
Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Computer Science

Master’s Thesis

Random number generator based on multiplicative convolution transform

 Nikolai Antonov

Supervisor: doc. RNDr. Daniel Prusa, Ph.D.

Study Program: Open Informatics

Field of Study: Software Engineering

May 22, 2020

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

492133Personal ID number:Antonov NikolaiStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Science

Open InformaticsStudy program:

Software EngineeringSpecialisation:

II. Master’s thesis details

Master’s thesis title in English:

Random number generator based on multiplicative convolution transform

Master’s thesis title in Czech:

Generátor náhodných čísel založený na multiplikativní konvoluční transformaci

Guidelines:
Develop the system for generating and testing sequences of pseudorandom bits. The main goal is to create and implement
the model of random number generator(RNG), based on non-linear transformation called "multiplicative convolution".
Another goal is to show cryptographic properties of created RNG and its resistance to potential attacks. Finally, show the
statistical properties of generated pseudorandom sequences, using graphical tests and different statistical tests from
modern statistical packages.

Bibliography / sources:
[1] Schneier B. Applied Cryptography. Protocols, algorithms, source code at C. - M.: Triumph, 2002. - 816 p. [2] W. Meier,
O.Staffelbach. Fast correlation attack on stream ciphers. Journal of Cryptology, 1989. – V.1, N.3

Name and workplace of master’s thesis supervisor:

doc. RNDr. Daniel Průša, Ph.D., Machine Learning, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 22.05.2020Date of master’s thesis assignment: 18.03.2020

Assignment valid until: 19.02.2022

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
Head of department’s signaturedoc. RNDr. Daniel Průša, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

ACKNOWLEDGMENTS

First of all, I would like to express my gratitude to my mother Maria Maiorova and my

granny Tatyana Maiorova for their incredible support, which anyone can only dream of. I am

also grateful to my supervisors: Shamil Talgatovich Ishmukhametov (Kazan Federal University,

Russia) for proposing an interesting problem and most importantly for the skill to interest me

with applied mathematics and number theory; Mr. Daniel Prusa (Czech Technical University in

Prague, Czech Republic) for his absolute kindness to me, the attention to the moments of my

scientific difficulties and excellent advices on how to solve them. Finally, I am grateful to our

tutor, Mrs. Ekaterina Turilova, the Department of Computer Science and the leadership of both

universities for the opportunity to study under the Open Informatics program.

DECLARATION

I hereby declare that I have completed this thesis independently and that I have listed all

the literature and publications used.

I have no objection to usage of this work in compliance with the act §60 Zákon č.

121/2000Sb. (copyright law), and with the rights connected with the copyright act including the

changes in the act.

Prague, May, 2020 ________________________

ABSTRACT

ANTONOV, Nikolai: Random number generator based on multiplicative convolution

transform. [Master’s Thesis] - Czech Technical University in Prague. Faculty of Electrical

Engineering, Department of Computer Science. Supervisor: doc. RNDr. Daniel Prusa, Ph.D.

The creation of algorithmic random number generators is an important issue in the field

of mathematical modeling, applied mathematics and modern cryptography. Despite the fact that

many concepts and final solutions have been proposed to solve this problem, the well-known

algorithmic generators are characterized by a tradeoff between their statistical properties,

resistance to algebraic attacks and the speed of production of pseudorandom sequences.

The object of the thesis is to design and implement a system for generating

pseudorandom bits that is free from the compromise mentioned above.

The introduction is considered about the stream ciphering model and the existing

methods of producing pseudorandom sequences.

The first chapter proposes the new method of generating the pseudorandom sequences,

using the multiplicative convolution transform to equip the ordinary shift register.

The second chapter presents the detailed report about the implementation of proposed

ideas, as well as the details of code optimization.

The third chapter contains the results of graphical and statistical tests, theoretic and

empirical estimates that prove the overall cryptographic resistance of the developed system.

The result of the master's thesis is the random number generator, which is based on non-

linear transformation called "Multiplicative Convolution" and can produce high-quality

pseudorandom sequences at good speed.

Keywords: multiplicative convolution transform, random number generator,

pseudorandom sequences, stream cipher

CONTENTS

INTRODUCTION…………………………………………………………….. 1

Linear congruent generators…………………………………………………........ 2

Shift registers with linear feedback………………………………………………... 3

Geffe’s random number generator……………………………………………....... 6

Threshold generator…………………………………………………………....... 7

Cascade generator………………………………………………………………... 8

Algorithm A5…………………………………………………………………….. 9

CHAPTER 1. THE RANDOM NUMBER GENERATOR BASED ON
MULTIPLICATIVE CONVOLUTION TRANSFORM…………...............

10

The algorithm for generating pseudorandom bits based on linear feedback shift
register………………………………... 10

The definition of multiplicative convolution………………………………………... 10

Complexity analyses. Linear feedback shift register………………………………... 15

Linear feedback shift register equipped with multiplicative convolution transform.
Initial complexity analyses……….….…………………………………………… 16

Optimization of the algorithm for performing a multiplicative convolution………… 17

New algorithm of multiplicative convolution transform………………………….…. 19

Complexity analyses of new algorithm……………………………………….……. 20

CHAPTER 2. IMPLEMENTATION OF THE GENERATOR…………… 23

Initial verification of ideas………………………………………………………… 23

The first stage of optimization…………………………………………………..… 24

The second stage of optimization……………………………………………..…… 26

The third stage of optimization…………………………………………………… 27

The fourth stage of optimization…………………………………………..……… 28

The fifth stage of optimization and the final version of the program………………… 29

The estimation of speed of the program…………………………………………… 31

Testing the program code………………………………………………………… 32

Input Testing………………………………………………………………….…. 33

Testing the core functionality of a class………………………………………….…. 34

Testing Additional Functionality………………………………………………….. 34

Testing Special Features………………………………………………………….. 34

CHAPTER 3. CRYPTOGRAPHIC RESISTANCE OF SHIFT
REGISTER EQUIPPED WITH MULTIPLICATIVE CONVOLUTION
TRANSFORM…………………………………………………………………

38

Graphic tests for statistical evaluation of pseudo-random sequence quality………….. 38

Testing the generator using NIST Statistical Test Suite…………………………….. 41

Testing the generator using DIEHARDER Statistical Test Suite……………………. 48

An Estimation of generator’s period………………………………………………. 54

The closure of M - sequences class………………………………………………… 55

FURTHER DISCUSSION AND CONCLUSION…………………………… 59

BIBLIOGRAPHY…………………………………………………………….. 61

LIST OF FIGURES

Fig. 1. Stream ciphering model…………………………………………………… 1

Fig. 2. The scheme of the register with feedback…………………………………… 4
Fig. 3. Linear feedback shift register……………………………………………… 4

Fig. 4. Geffe’s generator………………………………………………………… 6

Fig. 5. The scheme of the threshold generator……………………………………… 7

Fig. 6. The scheme of the cascade generator………………………………………... 8

Fig. 7. The scheme of the random number generator involved in A5………………….. 9
Fig. 8. Ready for multiplicative convolution transform………………………………. 11

Fig. 9. Model of multiplicative convolution transform..……………………………... 12

Fig. 10. Before an ordinary tact of LFSR …..………………………………………. 13
Fig. 11. After an ordinary tact of LFSR .…………………………………………… 13

Fig. 12. Before a tact with multiplication convolution transform ……..………………. 14

Fig. 13. After a tact with multiplication convolution transform ………………….……. 14
Fig. 14. The scheme of ordinary LFSR tact ………………...………………………. 15

Fig. 15. Tact with multiplicative convolution transform …………………......………. 16

Fig. 16. Tact with improved multiplicative convolution transform ……………....……. 18

Fig. 17. The speed of producing pseudorandom bits……………….………………… 31

Fig. 18. Comparison of pseudorandom bits producing rate…………………………… 32

Fig. 19. Testing of program modules………………………………………………. 33
Fig. 20. The distribution of pseudorandom numbers ….……………………….…….. 38

Fig. 21. Monobit series distribution ……………………………………………….. 39
Fig. 22. Two-bit distribution……………………………………………………… 39

Fig. 23. Three-bit series distribution…………………….………………………… 39

Fig. 24. Autocorrelation function …………………………………………………. 40

LIST OF TABLES

Table 1. Member Functions of the bitset Container Class from C ++ Standard Template

Library…………………………………………………………………………. 25

Table 2. Results for the uniformity of P-values and the proportion of passing sequences… 43

Table 3. Results of testing the sequences using DIEHARDER statistical package………. 50

Table 4. Summary of NIST tests……….……….……….……….……….……….. 56

Table 5. Summary of DIEHARDER tests……….……….……….……….………... 56

 1

INTRODUCTION

Consider the stream ciphering model

Fig. 1. Stream ciphering model

The first step in encrypting message M is to initialize the random number generator

RNG with key K. Then the generator RNG creates a numerical sequence G with the properties

of a sample from uniform distribution. This sequence usually consists of bits (zeros and ones)

and called «gamma». It’s important to notice that the length of the gamma G should be the same

as the length of the message M. To obtain the ciphertext (cipher) C from the plaintext (message)

M, there should be performed a bitwise addition of M and G. Decryption of the cipher C is also

performed using bitwise addition — in this case, the cipher C and gamma G are the arguments,

and the result is again the message M.

The cryptographic strength of the presented encryption method is based on the well-

known fact from theories of signals and coding: the result of the interference of two signals, one

of which carries some information, and the other is white noise, is white noise again. This means

that the cipher C of message M has the characteristics of white noise and cannot give the

adversary any information about the original message M.

Careful study of the proposed encryption model shows that the cryptographic strength of

ciphering entirely depends on the properties of gamma created by the random number generator.

The most important requirement for a gamma is its correspondence to the random sample from a

uniform distribution. It is also important to generate the gamma with the same length as the

length of a given message — encryption with a shorter gamma, as well as the use of the same

gamma to encrypt another message, contributes to cracking the cipher.

It is rather easy to follow the rules regarding the length of the gamma and the frequency

of its using, if a sufficiently long sample of bits corresponding to a uniform distribution is

available. A much more difficult task is to produce such gamma. There are few sources of true

 2

randomness, but for the purposes of mathematical modeling, industrial informatics and the

cryptography even more (including military cryptography) a random number generator must

satisfy several requirements at once, and some of them seems to contradict the very the nature of

true randomness.

For example, one of the most important requirements for the random number generator is

the reproducibility of the gamma — the ability to get the same random sequence once again at

any moment. It was that very requirement, which led to the creation of algorithmic random

number generators. Any generator of this type operates on a deterministic algorithm, but all the

generated sequences are completely predictable only if you know the initial state of the

generator. For example, the key K from the stream ciphering model is the initial state of the

RNG random number generator: to decrypt the cipher C you will need to generate the same

gamma that was used for the encryption, which means that the generator must be again

initialized by the same key K — the initial state that was set for encrypting the message M. It is

important to note that, despite such obvious predictability, the generated sequences should have

all the properties of random sample from uniform distribution. Otherwise, the gamma will be

either a bad mask for message M or reveal the dependence on the initial state (key) of the

generator, by which the key can be extracted.

The result of all given above is the fundamental problem of constructing algorithmic

random number generators. The sequences they produce are also called pseudorandom (or

pseudo noise) sequences, and the algorithmic generators themselves are called pseudorandom

number generators. The problem of constructing pseudorandom number generators remains

relevant to this day, and at the same time, considerable experience has been accumulated in this

area.

Linear congruent generators

A pseudorandom number generator of this type generates a recurrent sequence according to the

following formula

mbXaX nn mod)(1   ,

where

Xn is currently generated element of sequence;

Xn-1 is previous element in the sequence;

 3

and the parameters a, b, m (0 < a < m, 0 ≤ b < m, m > 0) are fixed during the entire

process of production the pseudorandom numbers. An element X0 serves as the initial state of

the generator (key).

Like the most of algorithmic random number generators, this generator is periodic, and the

period does not exceed m and can be maximum for a certain choice of parameters a and b.

Example: let a = 7, b = 5, m = 18; X0 = 4.

Then we get the following output sequence:

4, 15, 2, 1, 12, 17, 16, 9, 14, 13, 6, 11, 10, 3, 8, 7, 0, 5, | 4, 15, 2, 1, 12, 17, 16, ……

The sequence begins to repeat after 18-th element.

The significant advantage of a linear congruent generator is high speed of producing

pseudorandom numbers, however, it is not a good idea to use this generator for encryption

purposes: it was shown in [1], [2], [3], [4] that a linear congruent generator, as well as quadratic

and cubic generators of formulas

mcXbXaX nnn mod)(1
2

1  

mdXcXbXaX nnnn mod)(1
2

1
3

1  

can be hacked in a reasonable amount of time. In later works [5], [6], [7] a method for cracking

any polynomial congruent generator as well as a truncated generator of this type was developed.

Thus, the linear congruent generator is useless for cryptographic purposes, but remains

relevant and is used in computational modeling tasks.

Shift registers with linear feedback

The principles of constructing pseudorandom number generators based on shift registers

have been studied by cryptographers since the first half of the last century. The sequences

generated by shift registers are used both in cryptography and in coding theory. Stream ciphers

based on shift registers served as a working tool of military cryptography long before the

electronics.

