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Abstract

This thesis deals with the issue of storage encryption and data safety. It
provides a brief overview of technologies and software for storage encryption
currently available to users.

The work provides a security analysis of Cryptomator, an open-source
application for encrypting files in cloud storage. Potential risk areas are further
explored and evaluated. Some of the possible attacks are shown.
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Abstrakt

Tato práce se zabývá problematikou šifrování datového úložiště a bezpečnosti
dat. Poskytuje stručný přehled technologií a softwaru pro šifrování úložiště,
které jsou aktuálně dostupné uživatelům.

Práce poskytuje bezpečnostní analýzu Cryptomator, open-source aplikace
pro šifrování souborů v cloudovém úložišti. Potenciální rizikové oblasti jsou
dále prozkoumány a hodnoceny. Jsou uvedeny některé možné útoky.

Klíčová slova kryptografie, bezpečnost, Cryptomator, šifrování, scrypt, AES
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Introduction

Today, more and more people are using cloud storage, which is becoming one
of the most popular types of data storage [1]. Cloud storage is an online
repository for various data (such as photos and documents) that allows access
to the said data from any device. Since cloud storage providers do not store
any data on the user’s local storage, an internet connection is required to
upload, modify, or share data. Even though privacy is a fundamental human
right, most cloud storages do not provide adequate security for the data stored
in the cloud [2, 3].

When an account or a cloud provider is hacked, attackers may gain access
to all stored data. Government and law enforcement-issued secret surveillance
programs and backdoors are also a threat. [3, 4] Anyone who has unauthorized
access to an account can use the data for personal gain and wrongdoing.

Encryption helps protect the confidentiality of the data stored on computer
systems or transmitted through a network.

Encryption is the process of transforming data, such as a text message
or photo, into a ciphertext – data unreadable by a human without using a
corresponding encryption algorithm and a valid key, so even if our computer
is lost or stolen, that data is safe. When implemented properly, encryption
provides close to unbreakable protection of our data.

Hence, reliable encryption methods are needed for reliable cloud storage.
The issue of data encryption is continually evolving, and different methods and
programs were created for this purpose. One of these programs is discussed in
this thesis. For this security analysis, Cryptomator, a tool for disk encryption,
has been chosen.

The thesis consists of two parts; theoretical and practical.
The first part of the thesis aims to introduce the reader to the problem of

storage security and commonly used technologies to achieve such a goal. The
encryption techniques described there relate solely to the data that is stored
(on disk or in memory), not to the transmitted data.

The opening section describes files and file systems; the next one provides
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Introduction

an overview of the encryption methods themselves – encrypting the entire disk,
virtual disks, volumes, and encrypting individual files or folders. Finally, all
the above methods are compared. The last section provides readers with
a brief overview of the current options of storage encryption software, their
features, and capabilities.

The practical part consists of Chapter 2 and Chapter 3.
Chapter 2 describes in detail the selected application, its advantages, dis-

advantages, and the differences from other disk encryption software. It dis-
cusses the architecture and technologies used in Cryptomator.

Chapter 3 is the analysis itself. The first two sections of this chapter an-
alyze the UI and the source code of the application from a security point of
view. The third section focuses on verifying the documented specifications by
reimplementing Cryptomator’s critical functions by using independent cryp-
tographic libraries.

2



Chapter 1
Storage Security

In today’s digital life, it is essential to think about the security of data that is
potentially put in risk not necessarily by intentional threats; the user himself
often causes the damage unintentionally. [5]

So the question is, how can our data be protected? Achieving data safety is
possible by using various encryption and authentication (identity verification)
techniques. Data can be encrypted individually by files, but also in bulk
(all stored data). The effectiveness of a given method is affected by many
factors. You can also choose encryption for a single user (where others do
not have access to encrypted data) or multiple users. User authorization may
require a password, a PIN, or a biometric data. Regular file backups are also
recommended. [5]
Before the introduction of each encryption method, it is necessary to define
basic terms such as file or file system.

1.1 File and File System
This section aims to introduce the reader to fundamental terms, like file or file
system. Both definitions are essential when talking about storage systems and
storage encryption. Section 1.1.1 defines a file, a basic unit for data storage.
Section 1.1.2 presents a systematic way for grouping files.

1.1.1 File

A file can be defined as a set of grouped information, with each file having its
unique name. From the end-user perspective, there are two basic types of files
– data files, executables, and system files needed for OS functionality. A data
file can be a text, an image, audio, but also video, compressed data. The user
accesses the data files directly, while the operating system mainly handles the
system files. The specific file type is determined by its extension or a magic
number that is stored inside the file. [5, 6]
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1. Storage Security

1.1.2 File System

A file system defines the way files are stored and managed. Files are stored
in a file system in folders that are used to organize them. Many operations
can be done on a file system (such as folder creation, moving files between
folders, or changing access rights). Different file systems use different folder
structures. Modern file systems use a hierarchical directory system, depicted
in Figure 1.1. [5, 6]

D
User files

User directories
 and subdirectories

Figure 1.1: Example of a hierarchical directory system

The file system includes [6, 7]:

