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Abstrakt

Zlepšovanie a vyvíjanie nových algoritmov v oblasti machine learningu za-
sahuje do každodenného života. So zvyšovaním výkonu a veľkosti datasetov
sa úlohy, ktoré boli v minulosti pokladané za nedosiahnuteľné méty, stávajú
uchopiteľné a zvládnuteľné. Segmentácia objektov patrí v dnešnej dobe medzi
bežné úlohy strojového videnia. Má veľké využitie v technológií samojazdiacích
aút, priemysle, obchode a zdravotníctve.

Táto práca si kladie za cieľ navrhnutie, natrénovanie a porovnanie výkon-
nosti modelu s ostatnými State-of-the-art modelmi vrámci segmentácie CT
skenov pacientov. Podáva teoretický základ a oboznamuje čitateľa. V práci je
veľký dôraz kladený na celkovým procesom vývoja takýchto modelov. Ukazuje
sa, že prototyp navrhnutej neurónovej siete dosahuje vepšie výsledky výsledky
ako neurónové siete o väčšom počte parametrov.

Klíčová slova Segmentácia snímkov v medicíne, convolučná neurónová sieť,
neurónová sieť, hlboké učenie, strojové učenie
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Abstract

Improving and developing new algorithms in the field of machine learning
has impact on everyday life. As the performance and size of datasets increase,
tasks that were previously considered unattainable metas become comprehen-
sible and manageable. Object segmentation is one of the most common tasks
of computer vision today. It is widely used in car technology, industry, trade
and healthcare.

This work aims to design, train and compare the performance of the model
with other State-of-the-art models within the segmentation of CT scans of pa-
tients. It provides a theoretical basis and acquaints the reader. In this work,
great emphasis is placed on the overall process of development of machine
learning models. It turns out that the prototype of the proposed neural net-
work achieves better results than neural networks with a larger number of
parameters.

Keywords Medical image segmentation, convolution neural network, neural
network, deep learning, machine learning
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Introduction

Medicine has a huge impact on improving people’s quality of life. In anient
times, it was closely associated with the formation of early civilizations. Ini-
tially, the treatments and tools were very simple. At that time, doctors treated
patients with herbs and the knowledge was passed down from generation to
generation. However, such treatment has often not been successful. People
lacked the knowledge and technology to make drugs and to understand the
processes in human body. The knowledge of physicians from Arabia, ancient
India, China, ancient Greece, Rome, Egypt served as the basis for the emer-
gence of medicine that we know today.

Recently, we are increasingly encountering machine learning (ML) and
deep learning (DL) technologies in industries where this would not have been
possible a few years ago. The main obstacles to the extension of these algo-
rithms were the insufficient computing power of personal computers and the
absence of datasets. That is why primarily only universities and international
companies have been involved in research.

Many things have changed in the last few years in the field of ML / DL.
Algorithms perform better in some tasks than humans themselves. Cloud
Computing Services (Google, AWS, Azure,…) are available, what provide an
enormous amount of computing power needed to debug the model at an af-
fordable price. Pre-trained models considered State-of-the-art can be found
on the Internet. Some people consider it to be another revolution [1] that will
hit all sectors of our daily lives.

Chapters 1 and 2 deal with the Medical Background and the theory of ma-
chine learning and deep learning itself. Segmentation and model architectures
are discussed in Chapter 3. Chapter 4 deals with working with the dataset, its
modification, processing and augmentation. Implementation, implementation
details, measurements and the results are captured in Chapter 5.
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Thesis’s Objective

In this work DL algorithms are used to process CT scans of patients with
kidney cancer. Then we will compare several approaches and choose the most
suitable ones for this domain of problems.

There are used segmentation techniques for the detection of kidneys and
tumors from CT scans in this work. Such a solution can facilitate and speed
up the work of doctors in diagnosing diseases. The work aim to detect tumors
in the kidneys, but it would be very similar to detect tumors in other organs,
what creates a possibility for further improvement or potential for another
project.

The aim of the theoretical part is to acquaint the reader with the ba-
sic concepts of machine learning, deep learning and selected architectures of
models designed for image segmentation. Another goal of the theoretical part
is to acquaint the reader with the method of creating diagnostic images in
medicine.

The aim of the practical part is to compare State-of-the-art techniques
used in the detection and segmentation in the domain of medical images with
a focus on CT scans. The aim is also to create a prototype model for can-
cer segmentation and compare it with other State-of-the-art models, focusing
on performance and discussing the advantages and disadvantages of specific
models. The results of the thesis should be as reproducible as possible.
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Chapter 1
Medical background

The chapter provides an overview of basic diagnostic devices and approaches
in today’s medicine.

1.1 Introduction

If the doctor wanted to find out the cause of the disease in the past, he had
no choice but to take a scalpel and cut. However, there are places in the body
where it is very difficult to get a knife. Such an procedure increases the risk
of tissue damage, which could have been prevented already during the diag-
nosis. Modern medicine tries to prefer a non-invasive method of treatment,
ie. interfere with the patient’s tissues as little as possible. The doctor opts
for surgery only in case other treatments have failed. Thanks to technology,
doctors today are able to diagnose the disease with great accuracy, determine
the location of damaged tissue, and make the right decisions for further treat-
ment. Specialized medical devices open a window into the human body and
the doctor no longer depends only on his judgment and the knife.

Standard imaging methods used in diagnostics include:

• X-ray

• CT (computed tomography)

• MR (magnetic resonance)

• Ultrasound

• Osteodensitometry

5



1. Medical background

1.2 X-ray
It is a device that uses the properties of high-frequency electromagnetic ra-
diation. This radiation is in the range between (3 × 1016 Hz to 3 × 1019

Hz), ie outside the visible spectrum. High-frequency X-rays are found in the
ultraviolet spectrum but still have a lower frequency (and therefore energy)
than gamma radiation. The following relation applies to electromagnetic ra-
diation and its frequency (f = c/λ), where c is the speed of light and λ is the
wavelength.

Medical examination uses a principle analogous to casting a shadow during
an evening walk. The doctor sets up the device and it begins to emit elec-
tromagnetic radiation into the patient’s tissues. An exposure plate is placed
behind the observed part of the patient’s body.

X-rays have a high energy (e = ℏf) and pass through soft tissues almost
without attenuation. If the radiation hits the bone, it is partially or completely
attenuated and does not reach the exposure plate. This creates a negative
(photo) of a given part of the patient’s body.

X-rays [2] are used primarily to detect fractures of bones and denser tissues,
because the soft tissue is shone through and its damage will not be captured
in the resulting image. Another limitation is when there is a bone in front of
the subject (such as the heart). Then we will not know about the soft tissue
disorder because the radiation was shaded by the bone.

X-rays also have adverse effects on the bodies of living organisms. Gamma
radiation is used to create images. This is very dangerous because it can cause
changes in DNA.

1.3 Computed tomography
It is an imaging technique used to make 3D X-rays. The patient lies still
during the examination and the examination is absolutely painless.

The device looks like a tunnel [3]. The patient gradually moves through it
and the device takes pictures a few millimeters apart thanks to X-rays. Each
image captures a section of the patient’s body.

The resulting image is a mixture of grayscale pixels. The gray saturation
is proportional to the amount of radiation that has passed through the organs.
In the resulting image, the soft tissues are shown in a lighter color. CT can
be used to detect tissue damage that is only a few millimeters in size. The
device is most often used in examinations of the abdominal cavity and skull
[3].

