencoder architecture and elaborates on
its uses for image reconstruction.

An autoencoder is a type of neural network that attempts to replicate its input
x on its output. It consists of two components, an encoder E and a decoder D.
The encoder’s output is a vector z = E(x) with lower dimension, also called
a latent space vector. There are some uses for a higher dimensional latent
space, but we shall neglect this case for the purposes of this thesis. We do
not want the network to learn an identity function D(E(x)) = x, but rather
make it produce an approximate copy, which still holds the same properties
as the original input [10]. As a consequence, the network is encouraged to
learn the most important and potentially useful feature representations in the
latent space.

The training process minimises loss function L, which measures how different
two data points are. Depending on the case, different loss functions can be
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1. Image Inpainting

used as L. Some of the most popular are mean-squared error and cross-
entropy. Respecting the notation of the previous paragraph, the training
process aims to minimise the following expression.

L(x, D(E(x)))

Based on the principles behind autoencoders, there was a slight modifica-
tion presented that enabled us to recover partially damaged data by changing
the criteria for reconstruction. Instead of learning to replicate the input di-
rectly, the input is damaged beforehand and the network’s output is trained
to approximate the undamaged original image. In order to create a deep archi-
tecture, the authors of [11] stack multiple encoder/decoder pairs, by chaining
multiple autoencoders so that each encoder’s output is the input to the next.
The same thing applies for decoders while respecting the order of encoders.
The motivation behind this architecture is to have each latent layer represent
more abstract features, similar to how most other deep neural networks work.
These types of networks are called Stacked Denoising Autoencoders (SDA)
[11]. The process of denoising training together with the usage of deep layers
enable the model to build a well-structured and robust hidden layer of fea-
tures, from which it is possible to reconstruct the original image [10].

6



Chapter 2
State-of-the-art

The survey performed within this thesis contains the remarks and findings of
multiple scientific publications related to the image inpainting task. Two of
these methods were chosen to be reimplemented as a part of this thesis.

As one can notice, the denoising process described in Section 1.3 captures
the essence of what image inpainting does. Additional research improved the
architecture and proposed a method to perform blind image inpainting, as
described in Section 1.1. The presented model was named Stacked Sparse De-
noising Auto-encoder (SSDA) [12] and achieved significant results, successfully
removing substantial noise damage or erasing text from an image foreground.

One of the first works handling semantic inpainting using deep neural net-
works with an adversary discriminative network was Context Encoders (CE)
[2]. Based on the autoencoder architecture and using only convolutional lay-
ers, they achieved superior results in a semantic inpainting task when faced
against mainstream tools like Adobe Photoshop. The main improvement over
previous approaches consists of the usage of an adversarial discriminator loss
(as presented in GAN [3]) in addition to the pixel-wise reconstruction loss.
Without the adversarial loss the results were not sharp enough, matching
only general shapes and colours. The most likely cause was the fact that an
average of different inpainting results would have a lower reconstruction loss
overall. The discriminator pushes the decoder to produce a specific sample
rather than a blurry average. One of the shortcomings of this model is the
absence of input noise, which is usually used in most GAN-based models. The
consequence of this is that we cannot generate various diverse outputs for one
specific input.

Another improvement came with the introduction of the Contextual Attention
layer [13]. Building upon previous works, the proposed architecture consists

7



2. State-of-the-art

of two consecutive stages, one for producing a coarse approximate inpainting
result and the other one for refining the coarse result. The newly introduced
contextual attention layer enables distant areas of the image to influence each
other. When combined with two discriminating losses, one for determining
whether the entirety of the resulting image is real-looking and one only for
the generated patch, the work achieved more plausible results than previously
mentioned methods in a human evaluated test.

While reaching impressive results, we are still not able to achieve a balance in
combining global context semantics and local textures. Using insights from
the Context Encoder architecture and coarse-to-fine CNNs [13] an architecture
called Generative Multi-Column Convolutional Neural Network (GMCNN)
was presented [14]. The model incorporates two discriminators, one for global
features and the other for local features. To be able to extract features at
different context levels, there are several parallel columns of encoder/decoder
pairs with different convolutional kernel sizes.

Acknowledging that there are many ways to perform inpainting that still look
realistic, we might seek a better solution. In an analogy to how two art ren-
ovators would each repair a painting in a different way: the general structure
might look very similar for both results, but they would differ in fine details.
To solve this issue, Pluralistic Image Completion [15] presented a solution that
can generate multi-modal results. Building upon Context Encoders, MultiCol-
umn CNN and SAGAN [16] they achieved results with improved consistency
while being able to generate diverse samples.

When using standard convolutional layers to extract a feature representation,
we take all pixels under the convolutional filter as equal. A problem specific
to this task arises when we do not differentiate between valid pixels, gener-
ated pixels and invalid pixels during the convolutional computation. This can
lead to a colour discrepancy, blurriness or rough edges. Additionally, meth-
ods that handle multi-modal outputs lack the ability to be guided by the user
towards a specific result [15, 17]. In a practical real-world solution, we might
want to have the means to guide the inpainting process using an outline. To
address both of these issues, a paper called Free-Form Image Inpainting with
Gated Convolution [18] was published. It introduced a method which allows
us to specify a rough sketch to which the computation adheres. With the help
of a novel architecture for the discriminator (SN-PatchGAN), their method
achieves highly competitive results. It should be noted that while the previ-
ous models used multiple complicated loss functions, this model uses only two
loss measures, pixel-wise reconstruction loss and SN-PatchGAN loss—all this
while reaching better results and a considerably shorter training time. This
is achieved thanks to the architecture of SN-PatchGAN being able to grasp
many previous efforts into a single unit.

8



A more general problem we previously mentioned is called data imputation.
We can use the generative models solving this task to handle image inpainting
as well. As published in GAIN [4], the usage of a discriminator network might
help us perform a data imputation task in a way that significantly outperforms
previous attempts. The main contribution consists of a novel hint mechanism,
where we provide the discriminator with additional information. It should be
noted that this method only requires us to supply the damaged training data
with missing values. We do not need to have a complete undamaged dataset
during training, as there is no reconstruction process in place for the missing
data. A complete and undamaged dataset might often be unavailable or very
hard to obtain. Even though this method was originally not demonstrated on
image datasets, additional research suggests it could perform successful image
inpainting [19], on par with other methods in the field.

As we can see, there were many innovative ideas and improvements presented
in the last few years. For the practical part of this thesis, two papers were cho-
sen for implementation and performance comparison. These selected models
are Context Encoder and GAIN, as described in the following chapters. The
Context Encoder laid the architectural foundations for many other follow-
up papers and GAIN supposedly provides sound results for data imputing,
possibly making it suitable for image inpainting as well.

9





Chapter 3
Methodology

Two different network architectures will be implemented for the practical part
of this thesis. Both of these were previously mentioned in Chapter 2. The
first one is the Context Encoder [2]. Several variations of the architecture were
presented, but we will focus only on GAN-like versions of the model. We will
consider two of them, both make use of an adversarial discriminator, but differ
in the type of damage done to the input. The other implemented model is
GAIN [4]. Although it is not primarily an inpainting technique, it was chosen
due to its perceived competitiveness after consulting with the supervisor of
this thesis.

3.1 Task Definition
For the purposes of this thesis, we will focus on non-blind restoring of missing
pixels. A non-blind inpainting means the model has knowledge of areas that
are damaged and are supposed to be inpainted. Given a picture Z of dimen-
sions a × b, we can represent this knowledge as a boolean matrix M of the
same size, where:

mi,j =
{

1 if pixel zi,j is valid,
0 if pixel zi,j is damaged.

As previous chapters might suggest, there are various scenarios for the type
of damage done to the data. For evaluating our models we will choose two
particular types of damage.

3.1.1 Geometric shapes
The first considered type of damaging images is dropping pixels in a common
continuous geometric shape. For practical reasons, we will use a square shape
of various sizes removed from different locations. The experiments contain
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3. Methodology

two such cases. One where a square region is removed from the centre of the
image, which allows the model to have some information on all borders of the
inpainted area. Also due to the nature of the images in the datasets used,
the subject of the image is usually centred, which might make this type of
damage more challenging to inpaint. For the second variation, we remove a
square area from one of the corners of the image. This leaves the model with
the task of inpainting an area where only two surrounding borders are known.

3.1.2 Random noise
Rather than dropping vast areas, this method drops each pixel at random
with a given probability. Based on the amount of dropped pixels, inpainting
this type of damage might vary greatly in difficulty. For low damage severity,
there is lots of information left in the data, so the models can benefit from
it in order to create plausible results by using the nearest neighbours of the
missing pixels. When the damage is severe enough, the image might only
have a fraction of original data left, which requires the model to inpaint the
majority of the image, leading us to the need of understanding its semantics
once again.

3.2 Context Encoder
The Context Encoder (CE) framework [2] is based on an autoencoder architec-
ture with an adversarial discriminator, while exclusively using convolutional
layers with varying kernel sizes and channel counts. Similar to denoising au-
toencoders, we do not try to reconstruct the input image, but rather generate
a patch to fill in the missing or damaged area of the input.