• Space management – organization of files and folders and their as-
signed physical space on the storage device; fragmentation can occur
when data on the storage is fragmented; it is better to ensure that their
positions are contiguous

• Folders – folders help keep track of files in the files system, allowing
the user to store data in a hierarchical order. This approach enables
grouping files in a systematic way, for example, when there are multiple
users in the system, and each user can have its own root directory

• File/Folder names – naming helps distinct FS objects from each other.
There may be restrictions on using certain characters or words in the
name

• Metadata – contains information about files and folders; such as type,
name, size, creation date, modification date, ownership, and access rights
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1.2. Encryption technologies

• Access control – access rights and permissions; these can be assigned to
a specific user or group of users. For most users, this method of control
is sufficient, but it is not resistant to advanced attacks (for example,
privilege escalation, when a SUID executable or a kernel is exploited).

Storages also contain information about already deleted or temporary files
(residual data). The deleted file is not physically deleted from the storage,
only the place where it is located is marked as free by the file system and can
be overwritten. Therefore, even a free space can contain sensitive data. [5]

1.2 Encryption technologies
Stored data can be encrypted using different technologies. The most com-
monly used encryption methods are described in the following sections.

1.2.1 Full Disk Encryption
Full Disk Encryption (FDE) encrypts all data on the hard disk, including the
operating system and all applications with user data, so that the files can only
be accessed after authentication through the FDE component. The technology
can be implemented either in software or hardware.

A partition table is a sector on media that serves as a part of the first sector
on a storage device. It stores information about the storage partition scheme
and decides which operating system to run (usually referring to the primary
OS). The FDE software redirects the partition table to a special pre-boot
environment (PBE) to verify the user’s identity.

Verification can be done using an access name and password, an encryp-
tion key stored on a USB, tokens generating a one-time password, a fingerprint
reader, and the like. Subsequently, FDE decrypts the OS boot sector, which
starts to boot. The FDE software gradually decrypts the files in memory
on-the-fly as needed by the user. This also applies to stored data that is de-
crypted.

Figure 1.2 shows a boot sequence on a storage with FDE.

Partition Table Pre Boot
Environment

Encrypted System
Volume

Encrypted Boot
Sector

Figure 1.2: Boot Sequence with FDE technology [5]

However, the process of continually encrypting and decrypting data can
slow down computer’s work, which should only be noticeable with larger files.
A delay of seconds also occurs when the computer is turned on or off, or when
the computer enters/exits sleep mode. Other disadvantages of FDE may be
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1. Storage Security

due to a change in the way the operating system boots, where modifying the
partition table can cause problems with the correct startup of the computer,
and there is also a risk of conflict with disk management software tools. [5]

In addition to the software solution, FDE can also be solved in hardware,
where FDE is part of the hard disk controller. Also, in this case, authentication
is required before loading the operating system, but the encryption code is
stored directly in the firmware which is stored in ROM. There is no way to
remove the FDE from it without destroying the device.

Although the whole disk encryption method can be considered secure,
there are also some security risks in the form of password leakage, encryption
key stored on USB (accessible), theft of a laptop with an already decrypted
OS, and last but not least it also stores the encryption key in the memory of
the running system (for example, in DRAM, where it is still available for some
time after shutdown). By cooling the DRAM, this time can be extended, and
the encryption key obtained. This type of attack is called a cold boot attack.
[5, 8]

1.2.2 Virtual Disk Encryption

The method of virtual disk encryption (VDE) creates a special file on the
disk, which at first glance looks like one unit – the so-called container that
holds folders and files. A virtual disk represents the container. Access to
the virtual disk requires software that runs under the operating system and
evaluates all requests to read from or write to the container. Only after
identity verification (and it can be in similar ways as in the previous case –
for example, by entering a password) is the virtual disk, including the data on
it, accessible. The required files are decrypted and encrypted on-the-fly based
on the current requirements. There is also a variant where the virtual disk is
automatically made available after successful user authorization.

The virtual disk can be copied without the need to decrypt it, so it is
portable and usable on other media, which makes it easier to backup. Here
again, an authentication process is required to decrypt the content. Further-
more, it is appropriate to consider the configuration of the operating system,
i.e., whether it is allowed for the user to write files only to the encrypted
virtual disk or not. [5]

1.2.3 Volume Encryption

Volume Encryption works on a similar principle to VDE, but instead of a
virtual disk, only a logical volume, which is typically located on an internal
storage device or removable storage media (such as a USB flash drive), is
encrypted. Access to the information on the volume is possible again after the
authentication process. Again, the software is needed that controls access to
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1.2. Encryption technologies

the volume and, based on successful user identification, decrypts and encrypts
the data on the volume that the user wants to read or write.

