

2

Diploma thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

iOS Application for Acupressure

Bc. Štěpán Klouček et al.

Supervisor: Ing. Václav Burda
May 2020

ii

Acknowledgements
I would like to thank everyone who has
supported me during my studies and
helped me with this thesis. Namely, I
would like to thank my girlfriend Kateřina
for being supportive, Daniel Novák and
Václav Burda for their innovative ideas
and Jindřich Prokop for his help with the
server. Finally, I would like to express
gratitude to my family for their continu-
ous emotional and financial support.

Declaration
I declare that this work is all my own work
and I have cited all sources I have used in
the bibliography.

Prague, May 21, 2020

Prohlašuji, že jsem předloženou práci
vypracoval samostatně, a že jsem uvedl
veškerou použitou literaturu.

V Praze, 21. května 2020

iii

Abstract
The goal of this thesis is to design and
build a mobile application for iOS, which
aids the user by addressing common med-
ical problems through augmented reality
acupressure. Included in this thesis is
an analysis of already existing solutions,
as well as a prototype of the user inter-
face which accommodates the iOS guide-
lines. The application was built using
SWIFT programming language and im-
plements an augmented reality feature to
simplify the user’s experience with acu-
pressure. Through augmented reality, the
user is able to easily view and localize acu-
pressure points and self-apply this treat-
ment. The completed application has
been tested on six users.

Keywords: acupressure, iOS,
augmented reality, VIPER

Supervisor: Ing. Václav Burda

Abstrakt
Cílém této práce bylo vytvořit mobilní
aplikaci pro systém iOS, která uživateli
pomůžu s jeho zdravotními problémy po-
mocí akupresury. Součástí práce je ana-
lýza existujících aplikací. Návrh a design
uživatelského rozhraní tak aby odpovídal
iOS standartům. Podle vytvořeného ná-
vrhu byla implentována aplikace v jazyce
SWIFT. Pro zjednodušení práce s akupre-
surními body byla do aplikace implen-
tována rozšířená realita. Ta dokáže být
cenou pomocí především při lokalizování
akupresurních bodů. Celá aplikace byla
nakonec otestována šesti uživateli.

Klíčová slova: akupresura, iOS,
rozšířená realita, VIPER

Překlad názvu: iOS aplikace pro
akupresuru

iv

Contents
1 Introduction 1
1.1 Acupressure 1
1.2 iOS application 2
1.3 Structure . 3
2 Existing solutions 5
2.1 Existing apps analyze 8
2.1.1 Acupressure: Heal yourself . . 8
2.1.2 Lite apps 9
2.1.3 Acupressure: Self Healing
massage therapy 10

2.2 Conclusion 10
3 Application functionality 11
3.1 Functional requirements 11
3.2 Non-functional requirements . . . 12
3.3 Use cases . 13
4 Development for iOS 15
4.1 Language choice 15
4.2 Swift . 15
4.2.1 Design patterns 16
4.2.2 Arc . 16
4.2.3 Libraries 18
4.2.4 Distribution 18
4.2.5 Architecture Patterns 19

5 Design and UX 23
5.1 Navigation and flow 24
5.2 Design . 25
5.2.1 Onboarding 25
5.2.2 Main screen 26
5.2.3 Search screen 26
5.2.4 Settings screen 26
5.2.5 Detail screen 27

5.3 Design and implementation
differences . 27
5.3.1 Detail screen changes 28
5.3.2 Settings screen changes 28
5.3.3 Search screen 28

6 Implementation 31
6.1 Cocoa pod usage 31
6.1.1 R.swift 32
6.1.2 Stevia Layout 32
6.1.3 RxSwift 33

6.2 BR-VIPER 33
6.3 Architecture overview 35
6.3.1 Dependencies 35
6.3.2 Repositories 35

6.3.3 Screen modules 35
6.4 Dark mode 35
6.5 Resources 37
6.5.1 Localisation 37
6.5.2 Images 37

7 Augmented reality 39
7.1 Basics . 39
7.2 AR and acupressure 40
7.3 Frameworks 41
7.4 Implementation 42
7.4.1 Plane detection 42
7.4.2 Image detection 42
7.4.3 User interaction 42
7.4.4 Showing detail 43