As with X-ray examination, the body is exposed to dangerous gamma
radiation during CT examination. Complications can also be caused by the
contrast agent itself. It is a fluid given intravenously into a patient’s body. It
is intended to ensure better visibility of the contours of the bloodstream.
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1.4. Magnetic resonance

1.4 Magnetic resonance
It is a diagnostic method used to take pictures of soft tissues in the body. It is
especially suitable for examining blood vessels, abdominal cavity, joints, spine
and brain [4].

Magnetic resonance imaging works on a different principle than X-rays.
The device measures the energy intensity of the emission of hydrogen protons,
which are excited by a magnetic field. Different parts of the body contain dif-
ferent amounts of water, which is reflected in the resulting image with different
radiation intensity. They then process the images and assign different colors
to different parts of the body. This method is capable of higher resolution
and contrast than X-rays [4].

The disadvantage of resonance is that a patient who has metal objects
in his body (joints, clamps, artificial heart valve) cannot undergo such an
examination.

(a) CT scan of brain [5]. (b) MRI imaging of patient [6].

Figure 1.1: The images show two of the main imaging methods.
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Chapter 2
Machine learning background

This chapter deals with information from the field of machine learning / deep
learning with emphasis on explaining the operation of the basic principles of
convolutional neural networks.

2.1 Machine learning
Machine learning is a way of programming that relies on knowledge stored
in data. Machine learning algorithms are largely non-deterministic and their
results depend on the qualitative and quantitative nature of the data. Machine
learning is divided into 2 main fields based on type of acquired knowledge:

• Supervised learning

• Unsupervised learning

2.1.1 Supervised learning
We speak of supervised learning [7] when the dataset has shaped like
{(x1, y1), (x2, y2), . . . , (xi, yi)}, where xk ∈ Rn and yk ∈ Rm. The machine
learning algorithm tries to learn the mapping function ŷk = f(xk, θ) between
these corresponding pairs. θ represents a set of learning parameters. In order
to be able to teach the model, we need a metric of accuracy of our algorithm.
For ML / DL, this metric is called the loss function. L : (ŷ, y) ∈ R × Y 7−→
L(ŷ, y) ∈ R, where y is ground truth label from dataset and ŷ is target value,
which the algorithm returns. The loss function returns information in the
form of a number, which expresses how much ŷ differs from y.

Learning takes place as an iterative process based on the optimization of
the parameters of the loss function L(ŷ, y). The algorithm tries to find such
θ where the mapping function will be as accurate as possible so the value of
L(ŷ, y) will be as small as possible.
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2. Machine learning background

There are a few criteria according to which we can divide ML algorithms
into larger groups.

Types of algorithms based on value of target variable:

• Regression (y ∈ Rn) (Linear regression, etc.)

• Classification ( y ∈ C where C = {c1, c2, . . . , ci}) (Logistic regression,
SVM, etc.)

Classification of algorithms based on the type of models [7]:

• Discriminative – estimate p(y|x)

• Generative - calculates p(x|y) and estimates the most probable y for the
unknown x using Bayesian theorem

Figure 2.1: The discriminant model learns decision boundry. The generative
model learns the probability distribution of data[7].

2.1.2 Unsupervised learning
Unsupervised learning [8] algorithms work only with the data itself in the
form {x1, x2, , xk} without the label y. The algorithm reveals dependencies
and complex relationships in data without a teacher. Unsupervised learning
is mainly used for data clustering.

Such an approach is often used to preprocess the dataset, possibly gener-
ating some missing data features.

Some of commonly used algorithms of this type include:

• Singular value decomposition (SVD)

• K-Means

• Principal component analysis (PCA)

10



2.1. Machine learning

• Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

• Agglomerative Hierarchical Clustering

2.1.3 Metrics
Measurement is a very important part of any process and ML is no exception.

Metrics are a functions that evaluates the quality of a model. It is very
similar to the loss function with the difference that it is not used as an opti-
mization criterion during model learning. To further understand and fine-tune
the performance of the model appropriate metrics are used. There are metrics
used for classification problems as well as regression problems.

2.1.4 Classification metrics
Confusion matrix is the most common way to evaluate the accuracy of a
classification model.

It is defined as follows:

Figure 2.2: Confusion matrix for a model classifying 2 classes[9].

The most commonly used metrics are [10]:

Accuracy – overall performance of a model

TP + TN

TP + TN + FP + FN
(2.1)

Precision – how accurate the positive predictions are

TP + FP

TP
(2.2)
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2. Machine learning background

Recall Sensitivity – what fraction of true positive we can get
TP

TP + FN
(2.3)

Specificity – fraction of true negative we can get
TN

TN + FP
(2.4)

F1 score – consider both the precision and the recall
2TP

2TP + FP + FN
(2.5)

• True positives (TP) – cases when the actual class of the data point was
1 and the predicted class is also 1

• True negatives (TN) – cases when the actual class of the data point was
0 and the predicted class is also 0

• False positives (FP) – cases when the actual class of the data point was
0 and the predicted class is 1

• False negatives (FN) – cases when the actual class of the data point was
1 and the predicted class is 0

2.1.5 ROC Curve and AUC
AUC (area under curve) and ROC (Receiver Operating Characteristics) are
among the most basic metrics of classification models [11].

TPR (True Positive Rate)

TP

TP + FN
(2.6)

FPR (False Positive Rate)

FP

TN + FP
(2.7)

ROC represents the probability distribution of the TP and TN classifi-
cations [11]. AUC is the area under the curve that originates from the in-
terconnection of ROC points. Individual points are created by changing the
threshold for classification, which changes the TPR and FPR. This classifica-
tion method measures the numbers of correctly estimated TPs and TNs. ROC
allows us to choose a threshold at which data separation is the best possible
[11].

The AUC is used to compare the classification accuracy of individual mod-
els. Its area can have a value from 0 to 1.
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2.2. Neural networks

• If the AUC = 1 – model has all TN and TP classified correctly

• If the AUC = 0.5 – model has classified the same number of TP cases
as FP cases

• If the AUC = 0 – this is the state when the model classified everything
wrongly

Figure 2.3: The picture shows comparison of performance for 2 models. The
model represented by green color is less accurate than the orange one.

2.1.6 Regression metrics
The following metrics are used to evaluate models on regression type tasks:

Mean Square Error (MSE)

1
N

N∑
i=1

(y − ŷ)2 (2.8)

Mean Absolute Error (MAE)

1
N

N∑
i=1

| y − ŷ | (2.9)

2.2 Neural networks
An artificial neural network [12] is an information model inspired by biological
clusters of neurons in the brains of living organisms. Its basic building block
is the perceptron (artificial neuron). Task of the perceptron is to sum up the

13



2. Machine learning background

potential of all input variables and decide whether to send the signal to other
layers. An activation function a(x) is used for this decision.

Every perceptron is mathematically by a function: f(x) = a(W T x + b),
where W ∈ Rn×m is a matrix of weights, x ∈ Rn×1 is input vector, b ∈ Rm×1

is bias term and a(x) is an activation function. An important assumption
is that the activation function is nonlinear and differentiable on the whole
domain (due to the learning algorithm).

A neural network consists of one or more layers. The output of the layer
hi is represented by the vector ai which represents the input for the layer hi+1.
The output of the last layer is the value ŷ. The value of ŷ is further used in
loss function so NN can optimize weights.

Figure 2.4: Deep neural network [13].

Deep neural network (DNN [13]) is called any architecture that contains
more than one hidden layer.