In addition to regular data, system or boot volumes can also be encrypted.
Here, like in FDE, the possibility of SSO can be used, where encrypted volumes
are automatically made available to an authorized user. [5]

1.2.4 File and Folder Encryption

File Encryption ensures that individual files in memory or on disk are pro-
tected, as in previous cases, by the authentication process. A user can encrypt
files as well as entire folders (Folder Encryption) – and while it can be said
that the principle is the same, folder encryption must also manage the en-
cryption of metadata related to the folder contents. Encryption is possible
at the operating system level, but a number of third-party programs are also
available. [5]

At first look, it appears that the method of encrypting folders is similar to
the method of encrypting virtual disks, which can also contain a number of
files (as well as a folder), but there is a difference. The contents of the virtual
disk are not visible without the necessary user authentication, so those who
have not been authorized cannot see what specific folders or files are on it.
On the other hand, the files in the folder that is encrypted are visible (their
names or even metadata can be displayed), only it is not possible to access
their contents. This encryption method applies to any type of storage media.
[5]

The decryption process is the same as in the previous cases – after success-
ful user authentication, the file gets decrypted and opened. Because individual
files get decrypted, this form of security has minimal effect on their speed of
opening. There are several options when encrypting files and folders. Firstly,
it is up to the user to decide which files or folders he wants to encrypt; the ad-
ministrator can specify automatic encryption of the contents of specific folders.
It is also possible to encrypt only specific file types (based on their extension
or magic number), you can automatically encrypt all files that are created by
specific software, and finally, any files that the user creates. [5]

This method has one indisputable advantage: if the entire disk is encrypted
and data and software on it are made available, the individual files may be not
protected. This can be solved by encrypting files or folders. However, there
is also the option to set up automatic decryption of all specified files after the
authentication of a user.

When encrypting files, keep in mind that the file may not be completely
protected, as the residual data described in Section 1.1.2 may also be associ-
ated with it, and it is not protected. An additional issue with this method can
be that before using a file, it must be decrypted, which is not on-the-fly opera-
tion and may take some time. It can also lead to residual data creation. [5, 8]
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1. Storage Security

1.3 Comparison of encryption methods
When picking data encryption technologies, it must be considered how each
technique will change the end-user devices and infrastructure. A comparison
of these data encryption methods is provided in Table 1.1, which is based on
the information provided by the NIST Special Publication 800-111. [5]

Characteristic 

Encryption technology 

Full Disk Encryption Virtual Disk Encryption Volume Encryption File/Folder Encryption 

Supported Devices Desktop machines All types of devices 
Desktop machines, 
removable storage 

devices 
All types of devices 

Scope of protected data 

All data on storage 
(user/system files, 

metadata, and residual 
data) 

All data in container  
 (user data, metadata, and 

residual data) 

All data in container  
 (user data, metadata, and 

residual data) 
Specific files/folders 

Potential data loss in case  
of a storage failure All data on device is lost All data in container is lost 

All data in volume is lost, 
may damage storage 

functionality 

All encrypted files/folders 
are lost 

Encrypted data portability Portable Portable Portable Portable 

Table 1.1: Comparison of encryption methods

1.4 Existing tools for encryption
Nowadays, a relatively large amount of software that offers secured access
to data can be found on the market. In addition to data encryption, the
other most implemented functionalities, among others, are generating random
passwords, password recovery options, hardware token support, and a choice
of various encryption algorithms.

The following sections briefly describe some of the alternatives for data
encryption available for users on computer machines.

1.4.1 BestCrypt

BestCrypt is a commercial disk encryption software developed by Jetico.
BestCrypt offers two variants: Container Encryption and Volume Encryp-
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1.4. Existing tools for encryption

tion. BestCrypt works with a wide range of encryption algorithms, including
DES/Triple DES, AES, Serpent, Blowfish, Twofish with support of CBC, XTS,
and LRW modes of operation. It is worth noting the support of hardware to-
kens, such as YubiKey and SafeNet eToken. [9]

1.4.2 FileVault 2
FileVault 2 is a built-in macOS software made by Apple for whole-disk en-
cryption that protects all data on a Mac and prohibits illegal access without
the decryption key or the valid credential. FileVault 2 uses XTS-AES-128 and
an encryption key with a size of 256 bits in compliance with NIST Special
Publication 800-38E. FileVault 2 provides several password recovery options
as well as an easy-to-use user interface. [10, 11]

1.4.3 LUKS
Linux Unified Key Setup (LUKS) is a disk encryption format standard, aimed
initially at use in OSes based on the Linux kernel. The primary goal was to
provide a user-friendly, standardized way of managing decryption keys.

One of the features of the standard is the support of several encryption keys
used on an equal basis with each other to access a single encrypted medium,
with the possibility of adding and removing them at the user’s demand.

The LUKS1 and LUKS2 specifications define platform-independent stan-
dards that are available in the cryptsetup tool. It uses the dm-crypt tool as a
backend for a disk encryption. [12]

1.4.4 VeraCrypt
VeraCrypt is a free, open-source storage encryption software. VeraCrypt orig-
inated as a fork of the discontinued TrueCrypt project. [13]

VeraCrypt provides the ability to use FDE (only on Windows), VDE as
well as volume encryption. It also has the option for an encrypted outer
volume to have an additional volume hidden inside. It’s possible to have a
hidden OS in such volume.