8 User testing 45
8.1 First iteration 46
8.2 Second iteration 47
8.3 Future work and improvements 48
9 Conclusion 49
A Bibliography 51
B Design 53
C Self acupressure screenshots 57

v

Figures
1.1 One of acupressure points used in
application. 2

2.1 Applications using same template
with different name to increase its
reach . 7

2.2 Acupressure: Heal yourself
application look 8

2.3 "Lite" acupressure application look 9
2.4 Acupressure: Self Healing massage
therapy application screen examples 10

4.1 Simple retention cycle 16
4.2 Retention cycle in VIPER 17
4.3 Rising memory indicating possible
memory problem 17

4.4 MVC architecture pattern [2] . . . 20
4.5 MVVM architecture pattern [18] 20
4.6 VIPER architecture pattern [8] . 21

5.1 Navigation in self acupressure
application . 24

5.2 Navigation flow of Self-acupressure
application . 25

5.3 Self acupressure onboarding
design . 26

5.4 Landing page of application . . . 27
5.5 Landing page of the application 28
5.6 Settings screen design and
implementation comparison 29

5.7 Search screen design and
implementation comparison 29

6.1 Ideal BR-VIPER abstract
overview . 34

6.2 Used architecture 36
6.3 Landing page of application . . . 36

7.1 Possibilities of AR presentation 40
7.2 Augmented reality in
Self-acupressure application 43

8.1 Task for the testers 46

Tables
2.1 Table with comparison of
downloads and ratings for apps from
Google play . 6

2.2 Table with comparison of available
apps in mobile platform stores. 6

7.1 ARKIT evolution 41

8.1 Self-acupressure testers 45

vi

Chapter 1
Introduction

Traditional western medicine is efficient and well respected in Europe. Still,
some people don’t trust it and try to avoid it, as they see an over-reliance
on drugs and chemistry. With this in mind, many people are taking a more
traditional or natural approach to medicine. Examples of this can be seen
in the increase of home births or the decline in vaccine rates in population.
Although some of these approaches and their benefits are disputable, overus-
ing medicine may lead to drug resistant bacteria [15] therefore people feel
justified looking for an alternative way.

Chinese medicine is one of these types of natural remedies that offers a
chemical free solution, acupuncture and acupressure are two parts of this
tradition. These two treatments can be used for many common medical
problems. Acupressure has a lot of potential as it is non-invasive and can
be done without the help of another person. Another less known option is
reflexive therapy which is claimed to be even more comfortable to undergo
then acupressure and also can be used to diagnose problems [13].

1.1 Acupressure

Acupressure is a traditional Chinese medicine which is often labeled as “alter-
native”. The concept is based on energy flowing through meridians in the body.
With correct pressure applied to an acupressure point the flow can be un-
blocked relieving the body of problems like pain, vomiting, or sweating [6] [10].

Acupressure has been labeled as “alternative medicine”, however, it should
not be referenced as a scam as there are studies which support its functionality
[19]. These studies are sparse, and their findings or selection of participants
could be labeled as biased [16]. These studies are typically done with two
groups. The first group is treated with correctly applied acupressure points,
and the second one is treated using fake ones. Such an approach should limit
the influence of the placebo effect. Even though the acupressure might not
necessarily help, there are no findings of it being dangerous, so even though
it might not help directly, it could help mentally as a placebo.

1

1. Introduction

Figure 1.1: One of acupressure points used in application.

1.2 iOS application

Several options exist for someone who wants to practice acupressure. The
standard or classical approach is to memorize the points that the person
needs to know, or to own a book if that person wants to use acupressure
while they travel. The more modern approach is to search for these points on
the internet or use a mobile application. As almost everyone carries a mobile
phone in their pocket, the modern approach is far more convenient but also
has several more advantages.. It can contain a large number of points with detailed information in

small package. It is possible to search these points to find the desired one quickly. This
search can also find acupressure points according to medical problems.
Such a search would be a tedious task for a book as one point could
belong to many medical problems. It can be updated quickly, for example, when an illustration image is not
descriptive enough.. It can contain multi-media content like videos or 3d models in virtual or
augmented reality.