What should be noted is the fact that there were multiple variations of the
model architecture presented in the original paper. Some of them did not
make use of an adversarial discriminator and thus will be ignored for the pur-
poses of this thesis.

The encoder consists of 2D convolutional operations with a progressively in-
creasing number of channels. Analogously, the decoder is made up of 2D
transposed convolutions (sometimes also called deconvolutions). Convolu-
tional operations have the effect of decreasing the width and height of the
input while extracting features into deeper channel maps. The transposed con-
volutions work in an opposite manner, they upscale the image and typically
decrease the number of channels. The intermediate bridging layer between
these two sections is called the bottleneck layer and is meant to represent the
encoded context of the image, hence the name Context Encoder. The size of
this layer is dataset dependent and impacts the network’s ability to encode
the semantics of the input image. The bottleneck layer does not need to be
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Figure 9: Context encoder training architectures.

Figure 3.1: Architecture of a Context Encoder [2].

as size-restricted as when training an autoencoder, since we do not have to
prevent the learning of the identity function as we do not directly reconstruct
the input.

The discriminator has an image input and it is tasked with classifying it either
as genuine data or an inpainting result. The network outputs its opinion as
a single scalar representing a probability. For arbitrary (or random) region
damage, an image of the same size as the original undamaged sample is on
the discriminator’s input. For the case of square region damage, the authors
decided to use only the inpainted patch on the discriminator’s input instead
of the entire composite image. One of the reasons for this architectural design
was the fact that the discriminator could fail to learn useful features and only
manage to learn to recognise a boundary of the area where inpainted data
were inserted. Overall, patch-only evaluation results in lower computational
requirements and in turn a shorter training time.

The entire model is trained using two loss functions. The first one is the
reconstruction L2 loss between the original data and the inpainted result. For
the centre square damage, the loss function Lrec can be defined as:

Lrec = ∥P − CE(X′)∥2
2

Where P is the original patch that was removed from the original image X
by damaging it, X′ is the damaged image and CE is the autoencoder. For
random noise damage, the loss can be formulated as:

Lrec = ∥(1 − M) ⊙ (X − CE(X′))∥2
2
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3. Methodology

Where M is the binary mask for the damage, as was described earlier in Sec-
tion 3.1.

If we stick to using only the reconstruction loss, the results are blurry and very
easily discarded as fake. This is likely caused by the network approximating an
average patch of all the possibilities for a plausible inpainting result, instead of
picking a concrete sample. This issue is alleviated using the aforementioned
adversarial discriminator, which learns to identify features that are specific
only to generated patches. Through the discriminator’s opinion, the CE net-
work is pushed to produce sharper results instead of uncertain averages. The
overall architecture including the adversarial discriminator is presented in Fig-
ure 3.1.

The adversarial loss Ladv is then formulated as a minimax game, similar to
a vanilla GAN. For the square damage scenario, the discriminator D tries to
maximise and the CE tries to minimise the following expression:

Ladv = log D(P) + log(1 − D(CE(X′)))

In the random noise scenario, the loss can be formulated analogously as:

Ladv = log D(X) + log(1 − D(CE(X′)))

The losses are weighted using two hyperparameters, λadv for the adversarial
discriminator loss and λrec for the reconstruction loss. The overall loss is then
defined as:

L = λadvLadv + λrecLrec

Similar to vanilla autoencoders, all training is performed in an unsupervised
manner, meaning no class label information is supplied to the model and there
is no conditioning for the evaluation. As a result, for significantly damaged
images the model might perform a successful inpainting, while differing in the
class characteristic content.

3.3 GAIN
In contrast to the previous model, a GAIN [4] does not use any convolu-
tional layers, as it is primarily intended for general data, not restricting solely
to images. The architecture consists of two networks, a generator G and a
discriminator D. Additionally, there is a novel mechanism that is used for
generating hints for the discriminator.
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3.3. GAIN
GAIN: Missing Data Imputation using Generative Adversarial Nets

many circumstances, missing values are part of the inherent
structure of the problem so obtaining a complete dataset is
impossible. Another approach with DAE (Gondara & Wang,
2017) allows for an incomplete dataset; however, it only uti-
lizes the observed components to learn the representations
of the data. (Allen & Li, 2016) uses Deep Convolutional
GANs for image completion; however, it also requires com-
plete data for training the discriminator.

In this paper, we propose a novel imputation method, which
we call Generative Adversarial Imputation Nets (GAIN),
that generalizes the well-known GAN (Goodfellow et al.,
2014) and is able to operate successfully even when com-
plete data is unavailable. In GAIN, the generator’s goal is to
accurately impute missing data, and the discriminator’s goal
is to distinguish between observed and imputed components.
The discriminator is trained to minimize the classification
loss (when classifying which components were observed
and which have been imputed), and the generator is trained
to maximize the discriminator’s misclassification rate. Thus,
these two networks are trained using an adversarial process.
To achieve this goal, GAIN builds on and adapts the stan-
dard GAN architecture. To ensure that the result of this
adversarial process is the desired target, the GAIN architec-
ture provides the discriminator with additional information
in the form of “hints”. This hinting ensures that the genera-
tor generates samples according to the true underlying data
distribution.

2. Problem Formulation
Consider a d-dimensional space X = X1 × ...× Xd. Sup-
pose that X = (X1, ..., Xd) is a random variable (either
continuous or binary) taking values in X , whose distribu-
tion we will denote P (X). Suppose that M = (M1, ...,Md)
is a random variable taking values in {0, 1}d. We will call
X the data vector, and M the mask vector.

For each i ∈ {1, ..., d}, we define a new space X̃i = Xi ∪
{∗} where ∗ is simply a point not in any Xi, representing an
unobserved value. Let X̃ = X̃1× ...× X̃d. We define a new
random variable X̃ = (X̃1, ..., X̃d) ∈ X̃ in the following
way:

X̃i =

{
Xi, if Mi = 1

∗, otherwise
(1)

so that M indicates which components of X are observed.
Note that we can recover M from X̃.

Throughout the remainder of the paper, we will often use
lower-case letters to denote realizations of a random variable
and use the notation 1 to denote a vector of 1s, whose
dimension will be clear from the context (most often, d).
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Figure 1. The architecture of GAIN

2.1. Imputation

In the imputation setting, n i.i.d. copies of X̃ are real-
ized, denoted x̃1, ..., x̃n and we define the dataset D =
{(x̃i,mi)}ni=1, where mi is simply the recovered realiza-
tion of M corresponding to x̃i.

Our goal is to impute the unobserved values in each x̃i. For-
mally, we want to generate samples according to P (X|X̃ =
x̃i), the conditional distribution of X given X̃ = x̃i, for
each i, to fill in the missing data points in D. By attempting
to model the distribution of the data rather than just the
expectation, we are able to make multiple draws and there-
fore make multiple imputations allowing us to capture the
uncertainty of the imputed values (Buuren & Oudshoorn,
2000; Buuren & Groothuis-Oudshoorn, 2011; Rubin, 2004).

3. Generative Adversarial Imputation Nets
In this section we describe our approach for simulating
P (X|X̃ = x̃i) which is motivated by GANs. We highlight
key similarities and differences to a standard (conditional)

Figure 3.2: Architecture of a GAIN [4].

The generator G has three inputs: the corrupted data X, a binary mask M
(see Section 3.1), and a random noise matrix Z, all of them having dimen-
sions a × b. The generator outputs not only the imputed values, but also a
reconstruction of the rest of the input. On its output, there is a single ma-
trix X′ = G(X, M, Z), which also has a size of a × b. Outputting an entire
reconstructed sample ensures that the network learns to capture the essence
of the information contained in the data and also enables simple handling for
damage of variable size and shape. The shapes of both G and D are based
on autoencoder foundations, as they consist of three layers of fully connected
neurons, with the middle one having the lowest amount of learning capacity,
fulfilling the function of a bottleneck layer.

The discriminator D functions in a slightly different manner than we are used
to from previous models. Firstly, we have to construct the matrices for its
input. We take the generator’s output X′ and then replace all the values
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3. Methodology

that were not imputed with the original data to create a composite matrix C,
where:

C = M ⊙ X + (1 − M) ⊙ X′

As we can see, some values in the C matrix are genuine and some were im-
puted. The discriminator’s task is to distinguish which components were taken
from the matrix X′ and which originate from the input X from the training set.
As a consequence, the output M′ = D(C, H) of the discriminator is not a sin-
gle value but rather a matrix with probabilities for each of the components,
providing us with an approximation of a binary mask. The discriminator
learns to make its approximated mask as close to the actual mask of the dam-
age M as possible, which effectively makes it able to recognise imputed values.

To aid the process of learning, we supply the discriminator with additional
information in the form of a hint matrix H, as shown above. We use a simple
generating mechanism to derive the hint from the original mask M of the
damaged components. To create the hint, we preserve most of the values and
additionally perform some type of occlusion for a minor subset of the compo-
nents. The decision on what components are not revealed is made through a
random process, such as sampling a probability for each of the components.
The values are typically replaced with a constant value of 0.5, the mean of
the numerical values of true and false in the binary mask M. In essence, we
provide the discriminator with an incomplete mask and we want it to fill in
its decision about the few occluded components.