VeraCrypt supports multiple encryption algorithms such as AES, Camel-
lia, Serpent. Cascade variants of these algorithms are available. Cascade
encryption is a method of encryption when multiple (mostly two or three)
different algorithms are used with different encryption keys. [14]

VeraCrypt mainly uses the XTS mode for encryption. Hardware tokens
can be used as a keyfile provider. [15]
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Chapter 2
Cryptomator

Cryptomator is an open-source disk encryption software specifically designed
to work with cloud storage. Cryptomator is available for free on most desktop
platforms. On mobile platforms, however, it costs a one-time fee with no extra
microtransactions. [16, 17]

2.1 Features of Cryptomator
• Multiplatform – Cryptomator supports popular modern platforms:

macOS, Windows, Linux, iOS, Android

• Open-source – Cryptomator for desktop is written in Java, and its
source code is available for download and further study on GitHub [18]

• Cloud storages support – Cryptomator works with different cloud
storages, such as Dropbox, iCloud Drive, Google Drive, One Drive

• Modern encryption – Cryptomator uses the latest standards for all
encryption operations, including file/folder name encryption [19]

• Multiple vaults support – Cryptomator allows the user to use as
many vaults as the user needs

• File contents integrity checks – Cryptomator architecture allows
checking all encrypted content for integrity

2.2 Architecture
This section introduces the principles and technologies Cryptomator is de-
signed upon. All encryption algorithms, their respected operation modes, and
hash functions described in the following sections are discussed in Section 2.3,
Cryptography.
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2. Cryptomator

2.2.1 Virtual File System

The main unit for storing encrypted user data is called a Vault. Vault is
stored physically as a special folder consisting of a special file called mas-
terkey.cryptomator and two inner folders d and m, d contains the actual en-
crypted user data. In contrast, m contains metadata related to user data from
the d folder. Internally the Vault is implemented as a virtual drive by using
one of the three frontends available to the user: FUSE (macOS or Linux),
Dokany (Windows), and WebDAV as a fallback if the other two are not avail-
able. All the user-initiated operations (such as reading or writing a file) are
made using this virtual drive. [19]

2.2.2 Masterkey File

Masterkey is a file unique to each Vault. It contains all information required
for Cryptomator to work correctly with the Vault. At the moment of writing
this thesis, the current version of the Masterkey file is version 6.

Masterkey file is a JSON object, containing [19]:

• scryptSalt – a Base64 string representing a salt data used for the scrypt
key derivation function (KDF)

• version – a number representing a Masterkey version, in this case, it
equals 6

• scryptCostParam – a constant used in the scrypt KDF. Equals to
16384. Used for CPU and memory optimizations.

• scryptBlockSize – a constant used in the scrypt KDF. Equals to 8

• primaryMasterKey – a Base64 string representing an encryption mas-
ter key encrypted using the AES Key Wrap algorithm (RFC 3394)

• hmacMasterKey – a Base64 string representing a MAC master key
encrypted using the AES Key Wrap algorithm (RFC 3394)

• versionMac – a Base64 string representing a HMAC-256 of the version
value to stop Masterkey version downgrade attacks

12



2.2. Architecture

2.2.3 Keys Initialization
When the user creates a Vault, and the structure described in Section 2.2.1
gets generated, a master key is initialized. First, a pair of encryption and
MAC master keys is generated by a cryptographically secure pseudorandom
number generator (CSPRNG). In this case, SHA1PRNG is used. The use
of CSPRNG ensures the strength of the underlying cryptographic primitives,
due to the unpredictability of generated bits. [20]

After that, both keys get enrypted using the AES Key Wrap algorithm.
A key encryption key (KEK) is used for this operation. KEK is derived from
a password entered by the user with the scrypt KDF. [19]

Key Encryption Key

User Password Salt

scrypt

Figure 2.1: KEK derivation using the scrypt KDF

Both keys are then written into a Masterkey file, described in the previous
section, for later use in operations with the Vault. The whole process of keys
initialization is depicted in Figure 2.2.

Key Encryption Key

Encryption Key MAC Key

Masterkey File

CSPRNG

AES
Key Wrap

AES
Key Wrap

Wrapped
MAC Key

Wrapped
Encryption Key

Figure 2.2: Process of key initialization
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2. Cryptomator

2.2.4 File/Folder Name Encryption

One of the key Cryptomator features is a file name encryption and folder
structure obfuscation. In order to achieve that, both file and folder names are
encrypted using AES with SIV mode of operation is used. For each folder,
a unique ID is assigned. The root directory is an exception, with the unique
ID equal to a zero bytes string. A file name is passed to the algorithm as
is. AES-SIV uses the encryption and MAC key for encryption and IV syn-
thesis, respectively. The parent folder’s unique ID is also passed as additional
data to the IV synthesis function; this mitigates unauthorized changes to the
VFS structure. If it’s a directory, a zero is then added at the begging of the
encrypted name. [19]

AES-SIVPlaintext Name

Encryption Key

MAC Key

Base32 Encoding Ciphertext Name

Parent folder UID

Figure 2.3: Process of file/folder name encryption [19]