2

...................................... 1.3. Structure

1.3 Structure

This thesis is structured into 9 chapters. These chapters are following the
same order a developer would take when creating an application with one
exception. Augmented reality has a chapter of its own, as it profoundly differs
from standard application development.. Chapter 1 is an introduction that contains basic information about

acupressure and the motivation behind creating such an application.. Chapter 2 summarizes and compares existing solutions. Especially for
the iOS platform but also for Android phones and web browsers from a
mobile user’s point of view.. Chapter 3 contains the specified functionality of the application.. Chapter 4 informs the reader about developing for iOS, briefly explains
commonly used architectures and design patterns, and contains some
information about commonly neglected problems.. Chapter 5 shows the designed application and explains UX choices.. Chapter 6 describes the implementation of the Self-acupressure applica-
tion. Architecture which was used for development is explained here. It
also contains a description of used libraries.. Chapter 7 has information about augmented reality, how it could be
used for acupressure and implementation details for this module.. Chapter 8 describes user testing process of Self-acupressure application.. Chapter 9 is a conclusion with a summary of achieved goals. Furthermore,
including a discussion about a possible future for the application.. The final design of the application can be found at the end in appendix
B. Screenshots from the finalized application are in appendix C.

3

4

Chapter 2
Existing solutions

This chapter contains a summary and comparison of existing solutions for
acupressure. The primary analysis was done on the iOS store, but to gain
more perspective, some of the Google Store solutions and solutions on the web
were analyzed as well. The iOS and Android applications are often different
but basic ideas and flow can be the same as it is the same platform. Web
solution was taken into account from the perspective of a mobile user.

The iOS store contains over 30 relevant applications which can be found with
search keyword "acupressure". No app seems to have a relevant success as
only a few of them are kept up to date. Sadly there is no way to get a number
of downloads on the iOS store. Nevertheless, we can somewhat measure the
popularity of the application by its position in the ranked list for an app type.
By this measurement, most successful is "Acupressure: Heal yourself" as it
has reached 33. position in health group. No other app for acupressure has
reached a position in such a list.

Another public information about the application is its number of ratings.
There is a correlation between a number of downloads and number of ratings.
This means we can get a rough estimate for downloads by the number
of ratings. This estimate will be imprecise because applications use very
different strategies to get their rating. For game application, there can be very
aggressive ways to get ratings. Like popups blocking the game. Or a more
pleasant way, promising reward after rating application. No such behavior
was spotted amongst tested apps, so we can assume only a small amount
of users will actually rate the application. This assumption is supported by
table 8.1, which show some apllications and theirs realtion between downloads
and ratings. Number of ratings on Google store is divided into categories
with range of downloads. We can that highest percent of rating is little over
one percent but usually even lower.

5

2. Existing solutions
App name

Number
of

downloads

Number
of

ratings

Rating
percentage

Acupressure
Point Tips1 50,000+ 20 0.04 - 0.02

Acupressure
Body Points
[YOGA]2

100,000+ 456 0.456 - 0.1

Acupressure
Point for 300+

Diseases3
10,000+ 129 1,29 - 0.26

Acupressure
Points Guide4 1,000+ 8 0,8 - 0.16

Table 2.1: Table with comparison of downloads and ratings for apps from Google
play

Even if we estimated that 0.1 percent of the users rates the app, we could
assume that the iOS applications have fewer users than in a 1000 as the
number of ratings per app varies between one and zero. Following table 2.2
offers quick comparison of selected applications from which some of them will
analyze more detailed later in section 2.1.

Name Platform Down-
loads Rating Business

model
Acupressure:

Heal
yourself 5

iOS - (33 in health) Paid
(50 Kč)

Lite apps
(15 mutations)6 iOS - (0-2 per app) Adverti-

sement
Acupressure
Points7 iOS - - Adverti-

sement
Acupressure
Massage
Qigong

(YMAA)8

iOS - -
Paid
videos
in app

Acupressure:
Self Healing
Massage
Therapy9

Android 500K 4.2 Adverti-
sement

Table 2.2: Table with comparison of available apps in mobile platform stores.

