
Ing. Karel Klouda, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague January 3, 2020

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Detection of organs in CT images using Neural Networks

 Student: Ivana Hacajová

 Supervisor: Ing. Jakub Žitný

 Study Programme: Informatics

 Study Branch: Knowledge Engineering

 Department: Department of Applied Mathematics

 Validity: Until the end of summer semester 2020/21

Instructions

Research current state-of-the-art techniques that are used for detection and segmentation tasks in the
medical imaging domain, focus on CT images. Implement your own prototype model that will work on one
of the datasets provided by the supervisor. Compare the performance of your model with reference results
from literature or existing models and discuss the pros and cons. Publish your prototype code and make
sure your results are reproducible.

References

Will be provided by the supervisor.

Bachelor’s thesis

Detection of Organs in CT Images Using
Neural Networks

Ivana Hacajová

Department of Applied Mathematics
Supervisor: Ing. Jakub Žitný

June 4, 2020

Acknowledgements

First, I would like to thank Ing. Jakub Žitný for supervising my thesis, who
was very enthusiastic about my project and always eager to help, providing
me with useful resources. I am also very grateful for the support from my
family and close friends, especially during the strange times of the COVID-
19 pandemic, which left many people in uncertain and difficult situations. I
am also very thankful to the organisers of VerSe‘19: Large Scale Vertebrae
Segmentation Challenge for providing us with very valuable CT data.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on June 4, 2020

Czech Technical University in Prague
Faculty of Information Technology
© 2020 Ivana Hacajová. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Hacajová, Ivana. Detection of Organs in CT Images Using Neural Networks.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Informa-
tion Technology, 2020. Also available from: ⟨https://github.com/iVonka/
Detection-of-Organs-in-CT-Images-Using-Neural-Networks⟩.

https://github.com/iVonka/Detection-of-Organs-in-CT-Images-Using-Neural-Networks
https://github.com/iVonka/Detection-of-Organs-in-CT-Images-Using-Neural-Networks

Abstrakt

Táto práca sa zaoberá výskumom zobrazovacích metód v medicíne, klasických
prístupov k segmentácii obrázkov, CT a konvolučným neuronovým sietiam.
Praktickou časťou je implementácia architektúry 3D UNet pre segmentáciu
chrbtice a jednotlivých stavcov z CT obrázkov a jej porovnanie s jej 2D verziou.

Klíčová slova zobrazovacie metódy v medicíne, konvolučné neuronové siete,
segmentácia, CT, chrbtica, stavce

Abstract

This thesis contains research of the field of medical imaging, classical meth-
ods of image segmentation, computed tomography and convolutional neural
networks. The practical part involves implementation of an architecture of
3D UNet for segmentation of the spine and specific vertebrae from CT scans.
Furthermore, this architecture is compared to its 2D counterpart.

Keywords medical imaging, convolutional neural networks, segmentation,
CT, spine, vertebrae

vii

Contents

Introduction 1

Aim of the Thesis 3

1 Medical Image Analysis 5
1.1 Medical Imaging . 5
1.2 Classic methods . 7

1.2.1 Thresholding . 7
1.2.2 Region Growing . 8
1.2.3 Watershed Algorithm 9
1.2.4 Edge-based Segmentation Techniques 9
1.2.5 K-Means Clustering . 10
1.2.6 Fuzzy C-Means clustering 12

2 Computed Tomography 15
2.1 Technology . 15
2.2 Scans . 16

2.2.1 Artifacts . 17
2.2.2 Formats . 17
2.2.3 Orientation . 17

3 Convolutional Neural Networks 19
3.1 UNet . 21
3.2 ResNet . 22
3.3 DenseNet . 23
3.4 R-CNN, Fast R-CNN, Faster R-CNN 24
3.5 Capsule Network . 25

4 Spine and vertebrae segmentation 27
4.1 Keras . 27

ix

4.2 Data . 27
4.2.1 Spine . 28
4.2.2 Data characteristics . 28

4.3 Preprocessing . 29
4.4 3D UNet . 30
4.5 Spine segmentation . 31

4.5.1 Loss functions . 31
4.5.2 Training . 32
4.5.3 Metrics . 33
4.5.4 Results . 33
4.5.5 Summary . 35

4.6 Vertebrae segmentation . 35
4.6.1 Loss functions . 35
4.6.2 Training . 36
4.6.3 Results . 36
4.6.4 Summary . 36

Conclusion 39

Bibliography 41

A Segmentations 45

B Acronyms 49

C Contents of enclosed SD card 51

x

List of Figures

1.1 The hand of Mrs. Wilhelm Roentgen: the first X-ray image, 1895 . 6
1.2 K-Means clustering . 12
1.3 Fuzzy logic temperature sets . 12

2.1 CT brain slices . 16
2.2 Orientations . 18

3.1 Visualisation of convolution . 20
3.2 Visualisation of pooling . 20
3.3 Architecture of AlexNet . 21
3.4 Architecture of UNet . 22
3.5 Residual block . 22
3.6 ResNet architecture . 23
3.7 DenseNet architecture . 24
3.8 R-CNN modules . 24
3.9 CapsuleNetwork architecture . 25

4.1 Sample data . 28
4.2 Vertebral segmentation mask of 4.1 28
4.3 Vertebrae [T2-L5] . 29
4.4 3D UNet architecture . 30
4.5 Loss over epochs for Model 1 and 2 34
4.6 Results of spine segmentation . 37
4.7 Comparison UNet 3D and UNet 2D 38
4.8 Validation loss . 38

A.1 Results of spine segmentation . 46
A.2 Results of spine segmentation with Model 2 47

xi

List of Tables

4.1 Number of neurons for each layer 31
4.2 Encoder block . 31
4.3 Decoder block . 31
4.4 Comparison of Model 1 and 2 . 34
4.5 3-fold Cross validation . 35
4.6 UNet 2D and UNet 3D results . 35

xiii

Introduction

The year is 2020. I can say with confidence, that the last decade belonged to
AI. Modern hardware finally allowed for solving tasks deemed too computa-
tionally demanding before. Machine learning algorithms are already present in
our daily activities, even if we do not know about them. They are responsible
for solving numerous tasks: predictions, recommendations, object detection
and recognition and many more.

I have always wanted to connect my field (computer science) with natural
sciences. Medical industry offers various applications of machine learning, one
of which is image analysis. Medical images have become an integral part of
diagnosis and treatment of patients. It comes just natural to try to automize
the process of their analysis and diagnosis.

The focus of my thesis is detection of organs in CT images using modern
approaches, such as neural nets. This covers researching the medical imaging
field, state-of-the-art methods for image analysis and also implementing my
own prototype for organs detection with the data set of my choice.

In the first chapter of my thesis I will talk about how the field of med-
ical imaging developed throughout the history, starting with X-Rays. I will
focus on classical methods used for medical image processing, which proved
to be efficient, but are being replaced by machine learning algorithms. The
following chapter introduces CT as a technology and some important char-
acteristics of the CT scans. The third chapter is a review of convolutional
neural networks and their variations proposed for different scenarios and uses
in image processing. And last, but not least, I will describe the work I have
done implementing a neural networks model for detection of organs in CT
images. My task is segmentation of a spine and specific vertebrae.

1

Aim of the Thesis

The aim of this thesis is to research techniques used in the medical imaging
domain and implement my own model for segmentation of organs using neural
nets.

In the literature review I will look at the historical milestones that shaped
the medical imaging domain. I will introduce techniques for image analysis in
medicine popular in the past, as well as those used nowadays. Furthermore
I will focus on CT images and the technology behind them. The approach
of my choice is convolutional neural networks and their variations that have
recently gained popularity.

The practical part of my work will cover implementing my own prototype
model for segmentation tasks over medical images. The data set I will work
with consists of CT images of human spines. I will try to segment spine and
also specific vertebrae from these images. I will compare my results with
results of already existing models, discuss them. My prototype code has to be
published and be reproducible.

3

Chapter 1
Medical Image Analysis

In the first chapter of my thesis I am going to talk about Medical Image
Analysis. I will briefly describe discoveries and milestones in medical imaging
that led to the origin of the field. I will continue with introducing techniques
and approaches used at its beginnings and are still relevant to this day.

1.1 Medical Imaging
Medical imaging is an integral part of the modern medicine. It refers to the
techniques that produce visualisations of various parts of the human body.
These images are usually used for diagnoses and treatment of patients. Its
use became widespread in the 20th century, as many of the devices used for
medical imaging were invented in the past hundred years.