In general, generators of this type contain

1. register — a set of cells, and you can put only one bit of information (zero or one) into each

cell

2. feedback mechanism (some function of register bits)

 4

Fig. 2. The scheme of the register with feedback.

The shift register can be considered as a sequence of bits. The length of the shift register

is equal to the number of bits — if it is equal to n bits, the register is called an n-bit shift

register. Each time a bit is extracted, all other bits of the shift register are shifted to the right by

one position. The new bit (feedback bit) is calculated as a function of all other bits of the

register. The output of the shift register is the rightmost bit each time and it’s called an output

bit. The period of the shift register is the length of the output sequence before it starts to repeat.

A particular case of a shift register is a linear feedback shift register (abbreviated as

LFSR). The feedback function is defined as the addition modulo two of some bits of the register.

The list of these bits is called a sequence of taps (or picks points). Sometimes such a scheme is

called a Fibonacci configuration. Due to the simplicity of the feedback sequence, a fairly

developed mathematical theory can be used to analyze LFSR.

Fig. 3. Linear feedback shift register.

 5

Example:

The figure shows a 4-bit LFSR with taps from the first and fourth bits. If you initialize it with a

set of bits {1; 1; 1; 1}, the register will take the following internal states until they start to

repeat:

1111, 0111, 1011, 0101,

1010, 1101, 0110, 0011,

1001, 0100, 0010, 0001

1000, 1100, 1110

The output sequence of the register will be a string of the least significant bits:

1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 | … the sequence starts to repeat

The n-bit register can be in one of 2n - 1 internal states at each moment of time. This

means that, theoretically, such register can generate a pseudorandom sequence with a period of

2n - 1 bits. (This number equals exactly 2n - 1, not 2n, because filling LFSR with zeros leads to

the infinite sequence of zeros in the output, which is completely useless.)

Only with certain sets of taps the LFSR will cycle through all 2n – 1 internal states.

Such LFSR are called maximum period registers. The resulting output is called the M-sequence.

To ensure the maximum period of a particular LFSR, the corresponding polynomial formed

from the sequence of register’s taps should be primitive by modulo 2 (or, which is the same,

should be primitive in the field GF(2)). The degree of the polynomial coincides with the length

of the shift register.

In the general case, there is no simple way to generate primitive polynomials of a given

degree in the field GF(2). The easiest way is to choose a random polynomial and check if it is

primitive or not. This is not easy and similar to checking the primality of a given random

number, but many packages of mathematical programs can solve this problem. The software

implementations of primitive trinomials work faster than the rest, because you need to perform

the XOR operation only on two bits of the shift register to generate a new bit. For cryptographic

algorithms, it is much more efficient to use dense primitive polynomials, i.e. polynomials with a

large number of coefficients. When applying dense polynomials, especially as part of a key, the

significantly shorter LFSRs can be used.

 6

The linear feedback shift registers are considered to be good pseudorandom numbers

generators; however, they have some undesirable nonrandom properties. The consecutive bits are

subject to a linear dependency, which makes them useless for encryption. The internal state of

the LFSR of length k determines the next k output bits of the generator, and even if the feedback

polynomial is kept in secret, it can be determined by the 2k output bits of the generator using the

efficient Berlekamp-Massey algorithm. In addition, a big pseudorandom numbers can be highly

correlated if they are generated using consecutive bits. However, LFSRs are often used in

encryption algorithms.

Geffe’s random number generator

This random number generator uses a non-linear combination of three LFSRs. Two

LFSRs serve as inputs to the multiplexer, and the third one controls the output of the

multiplexer.

Fig. 4. Geffe’s generator

If a1, a2, a3 are the outputs of three LFSRs, the output of the generator can be

described as follows:

))(()(3121 aaaab 

If the lengths of the LFSRs are n1, n2 and n3, respectively, then the linear complexity

of the generator is equal to:

3121)1(nnnn 

The period of the generator is equal to the least common multiple of the periods of three

registers. Provided that the degrees of the three primitive feedback polynomials are co-prime, the

period of this generator will be equal to the product of the periods of three LFSRs. Although

 7

this generator looks good at the first glance, it is unreliable in cryptographic terms and unstable

to a correlation attack [8], [9]. Over 75% of the operating time, the generator output is equal to

the output of LFSR-2. Therefore, if the sequence of feedback taps is known, you can determine

the initial value of LFSR-2 and generate the output sequence of this register. Next, you can

calculate how many times the output of LFSR-2 coincides with the output of the generator. If

the initial value is not determined correctly, the two sequences will be matched at 50% of the

time, and if correct, then at 75% of the time. Similarly, the output of the generator is equal to the

output of LFSR-3 in 75% of the time. With such correlations this generator can be easily

cracked. For example, if primitive polynomials are trinomials and the length of the largest LFSR

is n, then to restore the internal states of all three LFSRs, you need a fragment of the output

sequence with a length of 37n bits [10].

Threshold generator

In this generator there was made an attempt to overcome the problems with the RNG's

stability and resistance using a variable number of LFSRs [11]. The threshold generator always

includes an odd number of registers. To get the maximum period, you need to make sure that the

lengths of all LFSRs are co-prime, and the feedback polynomials are primitive in GF(2). If

more than half of the LFSR output bits are equal to 1, then the output of the generator will be 1.

If more than half of the LFSR output bits are 0, then the generator output is 0.

Fig. 5. The scheme of the threshold generator

 8

For three LFSRs, the generator output can be represented as:

)()()(323121 aaaaaab 

This equation is very similar to that used in the Geffe's generator. However, the threshold

generator has the greater value of linear complexity:

,323121 nnnnnn 

where n1, n2 and n3 are the lengths of the first, second and third LFSR.

This generator is not very good at its resistance to attacks. Each output bit gives 0.189

bits of information about the state of the LFSR, and the generator itself cannot resist to

correlation attack.

Cascade generator

The Gollmann cascade described in [12], [13] is an enhanced version of the so called

«start-stop» generator.

Fig. 6. The scheme of the cascade generator

It consists of a sequence of LFSRs, where each current register is controlled by the

previous one. If at time moment t the output of LFSR-1 is equal to 1, then LFSR-2 performs

the tact. If at time moment t the output of LFSR-2 is 1, then LFSR-3 performs the tact, and so

on. The output of the last LFSR is the output of the generator. If the length of all LFSRs is the

same and equals to n, then the linear complexity of the system of k registers of LFSR is equal to

1)12( knn

Using cascades is a great idea: conceptually they are very simple and can be used to

generate sequences with huge periods, high linear complexity and good statistical properties.

However, they are vulnerable to attack called lock-in [13], that represents a method by which the

adversary restores, firstly, the input of the last shift register in a cascade, and then breaks the

 9

entire cascade, one register by another. In some cases, this becomes a serious problem and

reduces the effective length of the algorithm key. Subsequent analysis of Gallmann cascades

showed that with the increasing of parameter k, the output sequences approach random [14],

[15], [16]. The use of a large number of short LFSRs in a cascade generator is considered more

preferable than a small number of long LFSRs, and the cascade length should be chosen at least

fifteen [17].

Algorithm A5

The A5 cipher is a stream cipher used to encrypt GSM communications (GSM - Group

Special Mobile - mobile group special communications). This is the European standard for

mobile digital cell phones. It is used to encrypt the telephone / base station channel. The code of

A5 is described in details in [18].

Fig. 7. The scheme of the random number generator involved in A5

The random number generator in A5 algorithm consists of three LFSRs with the lengths

equal to 19, 22 and 23 bits, and all the feedback polynomials are sparse. The output is the result

of the XOR operation on three output bits of LFSRs. There is a trivial cracking algorithm

against A5, which takes about 240 operations and possible for modern supercomputers. Despite

this fact, the ideas underlying the A5 remains actual, and the generator itself is very efficient. It

satisfies all of the known statistical tests, and its only weakness is that the registers are too short

to prevent the cracking by bruteforcing.

 10

CHAPTER 1. THE RANDOM NUMBER GENERATOR BASED ON

MULTIPLICATIVE CONVOLUTION TRANSFORM

The algorithm for generating pseudorandom bits based

on linear feedback shift register

Consider a shift register of length N with linear feedback defined by the polynomial

P = P (x) primitive over the field GF(2).

Let us set the register to an arbitrary state S, where at least one bit is not equal to zero.

The generation of a pseudorandom bits sequence with the length equal to M consists in repeating

M times the following algorithm:

1) Extract the last bit of the register

2) Calculate the feedback bit in accordance with the primitive polynomial P(x)

3) Perform a register shift towards the output and place the feedback bit in the freed cell farthest

from the output.

Let us save the design of the linear feedback shift register as the basis of our generator.

From the other hand, let’s take into account not only the bits of the register, but also their order

numbers. This will gradually lead us to a new approach for obtaining pseudorandom bits — the

linear feedback shift register equipped with multiplicative convolution transform.

The definition of multiplicative convolution

Let us have a prime number p, which satisfies the condition

,34  tp

where t is a natural number. Consider a nonzero vector S = (b1, b2, …, bp-1), from the set {0,

1}p - 1. Elements b1, b2, …, bp-1 of the vector S can also be called bits, each of them is either

zero or one. The multiplicative convolution operation is performed both on the bits of the vector

S and their order numbers, moreover, all operations are carried out over the GF(p) field. The

transformation results in a single bit (zero or one). Thus, the formal definition of the

multiplicative convolution transformation is as follows:

)),(...,,,(121 pGFbbbff p  1,0)(fE

 11

Let us now give an algorithm for generating pseudorandom bits using a linear feedback

shift register equipped with multiplicative convolution transform.

So, let us have a prime number p, which satisfies the condition

,34  tp

where t is a natural number. Consider a shift register with the length of L = p − 1 bits with

linear feedback expressed by the primitive polynomial P = P (x) over the field GF (2). Let us

apply a new approach to the generation of pseudorandom bits — we will perform one tact of the

register using the multiplicative convolution transform.

Fig. 8. Ready for multiplicative convolution transform

In a situation with a register equipped with a multiplicative convolution, the output bit is

not just the last bit of the register. The output bit is obtained as a result of executing the

algorithm on the current state of the register and the set of cell order numbers. The mentioned

algorithm consists of the following steps:

1. Consider all the cells of the register that contain zero, and multiply their numbers in the field

GF (p). (We get some natural number N: 0 <N <p)

2. Consider all the cells of the register that contain one, and also multiply their numbers in the

GF (p) field. (We get some natural number E: 0 <E <p)

3. Form the output bit by adding on modulo 2 the bits found in cells under the numbers N and E

4. Calculate the feedback bit by applying the polynomial P (x) to the current state of the register,

and then perform the shift — all in the same way as the feedback is calculated when we deal

with the usual shift register with linear feedback.

 12

Fig. 9. Model of multiplicative convolution transform

Lemma

The numbers N and E from the algorithm above are always different.

Proof

The product of the numbers N and E is comparable by modulo p with the product of all

numbers from 1 to (p - 1)

)(mod)1(21 ppEN  

At the same time, according to Wilson's theorem

)(mod1)!1(pp 

Hence,

)(mod1 pEN 

If the numbers N and E are the same, this means that -1 is a quadratic remainder in the

field by prime modulo p of the form 4t + 3. However, -1 is not a quadratic remainder in any

field formed by a prime modulo of this form. Thus, the numbers N and E are always different.

Remark

This lemma gives us the first reason to believe that the structure of the algorithm does not upset

the balance of zeros and ones in the output sequence. The same frequency of zeros and ones in

the output sequence will be later proved by the results of statistical tests.

Example

Consider a shift register with the length L = 6 and linear feedback defined by the polynomial

P (x) = x6 + x5 + 1 primitive in the field GF(2).

 13

Fig. 10. Before an ordinary tact of LFSR

Let the initial state of the register be given by the bit vector (0, 1, 0, 0, 1, 0). The last

bit of the register, which is the closest one to the output, equals zero. So, the register output at

this tact will be zero.

Output = 1

Let us compute the bit of feedback by adding by modulo 2 those bits that correspond to

significant powers of the primitive polynomial P (x) — those are the bits in the fifth and sixth

register cells.

Feedback = Cell(5) + Cell(6) (mod 2)  Feedback = 1

Then we perform the register shift and put the feedback bit in the freed cell.

Fig. 11. After an ordinary tact of LFSR

Example

Consider the same shift register of length L = p - 1 = 6 with linear feedback expressed

by the primitive polynomial in the field GF (2). It is easy to verify that p = 7 is a prime and

gives a remainder of 3 when divided by 4.

Let the initial state of the register be given by the bit vector (0, 1, 0, 0, 1, 0), as in the

previous example. Register cells are numbered from 1 to 6:

 14

Fig. 12. Before a tact with multiplication convolution transform

According to the steps of the algorithm, we separately multiply the order numbers of all

cells that contain zero and the order numbers of all cells that contain one:

2)7(mod6431  NN

3)7(mod52  EE

Consider the contents of cells with order numbers 2 and 3:

1)2(Cell

0)3(Cell

The output bit is obtained by adding these bits, i.e.

1)2(mod101  Output

Let us calculate the feedback bit by adding by modulo 2 those bits that correspond to

significant powers of P(x) = x6 + x5 + 1 — those are the bits in the fifth and sixth register

cells.