1https://play.google.com/store/apps/details?id=com.tips.acupressurepoints
2https://play.google.com/store/apps/details?id=com.erica_kurse.pressure_points
3https://play.google.com/store/apps/details?id=atozcure.a21acu
4https://play.google.com/store/apps/details?id=aksharclearing.agency.acupressurepoints

6

................................... 2. Existing solutions

Applications on the iOS store can be divided into several groups. The most
populated group is a simple app with a list of the points or problems from
which the user can navigate to problem detail. This detail consists of point
location descriptions and videos or photos of given points. The second smaller
group with only two items is an application with a 3d model inside. Another
trend or tactic seen in the iOS store is apps labeled with the icon as "lite"
these apps utilize the same layout, same or similar content and are only
labeled differently to target different audiences of the iOS store. These icon
can be seen in 2.1.

Figure 2.1: Applications using same template with different name to increase
its reach

5https://apps.apple.com/us/app/acupressure-heal-yourself/id429680650
6https://www.apple.com/us/search/acupressure?src=serp
7https://apps.apple.com/us/app/acupressure-points/id1360608057
8https://apps.apple.com/gb/app/acupressure-massage-qigong/id1293801620?l=cs
9https://play.google.com/store/apps/details?id=foodanddrink.inc.acupressurepointtips&hl=fr

7

2. Existing solutions
2.1 Existing apps analyze

This section contains a more detailed analysis of chosen applications with
screenshots from them.

2.1.1 Acupressure: Heal yourself

Top-rated app on iOS store. It uses only a few screens for navigation through
the app. Landing page C.5b contains setting for application and grouped
points together, which can be a little confusing. In the top right corner of
every screen, there is the possibility of searching for words. Search is detailed
C.5a as even the content of each point is searched, not only the title or group’s
names. The detail screen for acupressure point has text navigation on top
of the screen and one simple picture on the bottom. Design is using apple
guidelines but is quite elementary as it uses default colors and fonts.

(a) : Search screen (b) : Landing page of application

Figure 2.2: Acupressure: Heal yourself application look

8

................................. 2.1. Existing apps analyze

2.1.2 Lite apps

This application uses a similar navigation scheme as "Acupressure: Heal
yourself", with the bottom navigation bar containing info about app, reminder,
and promotion of another app. Except for the landing page, the advertisement
is presented at every screen of the application, furthermore advertisement is
opened full-screen upon starting the application. The app is not using the
native iOS approach and has missing gestures like swipe back for navigation
between screens. The app may be considered too colorful, which is distracting.
Also, some of the included graphics were not ready for higher resolution
phones and are visibly pixelated.

(a) : Main menu screen (b) : Detail screen of acupressure point
Figure 2.3: "Lite" acupressure application look

9

2. Existing solutions
2.1.3 Acupressure: Self Healing massage therapy

This application is most downloaded acupressure application on Google Store.
Navigation through the app is very inconvenient as there is advertisement
popup with every navigation to a child screen. Additionally, the user needs
to select a language every time he cold starts the application. Some included
icons are visibly in low resolution. The application itself follows the same
pattern as others, with the exception at a detail of the point. Points are
grouped into categories but are then displayed together in one long detail
screen 2.4b.

(a) : List of grouped points (b) : Detail screen

Figure 2.4: Acupressure: Self Healing massage therapy application screen
examples

2.2 Conclusion

There is a potential to create an application for acupressure. Existing ap-
plication popularity is low, with applications having relatively few ratings.
Furthermore these applications are not kept up to date. Even the updated
apps are not following iOS guidelines patterns, which leads to less intuitive
navigation. One of the weaknesses of these applications is also missing good
UX/Desing patterns. With such an analysis, we have information on what to
use and what to avoid.

10

Chapter 3
Application functionality

This chapter contains list of requirements for the application. Some of these
requirements were derived from the comparison of book and an application.
The stated advantages should be implemented to use the whole potential
of a mobile platform. Another set of requirements is derived from previous
chapter, these requirements from existing application so their inconveniences
would not be repeated.