2.2.1 Convolution neural network
CNN [14] is a type of neural network that is used primarily to solve Computer
Vision problems. CV has a great impact on the development of new DL algo-
rithms. Thoughts and ideas in one field are often applicable between different
fields of the DL community (Attention is all you need [15], 1x1 convolutions
[16], etc.).

CNN works on the input with images that are represented by 3D tensors.
Each such 3D tensor has dimensions (h×w×nc), where h is height, w is width
and nc represents number of channels. The network consists of layers that have
different functionalities (convolution [17], maxpooling [18], upsampling [18]).

The most common cases of CNN use in practice include self-driving cars,
face recognition, image classification, object detection, object segmentation,
neural style transfer.
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2.2. Neural networks

2.2.2 Convolution layer
Assume that the image is represented by a 3D tensor of size (Hin ×Win ×Din).
We can work with the image itself as if it was a vector x ∈ R(Hin×Win×Din)×1

and use a fully connected layer as in the case of a simple NN. The input vector
x is transformed using the equation f(x) = a(W T x + b). That creates new
vector ai ∈ Rk×1. Matrix W T has the dimension k × (Hin × Win × Din). This
is a very inefficient approach as with the dimensions of commonly used images
(1000x1000x3) and the size of the output vector ai ∈ Rk×1, where k = 1000,
the matrix of weights has a size of almost 3GB. Another problem is that such
a representation of the image (flatten vector) is not able to actually capture
local information (receptive field) within a smaller part of the image. The
convolutional approach solves all these problems.

The convolution filter is represented by a (h × w × Din) tensor. This
filter gradually convolves through a 3D tensor representing the image. In
convolution, the dot product is calculated between the filter weights and the
pixel values of the image. A bias is added to the output value of the filter and
the result is advanced as an input parameter of the activation function (most
often ReLU). By applying Dout filters to the input tensor we get the output
tensor with dimensions (Hout × Wout × Dout).

Figure 2.5: Convolution filter [19].

Convolution filters in the first layers are responsible for capturing sim-
ple geometric shapes. In the deeper layers, the filters learn to capture more
complex geometric shapes (house, eye, bicycle, etc.) [14].

The pictures 2.7 and 2.6 show the shapes which make the neurons within
layer most active - the convolution filter searches a specific shape on each
picture.
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2. Machine learning background

Figure 2.6: Filter activations in first layers [20].

Figure 2.7: Filter activations in last layers [20].

2.2.3 Why CNNs have a relatively low number of learning
parameters

There are 2 primary reasons why CNNs have a relatively small number of
parameters (compared to fully connected NNs):

• Parameter sharing – detection of a feature (such as a horizontal edge)
is useful in several parts of the image. The same filter responsible for
detecting a specific object is applied to the entire image without the
need to increase the number of training parameters.

• Sparsity of connections – in each layer the output value depends only
on a small number of inputs (receptive field).

Because of these 2 features, CNN can be trained on a smaller dataset and it
is less prone to overfit.
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2.2. Neural networks

Figure 2.8: Receptive field in CNN.

2.2.4 Calculation of output tensor dimensions, padding,
stride

Suppose we have an image with dimensions (Hin×Win×Din) and a convolution
filter (h × w × Din) (3rd dimension needs to be the same in both). After
application of convolution, addition of bias and application of nonlinearity,
the resulting tensor (Hout × Wout × 1) is created. In our case, we used Dout

convolution filters. A 3D tensor with dimensions (Hout × Wout × Dout) is
created.
The dimension of Hout is

bHin + 2p − fh

sh
+ 1c (2.10)

The width Wout of the output is computed analogically. In equation p means
padding, fh/w is the vertical/horizontal dimension of the kernel used and sh/w

is the vertical/horizontal size of the convolution kernel displacement step above
the image.

Padding can have ’same’ value, then the image is padded with zeros so that
Hin = Hout and Win = Wout, or valid. When value is ’valid’ then padding is
not used. Same padding has the advantage of maintaining the dimension of
the input and output image. Another advantage is that it makes better use
of the information stored along the edge of the image.

2.2.5 Number of learning parameters of the convolution layer
The number of convolution layer parameters itself depends on the filter size,
the number of filters and the bias parameter. Suppose we have a tensor at the
input (Hin × Win × Din). We use N convolution filters each with dimension
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2. Machine learning background

Figure 2.9: Padding [21].

(fh × fw × Din). Then the resulting number of learning parameters of the
given layer is: (fh ∗ fw ∗ Din ∗ N) + N

2.2.6 Pooling layer

The pooling layer is most often inserted after the convolution layer just after
the application of the activation function. The filter is represented as a tensor
of 2D dimensions ph×pw. Information from the region ph×pw is reduced to one
number, which best describes the region. Such a filter is applied horizontally
and vertically to the whole image. The pooling layer itself has no learning
parameters. There are many ways in which the pooling filter decides which
information it considers important.

• AveragePooling – the output is the value calculated as the average of
the values from the region under the filter

• MaxPooling – the output is the largest value from the region

2.2.7 Upsampling

The opposite operation to pooling layers is the layers responsible for upsam-
pling. The easiest way to upsampling is to copy the necessary pixels (basically
a simple image magnification). There is a more advanced method called un-
pooling. Here, it is assumed that the encoder-decoder architecture contains
corresponding pooling and unpooling layer pairs. Unpooling layer remembers
which cell had the largest value during the maxpooling operation and fills its
position with the appropriate value [22].
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2.3. Ways to improve training

2.3 Ways to improve training

2.3.1 Vanishing and exploding gradients

We have to solve this problem especially when working with deep neural net-
works. By gradually passing through the individual layers, the information is
lost or acquires extremely large values [23]. Let f(x) be a linear activation
function that returns the identity. Then we calculate the output value of the
first layer of the neural network as f(x)i = W T

i xi where Wi is the weight
matrix of the layer Li and xi is the input vector. This value travels as an
input parameter to the following layer of the network where the output value
f(x)i+1 = W T

i+1 ∗ f(x)i = W T
i+1W T

i xi is calculated again. If the values in the
weight matrix were initialized with weights greater than 1, then the value will
gradually increase in the following layers. For values less than one, the value
will decrease to 0.

2.3.2 Correct weight initialization

To partially avoid the problem of vanishing / exploding gradients, we need to
initialize the weight matrices intelligently. When initializing all weights with
zeros, we encounter the problem of symmetry - all neurons of one layer learn
the same thing each backpropagation. Thus, the strength of one layer is the
same as the strength of any neuron. Therefore, we need to initialize with
small random numbers. Linear models generally work best when their input
is normalized and standardized by N (0, 1).

Assume that the output value of a neuron before activation looks like this,
where x represents data sample and w represents weights for one neuron in
layer.

m∑
i=1

xiwi (2.11)

If E(xi) = E(wi) = 0, then E(
∑m

i=1 xiwi) = 0. This means that expected value
will be 0, but we cannot say it about variance.

V ar(
m∑

i=1
xiwi) =

m∑
i=1

V ar(xiwi) (2.12)

where wi are i.i.d. and we suppose that xi are also not correlated.

m∑
i=1

([E(xi)]2V ar(wi) + [E(wi)]2V ar(xi) + V ar(xi)V ar(wi)) (2.13)
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xi, wi are standardized so E(xi) = E(wi) = 0

m∑
i=1

(V ar(xi)V ar(wi)) (2.14)

we suppose that x and w have same variance.

V ar(x)[mV ar(w)] (2.15)

If m is greater than 1, then the variance for subsequent layers will increase.