It all started in 1895 with X-Rays. Wilhelm Conrad Röntgen was exper-
imenting with a cathode-ray tube (vacuum tube with electron beams that
strikes a phosphorescent screen) [1]. He noticed the tube was emitting a flu-
orescent glow. This ray could pass through various substances and human
tissues, except for bones and metal objects, casting shadows. One of his first
experiments was an image of his wife’s hand 1.1. The news about X-Ray
spread quickly and left the scientific community amazed. X-Ray started to be
heavily used in medicine and physics very soon after its invention. However,
unwanted side-effects were observed. X-Rays have a very short wavelength
(1 angstrom). Therefore, they can penetrate materials visible light (6000
angstroms) cannot. This can cause serious damage to human bodies like skin
burns or even loss of limbs from early exposures.

Another important milestone in the medical field was ultrasound. Un-
like X-Ray, ultrasound had been already used in other areas (localisation of
submarines, detection of flaws in metals) before its introduction into medical
diagnosis. Ultrasound is a high-frequency sound. So high, a human ear cannot
detect it. A probe is used to transmit these waves into patient’s body. The

5

1. Medical Image Analysis

Figure 1.1: The hand of Mrs. Wilhelm Roentgen: the first X-ray image, 1895
[1]

sound-waves echo from internal tissues and are reflected back to the probe.
Then, an image representation is computed from the reflections. In 1958,
Ian Donald and his team published the first paper about the use of ultra-
sound in obstetrics and gynaecology. They managed to get the first image
of a fetus. Ultrasound gained popularity also due to its non-invasiveness and
harmlessnes (in comparison to X-Rays). By 2000, modern real-time scanning
machines with 3D/4D options were already available on the market.

After 60 years from the invention of X-Rays, a biomedical engineer Godfrey
Hounsfield came up with an idea to create three-dimensional scans of the
human body. K. B. Bhattacharyya summarised Hounsfield’s journey in his
article [2]: He wanted to develop a software that would compile X-Ray images
from various angles into a 3D one. He succeeded and constructed the first
CAT (computed axial tomography) scanner. In 1971, CAT scanners began
to be used in hospitals. They could produce scans of brains, which was very
helpful in diagnosing brain lesions. Hounsfield worked very hard to improve
his inventions, so other parts of the body could be imaged as well. He was
awarded a Nobel Prize for Medicine in 1979. I will talk more about C(A)T
scans in the later chapters.

In 1973 we could witness another breakthrough in the medical imaging
domain - MRI (magnetic resonance imaging). First, we need to go back
to its roots in the 1930s. Austrian scientist Isidor Isaac Rabi discovered,
that molecules passing through a magnetic field emit specific radio waves and
change their spins. Each atom or molecule resonates with different frequen-
cies that can be used to identify them and distinguish between types. This

6

1.2. Classic methods

phenomenon is known as nuclear magnetic resonance (NMR). Paul Lauterbur
found a way for NMR to produce images. He used the signals from different
atoms to build the pictures [3]. In contrast to X-Rays or CT, MRI does not
emit radiation and is generally safer. MRI works well with soft tissues, for
example brain.

Nowadays, all these imaging techniques (and others) are widely used and
are a crucial part of the process of diagnosis and treatment. All the devices
have been keeping up with the latest technology and are able to produce better
results leading to more accurate diagnosis. Additionally, potential health risks
from their use have been more thoroughly researched and reduced.

According to data from Eurostat [4], the number of examinations by med-
ical imaging techniques is still on a rise worldwide, as the technology is be-
coming more available. In Slovakia, there were 42,468 examinations performed
using MRI in 1996. 20 years later it was 333,599. Similarly, the number of CT
scans has grown 6-times in the same time period. Naturally, there was a need
for image processing techniques that would either enhance some features of
these images, make them more easily interpretable for doctors or even detect
specific objects. Furthermore, we wanted to automatise these processes.

1.2 Classic methods
The field of Medical Image Analysis originated from Computer Vision in the
early 1990s. Researchers with CV background started applying already estab-
lished mathematical methods to medical images. In 1996 this newly emerging
field got its own archival journal Medical Image Analysis. To this day, it is a
leading medium that publishes new research results from this area [5].

In this section I would like to focus on fundamental approaches for image
segmentation used at the beginnings. Segmentation is a process of separat-
ing objects from the background or from other objects. We can do this by
identifying every pixel that belongs to this object or finding its boundaries.
In the medical field, segmentation can be used for automated classification of
blood cells, detection of tumors, measuring tumor volume and its response to
therapy and many more.

1.2.1 Thresholding
Thresholding [6] is a technique based on finding a grey level – threshold T.
Every pixel value is compared to this threshold and then assigned to either
object or background. Suppose we have an image or its part f(x,y). The
thresholded image g(x,y) is defined as:

g(x, y) =
{

1 if(x, y) > T
0 if(x, y) ≤ T

(1.1)

7

1. Medical Image Analysis

If the histogram of our image is bimodal (a histogram with two separated
peaks), we can assume its peaks represent an object and a background. In
this case, we can use one threshold for the whole image. This is called global
thresholding.

The global threshold can be chosen manually – by looking at the histogram
and choosing the grey level value at the bottom of the valley separating the
peaks. There are also methods to automatise this process. Otzu’s method
finds the threshold that minimizes intra-class variance, which he shows is the
same as maximizing inter-class variance [8].

Global thresholding does not always provide sufficient results. If the object
has various intensity values, isn’t on a contrasting background or is noisy, a
different method has to be used. One of the solutions is local (adaptive)
thresholding. The image is divided into overlapping rectangular regions. A
histogram is computed for each of these subimages and then the threshold for
this region is chosen. This method is computationally more demanding than
finding a global threshold.

Medical images are often blurry, noisy, with low contrast. Histrograms of
such images are not bimodal, which causes problems with finding the right
threshold. Some pre-processing techniques can help in such situations. We
can try to smooth out the edges using various filters. Filters usually have a
NxN shape, where N = 3, 5, 7, etc.

One of the filters is mean filter. For every pixel in the picture we find
the average of the pixels in its local neighbourhood and that is its new value.
Another common filter is median filter, which computes the median value for
for the neighbouring region. These filters change the histogram in a way that
makes it possible to select the threshold.

1.2.2 Region Growing
The region growing method [7], as opposed to thresholding, is based on finding
connected regions of pixels with similar values. The first step of the algorithm
is to select one or more seeds – pixels that belong to the object.

The next step is checking all neighbouring pixels, whether they are similar
enough to be added to the growing region. The similarity criterion is called
uniformity test. This algorithm continues until there are no more pixels that
can be added to the region. All the pixels that have been added to the region
represent the object.

The choice of the uniformity test is crucial, the result of region growing is
heavily dependant on it. One of the tests can be to compare a pixel value to
the mean of the already found region. A threshold for accepting pixels needs
to be set. If the difference between the value and the mean is smaller than
the threshold, the pixel is added to the region.

Region growing is a very simple technique. It can segment objects with
predefined properties. It is computationally not demanding, as it visits every

8

1.2. Classic methods

pixel a limited amount of times. On the other hand, it is very sensitive to
noise.

1.2.3 Watershed Algorithm
Another region-based method is watershed algorithm [7]. This process can be
viewed as filling valleys with water.

First, seeds for the algorithm need to be chosen. Every object in the image,
including the background, needs to be marked by a seed. These can be chosen
by an expert or by some automated algorithm specific for the given domain.

We can look at the image as if it were a topographic map. Dark pixels
represent valleys, bright ones represent mountaintops. The seeds represent
holes in the valleys. Through these holes, water is flowing into their respecting
valleys. At one point, waters from two different ‘lakes’ meet. This is where
we build a dam – a border between two objects in the picture.

1.2.4 Edge-based Segmentation Techniques
Locating edges of objects is another way to segment images [7]. Edges in a
picture f(x,y) are defined by the local intensity gradient. Gradients approx-
imate the first-order derivative of the image-function. The magnitude of a
gradient can be calculated as

|G| =
√[

Gx
2 + Gy

2
]

=

√√√√[(
∂f

∂x

)2
]

+
[(

∂f

∂y

)2
]

(1.2)

where Gx is a gradient in the x direction and Gy is a gradient in the
y direction. We can look at them as gradients in the horizontal and vertical
directions. Magnitude can be displayed as an image, where it is proportionally
represented by grey level values.

There are a lot of popular gradient operators to compute approximations
of derivatives. They are usually filters that use convolution. Convolution is
an operation, that computes weighted summations of values in local neigh-
bourhoods.

The filters have usually two kernels, so both horizontal and vertical changes
can be detected. These gradients are then combined using 1.2 creating the
gradient magnitude image. Some of the filters are:

Sobel edge operator −1 −2 −1
0 0 0
1 2 1

−1 0 1

−2 0 2
−1 0 1

9

1. Medical Image Analysis

Prewitt operator 1 1 1
0 0 0

−1 −1 −1

1 0 −1

1 0 −1
1 0 −1

Roberts Cross operator [

1 0
0 −1

] [
0 1

−1 0

]

Gradient operators are often followed by a thresholding operation. In this
step it is decided, whether an edge has been found or not. The result of this
operation is a binary image containing the detected edges.