For example, with the encryption key set to:

5313A6E4 A100478E FF85F7A2 35BC374D
4FB5954D 9235B99D 529132F3 2BCF6F3C

and the MAC key equal to:

F1930AD7 528568E1 DA5417F4 626A1224
F9816261 3D3B7A67 C7315B57 CAE55E64 ,

the following folder structure would look like this:
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2.2. Architecture

FolderA

FolderB

fileB

fileC

fileA

FolderC

fileD

(a) VFS structure

6D

6ENGVYTJLO4O3WPYTZSLS2GI4CCKRD

42BOEK4V3JT2W6JTGVYIBZMP4MXWPYQMIM======

JJNDXZZXMQXZNDH3WOSPXYKDCZ35EI243M======

6U

WCTP2WEROWSCSKYXOG4UXA77PIOCYK

0ZB65B2QALGTK23KKJWA6JJGFOHVLSK6Y5FLTY===

YZAPSMLXWWN4PFEKOBFD3X7KNU63XLZDNM======

KP

FJJRP2B26QUDW42GQ6YJOZ3NCZ2I22

0RZADXKVDWAOHFXCW2XIQRHSBK22FXRRTJ3YV2===

04O4G35OOG5U7GQOHFUDFCQ34PHA3VTV7HM33Y===

M5

QFUQE4QCUELJ2EPAXGUCVAIBSUHSM3

WLCOPAZZ4OHCMCPAYUTGW2IZUF5YCNS7PM======

(b) Vault physical representation

Figure 2.4: An example of FS structure transformation

2.2.5 File Header Encryption

This section describes the construction of a file header that contains metadata
needed for decryption of the file content.

First, a random nonce is generated. It’s unique for each file and later used
for the File Content Key (FCK) encryption and the integrity checks of data
chunks. The File Content Key consists of 32 bytes of random data and is
encrypted with 8 bytes set to 1’s (0xFF×8) using AES-CTR. After that, a
HMAC-SHA256 of the nonce and encrypted FCK is calculated and placed at
the end of the header. [19]

The table below shows the layout of a file header.

offset size description

0 16 Random nonce used as IV for the header encryption
and the file integrity checks

16 40 AES-CTR of:
8 bytes filled with 1 (0xFF×8) + 256 bit File Content Key

56 32 HMAC-SHA256 of the previous 56 bytes

Table 2.1: Layout of the file header

The total size of the header is 88 bytes.

15



2. Cryptomator

2.2.6 File Content Encryption

Before the actual encryption happens, the file data gets split down into chunks
of up to 32KiB. Each chunk also has an additional data of 48 bytes required
for the encryption process and the integrity checks. The whole process of a
file data encryption is depicted in Figure 2.5. [19]

The table below shows the layout of a file chunk.

offset size description

0 16 Random nonce used as IV for the chunk encryption
and the integrity checks

16 N Up to 32KiB of the chunk data, encrypted with AES-CTR

16+N 32 HMAC-SHA256 of the file header nonce, the chunk index,
the chunk nonce, and the encrypted data

Table 2.2: Layout of the file chunk

split
File

Encrypted
File

Plaintext
chunks

join

Encrypted
chunks

AES-CTR

File Content Key Chunk nonce

File header nonce + Chunk index + Chunk nonce

HMAC-SHA256MAC Key

Figure 2.5: Process of file content encryption [19]

2.3 Cryptography

This section defines the AES cipher, various modes of operation, and cryp-
tographic hash functions used in Cryptomator. Algorithm descriptions are
provided for each cryptographic primitive.
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2.3.1 AES

Currently, only the AES cipher is supported. Developed by Vincent Rijmen
and Joan Daemen, AES is a symmetric block cipher with a block length of
128 bits and a key size of 128, 192, or 256 bits. [21]

Cryptomator supports only AES-256, which means a key size must equal
256 bits.

AES-256 is described in the pseudo-code below.
Algorithm 1: AES-256 [21]

Input: key K, data D
Result: Encrypted D using AES-256
begin

noOfRounds ← 14;
state ← D;
expKey ← KeyExpansion(K);
state ← AddRoundKey(state, expKey, 0);
/* first 13 rounds */
for i = 1; i < noOfRounds; i++ do

state ← SubBytes(state);
state ← ShiftRows(state);
state ← MixColumns(state);
state ← AddRoundKey(state, expKey, round);

end
/* last round */
state ← SubBytes(state);
state ← ShiftRows(state);
state ← AddRoundKey(state, expKey, round);
return state

end

• KeyExpansion is a function for generating round keys from the en-
cryption key [21]

• AddRoundKey is a function that adds a round key to the state by
using XOR operation [21]

• SubBytes is a function for a non-linear byte substitution operating
separately per byte using the S-box table [21]

• ShiftRows is a function that processes the state, cyclically shifting the
last three rows of the state by different values [21]

• MixColumns is a function that takes all the state columns and mixes
their values (individually) to get new columns [21]
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2.3.2 Modes Of Operation

Cryptomator uses only two modes of operation: CTR and SIV. CTR mode
is used for file’s content encryption, while SIV is needed for file/folder name
encryption. The following sections describe both of these modes.