Let H ∈ {0, 0.5, 1}a,b be the hint matrix of sizes a × b. To identify the com-
ponents which were occluded when generating the hint, we can construct a
matrix B, which functions as a boolean indicator for components which were
not revealed to D, where:

bi,j =
{

1 if hi,j = mi,j

0 if hi,j = 0.5

Reflecting the formulation presented in [4], there are three loss functions in
effect. Two of them are the adversarial loss functions LG and LD for the
generator and the discriminator, respectively. Additionally, the loss function
for the generator Lgenerator composes of LM and LG. Having all the relevant
pieces of information available, we can define the following:

LM =
b∑

j=1

a∑
i=1

mi,j(xi,j − x′
i,j)2

LG = −
b∑

j=1

a∑
i=1

(1 − bi,j)(1 − mi,j) log m′
i,j
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LD = −
b∑

j=1

a∑
i=1

(1 − bi,j)
[
mi,j log m′

i,j + (1 − mi,j) log (1 − m′
i,j)

]
As we can see, the adversarial losses LG and LD look only at the components
occluded by the hint generating mechanism. LM is responsible for pushing
the generator to output a good reconstruction of the undamaged components
observed on its input, meaning it is not computed from any of the imputed
values. In an analogy to training an autoencoder, this loss replaces recon-
struction loss. To tune the balance between LM and LG during training, we
use hyperparameter α, so that:

Lgenerator = LG + αLM
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Chapter 4
Implementation

This chapter contains implementation details. The work makes use of the
CIFAR-10 and MNIST datasets, which are described in Section 5.1.

4.1 Technologies

This section summarises the technologies used in the scope of this thesis. We
mention all the relevant libraries and platforms used, including the provided
computational environments.

We picked Python as the primary programming language for the practical part
of this thesis. We made this choice due to its general popularity for machine
learning and the fact that its capabilities and library support surpass other
languages. The libraries allow us to write readable efficient code and let us
focus on the problem itself instead of the implementation details.

For numerical calculations and data transformations, we used the NumPy
library 1. It provides a Python interface to highly optimised algorithms for
many types of numerical computations with an emphasis on matrix operations.

Tensorflow 2.02, a machine learning framework created by Google, was used to
develop, train and test the models. It provides us with an abstract high-level
API for defining the network architecture and training the models, as well as
a way to perform operations with tensors, analogous to some NumPy features.
Tensorflow was created with NumPy in mind and it is easy to transform data
between the two, which is beneficial for using them concurrently.

1https://numpy.org/
2https://www.tensorflow.org/

19

https://numpy.org/
https://www.tensorflow.org/
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The last library that we used extensively was Matplotlib3. It is a tool for
plotting various types of data in a human readable way. It was used for gen-
erating visualizations of the data, monitoring purposes and for subjectively
evaluating the results.

As a reference point for the implemented methods, we also perform the experi-
ments on selected standard inpainting methods. We used the implementations
available in the OpenCV4 and scikit-image5 libraries.

The Jupyter Notebook6 web application was used for writing the code. While
it is not an appropriate choice for using machine learning models in production,
the interactivity and visualizations make it a suitable choice for time-efficient
prototyping of a model.

Due to high computational requirements, the use of a modern and fast GPU
was a necessity for training the models in a manageable time period. Google
provides an environment with access to such hardware through their Google
Colaboratory7 platform. Some models built for the purposes of this thesis
were trained using this platform, while overcoming its limitations for long-
term computations. The rest of them were trained on hardware provided by
the supervisor of this thesis.

4.2 Specifics for Context Encoder
This section contains architectural and training details of our implementation
of the Context Encoder (CE).

4.2.1 Architecture
There were several variations of the architecture presented in [2]. In our case,
we implemented two types of the model. One is used for square region damage
and the other is used for random noise damage. The key difference is that
for square region damage, the autoencoder outputs only the patch which was
cut from the original picture. For the noise damage, the autoencoder’s output
is the same size as the damaged sample on the input. The discriminator of
each damage type holds the dimension of its input equal to the respective au-
toencoder’s output. The implemented square damage architecture variant for
50% damaged CIFAR-10 is thoroughly described in Tables E.1 to E.3. Anal-
ogously, the architecture variant for the random noise damage scenario for

3https://matplotlib.org/
4https://opencv.org/
5https://scikit-image.org/
6https://jupyter.org/
7https://colab.research.google.com
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the same dataset is presented in Tables E.4 to E.6. The architectures for the
other severities and datasets are almost the same except for minor differences
related to the size of the input and the output.

The encoder consists of multiple blocks, where each block contains a convo-
lutional layer, batch normalization, a leaky rectified unit (ReLU) activation
function and possibly a 2D max-pooling layer to reduce the size of processed
data. Due to the size of the network’s output being dependent on the extent
of the damage, the architecture varies slightly for each percentage of damaged
data. The differences are minor, such as different kernel sizes or strides for
some of the layers. Tables E.1 to E.3 assume a square covering 50% of the
input missing, which is the most severe damage considered.

The decoder holds a similar block structure to the encoder with different key
components. A single block consists of a transposed convolution, batch nor-
malisation, and a ReLU activation. To mirror the max-pooling operation from
the encoder, we use strides on some of the transposed convolutional layers,
which leads to an increase of width and height.

The last architectural component that remains is the discriminator. By fol-
lowing the guidelines mentioned by the authors [2, 8], we used several blocks
with strided convolutions, batch normalisation layers, Leaky ReLU activation
functions and dropout layers. After the last block, there is a sigmoid-activated
dense layer with one output, which represents the discriminator’s opinion.

One of the mechanisms not implemented in this thesis is a channel-wise dense
layer in the bottleneck part of the autoencoder. The dimensions of images
in our dataset were smaller than in the original implementation, so a regular
dense layer was manageable from a computational perspective.

Another feature we left out from our implementation to simplify it is that
for the case when a central square region was missing, the original model
performed a reconstruction of a slightly larger area than was actually needed.
We suppose this would help the model perform a better transition at the
border of the inpainted area and the original image.

4.2.2 Training and Hyperparameter Tuning

The training updates weights of both the autoencoder and the discriminator
in each iteration. Since it might be hard to estimate the number of epochs for
training, we followed a value presented in [2]. The authors mention 100,000
iterations to be sufficient for training the networks in their case.
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For the square damage scenario, our damage sizes vary from 10% to 50% with
a different model architecture for each of them. After initial experiments, we
decided to use a variable amount of epochs that progressively increases with
the amount of damage, because small damage severities often converged much
faster than larger severities. Since we use a batch size of 128 and datasets
with tens of thousands of training samples, we settled on using 700 epochs for
10% of damage. We added 200 training epochs, for each additional 10% of
damage, leading to the following formula:

EPOCHS = 500 + 2000 · DAMAGE,

where EPOCHS is the number of epochs and DAMAGE is the percentage of
damaged data. For training using the noise damaged dataset, there was a
single model for all missing data severities. This is thanks to the architecture
staying the same, due to the model always outputting the entire image. We
used 1500 epochs, which is the same amount of epochs as for the largest con-
sidered amount of square damage.

The losses were implemented as described in Section 3.2, using cross-entropy
and L2 loss functions provided in the Tensorflow and Keras libraries. The
losses’ weights were suggested to be λadv = 0.001 and λrec = 0.999 according
to the original paper. We found that these hyperparameter values give us
sound results for the CIFAR-10 dataset, which is similar to the datasets used
in the original paper. On the other hand, the simpler MNIST dataset inpaint-
ing results were significantly blurred, which led us to settle with changing the
ratio of weights to λadv = 0.1 and λrec = 0.9. Using these updated weights
for CIFAR-10 resulted in significant smudges, which distorted the shapes of
inpainted objects.

The original paper mentions the use of a SGD optimiser. For the MNIST
dataset, we found that the usage of SGD led to the model often failing to
learn any useful features and getting stuck in a local minimum by producing
a solid black color for all output pixels. This was alleviated by changing the
optimiser to Adam, with an empirically chosen learning rate value of 0.0001.
To remain consistent, the same optimiser was used for the CIFAR-10 dataset.

4.3 Specifics for GAIN
This section contains architectural and training details of our implementation
of the GAIN.

4.3.1 Architecture
Both the generator and discriminator share a very similar structure. They
both consist of three fully-connected layers with a hyperbolic tangent activa-
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tion function, where the middle layer has the lowest number of parameters.
Authors propose the number of neurons in the first and third layer to be equal
to the number of values in a single sample in the dataset. For the middle layer
the parameter count is halved.

We followed this methodology for deciding the number of parameters for the
MNIST dataset implementation, but we performed a slight modification for
the CIFAR-10 dataset. By default, the model’s damage mask considers each
single value separately, so the discriminator makes a decision about the origin
of each of the components on the input. Since CIFAR-10 contains RGB pixels,
we do not need the discriminator to decide for each colour channel separately,
so we use a single channel mask throughout the entire model. This results in
neuron counts divided by a factor of three in some layers, which can be seen
in detail in Tables E.7 to E.10.