Feedback = Cell(5) + Cell(6) (mod 2)  Feedback = 1

Then we perform the register shift and put the feedback bit in the freed cell.

Fig. 13. After a tact with multiplication convolution transform

Remark

 15

Note that the feedback calculation procedure is completely identical for both

pseudorandom bit generation algorithms.

Complexity analyses. Linear feedback shift register

Consider a shift register of length equal to L bits with linear feedback expressed by the

primitive polynomial P = P(x) over the field GF(2). Let us estimate the complexity of

performing one register tact, that is, how many operations we need to produce one

pseudorandom bit.

One tact of the linear feedback shift register consists of the following operations:

1) extracting the output bit

2) feedback calculation

3) register shift

4) placing the feedback bit in the freed cell

Fig. 14. The scheme of ordinary LFSR tact

The complexity of operation 2) (feedback calculation) depends on the polynomial P(x),

and namely, on the number of its significant degrees. The more dense a polynomial is, that is, the

more significant degrees it has, the more register cells form the feedback and the slower this

operation is performed. And vice versa, when the polynomial is sparse (most of the coefficients

at powers of P(x) are zero), the calculation becomes faster. Thus, the difficulty of obtaining a

feedback bit is proportional to the number of significant degrees of P(x) and can be limited by

the number L as the total length of the register. Therefore, the complexity of computing the

feedback is O(L).

 16

The complexity of operation 3) (register shift) is inherently proportional to the length of the

register, however, due to the existence of effective solutions in the field of computer technology,

its complexity is more justly estimated as a constant. So, the complexity of register shift is O (1).

The complexity of operations 1) and 4) (extracting the output bit and putting the

feedback bit in the empty cell) does not depend on the length of the register or on the primitive

polynomial. Hence, it can be estimated as O (1).

Adding individual estimates of the operations complexity, we obtain the desired estimate

for the complexity of the one tact of linear feedback shift register:

)(_ LOcomplexityTact 

Linear feedback shift register equipped with multiplicative convolution transform.

Initial complexity analyses.

Let us have a prime number p, which satisfies the condition

,34  tp

where t is a natural number. Consider a shift register with the length of L = p − 1 bits and

linear feedback expressed by the primitive polynomial P = P(x) over the field GF(2). Let us

estimate the complexity of one tact of a register with multiplicative convolution transform.

One tact of such register consists of the following operations:

1) performing the multiplicative convolution transform over the current state of the register

2) extracting the output bit

3) calculation of feedback bit

4) register shift

5) placing the feedback bit in the freed cell

Fig. 15. Tact with multiplicative convolution transform

 17

An analysis of operations 2) - 5) was performed in the previous section - their total

complexity is O(L), which gives us an estimate of O(p) with respect to the original prime

number and register length.

We proceed to the estimate of complexity of multiplicative convolution transform.

During its execution, it is necessary to perform (p - 2) multiplication operations in the field

GF(p). This means that it is necessary to perform (p - 2) ordinary multiplication operations and

(p - 2) division operations with the remainder by modulo p. The complexity of multiplying two

numbers can be estimated as O(loglog N), where N is the maximal of the two numbers. The

complexity of taking the remainder (to finish the multiplication in the field GF(m)) is

approximately O(log m).

So, the multiplicative convolution transform is performed in no more than

),log()2())log(log()2(pppp 

operations, which gives us an overall assessment of complexity

)).(log((ppO 

Thus, the complexity of a single tact of the register equipped with a multiplicative

convolution transform is the sum of the complexity of transformation and also the complexity of

operations 2) - 5). It is equal to

))(log(()(ppOpO 

that gives us final estimate

))(log((ppO 

Optimization of the algorithm for performing a multiplicative convolution

Comparing the results of the complexity analyses, it can be noted that the asymptotically

higher complexity of the shift register, equipped with multiplicative convolution transform,

grows out of a rather large number of multiplication operations in the field GF(p) —

it is almost p ordinary multiplication operations, followed by taking the remainder of division.

The complexity of performing a multiplicative convolution on register state bits can be reduced

if the multiplication operation is replaced by addition.

Let us take a closer look at the register cell order numbers — they are enumerated from 1

to (p - 1), inclusive. These numbers form a cyclic multiplicative group GF*(p) modulo prime

 18

p, which means that there exists a primitive element of the group — that is a such number that

each register cell order number can be represented as a unique degree of the selected primitive

element in GF*(p). Then the operation of multiplying the cell order numbers in the field GF(p)

can be replaced by adding the powers of the selected primitive element in GF*(p).

Example

Consider a prime number p = 7 and the register of length L = p - 1 = 6, equipped with

a multiplicative convolution transform. Let the initial state of the register be set by the vector

(0, 1, 0, 0, 1, 0).

Fig. 16. Tact with improved multiplicative convolution transform

Let us perform a single tact of the register using an improved algorithm. At first, just for

better clarity, we write the elements of the group GF*(p)

GF*(p) = GF(p) \ 0 = {1, 2, 3, 4, 5, 6}.

We proceed to the search for a primitive (generating) element. It is obvious that the

remainder of division of any degree of one by modulo p is equal to one, and it cannot be a

primitive element.

Let us check the next number:

21 = 2 (mod 7), 22 = 4 (mod 7), 23 = 1 (mod 7),

24 = 2 (mod 7), 25 = 4 (mod 7), 26 = 1 (mod 7).

We were not able to represent 3, 5 and 6 as powers of two, which means that it is also

not suitable as primitive element.

Let us check the three:

31 = 3 (mod 7), 32 = 2 (mod 7), 33 = 6 (mod 7),

34 = 4 (mod 7), 35 = 5 (mod 7), 36 = 1 (mod 7)

 19

We managed to represent all the elements of GF*(p) as comparable by modulo p with

the unique degree of 3. Therefore, 3 is a primitive element.

Now we make the register tact. Let us separately multiply the order numbers of cells

containing zero and the order numbers of cells which contain one:

N = 1ꞏ3ꞏ4ꞏ6 (mod 7) = 36 ꞏ 31 ꞏ 34 ꞏ 33 (mod 7) = 36+1+4+3 = 314 (mod 7)

E = 2ꞏ5 (mod 7) = 32 ꞏ 35 (mod 7) = 32+5 = 37 (mod 7)

We apply the Fermat’s little theorem to make sure that both powers of 3 belong to the

interval from 0 to (p - 2)

N = 314 (mod 7) = 3(14 mod 6) (mod 7) = 32 (mod 7) = 2

E = 37 (mod 7) = 3(7 mod 6) (mod 7) = 31 (mod 7) = 3

The output bit is the result of addition by modulo 2 of cells with order numbers 2 and 3.

New algorithm of multiplicative convolution transform

We extend the example above to a more general case and construct an optimized

algorithm for performing multiplicative convolution over the bits of the register state.

Step 1.

For a given prime number p, find an arbitrary primitive element g of the group GF*(p).

Step 2.

For each element a of the group GF*(p), calculate its discrete logarithm by the base g. That

means to find the degree d to which the element g should be raised that the result becomes

comparable with the number a by modulo p

gd = a (mod p)

The range of discrete logarithms should be the segment [0; p-2]. Save calculated values

in available memory.

Step 3.

Calculate the remainders of dividing by the module p the powers of g taken from the interval of

integers [0; p-2], that is, find numbers v0, v1, v2, …, vp-2, such that

g0 = v0 (mod p), g1 = v1 (mod p), g2 = v2 (mod p), …, gp-2 = vp-2 (mod p)

 20

Also save the calculated values in available memory as in the previous step.

Step 4.

Proceed to the calculation of the output bit – perform separate multiplication of the order

numbers of cells containing zeros and ones, adding up the corresponding powers of the primitive

element g.

Step 5.

As a result of the previous step, we get two different degrees of the primitive element g. The

values of these degrees can be outside the interval [0; p-2], and we apply the corollary of

Fermat’s little theorem

gd = g(d mod (p-1)) (mod p)

As a result, we obtain two different degrees d1, d2 of the primitive element g, each of them is

not less than zero and not bigger than (p-2).

Step 6.

We calculate the remainder of dividing by p the degrees d1, d2 of the element g, by turning to

the memory for the previously calculated results.

Hence, we obtain two unique numbers N and E.

Step 7.

We calculate the output bit by adding modulo 2 the bits contained in cells with order numbers N

and E.

Step 8.

We calculate the feedback bit in accordance with the given polynomial P(x), which is primitive

in the field GF(2). Then we shift the register and put the feedback bit in the cell farthest from

the output of the register.

Complexity analyses of new algorithm

Steps 1, 2, 3.

There exist φ(p-1) primitive elements in GF*(p), where φ – Euler function –

determines the number of naturals from the segment [1; p–2], which are co-prime with (p–1).
In special case of performing this algorithm, a primitive element can be found by simple

sequential checking of all possible numbers started from the number 2. Due to the large number

of primitive elements in the group GF*(p), the search will end quickly enough and will have an

amortized complexity of O(p).

 21

The calculation of discrete logarithms as well as exponentiation modulo p can be

performed in the same cycle in p iterations. It should be noted that although the operation of

raising to a power by a certain modulus has logarithmic complexity, for small numbers (in

modern cryptography those are all numbers less than a billion) its complexity does not exceed a

certain constant, and therefore the complexity of the cycle can be estimated as O(p).

Finally, it is important to note that steps 1, 2, 3 can be performed as a stage of

preliminary calculations and do not directly affect the process of generating pseudorandom bits.

Therefore, their total contribution to the complexity of the algorithm can be estimated as O(1).

Step 4.

At this step, we perform separate multiplication of register cell order numbers. The

multiplication of cell order numbers is performed as an addition of the corresponding degrees of

a primitive element. In contrast to multiplication, the complexity of the addition operation can be

estimated as a constant O(1). There are (p-2) addition operations performed, that is, the

complexity of this step is O(p).

Step 5.

At this step, two division operations with the remainder by (p-1) are performed. Each such

division has the complexity about O(log (p)).

Steps 6, 7.

At these final steps of the algorithm, two preliminary calculations are accessed and two

corresponding register bits are added by modulo 2. The total complexity of these operations is

the constant O(1).

Step 8.

The complexity of this step completely coincides with the complexity of calculating the feedback

for an ordinary register with linear feedback. It was previously shown that the complexity of this

stage is proportional to the register length, which gives us an estimate of O(p).

Thus, the overall complexity of the new algorithm is summarized as

O(1) + O(log(p)) + O(p).

The contribution of the division operations with the remainder can be considered insignificant -

such operation is performed exactly two times per tact (constant number of times) and can also

 22

be bounded by p on the asymptotics. That gives us the reason to neglect this term and get the

final expression for the complexity of the algorithm:

Tact_Complexity = O(p)

 23

CHAPTER 2. IMPLEMENTATION OF THE GENERATOR

Initial verification of ideas

For the initial verification of the transformation idea, a simplified implementation of the

shift register was performed, and the C# programming language was chosen for this

purpose. In the framework of this implementation, the shift register is designed as a stand-alone

class called LFSR. This class includes two main fields: shift register and feedback polynomial

— as well as methods for generating pseudorandom sequences.

Here is a shortened code fragment illustrating the structure of the LFSR class:

class LFSR
 {
 // --
 // FIELDS
 // --
 byte[] register;

 byte[] polynom;

 // --
 // INPUT FUNCTIONS AND CONSTRUCTORS
 // --

 public LFSR()
 {…}
 public LFSR(string degs_of_GF2_polynom, string initial_state)
 {…}
 bool CheckData(string degs_of_GF2_polynom, string initial_state)
 {…}

 // --
 // METHODS
 // --

 byte feedbackFunction()
 {…}
 public byte Tact()
 {…}
 public void GenRandomBinaryFile(int num_bytes)
 {…}

 }

Such an implementation can be used for research purposes, but its performance as well as

the total functionality of the class needs to be improved. Let's pay attention to several points that

made up the first stage of program optimization.

 24

The first stage of optimization

First of all, let's look at how the shift register field can be implemented in a different way.

One of the obvious factors affecting the running time of the current implementation is the slow

execution of the register shift operation. The reason is that the shift register is so far implemented

only as an array, and the register shift is performed by sequential rewriting bits from a given cell

to a neighboring one, which is closer to the output.

Let us turn to the possible ways how the register shift can be performed in one command.

For example, a register can be implemented with a sufficiently long unsigned integer. For

example, it is convenient to implement a 32-bit register using the unsigned int or a 64-bit

register using the unsigned long. In this case, the shift can be made in one command using the

">>" directive.

unsigned int register = 12345; // initializing the register

register >> = 1; // example of right shift of the register

However, the registers of length 16, 32, 64, 128 and other powers of two are not

suitable to equip them with multiplicative convolution transform. Also it seems very problematic

to implement the shift register entire functionality with unsigned int, unsigned long and

other similar types if the required length of the register is somewhere between the powers of two.

In the practice of implementing cryptographic algorithms it is widely known that the fastest

software implementations of shift registers are usually performed in «Assembler» language or in

C language with a smart compiler. Let us turn our attention to the modern standard of the C

language – in particular, we can find a class called bitset.

Bitset is a special container class that is designed to store bit values (the elements of this

container can have values: 0 or 1, true or false).