In order for [mV ar(w)] to be 1, we need a to have the value 1/
√

m. Used fact
V ar(aw) = a2V ar(w).

mV ar(aw) = 1 (2.16)

ma2V ar(w) = 1 (2.17)

m( 1√
m

)2V ar(w) = 1 (2.18)

V ar(w) = 1 (2.19)

In Xavier [24] initializations, the weights are multiplied by
√

2√
min

.
In Glorot [25] initializations, the weights are multiplied by

√
2√

min+mout
.

2.3.3 Batch normalization
Batch normalization (BN) makes finding hyperparameters much easier and
the neural network becomes much more robust [26]. After applying the BN,
we can use a higher learning rate while the network weights converge faster.
Thanks to this technique, even very deep neural networks can be trained.
BN controls the mean and variance of the variables entering the activation
function.

µ = 1
N

N∑
i=1

xi (2.20)

σ2 = 1
N

N∑
i=1

(xi − µ)2 (2.21)

xinorm = xi − µ√
σ2 + ϵ

(2.22)

Information in the data may have a different distribution than the normal
distribution. Therefore, for individual layers, the data distribution is adjusted
as xnew = γ ∗ xinorm + β.
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2.3.4 The reason why batch normalization works
The problem that is addressed by BN is called covariance shift [26]. Assume a
model that learns from data. The training data have a distribution of p, while
the test data have a distribution of k. The fact that the training and test set
have different distributions will cause the model not to have high accuracy.

With the forward propagation of information through layers, their vari-
ance increases as calculated in 2.3.2 and a small change in the information
at the input will greatly affect the calculation of the activation function itself
somewhere deep in the neural network. Thanks to the application of BN, the
input data are standardized to N (0, 1). The layer itself learns the β (new
mean) and γ (new variance) parameters.

In this way, the variance of the output variable from the layer and thus
the distribution of the values that represent the input values of the next layer
is limited. As a result, the deeper values in the network are more stable and
the individual layers can learn more independently.

2.3.5 Residual Connections
Despite the techniques already mentioned, very deep neural networks have
still problem with vanishing / exploding gradients. Another way to adress it
is to add residual connections [27]. The front layers merge with the layers
located deeper in the net. This will ensure better propagation of information
through the network.

Figure 2.10: Residual connection in DNN [27].

zl = W T
l al−1 + bl (2.23)

al = ReLU(zl) (2.24)
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al+2 = ReLU(zl+2) + al (2.25)

For such a block, the identity function is very easy to learn. If the network
did not need layer l and l+1 (the weight matrix contains small values), then the
output l + 2 of the layer looks like a al+2 = 0 + al (identity). Such a block can
only help the performance of the neural network (learning parameters within
the residual block are used) but not harm (identity function - the residual
block itself is skipped).

2.3.6 Convolution 1x1
Convolution filter 1x1 is filters with dimensions (1 × 1 × Din). The most
common use of 1x1 convolution in CNN is dimension reduction.

Figure 2.11: 1x1 convolution filter [19].

Such filters serve to reduce the number of mathematical calculations during
convolution while maintaining the dimensions of the input and output tensors.
In this case, several 1x1 convolution filters are applied to the input tensor. This
creates a temporary tensor with denser information. Such temporary tensor
can be a bottleneck for maintaining the information. If the number of 1x1
filters is reasonably large then there is no loss of information.

The 1x1 filter is used to replace the dense layer [16]. When using a dense
layer, the dimensions of the tensors of the previous layers must be fixed. When
creating a network, weight matrix is created in the dense layer, which has
precisely defined dimensions. This means that the images at the network
input must have a fixed width and height. Replacing the dense layer with
a 1x1 convolution filter will ensure that the neural network input does not
have to be fixed. In that case, we’re talking about the Fully Convolutional
Network(FCN).
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2.3.7 Batch size utilization
Another important parameter determining the training process of the model
is the batch size [28].

• Batch gradient descent – backpropagation is performed only once in the
whole epoch. Here the network converges to the result very slowly.

• Stochastic gradient descent – batch has a size of 1. Such an approach
is prone to entrapment at the local minimum. The network adjusts the
weights based on one sample data.

• Mini-batch gradient descent – batch size is smaller than dataset size but
larger than 1. The network calculates backpropagation after the end of
each batch. Here, the network is still taking informative steps because it
has seen several images and at the same time its training does not take as
long as with Batch gradient descent. The method is a reasonable trade
off between batch gradient descent and stochastic gradient descent.

It is good to keep the batch size in powers of 2 [29]. The pages of memory
are always divided into blocks of size 2n. Such an approach ensures that a
batch or several batches are aligned on a single memory page. This makes
training more efficient.
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Chapter 3
Image segmentation

The chapter contains details about approaches used in the past and the State-
of-the-art approachs. It describes architectures and discusses their strengths
and weaknesses. It introduces segmentation tools used in medicine and talks
about creating a medical dataset.

3.1 Segmentation

It is the process of classifying objects captured in an image. Such segmentation
works at the pixel level. The algorithm assigns a value from a set of possible
classes to each pixel. Some industries where image segmentation is used:

• Self-driving cars.

• Evaluation of satellite images region.

• Evaluation of medical images.

3.2 Image segmentation in medicine

Segmentation in medicine serves to better detect damage to organs and tissues
in the human body. It very often happens that the hospital does not have a
sufficient number of specialists who would evaluate the image and prescribe
treatment. These images are often difficult to read and only an experienced
doctor can determine the exact degree of damage to the body. Another rea-
son to use a segmentation program is the fact that the doctor himself loses
concentration during the day and gets tired. This is reflected in the results
and thus can affect health of patients.
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Figure 3.1: These are pictures from the BraTS 2016 challenge dataset, images
contain brain tumors.

3.3 Medical datasets
Segmentation of medical images is a very interesting topic, but it is certainly
not one of the most popular. The main reasons is the fact that a quality
dataset is very difficult to obtain. Unless a competition is announced on one
of the datascience sites, it is almost impossible to obtain (if any) data.

Experienced physicians who understand the issue must be involved in data
collection process. There is a huge difference whether data is collected from
one device or from multiple devices. For medical data, it depends on whether
data is obtained locally or if we work with a dataset obtained on a global level.

The very nature of medical data is difficult to grasp. Individual segmenta-
tion classes are represented very unevenly, which must be taken into account
when training the model. The way the dataset is created is one of the decisive
factor influencing the quality of the final model.

3.4 Traditional segmentation approaches
There have been many ways in which segmentation problems have been solved
in the past [30]. All methods that originated before the dawn of DNN (deep
neural network) era fall into the category of traditional. Such approaches
include, for example:

• Histogram of oriented gradients (HOG).

• Scale-invariant feature transform (SIFT).

• Local Binary Pattern (LBP)

• Bag-of-visual-words (BOVW)

A common feature of these approaches is that they extract information
from the image into a latent vector. The information stored in this vector can
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be presented as a histogram. If the images are similar then they have similar
histograms. Latent vectors may provide input for other models (SVM, etc.).

3.5 Deep neural network segmentaion models
In recent years, the computer vision field has become more reliant on the con-
cept of neural networks than handcrafted algorithms. The big breakthrough
came with the paper Krizevsky 2012, ImageNet [31]. At that time, many
computer vision experts recognized that a neural network with the right ar-
chitecture and dataset had more potential than manually created filters.

Transition to neural networks came gradually. Huge datasets were once
not available, which meant handcrafting and defining algorithms for problem
domains.