The hint generating mechanism produces a hint of the same size as the damage
mask. As mentioned in the previous paragraph, we use a single channel dam-
age mask for both datasets, which makes the hint a 2D matrix. The hint is
generated by occluding some components of the mask. After consulting with
the supervisor of this thesis, we implemented the occlusion of each component
as a random event with a 10% probability.

4.3.2 Training and Hyperparameter Tuning
As opposed to the Context Encoder, training the GAIN to inpaint a centre
square damaged dataset might prove troublesome. In our case, a centre dam-
aged dataset has the same damage mask for all the samples, which makes the
discriminator’s task trivial. Similar observation can be made for corner square
damage. As a consequence, after consulting with the supervisor, it was de-
cided to train only a single GAIN model per dataset, using the noise damaged
dataset which contained all the damage severities considered (see Section 5.3).

To decide the number of epochs, we used a validation set and calculated MSE
at the end of each epoch. When the error stopped improving, an early stopping
was performed. We found that this method of deciding the epoch count almost
never leads to more than 100 epochs. Such a relatively short training allowed
us to experiment with different hyperparameters. By performing a validation
grid search using several learning rate values, optimisers (Adam, RMSprop,
SGD) and α values, we ended up using Adam with a learning rate of 0.00001
and α = 30 for the CIFAR-10 dataset and SGD with a learning rate of 0.00001
and α = 13 for the MNIST dataset. These combinations of values achieved
the lowest MSE scores.
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Chapter 5
Experiments

This chapter describes the experiments performed in this work. Their design
and evaluation process are presented and discussed.

5.1 Datasets
To implement and evaluate the models, two particular datasets were selected.
Both of them were chosen due to being well-known and easy to acquire and
work with.

The first one is the MNIST dataset [20]. It consists of 70,000 hand-written
digits, from which we set aside 21,000 as testing data. A single sample’s size is
28×28 pixels and since all the images are black-and-white, it contains only one
colour channel. Each sample is labelled based on the digit which is portrayed
in the image. Overall there are 10 classes representing each of the digits 0–9.

The second dataset we used was the CIFAR-10 [21] collection. It contains
60,000 samples of which 18,000 were used as testing data. The dataset is
made up of low-resolution images of real-life objects, such as various types of

Figure 5.1: An example of the MNIST dataset.
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Figure 5.2: An example of the CIFAR-10 dataset.

animals and vehicles. Each image’s size is 32 × 32 pixels, with RGB colour
channels. The dataset, again, consists of 10 classes, such as horses, dogs, air-
planes or ships.

Both datasets were made publicly available. The Keras [22] library provides
both of these datasets through the keras.datasets module and since it is
bundled with the TensorFlow framework, it served as a source of the data for
the implementation presented in this thesis.

Going with the thesis supervisor’s advice, training and testing datasets have
a 70:30 ratio for all methods. For cases where a validation set is used, it is
created by further splitting the training set using a ratio of 75:25.

5.2 Types of Damage
All the implemented methods were evaluated on multiple types of image dam-
age. We prepared several derived datasets for each of the datasets described
in Section 5.1 by performing one of the three considered types of damage.

The first two damage types result in a square region missing from the image.
These types of damage differ in the location of the missing square. One has
the central region dropped (see Figure 5.3a), meaning that the damage mask
is equal for all the samples in the dataset. The other has one of its corners
missing (see Figure 5.3b), with the specific damage mask periodically alternat-
ing four corners. These two types of damage aim to test semantic inpainting,
providing the model with either four surrounding borders for central square
damage or two borders for the corner square scenario.

The final damage type considered is noise damage. It is performed by dropping
each pixel at random with a given probability. This probability is given by
the severity of the damage.
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(a) Centre square damage. (b) Corner square damage.

Figure 5.3: Demonstration of square damage.
Left to right: original image, cut area, damaged image showing red pixels
instead of the removed areas.

5.3 Damage Severity
For each of the damage types described above, we evaluated each model and
method for different damage severities. We considered 10%, 20%, 30%, 40%,
and 50% of damage done to the images.

Figure 5.4: Demonstration of noise damage within one training dataset.
Left to right: original image, damage mask, damaged image shows red pixels
instead of the removed pixels. Top to bottom: 10%, 20%, 30%, 40%, and 50%
damage.

Due to the architectural changes needed for one of the methods for each dam-
age severity (see Section 4.2.1), we had to keep each percentage of both square
damage types in a separate dataset. This fact lead us to training 10 variations
of the Context Encoder model for one dataset: 5 central damage and 5 corner
damaged variations. For the noise damage, we kept all the severities within a
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single dataset, while ensuring that all the severities are uniformly distributed,
as shown in Figure 5.4. To summarise, for each of the two used datasets, we
trained 11 Context Encoder models and 1 GAIN model (noise training only).

5.4 Evaluation Method
We picked two methods to evaluate the results of the experiments. Both of
them were calculated for each combination of dataset, damage type and dam-
age severity. For comparison, we also included two inpainting methods that
do not use neural networks.

The first metric is calculated as a mean squared error (MSE) between the
original image X from the test dataset and the corresponding inpainting result
X′. Assuming both images have the same dimensions of a × b and one colour
channel, the MSE metric can then be formulated as:

MSE(X, X′) =
( 1

a · b

) a∑
i=1

b∑
j=1

(xi,j − x′
i,j)2

The metric can be analogously extended to more colour channels, using the
channels as another dimension of the image.

The limitation of directly comparing pixel values is that our model often has
to make up its own shapes and colours, because there is not enough informa-
tion to decide confidently. If the model was trained to reduce only the mean
squared error, the results would likely be significantly blurred, as mentioned
in Section 3.2. In our case the mean squared error is the most meaningful
for evaluating noise damage inpainting, where the damaged areas are not con-
tinuous and lots of features are kept throughout the image. The remaining
features are rather dense, which does not leave a lot of room for novel struc-
tures introduced by the inpainting method.

To address the issues of the previous metric, the second evaluation tests the
model’s ability to recover and preserve the semantic information in the dam-
aged image. It is calculated as an accuracy metric of a classifier trained on an
undamaged training set and tuned on an undamaged validation set.

Accuracy = Number of correct predictions
Number of predicted samples

The classifier models are based on the code used in examples on the Keras8

and Tensorflow9 websites. The architecture consists of 3 convolutional layers
8https://keras.io/examples/cifar10_cnn/
9https://www.tensorflow.org/tutorials/images/cnn
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5.4. Evaluation Method

and 2 dense layers for the MNIST dataset and 4 convolutional layers with 2
dense layers for the CIFAR-10 dataset. Both were trained using a RMSprop
optimiser and an early stopping mechanism which monitors the accuracy on
the validation set in order to prevent overfitting.

We evaluate all the inpainting methods on each of the test dataset variations
damaged in various ways for both of the mentioned metrics. Altogether, we
evaluated 2 methods implemented in this thesis and 2 standard methods for
comparison. The first standard method is a solution based on the biharmonic
equation [23], which is a differential equation that originated from research-
ing linear elasticity in physics. We used the implementation available in the
scikit-image10 library. The second reference inpainting method comes from
Alexandru Telea and is based on a fast marching method as presented in [24].
Its implementation was taken from the OpenCV11 library.

10https://scikit-image.org/
11https://opencv.org/
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Chapter 6
Results and Discussion

This chapter presents the results achieved by our implementation in compar-
ison with two other standard methods. In order to discover and state the
limitations of each method, both the empirical and numerical results are dis-
cussed.

6.1 Experimental Results
All the numerical results are presented in the form of a table in Appendix C.
The MSE results for MNIST are presented in Tables C.1 to C.3 and the
CIFAR-10 results are in Tables C.3 to C.5. The classification results include
baseline values, which were measured on undamaged original data, as can be
seen in Table C.7. The classification accuracy results for inpainted images
are shown in Tables C.8 to C.10 for MNIST and in Tables C.11 to C.13 for
CIFAR-10.

As a visual comparison for the various types of damage and results of both
our and standard methods, we included an exhaustive set of tables for both
datasets in Appendix D. Please note that these might not be entirely represen-
tative, since the demonstration is limited to two testing samples per dataset.

We selected few of the aforementioned tables for inclusion in the main text.
Two of the tables for empirical visual comparison were included in this chapter
as a demonstration of the results. The results are shown for 30% damaged
CIFAR-10 and MNIST datasets in Tables 6.4 and 6.5. For some of the demon-
strated visual results, we also included the numerical classification accuracy
results, namely for centre damaged CIFAR-10 in Table 6.2, corner damaged
MNIST Table 6.3 and a table with baseline values measured on undamaged
data in Table 6.1.
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6. Results and Discussion

Table 6.1: Classifier accuracy baseline values for undamaged datasets.

Dataset Train Validation Test
MNIST 0.9970 0.9848 0.9866

CIFAR-10 0.6792 0.6912 0.6956

The classification accuracy dropped with the severity of damage as expected.
Since the baseline accuracy was lower for the CIFAR-10 dataset to begin with,
even the best results often struggled to stay above 0.4 accuracy for this dataset.
For the MNIST dataset the measured accuracies also dropped significantly
with damage, but the best methods never went lower than 0.6. In general,
we could see that the noise damaged datasets achieved the highest accuracy
scores. This is expected since this type of damage could likely be plausibly
inpainted using significantly simpler methods, such as averaging the nearest
neighbours, as there is a lot of information left throughout all regions of the
image. The second best accuracy scores were obtained on corner damaged
datasets. In this case, a lot of information was still left for the classifier,
since the images often have their subjects centred. The lowest accuracy scores
were achieved on the centre square damaged datasets. Here the methods were
tasked to provide us with the most crucial sections of the image, which tests
their ability to uncover and work with the semantics of the image.