The bitset class is very similar to a regular array, but, unlike an array, only one bit is

allocated for each element of a bitset type, that is, the memory space taken by bit masks is

optimized as much as possible. This circumstance allows us to use eight times less memory than

it is required by the smallest elementary data type in C ++, the char type.

Each element (each bit) can be accessed individually: for example, we have an object of

type bitset named mybitset, we need to access the fourth bit. To do this, after the array name,

in square brackets we indicate the bit index, as if we would like to access the array element –

mybitset [3]. Sometimes this data type is used as logical variables; individual elements in this

 25

case are links to logical values. As an addition to overloading several operators and providing

direct access to bits, the bitset object can be converted to an unsigned integer value and to a

binary string.

Here is a short list of the bitset class methods.

Member Functions of the bitset Container

Class from C ++ Standard Template Library

constructor The bitset class constructor

operators Overloaded operators for performing bitwise logical

operations and organizing input/output of bitset objects

Access to bits

operator[] Overloaded square brackets operator for direct access to bits

Bit operations

set The function allows to initialize all bits with one or change

the value of a single bit

reset Reset specified bits (reset bits to 0)

flip Convert the current register state to reverse code. That is,

replace ones with zeros, and zeros with ones

Bitmask operations

to_ulong Convert bit object to integer long unsigned value

to_string Convert a bit sequence to a string of type string, which will

contain the characters 0 and 1

count Returns the number of unit bits of the bitset object

size Return the size of the bitset object (number of bits)

test Gets the value of the specified bit of the bitset object

any Checks the bit value for the presence of single bits in the

bitset object

none Checks the bit value for zero bits in the bitset object

Table 1. Member Functions of the bitset Container Class from C ++ Standard Template Library

 26

Let us make an attempt to use the bitset class and construct new software

implementation of the shift register in C/C++ languages. Here is a code fragment illustrating

the structure of the new implementation:

class LFSR_82_79_47_44
{
 // REGISTER
 bitset<REG_82> reg;

public:

 // INPUT FUNCTIONS AND CONSTRUCTORS
 LFSR_82_79_47_44()
 {…}
 LFSR_82_79_47_44(vector<int> positionsOfTRUEbits)
 {…}
 void setState(vector<int> positionsOfTRUEbits)
 {…}
 string getState()
 {…}

 // RANDOM BIT GENERATION
 bool TactAsUsualReg()
 {…}
};

The second stage of optimization

Compared to its previous version, the new implementation has two significant features.

1) it is written in C, uses the special bitset class and, therefore, allows working with bits more

efficiently

2) there is no feedback polynomial among the fields of the class

Let us tell more about the paragraph 2). Here was made an attempt to implement not a

wide class of shift registers in general, but only one specific register defined by the polynomial

P(x) =x82+x79+x47+x44+1, primitive in the field GF(2). The goal, which was pursued in this

case, was a faster implementation of the register tact function. Now for the case of ordinary

register it looks like this:

bool TactAsUsualReg ()

 {

bool out = reg [0];

bool feedback = ((reg >> 81) ^ (reg >> 78) ^ (reg >> 46) ^ (reg >> 43)) [0];

 27

 reg >> = 1;

 reg [81] = feedback;

return out;

}

As you can see, when calculating the feedback, only bitwise operations are involved,

which can be executed very quickly. It is impossible to write the tact function in this way if we

don’t know the primitive polynomial in advance and have it only as an input during after the

running of program, as was provided in an earlier version.

The third stage of optimization

The current implementation of the register tact function can be accelerated in almost two

times, and the class structure itself can be again expanded to a more general situation, when the

register is mostly determined directly during the running of program and only partially before it

starts.

Consider an implementation in which a primitive feedback polynomial is a field of type

bitset of class LFSR. Thus, the feedback polynomial is implemented in the same way as the

register itself. In this case, the structure of the LFSR class takes the following form:

class LFSR
{
 // REGISTER
 bitset<REGISTER_LENGTH> reg;

 // FEEDBACK POLYNOM
 bitset<REGISTER_LENGTH> feedbackPolynom;

public:
 // ----------------- CONSTRUCTORS ----------------
 LFSR(vector<int> nonzeroDegsInDescOrder)
 {…}
 LFSR(vector<int> nonzeroDegsInDescOrder, vector<int> positionsOfTRUEbits)
 {…}

 // ----------------- SET and PRINT METHODS ----------------
 void setState(vector<int> positionsOfTRUEbits)
 {…}
 string getState()
 {…}

 // ----------------- RANDOM BITS GENERATION ----------------
 bool TactAsUsualReg()

 28

 {…}
}

The object feedbackPolynom stores the coefficient of (N+1)-th degree in its N-th cell (the

sequence of cell order numbers starts from zero). Let us examine the form that the register tact

function will take now:

bool TactAsUsualReg ()
{

bool outbit = reg [reg.size () - 1];

bool feedbackBit = (reg & feedbackPolynom) .count () & 1;

reg << = 1;
reg [0] = feedbackBit;

return outbit;
}

A computational experiment showed that this implementation of the tact function works

almost twice faster than the implementation obtained at the previous stage of optimization.

Note that this implementation does not limit the form of the primitive polynomial,

providing the ability to use any primitive polynomial of fixed length as the linear feedback. The

practical advantage of this circumstance is the possibility of using both dense and sparse

primitive polynomials.

The fourth stage of optimization

We will carry out the process of vectorizing the code. To do this, we add some

instructions for the compiler to a special file CMakeLists.txt (the implementation was

performed within the framework of the CLion software environment). Finally the file’s content

will be as follows:

cmake_minimum_required (VERSION 3.5)
project (MCT_RNG)

set (CMAKE_CXX_STANDARD 17)
set (CMAKE_CXX_STANDARD_REQUIRED ON)
set (CMAKE_CXX_EXTENSIONS OFF)

find_package (OpenMP)
if (OPENMP_FOUND)
 set (CMAKE_C_FLAGS "$ {CMAKE_C_FLAGS} $ {OpenMP_C_FLAGS}")

 29

 set(CMAKE_CXX_FLAGS "$ {CMAKE_CXX_FLAGS} $ {OpenMP_CXX_FLAGS}")
 set(CMAKE_EXE_LINKER_FLAGS"$ {CMAKE_EXE_LINKER_FLAGS}
{OpenMP_EXE_LINKER_FLAGS}")
endif ()

if ("$ {CMAKE_CXX_COMPILER_ID}"STREQUAL"GNU")
 set (CMAKE_CXX_FLAGS"$ {CMAKE_CXX_FLAGS} -fopt-info-vec -fopt-info-vec-missed
-Ofast -march = native")
endif ()

add_executable (MCT_RNG main.cpp)

Now each cycle and, in general, each piece of code is checked by the compiler for the

possibility to optimize it according to the principle SIMD – Single Instruction on Multiple Data.

The code fragment may be also explicitly checked for vectorization, if the certain directive

#pragma omp simd is used.

The fifth stage of optimization and the final version of the program

The last step in optimizing the program was to add code that implements the

multiplicative convolution transform and extends the functionality of the LFSR class. Let us

present a list of significant elements in the final version of the program.

Fields of shift register and primitive polynomial.

Implemented as objects of the bitset class, the register length is fixed, the form of a primitive

polynomial can be arbitrary.

Array fields for storing the results of preliminary calculations.

Used when performing an optimized version of the multiplicative convolution transform.

Constructor 1.

It takes a primitive feedback polynomial as an input. The polynomial is given by a set of

significant degrees arranged in descending order. The initial state of the register is initialized by

default with all bits equal one.

Constructor 2.

It takes two arguments as an input: a primitive feedback polynomial given by a set of significant

degrees, arranged in descending order, and also the initial state specified by the list of register

cells that should contain one. Zero bit will be placed in all other cells of the register by default.

 30

GET – SET Methods.

The setState() method is used to change the current state of the register. The getState() and

getPolynom() methods are used to output the current state of the register and the feedback

polynomial to the console.

Methods for generating pseudorandom numbers.

The functions TactAsUsualReg() and TactWithMulConv() allow to produce a

pseudorandom bit, interacting with this register as an ordinary one with linear feedback or as a

register equipped with a multiplicative convolution, respectively.

Similarly:

— the functions NextByteAsUsualReg() and NextByteWithMulConv() allow to get a

pseudorandom byte

— the ArrayOfRandomBytesAsUsualReg() and

ArrayOfRandomBytesWithMulConv() functions allow you to get an array of

pseudorandom bytes of a given length

— the NextUIntAsUsualReg() and NextUIntWithMulConv() functions return an unsigned

pseudorandom integer.

Methods for generating pseudo-random sequences written to a file.

The functions ToTextFileAsUsualReg() and ToTextFileWithMulConv() provide a way to

get a pseudorandom sequence of bits of a given length and write it to a text file as a sequence of

zeros and ones. As a result, the contents of the file will look something like this:

11100011011100011100100000111111000111111000111000110110111111110001001110001

11000111001110000001110000001111110111001110000000000001111110011100010010011

10110001000011111100010001101110011100011100001101110010100100100111000100111

00001110001111011011011010111000100100011100000000111000100100000000100100111

11111100000011101111111100011111111100001100111000110111000100101000110111000

11011101010011000010101111011110101110110100100110010010001001101101110101001

00101001111110000010101101101101010101101100100011100100011010100110000110110

1111101100010010001110100100111001100100000001100011100

The functions ToBinaryFileAsUsualReg() and ToBinaryFileWithMulConv() do

the same task, but only write the output bits to a binary file.

 31

The estimation of speed of the program

The diagram below shows the average bit generation rate depending on the length of the

register that was used. To obtain these results the final version of the program was taken and

each register was equipped with a multiplicative convolution transform.

When generating bits, the following primitive polynomials were used.

P1(x) = x58 + x39 + 1

P2(x) = x82 + x79 + x47 + x44 + 1

P3(x) = x102 + x101 + x36 + x35 + 1

P4(x) = x126 + x125 + x90 + x89 + 1

P5(x) = x150 + x97 + 1

P6(x) = x166 + x165 + x128 + x127 + 1

The initial state of all the registers before the start of the experiment consisted solely of

ones.

104 100
91 90

83
77

0

20

40

60

80

100

120

58 82 102 126 150 166

REGISTER LENGTH (bit)

S
P

E
E

D
 (

M
b

it
/s

)

Fig. 17. The speed of producing pseudorandom bits

Conclusion:

The software implementation supports a fairly high pseudorandom bit generation rate. Particular

attention can be paid to the 82-bit register. Its length is large enough to resist the brute force

attack, while the pseudorandom bit generation rate of this register is about 100 Megabits per

second.

 32

Let us compare the average speed of two registers: let them have the same length and

same feedback polynomial, but also let us equip one of them with multiplicative convolution

transform. The comparison is correct, because the registers differ only in the fragment of their

code which implements the multiplicative convolution transform.

104
100

91 90
83

77

111
105

95 92
87

80

0

20

40

60

80

100

120

58 82 102 126 150 166

REGISTER LENGTH (bit)

S
P

E
E

D
 (

M
b

it
/s

)

The rate of LFSR equipped
with multiplicative convolution
transform

The rate of ordinary LFSR

Fig. 18. Comparison of pseudorandom bits producing rate

Conclusion:

The pseudorandom bit generation rates are almost the same — the difference is only

about 5% regardless of the length of the register.

Testing the program code

To verify the written program code, a special system of program tests was constructed.

This system includes 15 tests for various components of the system (so-called Unit-Tests). Each

test uses specific numerical parameters. These parameters are unique for each test and stored in

special text files.

Since the components of the functionality of the LFSR class have some dependencies on

each other, it is better to perform a full testing of all system components in accordance with the

following scheme:

 33

Fig. 19. Testing of program modules

Let's take a closer look at the test modules shown in the diagram.

Input Testing

These tests are designed to verify that part of the functionality of the LFSR class which

is implemented in the constructors. At the very beginning of the program, the user needs to set

such parameters as the primitive polynomial and, if desired, the initial state of the generator. By

default, the register will be filled with ones. The created set of tests is designed to confirm the

correct interpretation of the input data by the program when they are correct, as well as

determine the behavior of the program on the specially chosen incorrect data. The corresponding

tests are implemented by the functions Constructor1_test() and Constructor2_test().

 34

Testing the core functionality of a class

First of all, the user will need the method to reset the initial state of the generator or

change it at an arbitrary moment of time and, of course, the user should have a method for

generating pseudorandom bits. The created set of tests is designed to verify the program behavior

while changing the current state of the generator and generating pseudorandom bits. Such initial

data as a primitive polynomial are considered to be correct a priori, and the current state of the

register and the set of output bits are checked. The corresponding tests are implemented by the

functions SetState_test(), TactAsUsualReg_test(), TactWithMulConv_test().