The neural network works differently. It tries to extract the information
contained in the dataset in the form of parameter weights. We rely on new
architectures, network sizes and learning parameters rather then on specific
algorithm. Thus, the very definition of algorithms, which was essential for
computer vision, is less important.
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3.5.1 Unet architecture

This architecture [32] was created to segment medical images. Today, we
encounter it in segmentation tasks of all types.

It is one of the FCN architectures, thanks to which it can work with
data of various sizes. The name itself suggests a lot about this architecture.
The network has an encoder-decoder architecture. Information is extracted
using convolution filters and maxpooling layers. The convolution filters have
size of 3x3. The values from the convolution filters are further fed to the
activation function ReLU. Gradual reduction of image dimensions is ensured
by pooling of layers. This creates a phenomenon when the dimension of height
and width of processed data decreases and the dimension of the number of
filters increases (natural for encoder-decoder architecture). After extracting
the information, a gradual expansion to the original size of the input data
occurs. This is taken care of by upsampling layers analogously to the case
of pooling layers. Connections are established between the individual levels
of the network. These shortcuts serve to better propagate information over
the network. The Unet architecture on the decoder side chains a feature
map from the corresponding encoder layers with upsampled data from the
previous layer. These links help capture the local structure (important for
detail segmentation) as well as the overall information from a larger piece of
the image.

Figure 3.2: Structural architecture of Unet network [32].
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3.5.2 Pyramid Scene Parsing Network (PSPNet) architecture

The PSPNet [33] architecture, like Unet, is used to solve segmentation tasks.
PSPNet, it is built as an encoder-decoder architecture. The advantage of
PSPNet over Unet is that it uses global context information for accurate
prediction of images.

Figure 3.3: PSPNet segmentation comparison [33].

In the first row of 3.3 , the FCN network predicts a motorboat as a car,
even though the object is on the water. Thus, most likely, the object should
be categorized as a boat. An ordinary network without understanding the
context has no chance to know.

In the second row of 3.3, the FCN divides the object (skyscraper) into part
of the neighboring building and part of the skyscraper. PSPNet with context
information classifies a skyscraper correctly as a whole.

The third row 3.3 shows the segmentation of the children’s toy box. FCN
considers individual parts as separate objects and classifies them incorrectly.
Thanks to the context, PSPNet knows that the box consists of several boards,
but it is still one object.

The most important part of PSPNet is the so-called pyramide pooling
module. As with Unet, we get a representation of the image from the encoder.
We reduce this part in different proportions by using the pooling layer to
obtain different densities of captured information. The blocks prepared in
this way serve as an input for 1x1, 2x2, 3x3, 6x6 convolution filters. These are
responsible for obtaining the context from the image at various levels (from
the local to the global context). The output from the convolution filters is
enlarged to the required size and concatenated together with the output from
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the encoder. The tensor prepared in this way serves for the final creation of a
segmentation image.

Figure 3.4: Pyramid pooling module (heart of PSPNet) [33].

3.5.3 DeepLabv3+ architecture
DeepLabv3+ [34], like the 2 previous architectures, is used for segmentation
tasks. The problem it tries to solve compared to FCN networks is that feature
maps become smaller and smaller as information flows through the convolu-
tional and pooling layers. This causes a reduced quality of the predicted
results. This issue is addressed by using Atrous Spatial Pyramid Pooling
(ASPP). The information from the image is extracted using one of the back-
bone networks (VGG, DenseNet, ResNet). Context information is obtained
using an ASPP block connected behind the backbone network. We concate-
nate the output from the ASPP block and it then serves as an input for a
1x1 convolution filter which creates a segmentation mask of the image. The
DeepLabv3 + architecture adds a section to the decoder that provides better
results of segmentation along object boundaries.
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Figure 3.5: Deeplabv3+ [34].

3.5.4 DenseUnet architecture
This architecture [35] uses an idea that worked very well in a classification
task using DenseNet. When creating the architecture, the authors realized
that layers that are directly concatenated, transmit information better and
the whole network is easier to train. The set of such directly chained layers
forms a dense block. Within the concatenated layers in the dense block, we
obtain excess information that has a positive effect on the accuracy of the
model.

The architecture of DenseUnet is very similar to the architecture of Unet.
However, convolution blocks are replaced by dense blocks. The network there-
fore takes advantage of Unet (architecture of encoder-decoder) and dense
blocks (a significant feature of DenseNet).
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Figure 3.6: DenseUnet [35].

3.6 Loss functions used for segmentation
A large number of metrics are used for segmentation tasks[36]. Some of them
are:

Cross Entropy (CE)

−(y log (ŷ) + (1 − y) log (1 − ŷ)) (3.1)

Balanced cross entropy (BCE)

−(βy log (ŷ) + (1 − β)(1 − y) log (1 − ŷ)) (3.2)

This loss is used when the representation of classes in a dataset is not balanced.
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Dice coefficient (DC)

yŷ

yŷ + 1
2(1 − y)ŷ + 1

2y(1 − ŷ)
(3.3)

Jaccard coefficient (JC)

yŷ

yŷ + (1 − y)ŷ + y(1 − ŷ)
(3.4)

DC, JC metrics are used to estimate the similarity and overlap of the samples.

Dice coefficient loss (DCL)

1 − DC(y, ŷ) (3.5)

Jaccard coefficient loss (JCL)

1 − JC(y, ŷ) (3.6)

Softmax dice loss (SDL)

αCE(y, ŷ) + βDCL(y, ŷ) (3.7)

Tversky index (TI)

yŷ

yŷ + β(1 − y)ŷ + (1 − β)y(1 − ŷ)
(3.8)

Tversky index is generalization of the Dice coefficient. TI adds the alpha, beta
parameter to balance FP and FN samples.

• If α = β = 0.5 then tversky index is equal to dice coefficient

• If α = β = 1.0 then the tversky index is equal to the jaccard coefficient

• If α + β = 1.0 then tversky index is equal to F1 score
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Chapter 4
Dataset

This chapter is dedicated to the dataset. There will described basic informa-
tion about the dataset, the data format it contains, data preprocessing, data
augmentation and the creation of an advanced data generator adapted for
distributed training.

4.1 Dataset Kits19

All data images [37] used for training were obtained from the KiTS19 Chal-
lenge [38]. It is one of many machine learning competitions involving medical
segmentation enthusiasts from many countries around the world.

The dataset [39] provided by the organizers contains information on in-
dividual patients suffering from kidney cancer. Such a set consists of several
CT images on which transverse cuts of the patient’s abdominal cavity are
captured. The thickness of these cuts is in the range of 1 mm - 5 mm, while
within one patient this thickness is constant. In addition, the file contains seg-
mentation data mask. These are pictures on which the kidneys and tumors
are marked. All other organs in the images are painted black and represent
background. Data were provided by the University of Minnesota Medical
Center.

All files that contain images and ground truth labels are anonymized
and saved in NIFTI format. The data file for one patient contains data in
the format {(x1, y1), (x2, y2), . . . , (xn, yn)}, where xk ∈ R512×512×3 and yk ∈
R512×512×3, n = 45965, x represents patient images and y represents ground
truth segmentation masks of the background, kidneys and tumor. The whole
dataset consists of 210 patients.
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(a) Original picture from CT. (b) Segmentation mask.

Figure 4.1: CT scan of a patient and the segmentation of the background
(black), kidney (red), tumor (blue).

(a) CT scan in gray hue. (b) After application of segmentation
mask.

Figure 4.2: Data sample in gray hue after applying the segmentation mask.