Table 6.2: Classifier accuracy results for CIFAR-10, centre square damage.

Damage severity Inpainting method
CE GAIN Biharmonic Telea

10% 0.6392 0.5794 0.6519 0.6455
20% 0.5880 0.4915 0.5936 0.5809
30% 0.5467 0.4378 0.5467 0.5314
40% 0.4329 0.2739 0.3963 0.3690
50% 0.3660 0.2012 0.3207 0.2882

Table 6.3: Classifier accuracy results for MNIST, corner square damage.

Damage severity Inpainting method
CE GAIN Biharmonic Telea

10% 0.9866 0.9858 0.9856 0.9853
20% 0.9761 0.9596 0.9478 0.9370
30% 0.9631 0.9125 0.8845 0.8589
40% 0.9276 0.7696 0.7518 0.7371
50% 0.8520 0.5902 0.5584 0.5590
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Table 6.4: Demonstration of the inpainting results for all damage types and
methods. Shown on 30% damaged CIFAR-10 dataset.

(a) Original (b) Damage mask (c) CE (d) GAIN (e) Biharmonic (f) Telea
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6.2 Comparison of Methods
As mentioned in Section 5.4, the GAIN and Context Encoder (CE) are faced
against two standard inpainting methods, which we call biharmonic and Telea.

We anticipated the standard methods to perform well for inpainting smaller
patches and damage severities, but to not be sufficient for larger damages,
where a deeper understanding of the input would be more beneficial.

The Context Encoder performs well for both metrics in both square-damaged
scenarios. Especially for the classifier metric on centre square missing, it
beats all the other methods in the majority of tested damage severities and
datasets, while still suffering a decrease in accuracy of circa 0.3 in comparison
to undamaged dataset. The centre square missing scenario is arguably the
most demanding test case, since the subjects in the images are often centred.
Context Encoder has often proven to be able to supply enough information
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6. Results and Discussion

Table 6.5: Demonstration of the inpainting results for all damage types and
methods. Shown on 30% damaged MNIST dataset.

(a) Original (b) Damage mask (c) CE (d) GAIN (e) Biharmonic (f) Telea
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to correctly classify even a vastly damaged input. It should be noted that
especially for the MNIST dataset, the Context Encoder sometimes manages
to perform a convincing inpainting, but due to the severity of the damage it
changes the class the image belongs to, leading to an incorrect classification.
It is up to the specific potential usage of the model whether this is a success-
ful result or a misstep. These impressive results for square damage are also
reflected in the MSE metric, where it achieves similar qualities.

For the square damage scenarios on the MNIST dataset, the GAIN model
results are not as sharp and plausible as the Context Encoder. This fact neg-
atively reflected on the classification accuracy, although it still approximately
matched the standard methods. As mentioned in Section 4.3.2, the GAIN
model was trained exclusively on noise damaged datasets, which is the likely
cause. GAIN was also trained with an early stopping mechanism monitoring
MSE on the validation set, which means it does not aim for the most real
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looking result, but rather an average approximation with the lowest error. A
similar phenomenon is mentioned in the description of the Context Encoder
in Section 3.2, where it leads to more uncertainty and blurriness in the result.
For the square damaged CIFAR-10 dataset GAIN fails to produce results with
a familiar structure and its inpainted regions are often reminiscent of random
noise, which made it one of the worst methods in terms of MSE and accuracy.

It should be noted that while GAIN has not managed to leverage the context
provided in its input, it was also never shown the true regions before damag-
ing. GAIN, as an imputation method, learns on damaged data only. This,
together with the fact that it was never trained on square damaged regions,
puts it in a significant disadvantage in comparison to the Context Encoder,
which had a different model and training for each damage severity on square-
damaged datasets and one separate model dedicated to noise damage. This
limitation of GAIN has proved to be beneficial for the noise damage scenario,
as it achieves the lowest mean squared error of all methods on the CIFAR-10
dataset in all the considered severities. This quality was unfortunately not
reflected in the classifier accuracy, where it performed the same or worse than
other methods.

One obvious advantage that our implemented models had was the fact that
the standard methods had no training and thus no inherent knowledge about
the data they were evaluated on. Respecting this, the standard methods
performed surprisingly well on the noise damage scenario, even surpassing
our implemented methods in some of the experimental measurements. The
biharmonic method achieved superior results in the classifier metric for the
noise-damaged CIFAR-10 by beating all the other methods (including Context
Encoder). After a subjective examination, the biharmonic method provides a
very smooth transition for the noise damage mask even in significant severities.
This shows the biharmonic method is able to provide very good approxima-
tions over small patches of damage, while acting as a spilling blur operation
for larger patches.
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Conclusion

Image inpainting is a task that benefits greatly from modern neural network
architectures. In this thesis, we surveyed several state-of-the-art approaches
and implemented two of them. The requirement to understand the semantics
of the image became apparent after experimenting with the methods. This
chapter aims to summarise our contribution and to outline possible future
work.

Contribution
This section looks back at the objectives outlined at the beginning of this text.
All the key points of the survey, implementations, experiments and evalua-
tions were fulfilled and should stand as a basis for additional work.

The first part of this thesis presented the image inpainting task and laid basic
theoretical foundations needed throughout the text. We performed a survey
on machine learning methods dealing with image inpainting and summarised
their key concepts and findings into several paragraphs.

Based on the survey, we picked two models that utilised an adversarial dis-
criminator. The choice was made to focus on Context Encoder [2] and GAIN
[4]. We implemented these two models using Python and trained them in
accordance to the papers they were presented in. The implementations were
tuned with respect to both of the training datasets.

While we did manage to achieve results that were acceptable in most of the
expected cases, there is a lot of room for improvement and additional testing.
The original paper for the Context Encoder [2] used datasets and architec-
tures that were more complex. The simplifications of both of these aspects
and minor training differences could cause the decline in quality. The GAIN
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Conclusion

model is a general data imputing method and we tested its performance for
inpainting various types of damage.

For the comparison we picked two other standard methods and performed
an evaluation of MSE between the inpainted and original regions. We also
trained a classifier on undamaged data and measured how much the accuracy
of predictions differed between undamaged and inpainted test data. Each of
these metrics targets a different quality of the inpainting model, as a low av-
erage error is not a necessary indication of an acceptable result.

The results have shown that the Context Encoder manages to provide the
classifier with enough semantic information to aid the classification signifi-
cantly. On the other hand, the GAIN model failed to provide reasonable
results for the square damage scenario, while reaching low reconstruction er-
ror rates for noise damaged data. Interestingly enough, although the noise
damaged datasets were simpler to inpaint, in some cases our implementations
did not perform as well as the standard methods.

Future Work
Given that the training procedures were different for the two implemented
models, it might be insightful to further analyse the influence of training a
model on multiple damage severities at once or separately. As an extension,
we propose more complex damage scenarios, since square-region damage and
random noise damage are both extreme cases, which likely would not happen
in the real world.

The Context Encoder provided a basic architectural design, which inspired
many other works. These more recent types of models are more elaborate and
enable us to do feats such as high-resolution inpainting (see Chapter 2) or
even video inpainting [25]. The results presented in this thesis might provide
a baseline for additional works concerning this topic.

Since we believe that the GAIN architecture is capable of achieving better
results, it might be worth further investigating its training process and the
effect of minor architectural and methodological changes, such as the hint
generation logic and the inclusion of different damage types and severities in
one training process.
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Appendix A
Acronyms

CE Context Encoder

CNN Convolutional Neural Network

GAIN Generative Adversarial Imputation Network

GAN Generative Adversarial Network

GPU Graphical Processing Unit

MSE Mean Squared Error

ReLU Rectified Linear Unit

RGB Red Green Blue (colour model)

SDA Stacked Denoising Autoencoder

SGD Stochastic Gradient Descent

SSDA Stacked Sparse Denoising Autoencoder
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Appendix B
Contents of Enclosed SD card

readme.txt......................brief summary of the SD card’s content
src .................................. directory with implementation files

training............. IPython notebooks used in training the models
evaluation.........IPython notebooks used in evaluating the results

mse.................................mean-squared error evaluation
classifier_accuracy............classifier training and evaluation

thesis_text............................directory with text of the thesis
assignment.pdf.......................the assignment in PDF format
BP_Halama_Tomas_2020.pdf................this thesis in PDF format
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Appendix C
Results Tables

Table C.1: MSE results for MNIST, centre square damage.

Damage severity Inpainting method
CE GAIN Biharmonic Telea

10% 0.2076 0.5818 0.6939 0.7661
20% 0.3059 0.6570 0.7646 0.8822
30% 0.3597 0.6478 0.7870 0.8884
40% 0.4047 0.6366 0.7924 0.8704
50% 0.4543 0.5973 0.7091 0.8032

Table C.2: MSE results for MNIST, corner square damage.