2.3.2.1 CTR

CTR mode turns AES into a stream cipher. It generates the keystream block
by encrypting the sequential values of the so-called counter. A counter can be
any function that produces a sequence that is guaranteed not to repeat for a
long time. The encrypted value is then XOR’ed with a plaintext block to get
ciphertext. [22]

Cipher

Counter

Encryption Key

Plaintext

Ciphertext

+

Cipher

Counter

Encryption Key

Ciphertext

Plaintext

+

Figure 2.6: Encryption and decryption with CTR mode

2.3.2.2 SIV

SIV is an authenticated mode of operation for AES. It combines the CTR
mode with AES-CMAC for integrity protection.

SIV takes a key, a plaintext, and optional additional data that is used
for authentication. The result is a synthetic initialization vector (SIV) and a
ciphertext with the same length as the plaintext. [23]
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Listings below describe the operation of the mode.

Algorithm 2: AES-SIV [23]
Input: Encryption key KE , MAC key KM , plaintext P , data

S1, ..., Sn

Result: Ciphertext with SIV
begin

IV ← S2V (KM , S1, ..., Sn, P );
/* || is concatenation */
C ← IV & (164 || 01 || 131 || 01 || 131); /* counter */
X ← AES-CTR(KE , IV, C, P );
return IV || X;

end

Algorithm 3: S2V [23]
Input: MAC key KM , data S1, ..., Sn

Result: Synthetic IV
begin

if n = 0 then
/* || is concatenation */
return AES-CMAC(KM , 0127 || 11);

end
D ← AES-CMAC(KM , 0128);
for i = 1; i < n; i++ do

D ← dbl(D) ⊕ AES-CMAC(KM , Si);
end
if length(Sn) ≥ 128 then

T ← Sn ⊕ D;
else

T ← dbl(D) ⊕ pad(Sn);
end
return AES-CMAC(KM , T)

end
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2.3.3 scrypt

In cryptography, password-based key derivation functions are used for deriving
secret keys from a secret value, in this case, a password.

scrypt is a key derivation function developed by Colin Percival. Designed
to be resistant to brute force and custom hardware attacks, it uses memory-
hard functions to achieve that goal. [24]

Under the hood, scrypt uses the well-known PBKDF2 (with HMAC-SHA256)
created by RSA Laboratories and Salsa20/8.

Algorithm 4: scrypt [24]
Input: passphrase P , salt S, cost factor N , block size factor r,

parallelization factor p, key length l
Result: key derived from P
begin

blockSize ← 128 * r ; /* in bytes */
B ← PBKDF2(P , S, 1, blockSize * p);
for i = 0; i < p; i++ do

Bi ← ROMix(Bi, N);
end
/* || is concatenation */
newSalt ← B0 || B1 || ... || Bp−1;
return PBKDF2(P , newSalt, 1, l)

end

ROMix is a sequential memory-hard function that makes the creation of
custom hardware an expensive task. The function computes a large number
of pseudo-random values and then stores them in RAM. [24]

More detailed explanation of the scrypt KDF can be found in the white
paper written by the author of the algorithm. [24]

2.3.4 HMAC

HMAC is a message authentication mechanism using cryptographic hash func-
tions. Any cryptographic hash function with iterative nature (such as SHA-1,
SHA-256, SHA-512) can be used in HMAC. The strength of HMAC directly
depends on the strength of the used hash function. [25].
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Algorithm 5: HMAC-SHA256 [25]
Input: key K, data D
Result: HMAC-SHA256 of D
begin

blockSize ← 64; /* in bytes */
hashSize ← 256; /* in bits */
ipad ← 0x36 * blockSize; /* inner padding intialization */
opad ← 0x5C * blockSize; /* outer padding intialization */
if length(K) > blockSize then

K ← SHA-256(K);
end
for i = 0; i < length(K); i++ do

ipad[i] ← ipad[i] ⊕K[i];
opad[i] ← opad[i] ⊕K[i];

end
/* || is concatenation */
return SHA-256(opad || SHA-256(ipad || D))

end

In the case of Cryptomator, SHA-256 is used for calculating HMAC.
SHA-256 is built on the Merkle–Damgård structure. After the padding,

the plaintext is split into blocks, each block into 16 words. The algorithm
passes each block of the message through a cycle with 64 rounds. At each
iteration, 2 words are transformed; the remaining words define the transfor-
mation function. The processing results of each block are added; the resulting
sum is the value of the hash function. [26]
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Chapter 3
Security Analysis

The goal of this chapter is to provide a summary of the security analysis of
Cryptomator. The analysis was conducted on macOS using Cryptomator ver-
sion 1.4.17. The report consists of three parts: the UI analysis, the source
code analysis, and the reimplementation based on the provided documenta-
tion. In the process, multiple weaknesses were discovered in different parts of
the program. Each found problem is described in detail with possible solutions
advised.