4.2 Data preprocessing

When training and testing new models, iteration speed through possible ar-
chitectures and parameters is very important. That is why all data samples
have been reduced from 512x512x3 to 128x128x3. Subsequently, all images
were saved in .npy format.
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The OpenCV library was used to reduce dimension of the images. Several
interpolation methods were tried and compared their results and adjusted
them to correspond to the values in the original dataset. The reason we
focused on different interpolation methods is the possible loss of information
during transformations. Looking at the picture 4.1b, we can see that the
tumor itself is much smaller compared to other objects. Such interpolation
can negatively affect the quality of the CT scan dataset itself. If a tumor has
specific features that distinguish it from other objects, then interpolation can
destroy this information.

All images that do not contain a kidney or tumor are removed from the
dataset during training. Models that were trained on data without this ad-
justment very often converged to black, because everything else (kidneys and
tumors) was considered an anomaly and the weights of the models did not
adapt to such an object.

The dataset undergoes further modification if we decide to train a 3D
model. Then, after removing the irrelevant images, 32-image blocks are cre-
ated for each patient. Each such block has an overlap of 12 frames with the
previous data block. The overlay ensures that the network can work with
information that was processed in the previous cycle of the forward propaga-
tion algorithm. Thus, the overlay represents something like a context. After
this processing, the blocks from all patients are concatenated to form a new
dataset {(x1, y1), (x2, y2), . . . , (xn, yn)}, where xk ∈ R32×128×128×3 and yk ∈
R32×128×128×3, without any other preprocessing n = 691.

4.3 Data augmentation
In tasks where we work with a large dataset, the DataGenerator class, which
inherits properties from keras.utils.Sequence, is useful. Such generator ensures
parallel processing. The data is read from the disk, augmented and the CPU
sends it directly to the GPU. This principle speeds up training when more
graphics cards and more CPU cores are available. DataGenerator[40] class
provides this parallel data feeding to the model.

DataGenerator also takes care of the augmentation itself. Data images are
horizontally flipped, they are rotated in the range (−5◦, 5◦), zoom is used in
the range (-5%, 5%) of the image size, the image is shifted in the range (-10px,
10px) in the horizontal and in the vertical direction. Such postprocessing of
input data will ensure greater robustness of training process and the models.

Another method used for dataset enrichment and class balancing is GAN
(generative adversarial network). This is different augmentation method.
There is no modification to an image that is already in the dataset. Con-
ventional generators use rotation, scaling or flipping which helps very little if
the dataset contains very few samples or the classes are unbalanced. The GAN
approach is based on the random selection of an image from a distribution that
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the generative part of the GAN learnt during training. A discriminator is a
network that is pre-trained on a dataset with a similar problem domain and
fine-tuned on our dataset.

GAN augments the dataset by creating new unique samples. An ordinary
generator augments already created samples and partially changes them.
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Chapter 5
Image segmentation in practice

The chapter provides information about the implementation process.

5.1 Path of implementation
Myna development environments were used and the technologies were adapted
to the requirements of the task. A base machine learning pipeline was created.
It is the easiest way to create a working solution and gradually extend modules.
Such an approach is very common in prototyping.

Google Colab was the first prototyping environment. It contains all the
necessary libraries and in case some is missing, it can be easily installed. This
was the place where the dataset was preprocessed and images were reduced
to a reasonable size. Such resized dataset was saved into multiple .npy files.

After working with the dataset, work continued with prototying model,
creating data generator. The first implemented architecture was Unet. It is
a proven approach to solving segmentation tasks. The advantage of such
a model is its simplicity. It can be very easily prototyped and modified.

After creating the model, it is very important to test whether specific
parameters of the model (number of filters, filter size, regularization,…) will
work. It was necessary to work towards a model that can reasonably capture
the information contained in the dataset but will not contain unnecessarily
many learning parameters.

We used data of 5 patients for first prototyping. There were a reasonable
number of images (about 5% of the dataset) which helped to experiment much
faster. It was necessary to create an architecture that would learn structures
from the data. This served as proof that a particular model could extract
information from the dataset. After a while, we get to a model that was
satisfactory.

However, it was not the task to train only one model but compare a set
of approaches and choose the best one. This was the main reason we had
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to find replacement for Google Colaboratory. The environment had a few
disadvantages in this regard. The first was the fact that free account was used
and the training time for the model was limited. Another disadvantage is the
number of GPUs available for a free user.

There were 2 paths we could take in next development. Use Tensorflow
(MirroredStrategy) or Horovod. Both of these technologies serve as a tool
for parallelizing calculations on a CPU or GPU. Horovod was chosen as the
final technology, see 5.1. Horovod [41] is a project built on top of OpenMPI.
OpenMPI is a technology that solves High Performance Computing problems.
Implements distributed reduce function allreduce. This function is used to
aggregate tensors during the calculation and effectively provide them to other
processes.

Figure 5.1: Efficency of parallel training with Horovod vs Tensorflow [41].

We adapted the development environment just for the needs of HPC.
NCCL (NVIDIA Collective Communications Library) has been installed. This
library implements the multi-GPU and multi-CPU messaging needed to train
distributed models. The instalation instructions are very well described on
the Horovod official website.

During the transition to Horovod technology, a few adjustments had to
be made to the training script. The most important thing to realize is that
training and overall processing run in parallel, and any bottleneck can cause
desynchronization of the entire process.

One of the problems was the uneven distribution of the dataset among
workers. If one of the workers ends too soon or too late, the training process
is desynchronized. This problem is solved by writing a custom data generator
in the chapter 4.3. The desynchronization of the distributed optimizer was
also caused by the batch size being too large.

This whole process led to the creation of a deep learning pipeline, which
provided the necessary speed in developing and experimenting with new mod-
els. There were implemented and trained 6 other models via this pipeline.

40



5.2. Implementation of models

5.2 Implementation of models
In thesis we experimented and compared results of architectures Unet2D,
Unet3D, PSPNnet, DenseUnet, Deeplabv3+.

When creating models, we divided them into two categories according
to the number of learning parameters. If we compare the performance of 2
models that have same architecture and differ only in the number of learning
parameters, then a larger model should have better results. That was exactly
the reason why we decided to create 2 versions for PSPNet and DenseUnet
networks. The input of all neural networks is modified to be able to receive
images with a size of 128x128x3.

5.2.1 Unet2D
This network has been optimized the most. The total number of parameters
is 2,465,619. The network has a very similar architecture to the network in
the picture 3.2. However, it has only 2 levels of maxpooling and upsampling
(the network in the picture has 4). The network uses a set of convolutional
blocks connected by maxpooling layers (used in the encoder part) and up-
sampling layers (used in the decoder part). Maxpooling / upsampling use
pooling_size = (2, 2). The number of convolution filters at the ith level of
the convolution network is always 64 ∗ 2i, where i ∈ [0, 1, 2]. Convolution
filters in convolution blocks have dimensions (3 × 3). In the last layer there
is a convolution filter (1 × 1), which serves as a replacement for the dense
layer. Thanks to that, this network is FCN. The outputs of the convolution
blocks from the encoder are concatenated with the inputs of the convolution
blocks of the decoder. This ensures better spread of information and better
contextual understanding.

The convolutional block consists of two consecutive pairs of convolutional
filter and applied batch normalization . The deeper the block is in the network,
the larger its receptive field.

The activation function of convolutional layers is ReLU. LeakyReLU was
tested on several networks, but its effect, even though it has a gradient other
than 0 in negative numbers, was negligible. In the last layer is the activation
function softmax, which is used for multiclass classification.