Testing Additional Functionality

Modern applications that use random number generators do not always need to generate a

sequence of pseudorandom bits. Quite often, pseudorandom generators are required to generate a

pseudorandom integer from a specified range, or there is a special need to generate an array of

pseudorandom bytes. The LFSR class provides an opportunity to generate a single

pseudorandom byte, an unsigned integer, and an array of pseudorandom bytes of a specified

length. The created tests are designed to verify the program in all of these cases. Initial data such

as the primitive polynomial and the initial state of the register are considered to be correct a

priori, while the output sequence is checked. The Corresponding tests are implemented by the

functions

NextByteAsUsualReg_test()

NextByteWithMulConv_test ()

ArrayOfRandomBytesAsUsualReg_test ()

ArrayOfRandomBytesWithMulConv_test ()

NextUIntAsUsualReg_test ()

NextUIntWithMulConv_test ()

Testing Special Features

To check the cryptographic properties of the generator, it is important to save the

generated pseudorandom sequence in a specific file or write it to a file in a special form. Most

modern pseudorandom sequence testing packages accept the data in two different forms: in the

form of a binary file into which an array of pseudorandom bytes is written or in the form of a

text file in which pseudorandom bits are converted to characters 0 and 1. The created set of tests

is designed to verify the process of generating pseudorandom bits and bytes followed by writing

 35

them to a file. Initial data such as the primitive polynomial and the initial state of the register are

considered to be correct a priori, while the output sequence and file contents are checked. The

corresponding tests are implemented in functions

ToTextFileAsUsualReg_test()

ToTextFileWithMulConv_test()

ToBinaryFileAsUsualReg_test()

ToBinaryFileWithMulConv_test().

After the end of testing all the components of the random number generator functionality,

the program creates a brief report, an example of which is presented below

TEST OF THE FIRST CONSTRUCTOR...

Input file name: UTest_Constructor1.txt

Output file name: OutProbe.txt

Result: CORRECT

TEST OF THE SECOND CONSTRUCTOR...

Input file name: UTest_Constructor2.txt

Output file name: OutProbe.txt

Result: CORRECT

TEST OF 'set_state' METHOD...

Input file name: UTest_SetState.txt

Output file name: OutProbe.txt

Result: CORRECT

TEST OF SINGLE RANDOM BIT GENERATION (USUAL REGISTER)...

Input file name: UTest_TactAsUsualReg.txt

Output file name: OutProbe.txt

Result: CORRECT

TEST OF SINGLE RANDOM BIT GENERATION (MUL_CONV)...

Input file name: UTest_TactWithMulConv.txt

Output file name: OutProbe.txt

 36

Result: CORRECT

TEST OF SINGLE RANDOM BYTE GENERATION (USUAL REGISTER)...

Input file name: UTest_NextByteAsUsualReg.txt

Output file name: OutProbe.txt

Result: CORRECT

TEST OF SINGLE RANDOM BYTE GENERATION (MUL_CONV)...

Input file name: UTest_NextByteWithMulConv.txt

Output file name: OutProbe.txt

Result: CORRECT

TEST OF RANDOM BYTES SEQUENCE (USUAL REGISTER)...

Input file name: UTest_ArrayOfRandomBytesAsUsualReg.txt

Output file name: OutProbe.txt

Result: CORRECT

TEST OF RANDOM BYTES SEQUENCE (MUL_CONV)...

Input file name: UTest_ArrayOfRandomBytesWithMulConv.txt

Output file name: OutProbe.txt

Result: CORRECT

TEST OF UNSIGNED INT VALUE GENERATION (USUAL REGISTER)...

Input file name: UTest_NextUIntAsUsualReg.txt

Output file name: OutProbe.txt

Result: CORRECT

TEST OF UNSIGNED INT VALUE GENERATION (MUL_CONV)...

Input file name: UTest_NextUIntWithMulConv.txt

Output file name: OutProbe.txt

Result: CORRECT

TEST OF RANDOM SEQUENCE WRITTEN TO FILE (USUAL REGISTER)...

Input file name: UTest_ToTextFileAsUsualReg.txt

Output file name: OutProbe.txt

 37

Result: CORRECT

TEST OF RANDOM SEQUENCE WRITTEN TO FILE (MUL_CONV)...

Input file name: UTest_ToTextFileWithMulConv.txt

Output file name: OutProbe.txt

Result: CORRECT

TEST OF RANDOM BYTES WRITTEN TO BINARY FILE (USUAL REGISTER)...

Input file name: UTest_ToBinaryFileAsUsualReg.txt

Output file name: OutProbe.txt

Result: CORRECT

TEST OF RANDOM BYTES WRITTEN TO BINARY FILE (MUL_CONV)...

Input file name: UTest_ToBinaryFileWithMulConv.txt

Output file name: OutProbe.txt

Result: CORRECT

 38

CHAPTER 3. CRYPTOGRAPHIC RESISTANCE OF SHIFT REGISTER

EQUIPPED WITH MULTIPLICATIVE CONVOLUTION TRANSFORM

Graphic tests for statistical evaluation of pseudorandom sequence quality

In all the tests presented below there was used a register with a length of L=82,

equipped with multiplicative convolution transform. Feedback was given by the polynomial

P(x) = x82+x79+x47+x44+1, primitive in the field GF(2). The initial state of the register

consisted solely of ones.

1) Histogram of elements distribution

0

2000

4000

6000

8000

10000

12000

1 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226 241 256

Fig. 20. The distribution of pseudorandom numbers

Using the random number generator under study we obtained 25600000 pseudorandom

natural numbers, each in the range from 1 to 256. In accordance with the data presented in the

diagram, there are all numbers from 1 to 256 without any exception, and the spread in the

frequencies of their appearance is very small. Test passed.

2) Series graphical test

Let us generate a sequence of one million pseudorandom bits and check the uniformity of

the distribution of characters in the sequence. To do this, we analyze the frequency of bit series

of length equal to 1, 2, and 3 without overlapping.

 39

Zeros;
499344

Ones;
500656

Fig. 21. Monobit series

distribution

"00"; 249379

"01"; 249793"10"; 250844

"11"; 249984

Fig. 22. Two-bit distribution

"000"; 124559

"001"; 125183

"010"; 125322

"011"; 124919"100"; 125022

"101"; 124757

"110"; 125248

"111"; 124990

Fig. 23. Three-bit series

distribution

As it is presented in the diagram, the difference in the frequency of occurrence between

various series of the same length is extremely small, which indicates the uniform distribution of

characters. Test passed.

 40

3) Autocorrelation function

Let us generate a sequence of one million bits and then make a replacement in

accordance with the following rule:

1 → 1

0 → -1

Next, we find the correlation peaks cj in accordance with the formula

Let us present the results in the graph.

Fig. 24. Autocorrelation function

As it is presented in the diagram, all the correlation peaks are very small, excluding the

very first point, where there is a single high peak. This fact indicates the random nature of the

elements of the sequence. Test passed.

Remark

The first and second graphical tests were carried out to demonstrate the basic statistical

properties of the developed generator. The third test with the construction of an autocorrelation

function indicates not only good statistical properties, but also cryptographic stability of the

generator: correlation bursts at any point except the very first one would indicate a linear

 41

relationship between the bits of the output sequence, as well as a low linear complexity of the

entire output sequence. The encryption using the gamma which is created by such a generator is

extremely unreliable, because due to the low linear complexity of the output sequence, the output

of the generator can be simulated by an ordinary shift register of a fixed length, which means an

adversary can reproduce the gamma and decrypt the message. In addition, the linear dependency

between the bits of the output sequence can lead to the determination of the initial state of the

generator, which again leads to cracking the cipher.

However, according to the results of this test, a correlation burst is observed only at the

very first point, which suggests that there is no linear relationship between the bits of the output

sequence and the linear complexity of the entire sequence is sufficiently high.

Testing the generator using NIST Statistical Test Suite

This set of statistical tests was developed as the result of the work by the National

Institute of Standards and Technology (in the USA) to create quality standards for pseudo-

random sequences [19]. NIST tests are efficiently implemented in packages running under

LINUX and UNIX operating systems and have open source code in C. Successful passing of all

NIST tests without exception is among the minimum set of requirements for random number

generators. The list of tests is as follows:

- Frequency Test (Monobit)

The number of zeros and ones in a truly random sequence of bits is approximately the same.

- Frequency Test within a Block

In a truly random bit sequence, the repetition rate of ones and zeros in a block of a particular

length is approximately the same.

- A test for a sequence of identical bits

The number of blocks consisting of one, two, three or more units are compared with the number

of such blocks in a truly random binary sequence.

- Longest Run of Ones in a Block

In this test the length of the longest series of ones within a block of a certain length is

determined. Then it is compared to the expected value for a truly random binary sequence.

- Binary Matrix Rank Test

The sub-rows of the original binary sequence are considered and the measure of the linear

dependence of the selected sub-rows is determined.

- Discrete Fourier Transform (Spectral) Test

 42

A discrete Fourier transform is applied to the original binary sequence. The test will fail if there

are periodic repetitions in the sequence.

- Non-Overlapping Template Matching Test

Before testing the source sequence, a pattern which is a binary sequence of a certain length is

selected. The frequency with which the selected pattern is encountered in the original sequence

must satisfy a known distribution.

- Overlapping Template Matching Test

Before testing the source sequence, a pattern which is a binary sequence of a certain length is

selected. The frequency with which the selected pattern is encountered in the original sequence

must satisfy a known distribution. The difference between this test and the previous test is that

the pattern search is performed in one-bit increments, regardless of whether the pattern was fixed

at the previous step.

- Maurer's Universal Statistical test

A truly random sequence cannot be significantly compressed without losing information.

- Linear Complexity Test

A truly random sequence cannot be constructed using a linear feedback shift register.

- Serial test

During this test a frequency of each of the prepared templates in a given sequence is calculated.

In the case of a truly random sequence, the frequencies of appearance of each of the patterns are

approximately the same.

- Approximate Entropy Test

During this test a frequency of the smallest of the two consecutive blocks of an original sequence

is included into the larger block is calculated. The block lengths differ by one. The number of

occurrences of a smaller block in a larger one must correspond to a known distribution.

- Cumulative Sums (Forward) Test

The sums of elements of the subsequences of a given sequence that have the same length as the

original sequence must satisfy a known distribution.

- Random Excursions Test

The test is a set of eight separate studies related to the calculation of the sum of the elements

from the subsequences of a given sequence. The decision on the degree of randomness of the

original sequence is taken for each study separately.

- Random Excursions Variant Test

The test is a variation of the previous test and is a set of eighteen separate studies related to the

calculation of the sums of the elements from the subsequences of a given sequence. The decision

on the degree of randomness of the original sequence is taken for each study separately.

 43

Let us generate 100 sequences each of the length equal to 1 000 000 bits. We will

perform a study using the NIST statistical test suite.

The results are presented in the table. The percentage of sequences that passed one or

another test is displayed in the Proportion column.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPO
RTION