Damage severity Inpainting method
CE GAIN Biharmonic Telea

10% 0.0209 0.0431 0.0631 0.0921
20% 0.0870 0.1736 0.3139 0.2933
30% 0.1325 0.2397 0.4758 0.3680
40% 0.1820 0.2983 0.5915 0.4363
50% 0.2427 0.3488 0.6912 0.5030
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C. Results Tables

Table C.3: MSE results for MNIST, random noise damage.

Damage severity Inpainting method
CE GAIN Biharmonic Telea

10% 0.0905 0.0871 0.0855 0.0750
20% 0.1812 0.1739 0.1701 0.1467
30% 0.2715 0.2597 0.2531 0.2154
40% 0.3618 0.3450 0.3349 0.2822
50% 0.4521 0.4293 0.4146 0.3468

Table C.4: MSE results for CIFAR-10, centre square damage.

Damage severity Inpainting method
CE GAIN Biharmonic Telea

10% 0.1015 0.1919 0.0924 0.1088
20% 0.1172 0.1963 0.1188 0.1340
30% 0.1266 0.1986 0.1305 0.1448
40% 0.1375 0.1996 0.1496 0.1639
50% 0.1430 0.2007 0.1588 0.1725

Table C.5: MSE results for CIFAR-10, corner square damage.

Damage severity Inpainting method
CE GAIN Biharmonic Telea

10% 0.1076 0.2187 0.1181 0.1047
20% 0.1319 0.2165 0.1755 0.1365
30% 0.1439 0.2159 0.2013 0.1480
40% 0.1634 0.2136 0.2407 0.1705
50% 0.1730 0.2129 0.2527 0.1833

Table C.6: MSE results for CIFAR-10, random noise damage.

Damage severity Inpainting method
CE GAIN Biharmonic Telea

10% 0.0213 0.0177 0.0244 0.0206
20% 0.0438 0.0345 0.0485 0.0400
30% 0.0665 0.0511 0.0724 0.0585
40% 0.0876 0.0676 0.0961 0.0762
50% 0.1054 0.0848 0.1195 0.0931

Table C.7: Classifier accuracy baseline values for undamaged datasets.

Dataset Train Validation Test
MNIST 0.9970 0.9848 0.9866

CIFAR-10 0.6792 0.6912 0.6956
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Table C.8: Classifier accuracy results for MNIST, centre square damage.

Damage severity Inpainting method
CE GAIN Biharmonic Telea

10% 0.9675 0.8484 0.8377 0.8622
20% 0.9076 0.5617 0.6262 0.6207
30% 0.8316 0.4623 0.5062 0.4895
40% 0.7449 0.3572 0.3648 0.3611
50% 0.6166 0.2894 0.2508 0.3098

Table C.9: Classifier accuracy results for MNIST, corner square damage.

Damage severity Inpainting method
CE GAIN Biharmonic Telea

10% 0.9866 0.9858 0.9856 0.9853
20% 0.9761 0.9596 0.9478 0.9370
30% 0.9631 0.9125 0.8845 0.8589
40% 0.9276 0.7696 0.7518 0.7371
50% 0.8520 0.5902 0.5584 0.5590

Table C.10: Classifier accuracy results for MNIST, random noise damage.

Damage severity Inpainting method
CE GAIN Biharmonic Telea

10% 0.9859 0.9860 0.9863 0.9855
20% 0.9858 0.9850 0.9860 0.9846
30% 0.9842 0.9839 0.9848 0.9813
40% 0.9833 0.9801 0.9841 0.9770
50% 0.9805 0.9739 0.9807 0.9688

Table C.11: Classifier accuracy results for CIFAR-10, centre square damage.

Damage severity Inpainting method
CE GAIN Biharmonic Telea

10% 0.6392 0.5794 0.6519 0.6455
20% 0.5880 0.4915 0.5936 0.5809
30% 0.5467 0.4378 0.5467 0.5314
40% 0.4329 0.2739 0.3963 0.3690
50% 0.3660 0.2012 0.3207 0.2882
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C. Results Tables

Table C.12: Classifier accuracy results for CIFAR-10, corner square damage.

Damage severity Inpainting method
CE GAIN Biharmonic Telea

10% 0.6783 0.6752 0.6832 0.6791
20% 0.6282 0.6024 0.6347 0.6320
30% 0.5912 0.5482 0.5942 0.5932
40% 0.4963 0.3888 0.5012 0.4887
50% 0.4277 0.2947 0.4257 0.4044

Table C.13: Classifier accuracy results for CIFAR-10, random noise damage.

Damage severity Inpainting method
CE GAIN Biharmonic Telea

10% 0.6684 0.6691 0.6936 0.6766
20% 0.6306 0.6294 0.6854 0.6463
30% 0.5943 0.5806 0.6739 0.5961
40% 0.5557 0.5176 0.6558 0.5398
50% 0.5140 0.4547 0.6267 0.4816
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Appendix D
Visual Demonstration of Results

(a) Original (b) Damage mask (c) CE (d) GAIN (e) Biharmonic (f) Telea
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Table D.1: Demonstration of the inpainting results for all damage types and
methods. Shown on 10% damaged CIFAR-10 dataset.
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D. Visual Demonstration of Results

(a) Original (b) Damage mask (c) CE (d) GAIN (e) Biharmonic (f) Telea
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Table D.2: Demonstration of the inpainting results for all damage types and
methods. Shown on 20% damaged CIFAR-10 dataset.
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(a) Original (b) Damage mask (c) CE (d) GAIN (e) Biharmonic (f) Telea
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Table D.3: Demonstration of the inpainting results for all damage types and
methods. Shown on 30% damaged CIFAR-10 dataset.
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D. Visual Demonstration of Results

(a) Original (b) Damage mask (c) CE (d) GAIN (e) Biharmonic (f) Telea
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Table D.4: Demonstration of the inpainting results for all damage types and
methods. Shown on 40% damaged CIFAR-10 dataset.
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(a) Original (b) Damage mask (c) CE (d) GAIN (e) Biharmonic (f) Telea
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Table D.5: Demonstration of the inpainting results for all damage types and
methods. Shown on 50% damaged CIFAR-10 dataset.
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D. Visual Demonstration of Results

(a) Original (b) Damage mask (c) CE (d) GAIN (e) Biharmonic (f) Telea
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Table D.6: Demonstration of the inpainting results for all damage types and
methods. Shown on 10% damaged MNIST dataset.
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(a) Original (b) Damage mask (c) CE (d) GAIN (e) Biharmonic (f) Telea

C
en

tr
e

C
or

ne
r

N
oi

se

Table D.7: Demonstration of the inpainting results for all damage types and
methods. Shown on 20% damaged MNIST dataset.
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D. Visual Demonstration of Results

(a) Original (b) Damage mask (c) CE (d) GAIN (e) Biharmonic (f) Telea
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Table D.8: Demonstration of the inpainting results for all damage types and
methods. Shown on 30% damaged MNIST dataset.
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(a) Original (b) Damage mask (c) CE (d) GAIN (e) Biharmonic (f) Telea
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Table D.9: Demonstration of the inpainting results for all damage types and
methods. Shown on 40% damaged MNIST dataset.
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D. Visual Demonstration of Results

(a) Original (b) Damage mask (c) CE (d) GAIN (e) Biharmonic (f) Telea
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Table D.10: Demonstration of the inpainting results for all damage types and
methods. Shown on 50% damaged MNIST dataset.
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Appendix E
Network Architectures

The tables presented in this appendix chapter were generating using a part of
the keras-reports12 framework.

12https://github.com/fablukm/keras-reports
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E. Network Architectures

Table E.1: Context Encoder discriminator, 50% centre damaged CIFAR-10.

No Layer (Type) Output shape Config #Parameters Inbound layers

0 forged_real_input
(InputLayer)

(23, 23, 3) 0

1 conv2d_24 (Conv2D) (12, 12, 32) Activation: linear
Kernel Size: [3, 3]
Stride: [2, 2]

896 forged_real_input

2
batch_normalization_v1_40

(BatchNormalization)

(12, 12, 32) 128 conv2d_24

3 leaky_re_lu_24
(LeakyReLU)

(12, 12, 32) Activation: leakyrelu
Alpha: 0.3

0
batch_normalization_v1_40

4 dropout_8 (Dropout) (12, 12, 32) Dropout Rate: 0.3 0 leaky_re_lu_24

5 conv2d_25 (Conv2D) (6, 6, 64) Activation: linear
Kernel Size: [3, 3]
Stride: [2, 2]

18 496 dropout_8

6
batch_normalization_v1_41

(BatchNormalization)

(6, 6, 64) 256 conv2d_25

7 leaky_re_lu_25
(LeakyReLU)

(6, 6, 64) Activation: leakyrelu
Alpha: 0.3

0
batch_normalization_v1_41

8 dropout_9 (Dropout) (6, 6, 64) Dropout Rate: 0.3 0 leaky_re_lu_25

9 conv2d_26 (Conv2D) (3, 3, 128) Activation: linear
Kernel Size: [3, 3]
Stride: [2, 2]