Apart from the first-order derivatives, also the second-order derivatives
can be used to detect boundaries of objects. Peaks in the first-order corre-
spond to zeros in the second-order derivatives. Laplacian operator is able to
approximate them. The operator ∇2 of an image function f(x,y) is defined as:

∇2f(x, y) = ∂2f(x, y)
∂x2 + ∂2f(x, y)

∂y2 (1.3)

Convolutional masks that approximate Laplacian operator can be: 0 −1 0
−1 4 −1
0 −1 0

−1 −1 −1

−1 8 −1
−1 −1 −1

 1 −2 1

−2 4 −2
1 −2 1

After applying Laplacian operator, edges need to be located. Those are

pixels where Laplacian passes through zero (pixels, where the operator changes
signs). This occurs when the pixel intensity changes rapidly.

1.2.5 K-Means Clustering
Clustering in general is a term which describes a problem of finding groups
among a set of objects. These groups are called clusters. Clustering works
with unlabeled objects and the goal is to find some categories data is organised
into.

There are many ways for describing a cluster [9]: The easiest way to un-
derstand what a cluster is, is to look at it as a group of objects, where all the
objects are similar to each other. Moreover, objects in two different clusters
should be different. From a more analytical point of view, objects can be
seen as points in a space where we can measure distance between them. Any
two points in one cluster should be closer to each other than two points from
different clusters. Furthermore, clusters should be regions with high-density
of points, separated by regions of low-density.

10

1.2. Classic methods

Clustering is used in machine learning as a means to find unknown patterns
in n-dimensional data. It is considered unsupervised learning, since it takes
unlabeled data as its input, and outputs data separated into categories.

One of the most popular algorithms for solving the clustering problem
is K-Means proposed in 1967 [10]. The idea is to find k clusters and their
centroids in a way, that the distance between data points and their assigned
cluster centroid is minimised. The k is defined by user. In general, the goal is
to minimise the objective function:

J =
k∑

j=1

n∑
i=1

∥∥∥x
(j)
i − cj

∥∥∥2
(1.4)

where J is the objective function, k is the number of clusters and n is the
number of points within the cluster j.

∥∥∥x
(j)
i − cj

∥∥∥ is the distance between a
point x and a centroid c of the cluster j.

The way centroids are computed and distances between points are de-
fined, depends on the metric space and operations available. In the Euclidean
space the centroid corresponds to the mean of all points in the cluster (as in
KMeans). The distance can be Euclidean distance.

K-Means is an iterative algorithm and consists of the following steps:

1. Choose k initial cluster centroids

2. Assign every point in the space to the nearest centroid

3. Recompute cluster centroids

4. Repeat steps 2. and 3. until cluster assignments are not changed in
comparison to the previous iterations

K-Means is not guaranteed to find the optimal partition, but is widely
used for its simplicity. However, the clusters found heavily depend on the
initial centroid values. In the original proposal of the algorithm, centroids are
initialised randomly.

This algorithm is used in computer vision and medical imaging for image
segmentation as well. Finding clusters in an image is equivalent to assigning a
label to every pixel. Resulting segments (clusters) are discrete regions in the
image. In case of images, the data points correspond to pixel values p(x,y). In
grey-scale images, we have a one-dimensional Euclidean space and for RGB
images it is a three-dimensional space. Therefore, clusters contain pixels with
similar pixel values, potentially revealing and recognising similar objects in
the picture.

Sometimes it is difficult to see beforehand how many clusters there are in
an image. However, for medical images, it is usually known how many clusters
some parts consist of. In 1.2 there are 4 clusters in MRI head image: bone,
soft tissue, fat and background [11].

11

1. Medical Image Analysis

Figure 1.2: Original MRI head image (A) and the image after applying K-
Means clustering (B) [11]

1.2.6 Fuzzy C-Means clustering

Fuzzy C-Means clustering [12] is another algorithm which aims to solve the
clustering problem. It is similar to K-Means as in the number of clusters is set
by the user, and it is an iterative algorithm, which loops until some condition
is met.

However, Fuzzy C-Means is based on fuzzy logic. While in K-Means every
data point belongs to exactly one cluster, in Fuzzy C-Means points can belong
to numerous clusters to a certain degree. The membership grade for how
strongly they belong to the cluster is between 0 and 1. It is important to
point out that these values are not probabilities and do not need to add up to
1.

Fuzziness allows to incorporate uncertainty into our models. To under-
stand what membership means, an example with temperatures is often used.
Suppose we want to classify temperatures into groups of cold, warm and hot.
It is difficult to determine the threshold between cold and warm or warm and
hot, because people perceive these things differently.

In 1.3 the x-axis represents temperature and y-axis membership value. The
vertical line is temperature t. The membership value for t in cold is 0.8 which
is “fairly cold”. It is also 0.2 for warm which might be interpreted as “slighty
warm”. The membership value for hot is equal to 0, so t can be considered
“not hot”.

Figure 1.3: Fuzzy logic temperature sets

12

1.2. Classic methods

Similarly to K-Means, C-Means also aims to minimise an objective func-
tion:

Jm =
n∑

i=1

c∑
j=1

um
ij ∥xi − cj∥2 , 1 ≤ m ≤∝ (1.5)

where Jm is the objective function and m is a real number which defines
how fuzzy the clustering should be. n is the number of data points and c is
the number of fuzzy clusters. um

ij is a membership value for point xi in the
cluster j. ∥xi − cj∥ is a distance between a point and the cluster j centroid.

The steps for this clustering algorithms are as follows:

1. Assign random membership values to all data points for every cluster

2. Compute the centroid for each cluster:

cj =
∑n

i=1 um
ij .xi∑n

i=1 um
ij

(1.6)

3. For each data point, recompute their membership values in the clusters:

uij = 1∑c
k=1

(
∥xi−cj∥
∥xi−ck∥

) 2
m−1

(1.7)

4. Repeat steps 2 and 3 until the membership values do not change by
more than ϵ, which is a pre-set value between 0 and 1

The output of Fuzzy C-Means Clustering is a list of centroids and a par-
tition matrix wij , where each element is the membership value of the data
point xi in the cluster cj . Finally, every point is assigned to the cluster for
which it has the highest membership value.

FCM can be used for image segmentation in a similar manner as K-Means.

13

Chapter 2
Computed Tomography

Computed tomography was briefly mentioned in the previous chapter. Its
invention had a huge impact on the field of diagnosis and rapidly increased in
popularity over a few years. Compared to other techniques used in the 1970s,
CT scans provided 3D visualisations with high detail.

In my thesis I am working with CT images, so in this chapter I am go-
ing to talk about the technology behind producing CT scans and the scans
themselves.

2.1 Technology
Technology behind CT scanning is based on X-Ray. X-Ray uses a tube in a
fixed position which sends x-rays. In comparison to CT, where the tube moves
around the patient in a so called translate-rotate motion.

CT consists of an x-ray tube, which emits x-ray beams and an x-ray de-
tector, which measures the x-ray transmission. The detector is located on the
other side of the patient’s body, just across from the tube.

Patient’s body can be divided into slices. You can imagine them as slices
of bread. Thickness of these slices is determined by the thickness of the beam
used for scanning. CT scanner performs the following steps on every slice.

Both the tube and the detector move along the slice in one direction, per-
forming a certain number of measurements. This phase is called translation.
All the measurements collected during one translation phase are called a view.

The rotation phase comes after every translation phase. The tube (to-
gether with the detector) rotates by 1°, so a view from a different angle can
be obtained in the next translation phase. Hence, the name translate-rotate
motion. After views for all the angles have been collected, the whole translate-
rotate procedure is repeated on the next slice.

This is a basic principle of CT initially proposed by Haunsfield. His pro-
totype called Mark I was able to collect 180 views over 180° (one view per

15

2. Computed Tomography

1° increment) and 160 measurements per view, which totalled in 28,800 mea-
surements per whole scanning procedure. [14]

2.2 Scans
CT scans are a reconstruction of the measurements collected during the scan-
ning process. With their help, we can ’slice up the body’ and look at what is
inside in a non-invasive way. Slices are represented as a matrix called recon-
struction matrix. These matrices consist of voxels - three-dimensional boxes.

In 2.1 you can see a number of axial (in the direction parallel to the body)
slices of the human brain:

Figure 2.1: CT brain slices [19]

During the reconstruction phase, attenuation value for every voxel in the
slice is assigned. Attenuation refers to loss of intensity of the ray passing
through the tissue. These values can be computed by using simple algorithms
like ART or Backprojection.