5.2.2 Unet3D
The total number of parameters is 15,296,451. A network that has almost
the same architecture as the previous one 5.2.1. The only difference is in the
dimensions of the input data and the dimensions of the filters. The input data
is in the form Rpatchsize×128×128×3 where patch size is the size of a 3D block of
several images on top of each other. An overlay of several images from the pre-
vious patch was used to create patches. This provided the context information
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for the 3D network, which led to better results. The network consists of the
same number of convolutional blocks and uses the same activation function
as in 5.2.1.

The only difference is in the size of the convolution and pooling filters.
Unet3D uses convolution filters that have a size (3 × 3 × 3) and pooling filters
that have a size (2 × 2 × 2). The number of convolution filters at the ith level
of the convolution network is always 48 ∗ 2i, where i ∈ [0, 1, 2]. This size is
limited by the size of the RAM.

5.2.3 PSPNet
There were implemented two networks (PSPNet_big, PSPNet_small). The
first network contains 46,765,763. The smaller network contains 1,651,331
parameters.

In PSPNet_b, ResNet50 serves as an encoder. In PSPNet_s, a customized
block serves as an encoder in such a way that the whole network has a com-
paratively large number of parameters as Unet2D. For a smaller network, the
output tensor from the encoder has dimensions (32 × 32 × 256). For a larger
network, the output from the ResNet encoder has dimensions (60×60×4096).
The decoder consists of a pyramid pooling module, see 3.5.2. In pyramid pool-
ing, we have empirically opted for the sizes of the average pooling layers. 4
such blocks are created. The ith block contains the average pooling layer
where kernel size = (24−i, 24−i) and stride = (24−i, 24−i) where i ∈ [0, 1, 2, 3].

After applying convolution filters, these tensors are enlarged to the size of
the input tensor. Such a tensor is the input from the last layer. The last layer
is responsible for the multiclass classification.
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5.2.4 DenseUnet
There were implemented two networks (DenseUnet_big, DenseUnet_small).
The first network contains 46,765,763. The smaller network contains 1,651,331
parameters. Both networks use the Unet 5.2.1 architecture supplemented by
dense blocks. They take care of the gradual extraction of information from
the input and then concatenate it with the input to the next part of the dense
block.

Figure 5.2: DenseUnet connections [35].

In our case, DenseUnet_s works with 4 subblocks within one dense block
as in the picture (l = 4). However, the difference is in the size of the number
of output filters. In the models, the size that each additional dense block
works with changes. Let Di be a certain dense block used in the network.
Then the size of the outputs is 4(2i) where i ∈ [0, 1, 2, 3, 4], i is the order
of the dense block in the architecture from the input layer. Transition up
blocks are responsible for retrieving information from the previous block and
increasing the image size using the upsampling layer. Transition down only
use maxpooling instead of upsampling layers and reduce the image dimensions.
My classmate Uladzislav Yorsh implemented DenseUnet_s.

5.2.5 Deeplabv3+
This network contains 2,142,019 learning parameters. The network uses Atrous
Convolution approach [34]. It is a special kind of convolution when the filter
does not necessarily replicate pixels next to each other but sets atrous rate.
If we concatenate the output of such filters, then ASPP arises. Filters thus
capture information at the local and global level. In my work, atrous rates
has values of 6, 12, 18. The architecture of the MobileNetv2 network was used
as a backbone. The reason is its very good compactness and reasonably small
number of parameters comparable to other architectures.
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Figure 5.3: Deeper insights about Deeplabv3+ architecture[34].

5.3 Loss functions
During the training of neural networks, we experimented with all the loss
functions mentioned in 3.6. First, we began experimenting with functions
based on the CCE approach. Such a loss function helps model if the model is
too confident in predicting incorrect values. Another reason is the fact that the
gradients calculated during backpropagation for CCE are much more stable
compared to DCL [42]. CCE did not appear to be beneficial after a long
period of experimentation. All networks converged to a background color
(black) with no visible signs of kidney or tumor.

Another used loss function was SDL. In this loss function, we combined
the CCE approach, which was to ensure fast and smooth convergence, espe-
cially from the beginning of learning, and DCL will take care of the overall
result and training in the last epochs. In this loss function, we looked for α
and β parameters that would ensure convergence as quickly as possible with
the best possible result. When using this loss function, some models converged
to the background color but small red islands representing the kidney began
to form.

The next used loss function was pure DCL. The results were very similar,
most models returned black images with a rarely occuring red color. DCLw

with balanced classes was used as the final loss function.

5.4 Training
The whole training process had several levels. Each level brought some im-
provements and a more accurate model. The dataset was divided into train-
ing, validation and testing data. The training set contained 180 patients. The
validation set contained 20 patients and the test set 10 patients.

The first step was to train the models on 5% of the data and evaluate the
results. If the network was able to capture information, we did not utilize
the architecture any further. If architecture could not even converge to the
color of the background itself, it was clear that such an architecture could not
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capture enough information and the model had to be modified. For example,
by adding the number of filters in the convolution layer.

Another important factor during network training was the presence of
batch normalization. Initially, the models were trained without this layer.
At that time, networks were very sensitive to changes in the learning rate.
Immense sensitivity to small changes in learning rate made it very difficult
to find the right hyperparameters of the models and slowed down the whole
development process.

After applying batch normalization, a higher learning rate value can be
used. The network converges faster and is less sensitive to small changes in this
parameter. Learning is more stable and the network becomes more resilient.

After these adjustments, the networks converged to good results on a 5%
dataset. It was possible to recognize the kidney. However, after training the
networks on the entire dataset, the results were very weak. They all converged
to a black background color.

Here we started experiments with various loss functions. From CCE loss,
weighted CCE loss, focal loss, SDL, to weighted DCL. The optimization of loss
functions at this stage of development had almost no impact on the resulting
accuracy of the model. The resulting models predicted only images containing
background and only very rarely a piece of kidney.

(a) Models in this stage converged very
poorly.

(b) Real segmentation mask.

Figure 5.4: The images show difference between prediction of models and real
segmentation mask.

The reason why the models had a problem regardless of used architecture
and the loss function was in the dataset.
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5.4.1 Dataset balancing

The Kits19 dataset contains sequences of images of the patient’s abdominal
cavity. The image distribution is captured in the image 5.5.

Figure 5.5: Distribution of classes in dataset.

Background images are data samples that contain only black color (back-
ground). No relevant data containing kidneys or tumors. In images where is
a background as well as kidney or tumor, the distribution of information is
different.

In such images, the kidneys occupy about 3% -6% of the entire image. The
image contains about 95% black (background) and about 5% useful informa-
tion (kidney). The tumors in the images are much smaller than the kidneys
(about 0.5% - 1% of the information in the picture). Another important thing
is that tumors occur much less frequently than the whole kidney.

In the case of such datasets, it is extremely important to balance classes.
If the original distribution is kept, the model will be optimized for color of
background because this is the best way to minimize the loss function. This
is why all loss functions and all models have converged to backgrounud color.
No model learnt anything about kidney or tumor because such data was so
scarce that they were considered to be outlayers and anomalies to which the
models did not optimized.

All images that contained only the background were removed from the
datadataset. Only part of the data containing only kidneys and kidneys with
tumors was left. The combination of balancing the dataset and adding class
weights to the loss function resulted in models starting to segment the kidneys.

Tumors have not appeared on any of the resulting segmentation images yet.
Beautiful kidney segmentations could be seen. To obtain a tumor, we decided
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to weight classes in the newly formed dataset. We created 3 new parame-
ters αbackground, βkidney, γtumor. We multiplied the weights obtained from the
sklear.utils.class_weights() function with these parameters.