3.1 Functional requirements

Functional requirements are functionalities that developer must implement
to enable user of the application to accomplish theirs task.. FR1: Viewing acupressure point

The application allows user to view acupressure point detail with infor-
mation about point function and location.. FR2: Searching for point by problem
The application groups points by problems.. FR3: Searching for point by its location
The points are grouped by location in application.. FR4: Viewing acupressure point in augmented reality
Acupressure point can be inspected in augmented reality.. FR5: Liking point
The application allow user to like point.. FR6: Data deletion
It is possible to delete all stored data.

11

3. Application functionality................................
3.2 Non-functional requirements

Non-functional requirements or quality attributes which describes general
characteristics of the application..NFR1: Deployment target

Application will be created for iOS mobile devices..NFR2: System version
The application should run on iOS of version 12 and higher..NFR3: Language
The application should be in Czech and English language..NFR4: Persistence
The application should persist important data..NFR5: Dark mode
The should application allows change of view mode..NFR6: Design
The should application follow iOS design guidelines.

12

...................................... 3.3. Use cases

3.3 Use cases

Use cases defines interaction of a user with the system. These interaction are
meant to be a typical workflow of a user..UC1: First start of the app

- The user opens application.
- The user see on-boarding and is able to continue to main screen.
- The user is on the main screen.

.UC2: Finding acupressure point
- The user opens application.
- The user chooses his problem from list with problems.
- The user see acupressure point detail.

.UC3: Viewing acupressure point in augmented reality
- The user opens application.
- The user chooses his problem from list with problems.
- The user see acupressure point detail.
- The user is able to view point.

.UC4: Finding all points on hand
- The user opens application.
- The user taps to choose hand from locations list.
- The user sees list of points on hand.

.UC5: Liking a point
- The user opens application.
- The user navigates to a point detail.
- The user likes the point.

13

14

Chapter 4
Development for iOS

This chapter will explain some basics of development for iOS from language
choice to the architecture pattern.

4.1 Language choice

When choosing a language for iOS, the developer has two choices if he wants
to develop a native application. The first choice is objective C, which was
used since 2007, when the app store was introduced. Objective C is fast and
powerful but it perhaps gives too much of a choice to the developer when
handling memory, for example. Swift was introduced in 2014, and it was a
massive surprise for the community. From then, SWIFT has taken the lead
as the primary language when developing iOS applications. SWIFT is now
the only fully supported language as the C is often omitted when creating
tutorials for new features.

Swift and C are not only options when developing an app for iOS. Other
options mainly aim to create one code base for both iOS and Android. A
single code base comes at the price that the application is missing the native
user interface. Standard multi-platform options are Flutter, react-Native, or
PWA.

4.2 Swift

SWIFT is a modern programming language. It is strongly typed and offers nil
handling. Development is done in a free tool named Xcode, which is available
only for Mac iOS. The starting point of the application is App delegate. App
delegate serves to start the application and as a mediator for notifications
and deep-linking.

Another integral part of an iOS application is the Info.plist file, which contains
important information about application. This information is, for example,
requested user permissions, used fonts or version. This file needs to be
localized as it also contains a description of how will be the permitted parts of

15

4. Development for iOS
the system will be used. This description should contain all uses of permission;
otherwise, it is at risk of being removed from the App Store.

4.2.1 Design patterns

Navigation

UINavigationalController is basic component used for navigation between
screens in iOS. This navigation controller is associated with a root screen and
contains info about the navigation bar. When we want to present another
screen, we can present it modally, which means like a popup screen, which can
be dismissed by swiping down gesture. Another option is pushing the screen
to the stack. This screen would belong to the same navigation controller
and would have the same navigation bar. It is possible to place a screen on
the stack almost indefinitely, but the programmer has to keep in mind that
screens on stack still occupies space in memory. Navigating back in the stack
is called poping. It is possible to pop to the previous screen or to the root
screen. It is also possible to push a new navigation controller to the stack
and should be done this way when presenting a new standalone part of the
application.