3.1 UI Analysis

This section talks about the UI of Cryptomator, process of the Vault creation,
password managing, and related potential security problems discovered while
studying the UI.

3.1.1 Main Screen

When Cryptomator is launched, a user is presented with a welcome screen.
By pressing a cog button, settings pane (Figure 3.1) shows up. The settings
pane allows users to chose preferred frontend for the VFS (as well as some
configurations for the selected frontend, e.g., WebDAV port if WebDAV is
selected), enable automatic check for updates, and debug mode. By enabling
debug mode, Cryptomator creates additional log files with useful information
for solving problems with a vault.
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Figure 3.1: Settings pane

3.1.2 Vault Management

By pressing the "+" button, two options are presented: create a new Vault,
or add already existing Vault. A pane where the user can enter the Vault
password is presented when creating a new Vault.

Figure 3.2: Vault management options
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Figure 3.3: Password input when creating a Vault

When studying this pane, several problems and disparities with the NIST
standard [27] were discovered:

• In accordance with the standard’s recommendations, the minimum pass-
word length selected by the user must be at least eight characters

• When confirming the password, there is no additional confirmation layer
when using a weak password

• It is also recommended to provide the user with a function to disable
the hiding of the password with dots to be able to verify the correctness
of the entered password

• There is no way to create a recovery key when the password is forgotten,
or there is no way to enter it

While these flaws are not critical, they indirectly reduce the safety of
the user data. For more effective security of the data, a strong password is
required.

One of the indicators of password strength is the entropy of this password.
Entropy is expressed in bits and defines the value of password ambiguity. [28]
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Entropy H of a password of length l using N number of character can be
calculated using this formula [28]:

H = log2(N l)

Usage of this formula can confirm that a randomly chose password of eight
characters (which is recommended by the standard) generated using a set of 94
printable ASCII characters (excluding space) provides entropy equal to 52.7
bits. It is twice as better entropy as the password in the same characters set
with a length of four characters, and 1.4 times better entropy than a password
consisting of six characters. [28]

3.1.3 Miscellaneous UI related problems

Problems with changing the password were found, in addition to those de-
scribed earlier in the previous section.

• Menu for changing a password is hidden and hard to find, making it
difficult for the user to update the password in case of a compromise of
the old one

• The Change password pane doesn’t notify the user that files won’t get re-
encrypted, and the Vault will be vulnerable to the masterkey downgrade
attack. That allows an attacker to reuse the older version of masterkey
with a weak password to unlock the Vault. The attack itself is described
in detail in Section 3.2.1

Also, a problem with the "Save password" option exists. The saved pass-
word is not removed from a keychain when the option is turned off, or the
Vault is removed – allowing an attacker to recover a saved password from a
keychain.

A solution could be removing a password from a keychain after a Vault
removal or after turning the option off.

3.2 Source Code Analysis

During the study of the application’s architecture, it was concluded to focus
during the source code analysis on the implementation of VFS, UI, and the
cryptographic parts of Cryptomator. [29, 30]

After examining crucial parts of the code, three potential security problems
were found. These problems are described in the following sections. Never-
theless, the studied cryptographic primitives are implemented correctly and
in accordance with the relevant standards.
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While studying the code, it was noted that the Zxcvbn algorithm by Drop-
box is used to check the password complexity. A detailed study of this algo-
rithm and its comparison to other similar algorithms was made by Xavier de
Carné de Carnavalet and Mohammad Mannan. [31]

Additionally, independent audits of the code were conducted by Cure53
and Tim McLean. [32, 33]

3.2.1 Masterkey Replay Attack
One of the problems found during the analysis was that changing a Vault
password would only change the respective KEK and would not change the
Vault’s encryption key, making it an easy target for a master key replay attack.

Given that Cryptomator is intended for use with cloud storage, an attacker,
who has access to the user’s cloud storage, can quickly recover an older version
of the master key with a weak password and use it for unlocking the newly
updated Vault. The example of this potential attack is depicted below.

Vault in a cloud storageuser

attacker

uploads the Vault with a weak password

Gains access to the master key

Weak Master Key

MasterKey with a new stronger password

Copy of the MasterKey

updates password
the Vault is updated

Uses the old MasterKey to access the Vault

Figure 3.4: Example of the masterkey replay attack

Currently, the only effective way to change a password without threatening
data would be to create a new Vault from scratch. One way to solve this
problem is to re-generate the encryption keys and sequentially re-encrypt the
whole storage with a new key.

3.2.2 File Contents Swap
In this illustration, let us assume there are two different files in the same
folder. Because the filename isn’t linked to the file content (see Section 2.2.4),
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those two files’ contents can be swapped.
Hence an attacker can change the files’ contents, hoping for the user to

publish decrypted versions of secret files accidentally.
A solution to this problem would be enforcing integrity checks for the file’s

name and its content.