STATISTICAL TEST

9 7 12 8 12 13 6 13 13 7 0.595549 98/100 Frequency

44 19 7 10 7 5 4 2 1 1 0.000001 90/100 BlockFrequency

8 9 6 14 10 10 12 9 13 9 0.816537 98/100 CumulativeSums

10 11 10 9 6 11 8 7 10 18 0.383827 98/100 CumulativeSums

18 6 8 7 7 9 17 7 8 13 0.042808 98/100 Runs

12 7 11 12 14 12 8 5 9 10 0.657933 97/100 LongestRun

7 11 9 8 13 5 16 11 8 12 0.401199 100/100 Rank

13 8 9 10 7 7 11 8 14 13 0.719747 98/100 FFT

11 9 18 8 6 7 15 4 13 9 0.055361 99/100 NonOverlappingTemplate

11 7 11 12 11 12 11 11 10 4 0.759756 100/100 NonOverlappingTemplate

11 7 14 8 7 11 12 4 17 9 0.162606 99/100 NonOverlappingTemplate

11 7 14 6 12 16 4 11 8 11 0.191687 99/100 NonOverlappingTemplate

8 8 13 15 17 8 4 9 6 12 0.085587 98/100 NonOverlappingTemplate

7 16 12 6 10 10 12 5 12 10 0.366918 100/100 NonOverlappingTemplate

8 10 9 6 8 13 15 4 12 15 0.191687 100/100 NonOverlappingTemplate

11 9 12 8 3 14 13 10 12 8 0.419021 98/100 NonOverlappingTemplate

7 7 4 9 13 12 9 10 15 14 0.275709 100/100 NonOverlappingTemplate

10 12 12 16 10 9 13 6 7 5 0.319084 99/100 NonOverlappingTemplate

9 5 10 11 9 7 15 10 9 15 0.455937 99/100 NonOverlappingTemplate

5 13 8 7 14 12 11 14 6 10 0.350485 99/100 NonOverlappingTemplate

9 7 7 10 12 11 11 13 6 14 0.678686 98/100 NonOverlappingTemplate

9 12 13 9 11 9 8 9 10 10 0.987896 98/100 NonOverlappingTemplate

11 8 15 8 8 13 10 9 9 9 0.834308 100/100 NonOverlappingTemplate

7 9 14 13 12 14 9 5 11 6 0.366918 100/100 NonOverlappingTemplate

1 6 12 12 13 14 11 11 9 11 0.145326 100/100 NonOverlappingTemplate

9 12 12 12 9 8 13 8 6 11 0.851383 98/100 NonOverlappingTemplate

8 16 13 13 8 7 12 6 8 9 0.383827 99/100 NonOverlappingTemplate

7 13 10 9 10 13 11 8 7 12 0.867692 100/100 NonOverlappingTemplate

 44

9 10 14 10 11 14 9 9 9 5 0.719747 100/100 NonOverlappingTemplate

7 8 6 18 7 9 10 7 14 14 0.108791 100/100 NonOverlappingTemplate

8 17 6 9 5 11 13 8 10 13 0.224821 100/100 NonOverlappingTemplate

7 11 13 12 13 9 11 13 7 4 0.455937 100/100 NonOverlappingTemplate

8 11 5 14 11 7 10 11 12 11 0.719747 98/100 NonOverlappingTemplate

8 11 10 13 4 12 12 9 10 11 0.739918 99/100 NonOverlappingTemplate

14 7 7 12 7 13 8 8 6 18 0.108791 98/100 NonOverlappingTemplate

8 13 6 11 16 8 11 5 14 8 0.236810 98/100 NonOverlappingTemplate

5 12 7 6 10 8 9 14 12 17 0.171867 100/100 NonOverlappingTemplate

26 11 6 13 10 9 5 6 9 5 0.000060 99/100 NonOverlappingTemplate

8 12 16 8 6 12 10 6 15 7 0.224821 100/100 NonOverlappingTemplate

10 11 4 8 6 9 13 14 14 11 0.350485 97/100 NonOverlappingTemplate

11 12 16 9 10 11 2 8 11 10 0.262249 100/100 NonOverlappingTemplate

9 14 11 16 7 4 5 16 9 9 0.062821 99/100 NonOverlappingTemplate

11 5 15 11 8 7 8 10 10 15 0.401199 98/100 NonOverlappingTemplate

5 11 10 9 15 13 10 8 8 11 0.637119 100/100 NonOverlappingTemplate

6 8 12 8 16 14 11 9 7 9 0.419021 100/100 NonOverlappingTemplate

8 14 11 10 8 10 12 13 7 7 0.779188 100/100 NonOverlappingTemplate

9 12 14 16 10 3 9 11 7 9 0.224821 98/100 NonOverlappingTemplate

10 7 7 13 12 13 8 11 10 9 0.867692 100/100 NonOverlappingTemplate

11 13 9 6 12 11 8 14 9 7 0.719747 100/100 NonOverlappingTemplate

7 6 9 16 11 12 7 9 11 12 0.514124 100/100 NonOverlappingTemplate

13 6 10 13 10 14 5 9 9 11 0.554420 98/100 NonOverlappingTemplate

5 11 13 17 8 8 5 9 10 14 0.145326 99/100 NonOverlappingTemplate

7 7 7 7 13 14 11 15 8 11 0.419021 100/100 NonOverlappingTemplate

13 7 17 9 4 14 8 10 9 9 0.181557 98/100 NonOverlappingTemplate

7 13 6 8 14 9 9 12 8 14 0.534146 100/100 NonOverlappingTemplate

12 6 6 14 10 15 4 12 11 10 0.224821 97/100 NonOverlappingTemplate

9 11 9 9 12 9 11 11 12 7 0.983453 97/100 NonOverlappingTemplate

7 12 10 8 11 9 10 10 12 11 0.983453 100/100 NonOverlappingTemplate

15 16 15 7 8 13 4 10 7 5 0.037566 99/100 NonOverlappingTemplate

10 11 12 15 9 12 13 5 9 4 0.304126 99/100 NonOverlappingTemplate

11 6 11 7 13 7 10 14 9 12 0.678686 98/100 NonOverlappingTemplate

7 13 6 5 11 20 9 7 15 7 0.015598 99/100 NonOverlappingTemplate

7 6 6 11 13 12 15 10 10 10 0.534146 99/100 NonOverlappingTemplate

5 11 11 13 9 9 12 12 8 10 0.834308 99/100 NonOverlappingTemplate

6 13 8 10 13 12 8 11 11 8 0.816537 99/100 NonOverlappingTemplate

 45

10 6 6 10 9 17 9 15 12 6 0.171867 99/100 NonOverlappingTemplate

8 11 7 15 9 6 14 7 12 11 0.474986 98/100 NonOverlappingTemplate

13 16 14 14 6 6 6 7 13 5 0.051942 99/100 NonOverlappingTemplate

14 14 4 11 10 9 7 10 10 11 0.534146 100/100 NonOverlappingTemplate

9 12 9 9 5 13 10 7 12 14 0.637119 99/100 NonOverlappingTemplate

14 14 8 9 11 15 3 7 10 9 0.202268 100/100 NonOverlappingTemplate

13 7 8 14 9 10 8 8 12 11 0.816537 99/100 NonOverlappingTemplate

11 15 9 11 13 9 11 5 9 7 0.595549 97/100 NonOverlappingTemplate

10 9 14 9 13 9 10 9 6 11 0.867692 100/100 NonOverlappingTemplate

9 6 15 10 14 5 7 12 13 9 0.304126 98/100 NonOverlappingTemplate

8 9 10 14 13 8 8 3 15 12 0.236810 99/100 NonOverlappingTemplate

5 12 8 12 17 8 12 5 8 13 0.153763 98/100 NonOverlappingTemplate

11 18 11 7 15 8 9 9 4 8 0.102526 99/100 NonOverlappingTemplate

13 3 17 3 8 12 10 8 11 15 0.021999 100/100 NonOverlappingTemplate

10 9 7 11 10 11 10 9 12 11 0.994250 97/100 NonOverlappingTemplate

11 14 11 10 7 8 13 10 13 3 0.366918 100/100 NonOverlappingTemplate

9 9 15 6 6 9 10 16 13 7 0.249284 98/100 NonOverlappingTemplate

11 9 18 8 6 7 15 4 13 9 0.055361 99/100 NonOverlappingTemplate

8 7 16 10 8 12 11 6 9 13 0.494392 100/100 NonOverlappingTemplate

17 13 7 8 2 12 6 15 6 14 0.011791 100/100 NonOverlappingTemplate

13 17 9 10 5 5 5 15 11 10 0.066882 98/100 NonOverlappingTemplate

12 8 13 11 6 13 10 7 9 11 0.798139 98/100 NonOverlappingTemplate

8 7 11 9 12 6 10 11 12 14 0.779188 100/100 NonOverlappingTemplate

11 11 6 9 15 7 8 11 8 14 0.554420 98/100 NonOverlappingTemplate

7 11 11 11 11 8 8 15 6 12 0.678686 99/100 NonOverlappingTemplate

7 7 7 11 12 14 10 11 11 10 0.834308 100/100 NonOverlappingTemplate

11 10 11 5 8 5 5 13 17 15 0.058984 98/100 NonOverlappingTemplate

14 10 11 8 12 13 3 8 14 7 0.262249 98/100 NonOverlappingTemplate

6 12 8 11 9 15 7 6 15 11 0.334538 100/100 NonOverlappingTemplate

7 10 7 11 7 11 13 9 12 13 0.816537 100/100 NonOverlappingTemplate

10 6 12 8 3 8 8 14 14 17 0.062821 99/100 NonOverlappingTemplate

9 7 8 15 14 7 9 13 11 7 0.494392 99/100 NonOverlappingTemplate

11 11 8 7 5 11 12 13 9 13 0.699313 98/100 NonOverlappingTemplate

10 14 11 7 8 6 10 10 11 13 0.779188 100/100 NonOverlappingTemplate

11 14 5 6 9 10 6 17 14 8 0.108791 98/100 NonOverlappingTemplate

5 11 12 10 12 8 12 4 16 10 0.249284 100/100 NonOverlappingTemplate

16 5 6 8 10 19 16 5 7 8 0.004981 98/100 NonOverlappingTemplate

 46

13 5 17 14 10 4 3 13 10 11 0.021999 98/100 NonOverlappingTemplate

10 10 4 11 11 13 13 6 10 12 0.574903 100/100 NonOverlappingTemplate

13 13 7 6 16 10 13 10 4 8 0.171867 98/100 NonOverlappingTemplate

7 16 10 4 12 10 16 8 10 7 0.145326 100/100 NonOverlappingTemplate

7 11 10 7 17 8 12 11 8 9 0.514124 100/100 NonOverlappingTemplate

9 10 9 15 14 11 7 8 12 5 0.474986 99/100 NonOverlappingTemplate

10 13 10 14 8 12 4 5 14 10 0.275709 99/100 NonOverlappingTemplate

8 12 12 13 11 9 13 8 6 8 0.779188 99/100 NonOverlappingTemplate

8 13 11 9 13 7 9 8 12 10 0.897763 100/100 NonOverlappingTemplate

6 16 9 10 12 9 12 9 5 12 0.419021 100/100 NonOverlappingTemplate

14 19 10 8 9 6 11 10 10 3 0.051942 98/100 NonOverlappingTemplate

7 13 13 14 10 12 12 9 2 8 0.213309 100/100 NonOverlappingTemplate

12 10 10 9 9 9 10 10 11 10 0.999777 99/100 NonOverlappingTemplate

6 11 9 14 6 14 15 9 9 7 0.334538 100/100 NonOverlappingTemplate

6 13 11 9 6 14 7 14 11 9 0.474986 99/100 NonOverlappingTemplate

11 9 10 7 9 8 7 12 10 17 0.554420 97/100 NonOverlappingTemplate

7 13 11 7 8 14 16 8 8 8 0.383827 98/100 NonOverlappingTemplate

10 9 12 7 14 10 11 14 9 4 0.494392 99/100 NonOverlappingTemplate

10 6 11 9 11 8 14 6 11 14 0.616305 98/100 NonOverlappingTemplate

13 11 10 6 14 10 8 9 9 10 0.851383 100/100 NonOverlappingTemplate

11 10 9 10 13 7 11 10 13 6 0.867692 99/100 NonOverlappingTemplate

7 10 13 6 12 8 11 6 15 12 0.455937 100/100 NonOverlappingTemplate

12 14 11 8 7 16 6 8 9 9 0.419021 99/100 NonOverlappingTemplate

9 8 8 14 10 9 15 8 9 10 0.779188 100/100 NonOverlappingTemplate

11 13 5 15 7 9 11 10 9 10 0.616305 99/100 NonOverlappingTemplate

9 14 12 7 15 9 8 9 5 12 0.437274 100/100 NonOverlappingTemplate

7 2 14 13 9 13 17 11 3 11 0.013569 99/100 NonOverlappingTemplate

11 6 17 8 10 9 6 13 10 10 0.383827 100/100 NonOverlappingTemplate

13 10 11 11 12 11 9 5 4 14 0.401199 98/100 NonOverlappingTemplate

9 12 12 12 15 12 9 5 7 7 0.474986 98/100 NonOverlappingTemplate

12 8 9 13 11 9 10 11 8 9 0.978072 99/100 NonOverlappingTemplate

9 14 11 4 14 11 7 10 10 10 0.534146 97/100 NonOverlappingTemplate

8 9 13 10 12 7 12 12 7 10 0.883171 99/100 NonOverlappingTemplate

8 10 11 16 10 6 11 9 15 4 0.213309 99/100 NonOverlappingTemplate

10 15 11 10 8 15 7 11 8 5 0.401199 99/100 NonOverlappingTemplate

8 10 9 14 11 4 8 10 9 17 0.262249 100/100 NonOverlappingTemplate

12 8 9 8 12 12 12 7 4 16 0.304126 99/100 NonOverlappingTemplate

 47

7 8 14 11 13 10 11 11 7 8 0.798139 99/100 NonOverlappingTemplate

9 8 9 9 15 9 14 9 10 8 0.798139 100/100 NonOverlappingTemplate

9 8 7 13 18 8 10 12 9 6 0.262249 98/100 NonOverlappingTemplate

10 11 6 9 9 12 7 12 6 18 0.236810 99/100 NonOverlappingTemplate

13 4 6 9 9 17 9 12 11 10 0.224821 98/100 NonOverlappingTemplate

9 8 11 13 5 10 8 11 12 13 0.759756 99/100 NonOverlappingTemplate

14 10 7 8 16 11 11 9 7 7 0.474986 99/100 NonOverlappingTemplate

9 6 8 16 11 11 8 10 11 10 0.699313 99/100 NonOverlappingTemplate

12 9 8 11 13 6 13 12 9 7 0.759756 99/100 NonOverlappingTemplate

17 8 5 8 11 18 7 11 9 6 0.042808 100/100 NonOverlappingTemplate

7 15 6 10 9 12 8 7 13 13 0.474986 99/100 NonOverlappingTemplate

9 6 16 11 13 11 10 12 5 7 0.334538 99/100 NonOverlappingTemplate

13 7 8 13 9 9 11 11 8 11 0.911413 98/100 NonOverlappingTemplate

7 12 2 13 14 13 8 10 10 11 0.236810 99/100 NonOverlappingTemplate

8 9 7 13 15 7 14 13 7 7 0.350485 97/100 NonOverlappingTemplate

6 12 11 8 13 15 14 5 7 9 0.275709 99/100 NonOverlappingTemplate

9 9 15 6 6 9 10 16 13 7 0.249284 98/100 NonOverlappingTemplate

8 12 8 11 12 15 11 10 8 5 0.616305 98/100 OverlappingTemplate

8 16 9 12 5 8 10 10 11 11 0.574903 99/100 Universal

11 6 16 15 16 9 9 4 5 9 0.037566 99/100 ApproximateEntropy

5 9 8 3 4 3 8 7 11 8 0.232760 66/66 RandomExcursions

2 9 4 9 9 5 8 2 9 9 0.110952 65/66 RandomExcursions

6 4 9 8 7 7 3 7 7 8 0.772760 66/66 RandomExcursions

5 5 4 7 8 6 10 4 7 10 0.534146 66/66 RandomExcursions

8 6 7 8 3 1 8 8 6 11 0.178278 66/66 RandomExcursions

7 8 7 6 6 5 3 11 8 5 0.568055 64/66 RandomExcursions

4 3 5 9 6 10 10 7 5 7 0.378138 66/66 RandomExcursions

8 4 9 8 8 8 5 9 4 3 0.468595 63/66 RandomExcursions

5 5 9 9 6 4 5 6 9 8 0.706149 66/66 RandomExcursionsVariant

5 9 6 9 3 4 8 9 5 8 0.500934 64/66 RandomExcursionsVariant

6 7 3 8 6 7 6 10 5 8 0.739918 65/66 RandomExcursionsVariant

7 5 5 6 7 5 7 6 10 8 0.888137 65/66 RandomExcursionsVariant

7 6 5 3 8 5 7 9 8 8 0.772760 65/66 RandomExcursionsVariant

7 4 7 8 4 4 7 14 6 5 0.122325 64/66 RandomExcursionsVariant

9 1 7 5 11 4 5 13 6 5 0.022503 66/66 RandomExcursionsVariant