The attenuation values for every voxel are then transformed into Hounsfield
units using this formula:

CTnumber = [K × (uvoxel − uwater)]/uwater (2.1)

K is a constant nowadays set for 1000. uvoxel and uwater correspond to
selected voxel’s attenuation and water’s attenuation respectively. This formula
implies attenuation of water is 0 and the range of CT number is between -
1000 and 1000. However, when it comes to images, we usually work with 256
greyscale values and the CT numbers need to be normalised. [14]

16

2.2. Scans

2.2.1 Artifacts

CT scans are prone to artifacts. The reason for this is that a CT scan is
computed from thousands of measurements. Any error in a measurement or
computation of the voxel attenuation can be propagated to the image as an
artifact. Basically, artifacts are attenuation values which do not correspond
to the attenuation of the original tissue.

There are many ways in which an artifact can occur. Some of them stem
from an incorrect position of the patient’s body, physical processes occurring
during data gathering or errors from reconstructing CT data. Artifacts can
manifest themselves as streaks, shading, rings or distortion. They can be
suppressed either on the side of CT manufacturers or by the operator [13].

2.2.2 Formats

There are two popular formats for storing CT and other medical images -
DICOM and NIfTI. DICOM is a standard format scanners usually export the
data in, whereas NIfTI is a more light-weighted format DICOM is typically
converted to.

DICOM is very complex and robust. With the introduction of CT, there
was a need for “a standard method for transferring images and associated
information between devices manufactured by various vendors” [16]. Every
object in the file is encapsulated in a tag. Objects store various types of
information, for example data about the patient or the actual image data.
Objects contain a tag (a two-number code, which defines the purpose of the
object), VR (information about the data type), length of the data and in the
end, the data itself [15].

NIfTI was firstly developed for use in neuroscience and with fMRI images
specifically. The goal was to create a tool, that would be available for the whole
research community, easy to use and suitable for a wide range of applications.
NIfTI format is able to store not only data sets, but also for example statistical
data. NIfTI files consist of a header and the actual data, either together in
one .nii file, or separatly as .hdr and .img (header and image respectively)
files. The header is 348 bytes long and its fields contain information about
dimensionality, data type or data scaling. [17]

2.2.3 Orientation

When talking about medical images, it is important to know vocabulary re-
lated to directions. There are three axis describing 6 directions (Fig. 2.2.
Right and Left on the right-left axis correspond to the right and left direc-
tions. Anterior means towards front, posterior towards back. Inferior means
below, towards the feet and superior means towards the head.

17

2. Computed Tomography

Figure 2.2: R - left to RIGHT, L - right to LEFT, A - posterior to ANTE-
RIOR, P - anterior to POSTERIOR, I - superior to INFERIOR, S - inferior
to SUPERIOR

Two popular coordinate systems are RAS and LAS. That means the first
axis points to right (or left respectively), the second to anterior and the third
to superior. RAS is a system used by neurologists and LAS by radiologists.

We usually work with two spaces: scanner (world) space and voxel space.
For the scanner space, the origin of the coordinate system is at the magnet
isocentre. For voxel space, the origin is in the centre of the first voxel in the
array. For example, if voxels are organised as RAS, it means voxels in rows
are stored from left to right. Rows are stored from posterior to arterior to
create a slice. And slices are ordered from inferior to superior to produce the
whole image volume. It is possible to “switch” between these spaces using
affine transformation. [18]

18

Chapter 3
Convolutional Neural Networks

Convolutional Neural Networks have been around for some time, but gained
popularity mostly in the recent years, since better hardware was available. It
is a deep learning algorithm, mostly used on images. The tasks CNNs can
solve include image classification or image segmentation and many others.
Nowadays they are widely used for medical imaging problems.

They were first introduced by Yann LeCun et al. in 1999 [20]. They used
CNN for recognising handwritten numbers. This classic dataset is known as
MNIST. Underlying principles of convolutional neural networks are inspired
by the visual system of cats - discovery of neurons responsive to different
stimuli in different regions (receptive fields), which are then put together.

CNN is able to detect low-level features (for example edges) to high-level
features (whole objects) in images. They are detected by applying appropriate
filters. These filters are not pre-defined, but rather gained from training the
network. To understand how this works, we need to introduce two important
operations: convolution and pooling.

Convolution can be described as multiplication followed by summation.
This operation is explained by the image 3.1. Input for convolution is an
image I. Then we take a filter (or kernel) K - which is a matrix of weights
- and slide it through the image, computing convolutions for every position
of the filter. Result I * K is called a feature map. You can see the resulting
feature map has smaller resolution than the original image. If we want to keep
the original resolution, we can pad the original image around its edges. These
filters are responsible for detecting features in images. CNNs usually do not
consist of only one convolutional layer, so it is possible to detect high-level
features.

Another matrix operation is pooling (in [20] originally referred to as sub-
sampling). It is applied to feature maps from the previous convolutional layer.
They down-sample (lower resolution of) feature maps, in order to reduce com-
putation time, but also to allow for extracting more high-level features. There
are two types of pooling, max and average pooling. Again, a filter passes

19

3. Convolutional Neural Networks

through a feature map and returns the maximum and average respectively
from its receptive field. This operation is visualised in 3.2. In this image,
stride of 2 was used. It means the filter did not pass the image pixel by pixel,
but in “steps” of two.

Figure 3.1: Visualisation of convolution

Figure 3.2: Visualisation of pooling

To see and understand how these layers work together, we can look at
popular AlexNet [21] and its architecture 3.3. AlexNet won ImageNet clas-
sification competition in 2012, introducing an architecture which achieved a
top-5 error of 15.3%, which was 10% lower than the second place.

Alex Krizhevsky used images of the volume of 224 x 224 x 3 (channels for
RGB). These are fed to the first convolutional layer with 96 kernels of size 11
x 11 x 3. Every kernel produces one feature map, so the result is 55 x 55 x
96, which is then max-pooled and fed to the second convolutional layer. The
second convolutional layer consists of 256 kernels of size 5 x 5 x 96, producing
volume of 27 x 27 x 256, which is max-pooled again. The third layer contains
384 kernels of 3 x 3 x 256. Outputs (without max pooling) are sent to the
fourth layer with 384 kernels of 3 x 3 x 384 and then to the fifth layer with
256 kernels of 3 x 3 x 384. Then two fully connected layers follow.

20

3.1. UNet

Figure 3.3: Architecture of AlexNet [21]

Since 2012, CNNs have become very popular. There have been many
extentions made to either solve problems occuring with CNNs or expand their
use. I will talk about some of them next.

3.1 UNet

The typical use of CNNs was mainly classification. The original architectures
would usually just recognise what is on the image, but not where - which is
the point of segmentation. In 2015, a new type of network for segmentation
of biomedical images Unet was introduced [22].

It is a FCV - fully convolutional network. That means there are no dense
layers, only convolutions. This architecture (3.4) consists of two parts or paths
- encoder and decoder, which resembles the letter U. Hence, the name U-
Net. Encoder serves for down sampling the high-resolution input image to a
low-resolution output to find out what is in the image. Decoder up samples
the low-resolution image back to the original resolution, retrieving locations
of the features.

Encoder is a typical CNN, consisting of 3 blocks containing 2 convolutional
layers followed by a max-pooling layer.

Decoder is more interesting. It is symmetrical to the encoder - 3 block
consisting of up-convolution (transposed convolution) and 2 convolutions. The
output is a predicted segmentation mask. Transposed convolution can be
viewed as an operation opposite to convolution (but it is not the most precise
definition). It creates a higher-resolution image from a low-resolution image.
Furthermore, every result of up-convolution is concatenated with the feature
map from the corresponding level in the encoder through skip connections.
UNet has proven to perform very well on biomedical images.

21

3. Convolutional Neural Networks

Figure 3.4: Architecture of UNet [22]

3.2 ResNet

Another expansion built on CNNs is ResNet (Residual Network) [23], which
succeeded in tackling issues with very deep networks. The general consensus
was, the deeper the network is, the better performance it gives. However,
it was observed, that training error for deeper networks gets higher than for
their less deep counterparts.

The degradation problem is caused by vanishing/exploding gradients. Dur-
ing backpropagation, multiplication of small (<1) and big (>1) numbers oc-
curs. In deep networks, the multiplication takes place many times, causing it
to get smaller and smaller until it vanishes or bigger and bigger until it blows
up.

This problem can be solved by introducing residual blocks 3.5. A skip
connection is used to allow x to be added to the output of later layers. This
means, if vanishing gradient occurs, the network can be saved by “going back”
to the previous layers. 3.6 shows a plain network and its counterpart (ResNet)
with skip connections.