73 856 dropout_9

10
batch_normalization_v1_42

(BatchNormalization)

(3, 3, 128) 512 conv2d_26

11 leaky_re_lu_26
(LeakyReLU)

(3, 3, 128) Activation: leakyrelu
Alpha: 0.3

0
batch_normalization_v1_42

12 dropout_10 (Dropout) (3, 3, 128) Dropout Rate: 0.3 0 leaky_re_lu_26

13 conv2d_27 (Conv2D) (2, 2, 256) Activation: linear
Kernel Size: [3, 3]
Stride: [2, 2]

295 168 dropout_10

14
batch_normalization_v1_43

(BatchNormalization)

(2, 2, 256) 1024 conv2d_27

15 leaky_re_lu_27
(LeakyReLU)

(2, 2, 256) Activation: leakyrelu
Alpha: 0.3

0
batch_normalization_v1_43

16 dropout_11 (Dropout) (2, 2, 256) Dropout Rate: 0.3 0 leaky_re_lu_27

17 flatten_1 (Flatten) (1024,) 0 dropout_11

18 dense_5 (Dense) (1,) #Neurons: 1
Activation: sigmoid

1025 flatten_1
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Table E.2: Context Encoder autoencoder, 50% centre damaged CIFAR-10,
continued in Table E.3.1 Model Architectures

No Layer (Type) Output shape Config #Parameters Inbound layers

0 damaged_input
(InputLayer)

(32, 32, 3) 0

1 conv2d (Conv2D) (29, 29, 32) Activation: linear
Kernel Size: [4, 4]
Stride: [1, 1]

1568 damaged_input

2 batch_normalization_v1
(BatchNormalization)

(29, 29, 32) 128 conv2d

3 leaky_re_lu
(LeakyReLU)

(29, 29, 32) Activation: leakyrelu
Alpha: 0.3

0 batch_normalization_v1

4 max_pooling2d
(MaxPooling2D)

(9, 9, 32) Pool size: [3, 3]
Strides: [3, 3]

0 leaky_re_lu

5 conv2d_1 (Conv2D) (9, 9, 64) Activation: linear
Kernel Size: [3, 3]
Stride: [1, 1]

18 496 max_pooling2d

6
batch_normalization_v1_1

(BatchNormalization)

(9, 9, 64) 256 conv2d_1

7 leaky_re_lu_1
(LeakyReLU)

(9, 9, 64) Activation: leakyrelu
Alpha: 0.3

0
batch_normalization_v1_1

8 conv2d_2 (Conv2D) (7, 7, 128) Activation: linear
Kernel Size: [3, 3]
Stride: [1, 1]

73 856 leaky_re_lu_1

9
batch_normalization_v1_2

(BatchNormalization)

(7, 7, 128) 512 conv2d_2

10 leaky_re_lu_2
(LeakyReLU)

(7, 7, 128) Activation: leakyrelu
Alpha: 0.3

0
batch_normalization_v1_2

11 max_pooling2d_1
(MaxPooling2D)

(3, 3, 128) Pool size: [2, 2]
Strides: [2, 2]

0 leaky_re_lu_2

12 conv2d_3 (Conv2D) (3, 3, 256) Activation: linear
Kernel Size: [3, 3]
Stride: [1, 1]

295 168 max_pooling2d_1

13
batch_normalization_v1_3

(BatchNormalization)

(3, 3, 256) 1024 conv2d_3

14 leaky_re_lu_3
(LeakyReLU)

(3, 3, 256) Activation: leakyrelu
Alpha: 0.3

0
batch_normalization_v1_3

15 conv2d_4 (Conv2D) (1, 1, 512) Activation: linear
Kernel Size: [3, 3]
Stride: [1, 1]

1 180 160 leaky_re_lu_3
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E. Network Architectures

Table E.3: Context Encoder autoencoder, 50% centre damaged CIFAR-10,
continuation of Table E.2.

No Layer (Type) Output shape Config #Parameters Inbound layers

16
batch_normalization_v1_4

(BatchNormalization)

(1, 1, 512) 2048 conv2d_4

17 leaky_re_lu_4
(LeakyReLU)

(1, 1, 512) Activation: leakyrelu
Alpha: 0.3

0
batch_normalization_v1_4

18 dense (Dense) (1, 1, 512) #Neurons: 512
Activation: linear

262 656 leaky_re_lu_4

19 dropout (Dropout) (1, 1, 512) Dropout Rate: 0.3 0 dense

20 conv2d_transpose
(Conv2DTranspose)

(3, 3, 256) Activation: linear
Kernel Size: [3, 3]
Stride: [1, 1]

1 179 904 dropout

21
batch_normalization_v1_5

(BatchNormalization)

(3, 3, 256) 1024 conv2d_transpose

22 re_lu (ReLU) (3, 3, 256) Activation: relu 0
batch_normalization_v1_5

23 conv2d_transpose_1
(Conv2DTranspose)

(7, 7, 128) Activation: linear
Kernel Size: [3, 3]
Stride: [2, 2]

295 040 re_lu

24
batch_normalization_v1_6

(BatchNormalization)

(7, 7, 128) 512 conv2d_transpose_1

25 re_lu_1 (ReLU) (7, 7, 128) Activation: relu 0
batch_normalization_v1_6

26 conv2d_transpose_2
(Conv2DTranspose)

(16, 16, 64) Activation: linear
Kernel Size: [4, 4]
Stride: [2, 2]

131 136 re_lu_1

27
batch_normalization_v1_7

(BatchNormalization)

(16, 16, 64) 256 conv2d_transpose_2

28 re_lu_2 (ReLU) (16, 16, 64) Activation: relu 0
batch_normalization_v1_7

29 conv2d_transpose_3
(Conv2DTranspose)

(19, 19, 32) Activation: linear
Kernel Size: [4, 4]
Stride: [1, 1]

32 800 re_lu_2

30
batch_normalization_v1_8

(BatchNormalization)

(19, 19, 32) 128 conv2d_transpose_3

31 re_lu_3 (ReLU) (19, 19, 32) Activation: relu 0
batch_normalization_v1_8No Layer (Type) Output shape Config #Parameters Inbound layers

32 conv2d_transpose_4
(Conv2DTranspose)

(23, 23, 3) Activation: tanh
Kernel Size: [5, 5]
Stride: [1, 1]

2403 re_lu_3
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Table E.4: Context Encoder discriminator, noise damaged CIFAR-10.

No Layer (Type) Output shape Config #Parameters Inbound layers

0 forged_real_input
(InputLayer)

(32, 32, 3) 0

1 conv2d_5 (Conv2D) (16, 16, 32) Activation: linear
Kernel Size: [5, 5]
Stride: [2, 2]

2432 forged_real_input

2
batch_normalization_v1_10

(BatchNormalization)

(16, 16, 32) 128 conv2d_5

3 leaky_re_lu_5
(LeakyReLU)

(16, 16, 32) Activation: leakyrelu
Alpha: 0.3

0
batch_normalization_v1_10

4 dropout_1 (Dropout) (16, 16, 32) Dropout Rate: 0.3 0 leaky_re_lu_5

5 conv2d_6 (Conv2D) (8, 8, 64) Activation: linear
Kernel Size: [5, 5]
Stride: [2, 2]

51 264 dropout_1

6
batch_normalization_v1_11

(BatchNormalization)

(8, 8, 64) 256 conv2d_6

7 leaky_re_lu_6
(LeakyReLU)

(8, 8, 64) Activation: leakyrelu
Alpha: 0.3

0
batch_normalization_v1_11

8 dropout_2 (Dropout) (8, 8, 64) Dropout Rate: 0.3 0 leaky_re_lu_6

9 conv2d_7 (Conv2D) (4, 4, 64) Activation: linear
Kernel Size: [3, 3]
Stride: [2, 2]

36 928 dropout_2

10
batch_normalization_v1_12

(BatchNormalization)

(4, 4, 64) 256 conv2d_7

11 leaky_re_lu_7
(LeakyReLU)

(4, 4, 64) Activation: leakyrelu
Alpha: 0.3

0
batch_normalization_v1_12

12 dropout_3 (Dropout) (4, 4, 64) Dropout Rate: 0.3 0 leaky_re_lu_7

13 conv2d_8 (Conv2D) (2, 2, 128) Activation: linear
Kernel Size: [3, 3]
Stride: [2, 2]

73 856 dropout_3

14
batch_normalization_v1_13

(BatchNormalization)

(2, 2, 128) 512 conv2d_8

15 leaky_re_lu_8
(LeakyReLU)

(2, 2, 128) Activation: leakyrelu
Alpha: 0.3

0
batch_normalization_v1_13

16 dropout_4 (Dropout) (2, 2, 128) Dropout Rate: 0.3 0 leaky_re_lu_8

17 flatten (Flatten) (512,) 0 dropout_4

18 dense_1 (Dense) (1,) #Neurons: 1
Activation: sigmoid

513 flatten
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E. Network Architectures

Table E.5: Context Encoder autoencoder, noise damaged CIFAR-10,
continued in Table E.6.