5 8 5 4 8 4 6 11 9 6 0.468595 66/66 RandomExcursionsVariant

2 9 2 10 8 5 5 8 5 12 0.043745 66/66 RandomExcursionsVariant

 48

6 7 5 8 2 10 6 8 7 7 0.602458 65/66 RandomExcursionsVariant

4 8 7 5 7 4 5 13 5 8 0.232760 65/66 RandomExcursionsVariant

5 5 6 6 6 8 9 6 8 7 0.949602 65/66 RandomExcursionsVariant

4 5 3 9 8 8 10 4 8 7 0.407091 65/66 RandomExcursionsVariant

5 2 5 5 12 6 5 8 11 7 0.110952 65/66 RandomExcursionsVariant

6 5 6 3 7 4 5 9 7 14 0.090936 66/66 RandomExcursionsVariant

6 7 5 2 6 2 7 9 11 11 0.074177 66/66 RandomExcursionsVariant

6 4 5 7 3 5 8 12 7 9 0.275709 65/66 RandomExcursionsVariant

5 5 5 6 4 7 10 8 11 5 0.437274 65/66 RandomExcursionsVariant

16 10 9 10 10 9 9 8 9 10 0.883171 100/100 Serial

13 9 10 12 11 9 3 14 9 10 0.514124 99/100 Serial

10 13 7 10 11 7 9 13 13 7 0.779188 97/100 LinearComplexity

Table 2. Results for the uniformity of P-values and the proportion of passing sequences

Conclusion:

The random number generator passes all NIST statistical tests without any exception.

Testing the generator using DIEHARDER Statistical Test Suite

A random number generator, which passes all DIEHARD tests without any exception,

deserves a very high praise. The set of DIEHARD tests is considered to be one of the strongest

statistical criteria for matching the sequence with a truly random sample. The DIEHARDER

package includes all of the original DIEHARD tests and also some other efficient statistical

tests, which were either taken from different well-known statistical packages or invented by the

DIEHARDER author Robert G. Brown. There is a description of the most important tests in

this package given below.

Birthdays spacings Test

If several points are randomly selected on a sufficiently long interval, then under the hypothesis

that the points are randomly chosen, the distribution of distances between these points

asymptotically approaches the Poisson distribution.

Overlapping Permutations Test

If there are considered some numbers in the sequence under study, then subject to the condition

of the random nature of the sequence, all possible permutations of this set of numbers should

occur approximately the same number of times.

 49

Ranks of binary matrices Test

It represents a calculation of characteristics associated with the ranks of matrices, which are

composed of a certain quantity of bits from the sequence under study.

Monkey theorem Test

Several numbers are selected from the sequence under study, and the sequences of a certain

number of binary digits, forming these numbers, are perceived as words. The number of words

overlapping with the words of the entire flow of the sequence under study must satisfy a known

distribution.

Count the 1's Test

A certain quantity of numbers of the studied sequence is selected; the quantity of single binary

digits within them is calculated. The results are converted into “letters”, and the frequency of

one, two, three, four and five letters is determined. These values must satisfy a known

distribution.

Parking Lot Test

Circles of a unit radius are placed in a square of a certain size in accordance with the sequence

under investigation. If a given sequence is truly random, some of the circles will be placed in a

square without hitting previously placed circles, while others may overlap, and in this case, an

attempt to place the circle must be repeated. According to the results of numerous series of

experiments, the number of circles placed in a square should satisfy the normal distribution.

Minimum Distance Test

Several thousands of points are selected in accordance with a given sequence; the points are

located in a square of a certain size. Next, the distance between each pair of selected points is

calculated. The values of the squares of distances should have an exponential distribution.

Random Spheres Test

Several thousands of points are selected in a cube with a certain edge length and in accordance

with a given sequence. Each point can form a sphere, which radius coincides with the distance to

the nearest of the remaining points. The obtained values of the spheres volume should have an

exponential distribution.

The Squeeze Test

In accordance with a given sequence there is a construction of real number sequence performed

within the interval from zero to one. The elements of the constructed sequence are multiplied by

a certain number while the result does not become equal to one. The quantity of real numbers

required to achieve this goal should have a known distribution.

Overlapping Sums Test

 50

The elements of a given sequence are converted into a sequence of real numbers. The resulting

sequence is divided into parts of the same certain lengths, and the sum is calculated for each part.

These amounts must satisfy a normal distribution.

Runs test

The elements of a given sequence are converted into a sequence of real numbers. The number of

increasing and decreasing subsequences must satisfy a known distribution.

The Craps Test

The elements of a given sequence are considered as the results of a series of dice games. The

number of shots and victories in each game must satisfy a known distribution.

Let us generate a pseudorandom sequence of bits of one Gigabyte size – the

DIEHARDER package truly requires a huge amount of pseudorandom bits. The results of

performed test are given below in the table:

TEST ntup P-value Result

Birthdays 0 0,13881023 Accepted

OPERM5 0 0,97296931 Accepted

32x32 Binary Rank 0 0,16151113 Accepted

6x8 Binary Rank 0 0,45944387 Accepted

Bitstream 0 0,40380726 Accepted

OPSO 0 0,12770146 Accepted

OQSO 0 0,59009804 Accepted

DNA 0 0,37326513 Accepted

Count the 1s (stream) 0 0,12092036 Accepted

Count the 1s (byte) 0 0,55610056 Accepted

Parking Lot 0 0,86287213 Accepted

Minimum Distance (2d Circle) 2 0,13431179 Accepted

Minimum Distance (3d Sphere) 3 0,70260177 Accepted

Squeeze 0 0,99497285 Accepted

Sums 0 0,62783447 Accepted

Runs 0 0,8960232 Accepted

Runs 0 0,65004557 Accepted

Craps 0 0,44784785 Accepted

Craps 0 0,94947798 Accepted

 51

Marsaglia and Tsang GCD Test 0 0,10036426 Accepted

Marsaglia and Tsang GCD Test 0 0,39318209 Accepted

STS Monobit 1 0,52305782 Accepted

STS Runs 2 0,87630962 Accepted

STS Serial (Generalized) 1 0,81616488 Accepted

STS Serial (Generalized) 2 0,69121144 Accepted

STS Serial (Generalized) 3 0,83590182 Accepted

STS Serial (Generalized) 3 0,67625365 Accepted

STS Serial (Generalized) 4 0,75638406 Accepted

STS Serial (Generalized) 4 0,86986159 Accepted

STS Serial (Generalized) 5 0,98313448 Accepted

STS Serial (Generalized) 5 0,98606682 Accepted

STS Serial (Generalized) 6 0,79339032 Accepted

STS Serial (Generalized) 6 0,86131382 Accepted

STS Serial (Generalized) 7 0,87747464 Accepted

STS Serial (Generalized) 7 0,97862638 Accepted

STS Serial (Generalized) 8 0,63723755 Accepted

STS Serial (Generalized) 8 0,99406754 Accepted

STS Serial (Generalized) 9 0,73885199 Accepted

STS Serial (Generalized) 9 0,41677782 Accepted

STS Serial (Generalized) 10 0,97259126 Accepted

STS Serial (Generalized) 10 0,62835195 Accepted

STS Serial (Generalized) 11 0,3896247 Accepted

STS Serial (Generalized) 11 0,72121761 Accepted

STS Serial (Generalized) 12 0,27786178 Accepted

STS Serial (Generalized) 12 0,96933785 Accepted

STS Serial (Generalized) 13 0,73270604 Accepted

STS Serial (Generalized) 13 0,7604679 Accepted

STS Serial (Generalized) 14 0,36197618 Accepted

STS Serial (Generalized) 14 0,92609617 Accepted

STS Serial (Generalized) 15 0,73139774 Accepted

STS Serial (Generalized) 15 0,81629852 Accepted

STS Serial (Generalized) 16 0,38504181 Accepted

STS Serial (Generalized) 16 0,73248843 Accepted

 52

RGB Bit Distribution 1 0 Failed

RGB Bit Distribution 2 4,51E-06 Weak

RGB Bit Distribution 3 0,3253679 Accepted

RGB Bit Distribution 4 0,60881708 Accepted

RGB Bit Distribution 5 0,24114125 Accepted

RGB Bit Distribution 6 0,84836296 Accepted

RGB Bit Distribution 7 0,08663389 Accepted

RGB Bit Distribution 8 0,43784641 Accepted

RGB Bit Distribution 9 0,35432442 Accepted

RGB Bit Distribution 10 0,95077501 Accepted

RGB Bit Distribution 11 0,33248275 Accepted

RGB Bit Distribution 12 0,83070462 Accepted

RGB Generalized Minimum Distance 2 0,02851004 Accepted

RGB Generalized Minimum Distance 3 0,21956052 Accepted

RGB Generalized Minimum Distance 4 0,79459365 Accepted

RGB Generalized Minimum Distance 5 0,80477444 Accepted

RGB Permutations 2 0,68900684 Accepted

RGB Permutations 3 0,81933242 Accepted

RGB Permutations 4 0,37407556 Accepted

RGB Permutations 5 0,39435996 Accepted

RGB Lagged Sum 0 0,57710069 Accepted

RGB Lagged Sum 1 0,69321097 Accepted

RGB Lagged Sum 2 0,97368289 Accepted

RGB Lagged Sum 3 0,15860727 Accepted

RGB Lagged Sum 4 0,51932562 Accepted

RGB Lagged Sum 5 0,02360578 Accepted

RGB Lagged Sum 6 0,76558134 Accepted

RGB Lagged Sum 7 5,935E-05 Weak

RGB Lagged Sum 8 0,73440171 Accepted

RGB Lagged Sum 9 0,22853015 Accepted

RGB Lagged Sum 10 0,69787528 Accepted

RGB Lagged Sum 11 0,01185123 Accepted

RGB Lagged Sum 12 0,98500036 Accepted

RGB Lagged Sum 13 0,07335197 Accepted

 53

RGB Lagged Sum 14 0,81134264 Accepted

RGB Lagged Sum 15 3E-08 Weak

RGB Lagged Sum 16 0,34706515 Accepted

RGB Lagged Sum 17 0,22315068 Accepted

RGB Lagged Sum 18 0,60883384 Accepted

RGB Lagged Sum 19 0,03173787 Accepted

RGB Lagged Sum 20 0,61629974 Accepted

RGB Lagged Sum 21 0,13572091 Accepted

RGB Lagged Sum 22 0,09273275 Accepted

RGB Lagged Sum 23 0,00069544 Weak

RGB Lagged Sum 24 0,15634171 Accepted

RGB Lagged Sum 25 0,38814509 Accepted

RGB Lagged Sum 26 0,15555052 Accepted

RGB Lagged Sum 27 0,01361002 Accepted

RGB Lagged Sum 28 0,87320916 Accepted

RGB Lagged Sum 29 0,36916854 Accepted

RGB Lagged Sum 30 0,39509498 Accepted

RGB Lagged Sum 31 0 Failed

RGB Lagged Sum 32 0,67711933 Accepted

RGB Kolmogorov- Smirnov 0 0,16754083 Accepted

DAB Byte Distribution 0 0 Failed

DAB DCT 256 0,13238942 Accepted

DAB Fill Tree 32 0,11162289 Accepted

DAB Fill Tree 32 0,26502748 Accepted

DAB Fill Tree 2 0 0,00896917 Accepted

DAB Fill Tree 2 1 0,00237664 Weak

DAB Monobit 2 12 1 Failed

Table 3. Results of testing the sequences using DIEHARDER statistical package

Conclusion:

The random number generator under study passes a vast majority of the tests of the

DIEHARDER package.

 54

Remark

The results of NIST and DIEHARDER statistical tests demonstrate not only excellent

statistical properties of the generator under study, but also its cryptographic strength. One of the

common methods of hacking a generator or a message, which was masked with a gamma

produced by this generator, is a frequency analysis of the generator's output sequence. However,

according to the results of the tests, the output of the generator is extremely close to white noise

and, therefore, an attacker cannot hope for a certain amount of information due to the presence of

systematic deviations or repetitions in the gamma.

An Estimation of generator’s period

Consider a linear feedback shift register with a length of L bits equipped with a

multiplicative convolution transform. Let the feedback be given by the polynomial P(x)

primitive in the field GF(2).