Figure 3.5: Residual block [23]

22

3.3. DenseNet

Figure 3.6: 34 layer ResNet (top), 34 layer plain network (middle), 19 layer
VGG-19 (bottom)[23]

3.3 DenseNet

DenseNet [24] was introduced in 2017. In an architecutre of this type, each
layer receives ouputs from all the previous layers and then passes its input
to all subsequent layers, to ensure maximum information flow. In contrast
to ResNet, where outputs are combined through summation, DenseNet uses
concatenation.

Its name comes from the dense connectivity between layers. Suppose we
have L layers in the architecture. lth layer takes lth inputs (feature maps
from previous layers) and its output goes to L - lth following layers. This is
illustrated in Figure 3.7.

One of the improvements DenseNet brought, was a smaller amount of
parameters to train, compared to traditional architectures or even ResNet.
This feature makes it more computationally efficient. Dense layers have a few
filters, which means, that the “total” number of feature maps passed through
the network is rather small. The network then makes a decision based on
all feature maps that appeared in it. Other advantages of DenseNets include
memory efficiency. Furthermore, dense connections were observed to help with
overfitting on small data sets.

23

3. Convolutional Neural Networks

Figure 3.7: DenseNet architecture [24]

3.4 R-CNN, Fast R-CNN, Faster R-CNN
Previous architectures I was talking about served for solving classification
(AlexNet, DenseNet, ResNet) or segmentation tasks (UNet). Another com-
puter vision problem is object detection - finding instances of objects of classes
in an image. That means localizing several objects of several classes withing
one image.

R-CNN [25] (R stands for regions) proposed a method which combines
region proposals and CNNs. Region proposals are a set of “sub-images” for
classification. These regions are chosen by selective search. R-CNN archi-
tecture consists of 3 modules 3.8: First module takes the input image and
generates around 2000 region proposals. These are then fed to a CNN which
computes feature maps for them. And the last module is a linear SVM, which
classifies the regions.

Figure 3.8: R-CNN modules [25]

The problem with R-CNN is that it is slow. This problem stems from
the use of selective search to produce proposals, which are processed by CNN
one by one . Therefore, its author came up with another method to speed
up the process, Fast R-CNN [26]. Input for this network is the whole image
and a set of proposals. Generated convolutional maps are passed to the ROI
(region of interest) pooling layer. This layer resizes them to a fixed size, so
they can be fed into a fully connected layer. Squeezing an image and its
proposals together reduces the number of convolutional passes and makes the

24

3.5. Capsule Network

whole process faster.
Even faster version called Faster R-CNN was developed [27]. Instead of

using selective search to exhaustively produce region proposals, a Region Pro-
posal Network is introduced. It is a fully convolutional network, which takes
an image of any size as its input and outputs predictded object bounds. Those
are then passed to the ROI pooling layer and then classified.

3.5 Capsule Network
CNNs classify objects based on features they find in the image. When it spots
a head, arms, legs and a body, it will classify the image as a person. However,
spatial relationship between the features or their rotation is not considered.

CapsNet [28] was developed to address this problem. A new neuron organ-
isation called capsule is proposed. Capsules are groups of neurons within one
layer. Capsules output vectors (not scalars!), because they can encode more
information. The size of the vector indicates the probability of the feature to
even exist and its orientation describes various properties, like size, rotation,
position, texture, etc.

The proposed architecture (Fig 3.9) is quite simple. The first layer is
convolutional and extracts features for capsules. The second layer is Primary
Capsule layer. Consists of 32 capsules of 8 kernels and outputs 8D vectors.
Those go to Digit Capsule Layer. This layer consists of 10 capsules (one
capsule per class, in this case digits). All the capsules from the lower (primary)
layer send their output to all the capsules in the higher (digit) level. The higher
level outputs 16D vectors, which are fed to 3 fully connected layers.

Dynamic routing is a process between two capsule layers. Its job is to
replace max-pooling, during which spatial information is lost. Thanks to
dynamic routing, output of one capsule gets send to the most appropriate
parent capsule in the higher level.

Figure 3.9: CapsuleNetwork architecture [28]

The model achieves very good results on classifying digits from MNIST
and can also recognise overlapped digits in the MultiMNIST dataset. The
way Capsule Networks work resembles human brain more than conventional
CNNs. Even though they proved themselves successful on simple tasks like

25

3. Convolutional Neural Networks

digit recognition, CapsuleNetworks are still a subject of research and need to
improve their performance on more complex tasks.

26

Chapter 4
Spine and vertebrae

segmentation

In this chapter I will describe the work I have done implementing neural nets
for organs localisation in CT images. My task was to segment spine itself (bi-
nary segmentation task) and also specific vertebrae (multi-class segmentation
task) from CT scans.

4.1 Keras

The framework I used is called Keras [29]. It is a deep learning high-level API
in python, which is built on top of either Theano or TensorFlow. It was built
with the intent to provide a tool for quick prototyping and experimenting.

I used the TensorFlow [30] backend. TensorFlow is an open-source machine
learning platform. Its abilities include: executing low level tensor operations
on CPU, GPU and TPU, scaling computations to many devices or exporting
to external runtimes.

4.2 Data

The data I used for this task was provided by the VerSe‘19: Large Scale Ver-
tebrae Segmentation Challenge [31, 32]. The dataset consists of 80 CT scans
of human spines, together with a vertebrae segmentation mask for every scan,
both in the NIfTI format. The original dataset also includes .png overview of
the segmentation and vertebrae centroid annotations (for another task of the
challenge, which is out of the scope of this thesis). There are also additional
40 scans without annotations. For loading and working with NIfTI files, I
used library NiBabel [33].

27

4. Spine and vertebrae segmentation

The voxel-level vertebral annotations were created manually by two neurol-
ogists. The spine segmentation masks were derived by me from the vertebral
masks.

Figure 4.1: Saggital (side), coronal (frontal) and axial (horizontal) slices of a
sample of the data

Figure 4.2: Vertebral segmentation mask of 4.1

4.2.1 Spine
Human spine consists of 24 vertebrae: C1-C7 (cervical spine), T1-T12 thoracic
spine, L1-L5 lumbar spine. In very rare cases, an extra vertebrae L6 is present.
Therefore, there are 26 classes in the data: background class [0] and vertebrae
[C1-L6] which correspond to values [1-25] in the mask. Figure 4.3 shows
annotations for [T2-L5].

4.2.2 Data characteristics
One of the most important things about images when using neural networks is
their size. In this dataset, images have various sizes in all dimensions, various
ratios. The sizes range from as small as (57, 175, 175) to as big as (121, 915,
1189). Voxels do not store values typical for images (0-255), but attenuation
values for the specific voxels. These vary all around the data set from -2290

28

4.3. Preprocessing

Figure 4.3: Vertebrae [T2-L5]

(air) to 4106 (bones or metals). Voxels of the CT scans are also stored in
various orientations: LAS, PIR, LPS and PSR.

Not all images contain the whole spine, usually it is some subset of verte-
brae. This means, some of the vertebrae occur throughout the data set more
often than others. [C1-C7] are underrepresented with less than 20 occurencies,
[T1-T12] occur on average 35 times and the third group of vertebrae [L1-L5]
is represented with more than 60 instances per vertebrae. The special L6
appears only in 2 scans from the whole dataset.

The dataset is imbalanced not only because of that, but also because
different vertebrae cover different volumes. To put it easily, the background
class is voxel-wise the most common class among the data. It accounts for
more than 97% of all voxels, the remaining 3% is the spine. Also each vertebrae
type accounts for less than 0.5%.

4.3 Preprocessing

Since the data contains attenuation values, initially I normalised it to (0,255),
the common grey scale value range, so it could be easier to work with. Neural
nets usually accept inputs of the same dimensions, so I resized my samples to
dimensions of (96, 96, 128). The dataset consists of only 80 scans in different
orientations, so it was important to put them into a common orientation. I
chose RAS, as it is widely used around the community. For the reorienting,
I used library called Nipype[34]. Apart from resizing, I also implemented
cropping and padding with zeros for 3D images, which I did not use in the
end.

All the preprocessing took place prior to training and the data was saved
to the disc in the .npy format. This way a lot of time during the training was
saved.

29

4. Spine and vertebrae segmentation

4.4 3D UNet

Figure 4.4: 3D UNet architecture

My architecture 4.4 is based on the original architecture of UNet [22]
and Ultrasound Nerve Competition Tutorial [35]. It is an encoder-decoder
with skip connections between the same levels of the contracting and the
expansive path. The major difference is that my network accepts 3D images
and also produces 3D outputs. Furthermore, all the operations: convolution,
maxpooling and up-convolution are changed to work in the three-dimensional
space. 3D filters used are: (3,3,3) for convolution, (2,2,2) for maxpooling
and (2,2,2) for up-convolution. These filters “slide” through the image in all
three dimensions, meaning they are capable of taking the third dimension into
account and recognising features in the 3D context. Overview for the number
of filters in each layer is in Table 4.1.