No Layer (Type) Output shape Config #Parameters Inbound layers

0 damaged_input
(InputLayer)

(32, 32, 3) 0

1 conv2d (Conv2D) (29, 29, 32) Activation: linear
Kernel Size: [4, 4]
Stride: [1, 1]

1568 damaged_input

2 batch_normalization_v1
(BatchNormalization)

(29, 29, 32) 128 conv2d

3 leaky_re_lu
(LeakyReLU)

(29, 29, 32) Activation: leakyrelu
Alpha: 0.3

0 batch_normalization_v1

4 max_pooling2d
(MaxPooling2D)

(9, 9, 32) Pool size: [3, 3]
Strides: [3, 3]

0 leaky_re_lu

5 conv2d_1 (Conv2D) (9, 9, 64) Activation: linear
Kernel Size: [3, 3]
Stride: [1, 1]

18 496 max_pooling2d

6
batch_normalization_v1_1

(BatchNormalization)

(9, 9, 64) 256 conv2d_1

7 leaky_re_lu_1
(LeakyReLU)

(9, 9, 64) Activation: leakyrelu
Alpha: 0.3

0
batch_normalization_v1_1

8 conv2d_2 (Conv2D) (7, 7, 128) Activation: linear
Kernel Size: [3, 3]
Stride: [1, 1]

73 856 leaky_re_lu_1

9
batch_normalization_v1_2

(BatchNormalization)

(7, 7, 128) 512 conv2d_2

10 leaky_re_lu_2
(LeakyReLU)

(7, 7, 128) Activation: leakyrelu
Alpha: 0.3

0
batch_normalization_v1_2

11 max_pooling2d_1
(MaxPooling2D)

(3, 3, 128) Pool size: [2, 2]
Strides: [2, 2]

0 leaky_re_lu_2

12 conv2d_3 (Conv2D) (3, 3, 256) Activation: linear
Kernel Size: [3, 3]
Stride: [1, 1]

295 168 max_pooling2d_1

13
batch_normalization_v1_3

(BatchNormalization)

(3, 3, 256) 1024 conv2d_3

14 leaky_re_lu_3
(LeakyReLU)

(3, 3, 256) Activation: leakyrelu
Alpha: 0.3

0
batch_normalization_v1_3

15 conv2d_4 (Conv2D) (1, 1, 512) Activation: linear
Kernel Size: [3, 3]
Stride: [1, 1]

1 180 160 leaky_re_lu_3
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Table E.6: Context Encoder autoencoder, noise damaged CIFAR-10,
continuation of Table E.5.

No Layer (Type) Output shape Config #Parameters Inbound layers

16
batch_normalization_v1_4

(BatchNormalization)

(1, 1, 512) 2048 conv2d_4

17 leaky_re_lu_4
(LeakyReLU)

(1, 1, 512) Activation: leakyrelu
Alpha: 0.3

0
batch_normalization_v1_4

18 dense (Dense) (1, 1, 512) #Neurons: 512
Activation: linear

262 656 leaky_re_lu_4

19 dropout (Dropout) (1, 1, 512) Dropout Rate: 0.3 0 dense

20 conv2d_transpose
(Conv2DTranspose)

(3, 3, 512) Activation: linear
Kernel Size: [3, 3]
Stride: [2, 2]

2 359 808 dropout

21
batch_normalization_v1_5

(BatchNormalization)

(3, 3, 512) 2048 conv2d_transpose

22 re_lu (ReLU) (3, 3, 512) Activation: relu 0
batch_normalization_v1_5

23 conv2d_transpose_1
(Conv2DTranspose)

(7, 7, 256) Activation: linear
Kernel Size: [3, 3]
Stride: [2, 2]

1 179 904 re_lu

24
batch_normalization_v1_6

(BatchNormalization)

(7, 7, 256) 1024 conv2d_transpose_1

25 re_lu_1 (ReLU) (7, 7, 256) Activation: relu 0
batch_normalization_v1_6

26 conv2d_transpose_2
(Conv2DTranspose)

(15, 15, 128) Activation: linear
Kernel Size: [3, 3]
Stride: [2, 2]

295 040 re_lu_1

27
batch_normalization_v1_7

(BatchNormalization)

(15, 15, 128) 512 conv2d_transpose_2

28 re_lu_2 (ReLU) (15, 15, 128) Activation: relu 0
batch_normalization_v1_7

29 conv2d_transpose_3
(Conv2DTranspose)

(30, 30, 64) Activation: linear
Kernel Size: [3, 3]
Stride: [2, 2]

73 792 re_lu_2

30
batch_normalization_v1_8

(BatchNormalization)

(30, 30, 64) 256 conv2d_transpose_3

31 re_lu_3 (ReLU) (30, 30, 64) Activation: relu 0
batch_normalization_v1_8

32 conv2d_transpose_4
(Conv2DTranspose)

(30, 30, 32) Activation: linear
Kernel Size: [3, 3]
Stride: [1, 1]

18 464 re_lu_3
No Layer (Type) Output shape Config #Parameters Inbound layers

33
batch_normalization_v1_9

(BatchNormalization)

(30, 30, 32) 128 conv2d_transpose_4

34 re_lu_4 (ReLU) (30, 30, 32) Activation: relu 0
batch_normalization_v1_9

35 conv2d_transpose_5
(Conv2DTranspose)

(32, 32, 3) Activation: tanh
Kernel Size: [3, 3]
Stride: [1, 1]

867 re_lu_4
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E. Network Architectures

Table E.7: GAIN generator, CIFAR-10.1 Model Architectures

No Layer (Type) Output shape Config #Parameters Inbound layers

0 data (InputLayer) (32, 32, 3) 0

1 mask (InputLayer) (32, 32, 1) 0

2 random (InputLayer) (32, 32, 1) 0

3 concatenate
(Concatenate)

(32, 32, 5) Axis: -1 0 data, mask, random

4 flatten (Flatten) (5120,) 0 concatenate

5 dense (Dense) (3072,) #Neurons: 3072
Activation: linear

15 731 712 flatten

activation (Activation) (3072,) Activation: tanh 0 dense

6 dense_1 (Dense) (1536,) #Neurons: 1536
Activation: linear

4 720 128 activation

activation_1
(Activation)

(1536,) Activation: tanh 0 dense_1

7 dense_2 (Dense) (3072,) #Neurons: 3072
Activation: tanh

4 721 664 activation_1

8 reshape (Reshape) (32, 32, 3) 0 dense_2

Table E.8: GAIN discriminator, CIFAR-10.

No Layer (Type) Output shape Config #Parameters Inbound layers

0 imputed (InputLayer) (32, 32, 3) 0

1 hint (InputLayer) (32, 32, 1) 0

2 concatenate_1
(Concatenate)

(32, 32, 4) Axis: -1 0 imputed, hint

3 flatten_1 (Flatten) (4096,) 0 concatenate_1

4 dense_3 (Dense) (3072,) #Neurons: 3072
Activation: linear

12 585 984 flatten_1

activation_2
(Activation)

(3072,) Activation: tanh 0 dense_3

5 dense_4 (Dense) (512,) #Neurons: 512
Activation: linear

1 573 376 activation_2

activation_3
(Activation)

(512,) Activation: tanh 0 dense_4

6 dense_5 (Dense) (1024,) #Neurons: 1024
Activation: sigmoid

525 312 activation_3

7 reshape_1 (Reshape) (32, 32, 1) 0 dense_5
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Table E.9: GAIN generator, MNIST.

No Layer (Type) Output shape Config #Parameters Inbound layers

0 data (InputLayer) (28, 28, 1) 0

1 mask (InputLayer) (28, 28, 1) 0

2 random (InputLayer) (28, 28, 1) 0

3 concatenate
(Concatenate)

(28, 28, 3) Axis: -1 0 data, mask, random

4 flatten (Flatten) (2352,) 0 concatenate

5 dense (Dense) (784,) #Neurons: 784
Activation: linear

1 844 752 flatten

activation (Activation) (784,) Activation: tanh 0 dense

6 dense_1 (Dense) (392,) #Neurons: 392
Activation: linear

307 720 activation

activation_1
(Activation)

(392,) Activation: tanh 0 dense_1

7 dense_2 (Dense) (784,) #Neurons: 784
Activation: tanh

308 112 activation_1

8 reshape (Reshape) (28, 28, 1) 0 dense_2

Table E.10: GAIN discriminator, MNIST.

No Layer (Type) Output shape Config #Parameters Inbound layers

0 imputed (InputLayer) (28, 28, 1) 0

1 hint (InputLayer) (28, 28, 1) 0

2 concatenate_1
(Concatenate)

(28, 28, 2) Axis: -1 0 imputed, hint

3 flatten_1 (Flatten) (1568,) 0 concatenate_1

4 dense_3 (Dense) (784,) #Neurons: 784
Activation: linear

1 230 096 flatten_1

activation_2
(Activation)

(784,) Activation: tanh 0 dense_3

5 dense_4 (Dense) (392,) #Neurons: 392
Activation: linear

307 720 activation_2

activation_3
(Activation)

(392,) Activation: tanh 0 dense_4

6 dense_5 (Dense) (784,) #Neurons: 784
Activation: sigmoid

308 112 activation_3

7 reshape_1 (Reshape) (28, 28, 1) 0 dense_5
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