According to the principle of multiplicative convolution, the output bit does not

participate in feedback mechnism. The calculation of feedback for a register, equipped with a

multiplicative convolution transform, performs in the same way as for an ordinary register. Thus,

a generator based on a shift register with a multiplicative convolution goes through exactly 2L-1

different internal states, after which the states begin to repeat, and hence the same happens with

output bit. Therefore, there is a precise theoretical estimate of the generator’s period at its upper

bound:

T_theoretical ≤ 2L – 1

Let us perform a series of computational experiments aimed at empirical assessment of

the investigated generator period. Using a register of length equal to L bits, we generate a certain

quantity of pseudorandom numbers, and each has the same length (L bits). For the small values

of L (for example, such as L= 6; 10), it is possible to produce sequences with the length that

coincides with the period of the generator. For big values of L (for example, such as L = 66;

82), we produce a limited sequence of numbers and also take into account the results of NIST

and DIEHARDER statistical tests.

Here we note three important experimental results:

1) A sequence of 2L–1 numbers, each with a length of L bits, produced by a shift register of

the same length (L bits), equipped with a multiplicative convolution transform, can contain

repeating elements (that is the contrast from an ordinary shift register, where each of 2L–1

 55

different internal states will be directly extracted as an output). This conclusion follows from

the analysis of the output sequence obtained by the register of small length (L= 6;10).

2) With an increase in the length of the register, equipped with a multiplicative convolution,

the distribution of its generated numbers tends to uniform distribution. This conclusion follows

from the analysis of fragments of the output sequences generated by longer registers (L= 66;

82), as well as from the results of statistical tests (the output sequences created by the registers of

this length successfully passed all the tests of the NIST package and most of the tests of the

DIEHARDER package).

3) If the output sequence contains repeating numbers or fragments, then their repetition is

chaotic and their influence become insignificant with an increasing of the register length. The

conclusion about the chaotic nature of repeating numbers and fragments follows from a direct

analysis of the output sequences of the registers. The conclusion that the effect of repeating

numbers or fragments become insignificant with an increasing the register length follows from

the results of statistical tests. If the repetitions were systematic or even had a strict periodic

structure, it would certainly worsen the results of the approximate entropy test, the spectral test

and the linear complexity test as well as affect the results of other tests of the NIST and

DIEHARDER packages.

Due to the results of the experiments, the following empirical estimation of the period of

the developed generator is valid:

T_empirical = 2L – 1

The closure of M - sequences class

The empirical proof of the «closing» property of the pseudorandom sequences class

produced by the random number generator is a weighty argument in favor of its using for

cryptographic purposes.

Consider a register with a length of L=82 bits, equipped with a multiplicative

convolution transform and the linear feedback is given by the polynomial

P(x)=x82+x79+x47+x44+ 1 primitive in the field GF(2).

 56

Let us generate two samples of pseudorandom bits and perform bitwise addition of these

samples. The result is one new sample, and each bit is the sum by modulo 2 of the two

corresponding bits in the first and second samples.

Let us perform a study of the obtained sample using the NIST and DIEHARDER

statistical packages. The summary of results is shown in the table:

 TEST RESULT

1 Frequency Passed

2 BlockFrequency Passed

3 CumulativeSums Passed

4 Runs Passed

5 LongestRun Passed

6 Rank Passed

7 FFT Passed

8 NonOverlappingTemplate Passed

9 OverlappingTemplate Passed

10 Universal Passed

11 ApproximateEntropy Passed

12 RandomExcursions Passed

13 RandomExcursionsVariant Passed

14 Serial Passed

15 LinearComplexity Passed

Table 4. Summary of NIST tests

 TEST RESULT

1 Birthdays Passed

2 OPERM5 Passed

3 32x32 Binary Rank Passed

4 6x8 Binary Rank Passed

5 Bitstream Passed

 57

6 OPSO Passed

7 OQSO Passed

8 DNA Passed

9 Count the 1s (stream) Passed

10 Count the 1s (byte) Passed

11 Parking Lot Passed

12 Minimum Distance (2d Circle) Passed

13 Minimum Distance (3d Sphere) Passed

14 Squeeze Passed

15 Sums Passed

16 Runs Passed

17 Craps Passed

18 Marsaglia and Tsang GCD Test Passed

19 STS Monobit Passed

20 STS Runs Passed

21 STS Serial (Generalized) Passed

22 RGB Bit Distribution Passed

23 RGB Generalized Minimum Distance Passed

24 RGB Permutations Passed

25 RGB Lagged Sum Passed

26 RGB Kolmogorov- Smirnov Passed

27 DAB Byte Distribution Failed

28 DAB DCT Passed

29 DAB Fill Tree Passed

30 DAB Fill Tree 2 Passed

31 DAB Monobit 2 Failed

Table 5. Summary of DIEHARDER tests

Conclusion 1:

The sequence successfully passes all the NIST statistical tests.

Conclusion 2:

The sequence successfully passes the most of the DIEHARDER package.

 58

Remark

The obtained empirical estimates of the period of output sequences, as well as the closing

property of their class, contribute to the cryptographic strength of the generator under study: a

small generator period leads to masking different parts of the original message with the same

gamma, which gives information about the message content. The closing property of the

pseudorandom sequences class demonstrates both good statistical properties of the output

sequence and the impossibility of indirect extracting information from an encrypted message by

applying some arbitrary gamma created with the same generator.

Concluding all the ramarks above it is also worth noting the following:

the combination of excellent results of statistical tests and good empirical estimates of the

generator period and the closing property of the output sequences gives a strong argument that

there is no obvious dependence between the sequence of internal states of the generator and its

output sequence, which in essence means cryptographic strength.

 59

FURTHER DISCUSSION AND CONCLUSION

The proposed idea of equipping the shift register with multiplicative convolution

transform is completely new and can be developed in several directions at once.

Firstly, there is the possibility of creating a random number generator, which design

includes several registers at once and each is equipped with a multiplicative convolution

transform. So, for example, we can be guided by the idea of the A5 algorithm and combine the

outputs of several registers with the XOR operation and each certain register can be equipped

with a multiplicative convolution transform. This generator is expected to have a good resistance

to correlation attacks, which are actively used by cryptographers to test generators consisting of

two or more shift registers. Indeed, most of the known correlation attacks are aimed at

determining the relationship between the output of the generator and the output of one of its

constituent registers. However, if each register is equipped with a multiplicative convolution

transform, then the output of the generator will not be the bitwise sum of the rightmost bits of the

registers, but the sum of the multiplicative convolution transform results and this fact can

significantly complicate the hacking procedure.

Secondly, it should be noted that the current level of development of computer

technology allows working with fairly long shift registers. We can imagine a register divided

into k segments with corresponding lengths p1 - 1, p2 - 1, ..., pk - 1, where p1, p2, ..., pk are

primes of the form 4t + 3. A single tact of such a register can consist of simultaneous applying

k transformations of the multiplicative convolution to the indicated segments of the register with

the corresponding prime modules. As a result of this procedure 2k register cells will be selected

and their contents can be added modulo 2 or immediately sent to the output.

Thirdly, the idea of using cell numbers to enhance the cryptographic strength of the

register and improve its statistical properties deserves attention by itself.

Summing up the work done, we will review its most important achievements:

 A new method for generating pseudorandom sequences was invented - that is the generation

using a multiplicative convolution transform. This new method is based on well-developed

theory of linear feedback shift registers, however, not only the bits of the register, but also

their order numbers are involved in the formation of the output sequence, which leads to the

absence of linearity among the bits of the output sequence.

 Based on the proposed transformation, the concept of new random number generator was

built. The structure of the developed generator have a partial similarity with an ordinary shift

register: for example, the feedback calculation mechanism of the developed generator is

completely identical to the similar scheme in the ordinary shift register with linear feedback.

 60

The fundamental difference of the presented generator is its method of generating the output

bits: the generator's output is formed as a function of all bits of the current state of the

register, and all the operations with bits and their order numbers are carried out in the Galois

field formed by prime modulus.

 The concept of the proposed random number generator was implemented using modern

C / C ++ language standards. Several successive improvements were shown and the final

version of the program demostrated its high performance. So, the speed of shift registers

equipped with multiplicative convolution varies from 80 to 100 megabits per second

depending on their length, and the performance loss compared to an ordinary register of the

same length is only about five percent.

 In the final section of the work, it was demonstrated that the proposed random number

generator has excellent cryptographic properties: the statistical properties of the generated

gamma correspond to the NIST standard for pseudorandom sequences. In addition, the

generator passes the most of the tests of the DIEHARDER package, which further convinces

of the excellent quality of the generated pseudorandom sequences. The proposed generator

also demonstrates its cryptographic resistance to the gamma frequency analysis and shows

the high linear complexity, therefore, it is resistant to direct attempts of cracking the initial

state using the basic methods of linear algebra and the Berlekamp-Massey algorithm.

Thus, as a result of the work done, the created random number generator is resistant to

basic algebraic attacks and can generate high-quality pseudorandom sequences maintaining the

high performance of their production.

 61

BIBLIOGRAPHY

[1] J.A. Reeds, "Cracking Random Number Generator", Cryptologia, v. 1, n. 1, Jan 1977,

pp.20-26.

[2] J.A. Reeds, "Cracking a Multiplicative Congruential Encryption Algorithm", in Information

Linkage Between Applied Mathematics and Industry, P.C.C. Wang, ed., Academic Press, 1979,

pp. 467 - 472.

[3] J.A. Reeds, "Solution of Challenge Cipher", Cryptologia, v. 3, n. 2, Apr 1979, pp. 83-95.

[4] J.B. Plumstead, "Inferring a Sequence Generated by a Linear Congruence", Proceedings of

the 23rd IEEE Symposium on the Foundations of Computer Science, 1982, pp. 153-159.

[5] A.M. Frieze, J. Hastad, R. Kannan, J.C. Lagarias, and A. Shamir, "Reconstructing Truncated

Integer Variables Satisfying Linear Congruenccs", SIAM Journal on Computing, v. 17, n. 2, Apr

1988, pp. 262-280.

[6] A.M. Frieze, R. Kannan, and J.C. Lagarias, "Linear Congruential Generators loo not Produce

Random Sequences", Proceedings of the 25th IEEE Symposium on Foundations of Computer

Science, 1984, pp. 480-484.

[7] J.Hastad and A.Shamir, "The Cryptographic Secunty of Truncated Linearly Related

Variables", Proceedings of the 1 7th Annual ACM Symposium on the Theory of Computing,

1985, pp. 356-362.

[8] E.L. Key, "An Analysis of the Structure and Complexity of Nonlinear Binary Sequence

Generators", IEEE Transactions on Information Theory v. IT-22, n. 6, Nov 1976, pp. 732-736.

[9] K.C. Zeng, C.-H. Yang, and T.R.N. Rao, "On the Linear Consistency Test ILCTl in

Cryptanalysis with Applications", Advances in Cryptology CRYPT 0 89 Proceedings, Springer-

Verlag, 1990, pp. 164-174.

[10] K.C. Zeng, C.-H. Yang, L. Wei, and T. R.N. Rao, "Pseudorandom Bit Generators in

Stream-Cipher Cryptography", IEEE Computer, v. 24, n. 2, Feb libel, pp. 5-17.

[11] J.O. Bruer, "On Pseudo Random Sequences as Crypto Generators", Proceedings of the

International Zurich Seminar on Digital Communication, Switzerland, 1984.

[12] D. Gollmann, "Kaskadenschaltungen takt gesteuerter Schicberegister als

Pseudozufallszahlengencratoren", Ph.D. disserta tion, Universitat Linz, 1983. (In German).

[13] W.G.Chambers and D.Gollmann, "Lock-In Effect in Cascades of Clock-Controlled Shift

Registers", Advances in Cryptology EUROCRYPT '88 Proceedings, Springer-Verlag, 1988,

pp.333-343.

[14] D. Gollmann, "Pseudo Random Properties of Cascade Connections of Clock Controlled

 62

Shift Registers", Advances in Cryptology: Proceedings of EUROCRYPT 84, Springer- Verlag,

1985, pp. 93-98.

[15] D. Gollmann, "Correlation Analysis of Cascaded Sequences", Cryptography and Coding,

H.J.Beker and F.C. Piper, eds., Oxford: Clarendon Press, 1989, pp. 289-297.

[16] D. Gollmann, "Transformation Matrices of Clock-Controlled Shift Registers",

Cryptography and Coding 111, M.J. Ganley, e d., Oxford: Clarendon Press, 1993, pp. 197-210.

[17] Bruce Schneier, "Applied Cryptography

Protocols, Algorithms, Source Code in C", Triumph, Moscow, 2002.

[18] S.B. Xu, INK. He, and X.M. Wang, "An Implementation of the GSM General Data

Encryption Algorithm A5", CHINACRYPT 94, Xidian, China, 11-1S Nov 1994, pp. 287-291.(In

Chinese)

[19] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, Elaine Barker, Stefan Leigh,

Mark Levenson, Mark Vangel, David Banks, Alan Heckert, James Dray, San Vo. A Statistical

Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications.

Special Publication 800-22 Revision 1a. National Institute of Standards and Technology

	V4_Первый файл
	V4_Второй файл