Input to my network is of the size 96x96x128. There are 5 levels (Table
4.2) in the architecture. Starting with the contracting path, the first level
consists of 2 3Dconvolutions, 32 filters each, followed by ReLU. The output is
then downsampled by 3Dmaxpooling, reducing its size by half. The number
of convolutional filters doubles with each level, also doubling the number of
3D feature vectors.

The expanding path (Table 4.3) starts by a 3Dup-convolution from the
bottom level. This operation doubles the output resolution and also reduces
the number of feature maps. These are then concantated with its counterpart
feature maps from the contracting path. Then, again, 2 3Dconvolutions follow.
The number of convolutional filters reduces by half on the way up.

On the top of the expanding path, we are back to the original resolution
of the input image. The very last convolutional layer depends on the task.
For binary segmentation, the last layer consists of 1 (1,1,1) filter and sigmoid

30

4.5. Spine segmentation

Encoder layers Decoder layers Neurons
1, 2 17, 18 32
3, 4 15, 16 64
5, 6 13, 14 128
7, 8 11, 12 256

9, 10 512

Table 4.1: Number of neurons in 3D Convolutional layers. Layers 9 and
10 represent the bottom of the network. Numbering starts at with the first
convolutional layer of the network and ends with the last layer before the
output layer.

Layer Filter size Strides Padding Activation
3D Convolution 3, 3, 3 1, 1, 1 same ReLu
3D Convolution 3, 3, 3 1, 1, 1 same ReLu
3D MaxPooling 2, 2, 2 2, 2, 2 same

Table 4.2: Encoder block

Layer Filter size Strides Padding Activation
3D Transposed Convolution 2, 2, 2 2, 2, 2 same

3D Convolution 3, 3, 3 1, 1, 1 same ReLu
3D Convolution 3, 3, 3 1, 1, 1 same ReLu

Table 4.3: Decoder block

activation, outputting a volume of 96x96x128 with probabilities for whether
the voxel belongs to the foreground class.

For multiclass segmentation, the last convolutional layer consists of 26
(1,1,1) filters (one for each class), with softmax as the activation function.
The size of the output is 96x96x128x26, where probabilities for every voxel for
belonging to each class a stored.

4.5 Spine segmentation
4.5.1 Loss functions
One of the most important things to get good results with neural networks is to
choose a suitable loss function. Loss function measures how well the network’s
predictions are during training. The goal of the network is to minimise its
value. Some of them lead to convergence of the network, some of them do
not.

31

4. Spine and vertebrae segmentation

There are numerous loss functions used for image segmentation. Since
my data is very unbalanced, some losses were more suitable than the others.
Badly chosen loss with unbalanced data can lead to predicting only zeros (only
background). I chose 2 and compared their performance.

One of the losses that perform well on unbalanced data is Dice loss. It is
an overlap measure. Instead of evaluating every pixel (voxel) independently,
Dice looks at how well the ground truth and the prediction overlap. This
means that if half of a small object and half of a large object are detected, the
loss will be the same.

Another loss function I used is binary crossentropy. To put it simply,
a negative logarithm for every prediction is computed. This means that if
the prediction for the object pixel is 1, loss will be also 1. And similarly,
for very low predictions logarithm gets bigger and bigger. This loss on itself
does not deal with class imbalance. For this reason I computed class weights
and multiplied the crossentropy results by them, making the spine object
“more important” than the background. By using this loss I tried to solve the
gradient exploding and instability issues I encountered with Dice loss - I can
say they did not occur with binary crossentropy.

4.5.2 Training

The size of the dataset is 80 scans. The data was split in the ratio of 80/10/10,
which means 64 scans were used for training, 8 for validation and 8 for testing.
The data was sorted in the same order as it was originally in the dataset,
no special selection of the split. I chose this ratio, as the dataset is rather
small and I wanted to reserve as many examples for training as I could. The
algorithm ran on a Cloud TPU with 35GB RAM offered by Google Colab.
Models were trained for 40 epochs, which took approximately 10 hours.

I will be comparing 2 models, one trained with binary crossentropy loss
(Model 1) and Dice loss (Model 2). Both were trained with stochastic gradient
descent - this means the batch size was 1 and weights were updated for each
example of the training set. This approach proved to be considerably faster
than the mini-batch approach (8 batches). Input images were normalised to
the range (0,1).

Model 1 was trained with Adam optimizer, learning_rate=0.0001, beta_1
= 0.9, beta_2 = 0.999. Choosing parameters for Model 2 with Dice loss was
more difficult, exploding gradients occurred frequently. Learning rates for
Adam optimizer I tried include: 0.001, 0.00015, 0.0001, 0.000015, 0.00001 and
0.000001. I settled for learning_rate = 0.00001 together with clip_norm =
1. and clip_value = 0.5 (to prevent exploding/vanishing gradients) as it was
one of the few settings to yield reasonable results. beta_1 = 0.9 and beta_2
= 0.999 are the same as with Model 1.

32

4.5. Spine segmentation

4.5.3 Metrics
Often it is difficult to choose the metric that best represents how good our
results are. Therefore I chose 4 different metrics, where each of them takes
into account different things. In the following equations, TP stands for true
positive, TN for true negative, FP for false positive and FN for false negatives.

Pixel wise accuracy (Eq. 4.1) is a metric that simply measures the per-
centage of correctly classed pixels. However, this metric gives good results
also for images with very small objects, even though they are not classified
properly.

pixel wise accuracy = TP + TN

TP + TN + FP + FN
(4.1)

Dice coefficient (Eq. 4.2) was explained before. It measures overlap be-
tween the ground truth and predicted object.

dice coefficient = 2TP

2TP + FP + FN
= 2|X ∩ Y |

|X| + |Y |
(4.2)

Intersction over Union (IoU) (Eq. 4.3) is very similar to Dice. It measures
overlap as well, but penalizes wrong predictions more than Dice.

IoU = TP

TP + FP + FN
= 2|X ∩ Y |

|X| + |Y | − |X ∩ Y |
(4.3)

The last metric AUC-ROC Curve (Area under Curve - Receiver Operat-
ing Characteristics curve) is a metric that measures how well the model can
separate classes. Value 0.5 means it cannot distinguish between classes at all.

4.5.4 Results
Results for all 4 metrics for Model 1 and Model 2 are in Table 4.4. Predictions
were thresholded at 0.9. Model 2 performed significantly better in all metrics
except for AUC-ROC, which means it is worse at separating classes.

Sample predictions and segmentations are in Fig. 4.6 and more in the
appendix. We can see that predictions with Model 2 (with Dice loss) are very
tightly around the spine, have smooth edges. There are a lot of false negatives,
as the model seems to be trying to not class background as foreground. Model
1 (with weigthed binary crossentropy), on the other hand, is able to spot more
details and irregularities. However, for the price of false positives, when it
often detects areas outside of the object. The weighted binary crossentropy
ensured that pixels are not easily classed as the background.

For cross validation and comparison with another architecture, I chose
Model 2 (or rather its hyper-parameters and validation loss), as it outper-
formed Model 1 in almost all metrics. Furthermore, as you can see in Fig.
4.5, performance of Model 2 was consistently getting better, while Model 1

33

4. Spine and vertebrae segmentation

(a) Model 1 (b) Model 2

Figure 4.5: Validation and training loss over 40 epochs for Model 1 and 2. X
axis represents number of epochs, Y axis is loss.

seemed to have reached its best at around the 20th epoch, with validation loss
not getting much better since. It was only train loss which was decreasing,
meaning the model was overfit.

To ensure generalisation, I performed 3-fold cross validation on 72 samples.
Since training the network is very time consuming, I decided to cross validate
the network only on 20 epochs. The folds were chosen randomly. Results,
again for all four metrics, are in 4.5. Even after only 20 epochs, the results are
generally better than for Model 1 after 40 epochs. Small standard deviations
also suggest, that accuracy did not change much across the folds.

The idea behind my architecture is that 3D convolutions should be better
at extracting features from 3D volumes, because they can “capture” the third
dimension. Therefore, I compared my model with the corresponding 2D one.
The input were 96x96 axial slices of the spine. Hyper-parameters and valida-
tion loss for training were the same as for Model 2, except for the batch size,
which I set to 32, which is a widely used value. The number of epochs was
40 and the training took only 3.5 hours. Results are in Table 4.6. Both the
models yielded similar results, with UNet 2D being slightly better, but not
significantly. Comparison of segmentations is in Fig. 4.7. UNet 2D was able
to capture more details and edges than UNet 3D.