Figure 5.6: Training and validation loss when using only weights.

Such a multiplication brought us to another problem. It caused the train-
ing and validation losses to oscillate. The oscillations were greater when the
model began to learn features of the kidney and tumor.

Background is still the most represented component. The model converges
to black very easily. It has to make small changes when optimizing weights
for a kidney or tumor, but it is very difficult to do so because class weights
are used. Due to the large weights of classes, the steps during loss function
optimization are too large and the model overshoots the local minimum. The
principle is very similar to models where L2 regularization is not used. Then
weights with huge values can occure and training is not stable. In the models
where L2 is used, the weights are reasonably large and a small change will
not cause a huge instability in training. It is therefore not enough just to
outweigh the representation of individual classes but to rebalance the dataset
classes again.

The dataset had to be modified again. From the dataset, which contained
only kidneys and kidneys with tumors, images containing only tumors were
selected, duplicated several times and added to the dataset. Such a balanced
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dataset was used to train the latest models.
Very interesting phenomenon appeared during training of some models.

Sometimes training error was lower then validation error. We know from
theory that a well-trained model has a slightly lower loss on training than
on validation data. If this error between the training loss and the validation
loss is huge then the model overfits the data (solution is to use Dropout,
L2, EarlyStopping, etc.). If both the training and validation error is high,
then the model cannot capture information from the data (the solution is a
larger model, learning rate utilization, etc.). However, there was a case when
the loss on the training data was greater than on the validation data (even
if no regularization or dropout was used in the models). Such behavior can
be caused by augmentation of the training set. During training, the images
from the training set are augmented. Thanks to augmentations, data that are
similar to the validation ones are created. The validation set thus becomes a
subset of the training set. This fact can cause a lower validation loss than a
training loss.
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5.5 Results
Weighted dice coefficient loss (DCLw) was used to train the final models. Such
a loss function converged reasonably fast and with the same parameters gave
the best results compared to other loss functions from 3.6. Weighted jaccard
coefficient (JCw) was chosen as a metric determining the final quality of the
model. The best model was considered to be the one with the lowest error on
the validation set when using JCw.

Network JCw

PSPNet_s 0.8566
Unet2D 0.8633
DenseUnet_s 0.8522
Deeplabv3+ 0.8281

Table 5.1: Performance of smaller models on testing data.

Network JCw

PSPNet_b 0.8654
Unet3D 0.9113
DenseUnet_b 0.8639

Table 5.2: Performance of bigger models on testing data.

The fact that the Unet3D and Unet2D networks were optimized to the
greatest extent may have contributed to the result. Unet2D network had
the highest JCw within the smaller models 5.1. Within models with a larger
number of parameters, Unet3D won 5.2. This was the expected result for
Unet3D. The architecture was designed to capture spatial information. Such
a model can estimate the required tumor shape when processing image se-
quences, even if some data in the sequence are ambiguous and cannot be
accurately determined using information from a single image. Thanks to 3D
filters, the network was able to capture context that other networks could not.

Figure 5.7 shows tumor segmentation using Unet2D and Unet3D. The
network has converged to a state where it is able to capture the tiny structures
of the kidneys and tumor. Unet2D is not able to capture information because
it works with individual images. Segmentation inaccuracy can be seen in
figure 5.7f where 2 previous photos was segmented correctly. The last picture
of sequence with the tumor was not captured. In contrast, Unet3D on 5.7i
recognized everything correctly.

Unet3D had a problem recognizing smaller tumors. This can be due to
the higher density of information or very specific shape of such tumors.

Additional patient segmentations are created and stored in the appendix
using 2D and 3D models on test dataset.
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(a) Ground truth kth (b) Ground truth kth+1 (c) Ground truth kth+2

(d) Predicted kth using
2D model

(e) Predicted kth+1 using
2D model

(f) Predicted kth+2 using
2D model

(g) Predicted kth using
3D model

(h) Predicted kth+1 using
3D model

(i) Predicted kth+2 using
3D model

Figure 5.7: Segmentation with 2D model.

5.5.1 Implementation details
All trained networks are stored in separate files corresponding to their names.
When creating scripts, emphasis was placed on the possibility of reproducibil-
ity of results. In the development environment, all used libraries were initial-
ized with a seed value, which can be clearly seen at the beginning of training
script. The results of the training process are reproducible. The absolute de-
terminism of the training process was not ensured as the pipeline works and
initializes several GPUs. The allocation of such resources within a cluster is
not deterministic.
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In this work, we focused on creating, training and comparing the performance
of models designed for segmentation of organs and cancer. We created and
trained models that are used when working with medical diagnostic scans.

The aim of the theoretical part was to introduce the reader to the types
of diagnostic images used in medicine nowadays. This goal is fulfilled in the
chapter Medical background 1.

Another objective was to describe the basic concepts and principles within
neural networks, to address the issue of segmentation and to describe the
architecture of models designed for this type of task. The goal is met in the
chapter Machine learning background 2 and Image Segmentation 3.

Chapter 4 was devoted to the preparation of the dataset.

In the practical part 5, there was described the design of solutions with
a discussion of advantages and disadvantages of each model. In this section,
segmentation models were implemented and trained. From all of the models,
Unet3D came out as the most accurate model. The results of segmentation
on the test data were above expectations. This model was able to segment
tumors and kidneys with great accuracy. However, during segmentation, im-
ages that contained very small tumors were segmented as kidneys. This could
be improved by training the model on the original dataset that has a higher
resolution than the dataset on which these models were trained. Another
possibility for improvement is the use of GAN for dataset augmentation.

Another goal was to ensure the reproducibility of the solution. This re-
quirement was met thanks to a modification of the training script. All pa-
rameters of the dataset and the trained network are stored in a file and the
imported libraries in which randomness is used are initialized by a prede-
fined seed. The next step was to publish the source code as an open source
https://github.com/HypnoOcio/kits19.
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Outline of future work
In the future, I would like to focus on training networks on the original image
size (samples x 512 x 512 x 3). This will include modifying preprocessing
scripts and modifying neural network architectures. To achieve even better
results, it is worth considering combining a 3D network with elements of other
State-of-the-art architectures.

Another important factor is the dataset. For augmentations, it would be
interesting to use the CycleGAN network together with the Keras generator
and compare the results on such trained models. Such an approach could again
provide improved model performance and provide a base line for segmentation
in other medical applications where the dataset is small.
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Appendix A
Acronyms

CT Computed Tomography

MRI Magnetic resonance imaging

NN Neural network

ML Machine learning

DL Deep learning

DCL Dice coefficient loss

JCL Jaccard coefficient loss

CNN Convolutional Neural Network

FCN Fully Convolutional Network

GPU Graphics Processing Unit

RAM Random Access Memory
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Appendix B
Contents of enclosed CD

readme.txt ....................... the file with USB contents description
src.........................................the directory of source codes

model_weights.................the directory with pretrained weights
basic_info.txt................... info about training parameters
events.out.tf............................... log from Tensorflow
weights_2D/3D.h5 .................................model weights

testing_model_weights.ipynb..........notebook for testing models
python_source_codes ............directory with *.py files needed for
preprosessing, data augmentation and train support

script_Horovod.txt............how to install horovod on Metacentrum
segmentation.zip ............ground truth vs predicted segmentations
dataset.tar.gz ............................. smaller resolution dataset
text............................................ the thesis text directory

fig.........................................the directory with figures
ref.bib....................................the bibliography resource
thesis.pdf............................the thesis text in PDF format
thesis.tex.........................the thesis text in LATEX format
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