3.2.3 Password persistence in RAM

It was also noted that the Vault’s password is stored in RAM even after closing
this Vault. In some cases, password information remains in memory even after
the program is closed. This weakness can be exploited by using a cold boot
or DMA attack. [34, 35]

A possible solution to the problem is to provide an option to encrypt RAM
sections as VeraCrypt does. [15]

At the same time, RAM encryption is not a complete solution to the
problem, since RAM encryption raises another question: how to protect the
encryption key stored in an unencrypted memory area? In order to secure the
key, it can be stored safely in a TPM chip or similar hardware (such as T2
Security Chip).

3.3 Implementation
This section focuses on the reimplementation of the core functionalities of
Cryptomator. The purpose of this implementation was to check if the source
code and executables provided by the Cryptomator team honor the program’s
documentation and if there are any deviations in the program functioning.

Swift and Objective-C languages were chosen to verify the implementation.
Specifically, Objective-C was used for SIV mode of operation implementation
and essential system operation related to encryption. All other parts of the
program are written in Swift.

At the moment of writing this thesis, the code is compilable only on a
machine running macOS due to the exclusivity of Objective-C on macOS/iOS
systems. After making some alterations to the code written in Objective-
C (such as AES-SIV and Base32 related code), it would also be possible to
compile the reimplementation on Linux.

Standard libraries provided by macOS were chosen for this reimplementa-
tion due to the open-source nature of Swift and Apple system libraries. [36, 37]
The following libraries and 3rd party code were also used:

• libscrypt-kdf by Colin Percival is used for a password-based KDF
scrypt [38]

• Base32Additions by Dave Poirier is an RFC 4648 compatible imple-
mentation of Base32 encoding [39]
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3.3.1 Verification of correspondence
During the verification process, all critical operations, such as Vault creation,
Vault unlocking with the following parsing, file/folder encryption, and de-
cryption, were successfully implemented. All vaults created and managed by
Cryptomator were accessible with the reimplementation and vice versa.

Based on the results of the implementation testing, it’s clear that Cryp-
tomator conforms to its documentation. A total number of 50 different tests
were conducted.

Figure 3.5: Cryptomator working with a vault created by the reimplementa-
tion

3.4 Update 1.5.0
Just before the security analysis was completed, the Cryptomator team re-
leased a new update, version 1.5.0. After careful examination it was noticed
that the version 1.5.0 fixes some of the issues found during the conducted
security analysis.

These fixes include:

• Minimum length of a password is set to eight

• Added the ability to show password when typing

• It’s now possible to create a recovery key in the case when the password
is lost

• It’s now easier to change a password
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Conclusion

This thesis aimed to introduce the reader to the disk encryption issue and the
Cryptomator tool, including its security analysis. During the study of Cryp-
tomator, I learned how encryption software works and expanded my knowledge
of cryptography.

The first chapter described storage encryption theory. The best-known
methods and their comparison have also been described in this chapter. The
most popular software was outlined at the end of the chapter.

The purpose of the second chapter was to describe Cryptomator, its capa-
bilities, and its architecture. The cryptographic primitives used in Cryptoma-
tor were defined later in the chapter.

The last chapter dealt with the analysis of program security from differ-
ent angles: the UI, analysis of the essential parts of the source code, and
verification of compliance between the Cryptomator’s documentation and its
implementation.

During the analysis, several problems were found in different parts of the
program and described in this thesis. One of these problems is weak pass-
word strength checks and recommendations that oppose ones provided by
related standards. Insecure handling of password change for a Vault and file
integrity checks were discovered. Own re-implementation using the provided
documentation did not reveal any inconsistencies with the Cryptomator’s im-
plementation and the provided documentation.

The more complex a system becomes, the more difficult it is to make it
safer, so it is vital to conduct security analyzes on a continuing basis. [40]
In the future, it might be possible to expand the thesis with a more compre-
hensive analysis of future updates and a closer examination of the source code.
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Appendix A
Acronyms

AES Advanced Encryption Standard

ASCII American Standard Code for Information Interchange

CMAC Cipher-Based Message Authentication Code

CTR Counter

CSPRNG Cryptographically Secure Pseudorandom Number Generator

DES Data Encryption Standard

DMA Direct Memory Access

DRAM Dynamic Random-Access Memory

FCK File Content Key

FDE Full Disk Encryption

GPT GUID Partition Table

HMAC Hash-Based Message Authentication Code

IV Initialization Vector

JSON JavaScript Object Notation

KDF Key Derivation Function

KEK Key Encryption Key

LUKS Linux Unified Key Setup

MAC Message authentication code

NIST National Institute of Standards and Technology
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A. Acronyms

OS Operating System

PBE Pre-Boot Environment

PIN Personal Identification Number

PRNG Pseudorandom Number Generator

RAM Random Access Memory

ROM Read Only Memory

RFC Request For Comments

SIV Synthetic Initialization Vector

SSD Solid-State Drive

SSO Single Sing-On

UI User Interface

UID Unique Identifier

USB Universal Serial Bus

VDE Virtual Disk Encryption

VFS Virtual File System
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Appendix B
Contents of enclosed SD

readme.txt........................the file with SD contents description
exe ..................................... the directory with executables
src.......................................the directory of source codes

bp-cryptomator ............................ implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
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