Metric Model 1 Model 2
Pixel wise accuracy 0.90773034 0.9738508

Dice coefficient 0.36018768 0.6070875
Intersection over union 0.21965213 0.435841

Area under ROC 0.9219055 0.8547937

Table 4.4: Comparison of Model 1 and Model 2. Metrics used: pixel wise
accuracy, Dice coefficient, intersection over union and area under ROC

34

4.6. Vertebrae segmentation

Metric 3D UNet
Pixel wise accuracy 0.959435(+/- 0.010288)

Dice coefficient 0.397100 (+/- 0.008332)
Intersection over union 0.247772 (+/- 0.006509)

Area under ROC 0.730441 (+/- 0.038218)

Table 4.5: Results of 3-fold cross validation after 20 epochs with 3D UNet,
standard deviation included. Evaluated with 4 different metrics: pixel wise
accuracy, Dice coefficient, intersection over union and area under ROC

Metric UNet 2D UNet 3D
Pixel wise accuracy 0.97514015 0.9738508

Dice coefficient 0.6125695 0.6070875
Intersection over union 0.44151428 0.435841

Area under ROC 0.8458461 0.8547937

Table 4.6: Comparison of results from 3D and 2D UNet using metrics: pixel
wise accuracy, Dice coefficient, intersection over union and area under ROC

4.5.5 Summary
I managed to get good results with the 3D UNet network. The spine is cor-
rectly located in the images. However, still unable to detect space inbetween
vertebrae. There is a potential to improve performance by training the model
for more epochs, because the loss was still steadily improving. Cross validation
results proved the model can generalise well for the given dataset. However,
the 3D architecture did not bring any improvement compared to the 2D one,
as the results were very similar, with 2D one slightly outperforming the 3D
one.

4.6 Vertebrae segmentation
4.6.1 Loss functions
For multi-class segmentation tasks, different losses are needed. In the case of
segmenting specific vertebrae, the class imbalance is even worse than with the
whole spine.

There is a special type of Dice loss - soft Dice loss, which computes loss
for every class separately and then computes the mean. This should work well
with small object, as Dice loss does.

Another loss I was considering was categorical crossentropy loss, which
is a generalised version of binary crossentropy for more than 2 classes. I was
planning on applying class weights to this loss as well, but unfortunately, Keras

35

4. Spine and vertebrae segmentation

does not provide this feature for 2D and 3D volumes. Therefore I focused on
the soft Dice loss.

4.6.2 Training
Very similarly to the spine segmentation, I used data split 80/10/10 resulting
in 64 training examples, 8 for validation and 8 for testing. It ran on the Google
Colab’s TPU for 10 hours for 40 epochs.

The model was trained with soft Dice loss and Adam optimizer, with
learning_rate=0.00001. beta_1=0.9, beta_2=0.999 were set by default by
the optimizer. The batch size was set to 1 to speed up the training.

In contrast to spine segmentation, the input masks were one-hot-encoded
and had dimensions of 96x96x128x26 (26 is the number of classes), where each
of the 26 channels represents a segmentation mask for one class. The network
outputs a volume of the same dimensions, with probabilities of the pixels to
belonging to each of the classes. Probabilities across all classes for one pixel
sum to 1. This output is then sent through the argmax function to determine
the class (channel) with the highest probability. The result is a segmentation
mask of 96x96x128x1, where each element contains the class number.

4.6.3 Results
The network seemed to be unable to train properly for this task and chosen
parameters. The loss would be decreasing for a few epochs, but then got
stuck and stayed the same till the rest of the training. I tried overfitting the
network only on one image, changing learning rates in the range from 0.001
to 0.000001, with not much success. The losses are in Fig. 4.8. Output of the
network was almost all zeros, with a few pixels classified as a vertebrae class.

I tried running 2D UNet with the same parameters (only batch size set to
32) to see, if the network is able to learn something, but the results were the
same. Loss was decreasing at the beginning, but later stayed the same until
the last 40th epoch.

4.6.4 Summary
My network could not be trained for multi-class segmentation problems in
either 3D and 2D version. I suspect the problem lays in the choice of the
loss function, as it did not work for either of the architectures and the same
problem occured for different learning rates. To improve the performance, I
could try the before mentioned categorical crossentropy, even though it does
not take into account class imbalance. Another approach that could be used
is extracting single vertebrae from the images for training.

36

4.6. Vertebrae segmentation

(a) Original image

(b) Predictions of Model 1

(c) Segmented image with Model 1

(d) Predictions of Model 2

(e) Segmented image with Model 2

Figure 4.6: Original and segmented CT image of a spine using Model 1 and
Model 2.

37

4. Spine and vertebrae segmentation

(a) Original image

(b) Segmented image with 3D UNet

(c) Segmented image with 2D UNet

Figure 4.7: Original and segmented CT image of a spine using Model 1 and
Model 2. Threshold for predictions is 0.9.

Figure 4.8: Validation and train loss across 40 epochs. X axis is number of
epochs, Y axis is loss.

38

Conclusion

I started my thesis with the literature review, where I covered the history of
medical imaging and classical methods for image analysis, which were pop-
ular in the pre-ML era. I focused on CT images, the technology and other
specifics of this medium. I researched convolutional neural networks and their
extensions for different purposes.

The practical part covered implementing a CNN model for segmentation of
a spine and specific vertebrae. The CT data underwent preprocessing to make
it suitable for this task. My architecture was based on UNet, but modified
to handle CT images (3D volume). I compared the performance of my 3D
model with the original 2D model on 3D images. I managed to segment the
spine with satisfactory results. However, for specific vertebrae I could not
make the network perform well. The results show, the derived architecture
did not achieve better performance on the chosen dataset. In fact, it was
slightly outperformed.

I am satisfied with my results, as this is the first time I worked with CNNs.
However, there are still many ways on how to improve/change the architecture
or other tasks that can be done with this data. Automatic segmentation of
the spine or vertebrae can be used by doctors to give better diagnosis to their
patients.

39

Bibliography

[1] GLASSER O., Wilhelm Conrad Röntgen and the Early History
of the Roentgen Rays [online]. San Francisco: Norman Publishing,
1993. [Accessed 27 April 2020]. ISBN 0-930405-22-6. Available from:
https://books.google.sk/books?id=5GJs4tyb7wEC

[2] BHATTACHARYAA K. B., Godfrey Newbold Hounsfield (1919–2004):
The man who revolutionized neuroimaging. Ann Indian Acad Neurol. [on-
line]. October-December 2016, 19(4), pp. 448-450. [Accessed 27 April 2020].
ISSN 1998-3549. Available from: doi:10.4103/0972-2327.194414

[3] LAUTERBUR P.C., Image Formation by Induced Local In-
teractions: Examples Employing Nuclear Magnetic Reso-
nance. Nature [online]. March 1973, 242, pp. 190-191. [Ac-
cessed 27 April 2020]. ISSN 1476-4687. Available from:
https://www.biac.duke.edu/education/courses/fall05/fmri/readings/
week3/1973_Nature_Lauterbur.pdf

[4] Medical technologies - examinations by medical imaging tech-
niques (CT, MRI and PET). In: EUROSTAT [online]. Eu-
ropean Union 2019. [Accessed 27 April 2020]. Available from:
https://ec.europa.eu/eurostat/web/products-datasets/-/hlth_co_exam

[5] WELLS W.M., Medical Image Analysis – past, present, and fu-
ture. Medical Image Analysis [online]. October 2016, 33, pp. 4-
6. [Accessed 27 April 2020]. ISSN 1361-8415. Available from: doi:
doi.org/10.1016/j.media.2016.06.013

[6] SAHOO P.K., SOLTANI S., WONG A.K.C, A survey of
thresholding technique. Computer Vision, Graphics, and
Image Processing [online]. 1988, 41(2), pp. 223-260. [Ac-
cessed 7 May 2020]. ISSN 0734-189X. Available from:
http://www.sciencedirect.com/science/article/pii/0734189X8890022

41

Bibliography

[7] BANKMAN I.N., Handbook of Medical Image Processing and Analysis.
London: Academic Press, 2000 ISBN 0-12-077790-8.