4.2.2 Arc

Automatic reference counting abbreviated ARC is a memory management
system used for the SWIFT language. Each allocated object is counting a
number of times it is referenced. Increasing the number when it has been
referenced and decreasing when it has been dereferenced. The object exists
in memory while the number of references is greater than one. When not
kept in mind, the problem of retention cycles can occur. This happens when
two or more objects create a cycle of references preventing them from being
dis-allocated. Such a cycle can be seen on 4.1.

Figure 4.1: Simple retention cycle

This cycle can be broken with keyword weak or unowned. References with
this keyword will not increase the reference count. Objects with this keyword

16

.. 4.2. Swift

may not exist if they were de-allocated. More complex problem of retention
can be seen in 4.2. This reference cycle also prevents all pattern layers above
from being dereferenced. This retention would lead to memory problems as
all of these objects would be created each time this screen would be opened,
leading to a forced crash of application by the system if it would waste too
much of memory. This problem should be fixed with weak keyword. When
fixed, all layers of architecture would be freed from memory when the pointer
for view controller ceases to exist, this typically happens when the user is
navigating back to the child view controller.

Figure 4.2: Retention cycle in VIPER

Checking the correct implantation of memory management can be done with
Xcode built-in tools. A fast check can be done with a memory report. We
should see spikes when navigation back and forth on the screen as the memory
is being allocated and freed. If the memory is only increasing over time,
the retention cycle is present and should be removed, to avoid crashes and
wasting precious memory.

Figure 4.3: Rising memory indicating possible memory problem

Another option is to get a list of allocated objects with a profiling tool named
Allocations. When navigation back and forth on the screen, we should see
objects being created and then freed from memory. We can also observe the
total number of allocations and current allocations. The number of total
allocations should be typically smaller than the number of current allocations.

17

4. Development for iOS
4.2.3 Libraries

Libraries for iOS are mainly distributed by CococaPods, Carthage, and native
Swift Package Manager. Of course, the programmer can download code
directly from some source control, but this comes without automated checks
of dependencies and updates.

CocoaPods

Open source dependency manager. It has many advantages as it is easy to use.
Almost every framework is uploaded there. It is simple to find dependencies
the application uses, and it can find conflicting dependencies. The main
disadvantage is when building project, all dependencies will be built as well
[9].

Carthage

Carthage supports finding conflicts and dependencies, as well. It is decen-
tralized, which means there is no single point of failure, but its harder to
find new libraries. Also, not every framework is available for Carthage. The
ability not to build every dependency comes at a price of too many steps
when adding a new dependency.

Swift Package Manager

SPM is a new standard way how to create libraries. Same as CococaPods and
Carthage, it automatically checks dependency’s dependencies. It has direct
support from Xcode and does not need to be handled from the terminal.
Not all frameworks are here, but some big projects like Stevia are currently
dropping support of Cocoapod in favor of SPM.

4.2.4 Distribution

Swift is built similarly to objective C. Code is built not interpreted. This
means that Swift, unlike Android, does not need obfuscation. The built file
is in .ipa format and contains builds for all enabled architectures. This file
can not be directly distributed as all application needs to be signed. This
means that the application can be distributed to consumers only via AppStore.
Testing of the application can be done on a real device if distributed with
Testflight, or the device has to be added to the signing certificate.

18

.. 4.2. Swift

When creating an application, the whole process is normally as follows.. Build application.. Upload IPA file into app store connect via loader.. Apple automatically test the uploaded file. These tests checks, whether
permission are presented, finds deprecated API usages, and more.. Distribute the application for testers (optional).. Add basic store information. Screenshots from application, version, and
description text.. Submit for review. This review is done by Apple review team and checks
whether the application serves purpose its supposed to serve, runtime
errors, and other problems. This usually takes between 2-5 days.. Fix reported issues from review team.. Release the application.

4.2.5 Architecture Patterns

Without using the architecture pattern, the View controller quickly becomes
too large to be handled efficiently. Architecture patterns should not be
confused with application architecture. The architecture patterns are mainly
for screen level code handling and without higher abstraction will probably
be full of repeated code.