[8] OTZU N., A Threshold Selection Method from Gray-Level Histograms.
IEEE Transactions on Systems, Man, and Cybernetics [online]. 1979, 9(1),
pp. 62-66. [Accessed 30 April 2020]. ISSN 2168-2909. Available from: doi:
10.1109/TSMC.1979.4310076

[9] JAIN A.K., DUBES R.C., Algorithms for clustering data
[online]. Englewood Cliffs: Prentice-Hall, Inc., 1988. [Ac-
cessed 7 May 2020]. ISBN 978-0-13-022278-7. Available from:
https://homepages.inf.ed.ac.uk/rbf/BOOKS/JAIN/Clustering_Jain_Dubes.pdf

[10] MACQUEEN J., Some methods for classification and analysis of mul-
tivariate observations. In: Proceedings of the Fifth Berkeley Symposium
on Mathematical Statistics and Probability [online]. Berkley: Univer-
sity of California Press, 1967. [Accessed 7 May 2020]. Available from:
https://projecteuclid.org/euclid.bsmsp/1200512992

[11] NH H.P., ONG S.H., FOONG K., GOH P.M., NOWINSKY W.L. Medical
Image Segmentation Using K-Means Clustering and Improved Watershed
Algorithm. In: IEEE Southwest Symposium on Image Analysis and Inter-
pretation [online]. Denver: IEEE, 2006. [Accessed 7 May 2020]. Available
from: doi: 10.1109/SSIAI.2006.1633722

[12] BEZDEK J.C., Pattern Recognition with Fuzzy Objective
Function Algorithms [online]. Boston: Springer, 1981. [Ac-
cessed 7 May 2020]. ISBN 978-1-4757-0450-1. Available from:
https://www.researchgate.net/publication/233932672_Pattern _Recog-
nition_With_Fuzzy_Objective_Function_Algorithms

[13] BARRETT J.F., KEAT N., Artifacts in CT: Recognition and Avoidance.
RadioGraphics [online]. November 2004, 24(6). [Accessed 30 April 2020].
ISSN 1527-1323. Available from: doi: doi.org/10.1148/rg.246045065

[14] GOLDMAN L.W., Principles of CT and CT Technology. In: Jour-
nal of Nuclear Medicine Technology [online]. September 2007, 35(3),
p.115-128. [Accessed 3 May 2020]. ISSN 1535-5675. Available from:
doi:10.2967/jnmt.107.042978

[15] LI X. et al. The first step for neuroimaging data analysis: DICOM
to NIfTI conversion. Journal of Neuroscience Methods [online]. 2006,
264. [Accessed 19 April 2020]. ISSN 1872-678X. Available from: doi:
doi.org/10.1016/j.jneumeth.2016.03.001

[16] DICOM PS3.1 2020b - Introduction and Overview [on-
line]. NEMA. [Accessed 30 April 2020]. Available from:
http://dicom.nema.org/medical/dicom/current/output/pdf/part01.pd

42

Bibliography

[17] Neuroimaging Informatics Technology Initiative [online]. NIMH. [Ac-
cessed 30 April 2020]. Available from: https://nifti.nimh.nih.gov

[18] Coordinate systems and affines [online]. NiBabel. [Accessed 7 May 2020].
Available from: https://nipy.org/nibabel/coordinate_systems.html

[19] ABDELKHALEK B. Segmentation of Cerebrospinal Fluid from 3D CT
Brain Scans Using Modified Fuzzy C-Means Based on Super-Voxels. An-
nals of Computer Science and Information Systems [online]. 2015, 5, pp.
809-818. [Accessed 20 April 2020]. ISSN 2300-5963. Available from: doi:
10.13140/RG.2.1.4733.0640

[20] LECUN Y., HAFFNER P., BOTTOU L., BENGIO Y. Object Recog-
nition with Gradient-Based Learning. In: FORSYTH D.A., MUNDY
J.L., GESÚ V. di, CIPOLLA R. Lecture Notes in Computer Science [on-
line]. Springer, 1999, pp. 319-345. [Accessed 30 April 2020]. Available at:
http://yann.lecun.com/exdb/publis/pdf/lecun-99.pdf

[21] KRIZHEVSKY A., SUTSKAVER I., HINTON G.E. ImageNet Classi-
fication with Deep Convolutional Neural Networks. NIPS [online]. New
York: Curran Associates Inc., 2012. [Accessed 1 May 2020]. Avail-
able from: https://papers.nips.cc/paper/4824-imagenet-classification-
with-deep-convolutional-neural-networks.pdf

[22] RONNEBERGER O., FISCHER P., BROX T. U-Net: Convolu-
tional Networks for Biomedical Image Segmentation. In: Medical Im-
age Computing and Computer-Assisted Intervention – MICCAI 2015 [on-
line]. Cham: Springer, 2015. [Accessed 1 May 2020]. Available from:
https://arxiv.org/pdf/1505.04597.pdf

[23] HE K., ZHANG X., SUN J. Deep Residual Learning for
Image Recognition. In: IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR) [online]. Las Ve-
gas: IEEE, 2016. [Accessed 2 May 2020]. Available from:
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/
He_Deep_Residual_Learning_CVPR_2016_paper.pdf

[24] HUANGG., LIU Z., VAN DER MAATEN L., WEINBERGER K.
Q. Densely Connected Convolutional Networks. In: 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR) [on-
line]. Honolulu: IEEE, 2017. [Accessed 2 May 2020]. Available from:
https://arxiv.org/pdf/1608.06993.pdf

[25] GIRSHICK R., DONAHUE J. DARRELL T., MALIK J. Rich Feature
Hierarchies for Accurate Object Detection and Semantic Segmentation.
In: 2014 IEEE Conference on Computer Vision and Pattern Recognition

43

Bibliography

(CVPR) [online]. Columbus: IEEE, 2014. [Accessed May 3 2020]. Available
from: https://arxiv.org/pdf/1311.2524.pdf

[26] GIRSHICK R. Fast R-CNN. In: 2015 IEEE International Conference on
Computer Vision (ICCV) [online]. Santiago: IEEE, 2015. [Accessed May
3 2020]. Available from: https://arxiv.org/pdf/1504.08083.pdf

[27] REN S., HE K., GIRSHICK R., SUN J. Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence [online]. 2017, 39(6),
pp. 1137-1149. [Accessed 3 May 2020]. ISSN 1939-3539. Available from:
https://arxiv.org/pdf/1506.01497.pdf

[28] SABOUR S., FROSST N., HINTON G. Dynamic Routing between
Capsules. In: Proceedings of the 31st International Conference on
Neural Information Processing Systems [online]. Long Beach: Vur-
ran Associates Inc., 2017. [Accessed May 4 2020]. Available from:
https://arxiv.org/pdf/1710.09829.pdf

[29] CHOLLET F et al. Keras. 2015. Available from: https://keras.io

[30] ABADI M et al. TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems. 2015. Available from: https://www.tensorflow.org/

[31] LÖFFLER M. et al. A Vertebral Segmentation Dataset with Fracture
Grading. Radiology: Artificial Intelligence (In Press). 2020.

[32] SEKUBOYINA A. et al. VerSe: A Vertebrae Labelling and Segmentation
Benchmark. 2020. Available from: arXiv:2001.09193

[33] BRETT M. et al. NiBabel. 2020. [Accessed June 4 2020]. Available from:
doi: doi.org/10.5281/zenodo.3757992

[34] GORGOLEWSKI K. et al. Nipype: a flexible, lightweight and extensible
neuroimaging data processing framework in Python. Frontiers in Neuroin-
formatics [online]. 2011. [Accessed June 4 2020]. 5, p.13. ISSN: 1662-5196.
Available from: doi: 10.3389/fninf.2011.00013

[35] JOCIĆ M., Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmen-
tation competition, using Keras [GitHub Repository]. 2017. Available from:
https://github.com/jocicmarko/ultrasound-nerve-segmentation

44

Appendix A
Segmentations

45

A. Segmentations

(a) Original image

(b) Predictions of Model 1

(c) Segmented image with Model 1

(d) Predictions of Model 2

(e) Segmented image with Model 2

Figure A.1: Original and segmented CT image of a spine using Model 1 and
Model 2.

46

Figure A.2: Segmented images with Model 2

47

Appendix B
Acronyms

AI Artificial Intelligence

CNN Convolutional Neural Network

CT Computed Tomography

ML Machine Learning

49

Appendix C
Contents of enclosed SD card

README.md.....................the file with SD card contents description
src...the directory of source codes

segmentation................................ implementation sources
thesis...............the directory of LATEX source codes of the thesis

text.. the thesis text directory
thesis.pdf............................the thesis text in PDF format

51

	Introduction
	Aim of the Thesis
	Medical Image Analysis
	Medical Imaging
	Classic methods
	Thresholding
	Region Growing
	Watershed Algorithm
	Edge-based Segmentation Techniques
	K-Means Clustering
	Fuzzy C-Means clustering

	Computed Tomography
	Technology
	Scans
	Artifacts
	Formats
	Orientation

	Convolutional Neural Networks
	UNet
	ResNet
	DenseNet
	R-CNN, Fast R-CNN, Faster R-CNN
	Capsule Network

	Spine and vertebrae segmentation
	Keras
	Data
	Spine
	Data characteristics

	Preprocessing
	3D UNet
	Spine segmentation
	Loss functions
	Training
	Metrics
	Results
	Summary

	Vertebrae segmentation
	Loss functions
	Training
	Results
	Summary

	Conclusion
	Bibliography
	Segmentations
	Acronyms
	Contents of enclosed SD card