MVC

MVC stands for model-view-controller. It is a default iOS pattern. As seen
on image 4.4 view receives updates from controller. Controller updates view
and model and is notified about changes in the model. This means that the
controller is handling all screen logic, navigation, and communication with
the model. This leads to a problem where the controller part is large and
hard to break apart. There is a joke which says that MVC actually stands
for the massive view controller.

19

4. Development for iOS

Figure 4.4: MVC architecture pattern [2]

MVVM

MVVM stands for Model - View - ViewModel. This pattern can be marked
as an augmented version of MVC architecture. In this architecture, the view
part is an iOS View controller. View controller no longer handles action
and screen logic but sends interactions to View Model. View Model handles
presentation logic, updates model which handles business logic and data. This
architecture works well with reactive programming, as there is only one-way
binding.

Figure 4.5: MVVM architecture pattern [18]

20

.. 4.2. Swift

VIPER

Viper is an adaption of Clean architecture for iOS. Viper is an abbreviation for
Vuew, Interactor, Presenter, Entity, and Router. VIPER architecture
overview can be seen in image 4.6. With five components, it most extensive
of used pattern and requires lots of boilerplate code. In image 4.6, full lines
mean that the object is owned in terms of ARC. Dotted lines mean only weak
reference is created. This means when the view is dereferenced, all of this
structure is dereferenced as well. This pattern can be further augmented
with reactive patterns [17]. This means that only strong references remain
as the reference from view from Presenter to View is no longer needed.
Furthermore reference from Interactor to Presenter is redundant.

Figure 4.6: VIPER architecture pattern [8]

View is UIViewController, and it tells the Presenter about user actions and
displays content based on updates from the Interactor. Presenter contains
view logic and state of the view. It also handles user action received from
view. It asks Interactor for updates that it receives. It also asks the router
to do navigation. The Interactor contains business logic. The Interactor
and presenter should work on a use-case basis. The Entity is name for basic
models that Interactor uses. Router controls application navigation.

Sometimes this pattern is bent to be more efficient, so Entities and presen-
ters are not created on use case base but per screen. Lastly, displaying alerts
is often not propagated to the presenter and then router but often handled
on lower levels as it is more convinient.

21

22

Chapter 5
Design and UX

This chapter contains a proposed design for Self-acupressure application.
The proposed design and final application differ as some of the proposed
functionalities were redundant. Also, the user testing discovered some possible
improvements which were immediately incorporated into the application. The
app will be for iOS only and written in SWIFT, so the design guide that was
used is adhering to iOS guidelines [12]. These guidelines are based on six
principles.. Aesthetic Integrity - How well the app appearance and its purpose/be-

havior go together.. Consistency - The app incorporates standard system elements.. Direct Manipulation - User manipulation immediately affects the content.. Feedback - The user has feedback on his action. For example, interactive
elements are highlighted when tapped, or he can see progress indicators
when downloading new data..Metaphors - Using actions that are familiar to the user.. User control - Users should be in control. All actions should be predictable
to avoid unwanted outcomes.

These guidelines were taken into account when designing the Self-acupressure
application. To create the design Adobe XD 1 was used as it is intuitive, offers
creation of live prototypes, and allows to download of native components that
can be used as a fundamental building block for application. These basic
blocks should be used to follow the consistency principle of iOS guidelines.
These blocks can also significantly increase the speed of development. A live
prototype can contain the whole flow of the application. This can be used to
find problem in UX and design quickly, saving precious development time.
This design was created simultaneously with design for Android application,
which is a part of a different thesis [14].

1https://www.adobe.com/cz/products/xd.html

23

5. Design and UX....................................
5.1 Navigation and flow

One of the most challenging things when developing an application is navi-
gation. The application should be intuitive, with non-disturbing navigation.
Also, with the use cases in mind, the typical actions of the user should be
done fast with minimum effort, which means having as few taps to do the
action as possible.

For Self acupressure application, the bottom navigation bar was incorporated.
This navigation bar is visible from the main page and from its other pages,
which allow users to see where he currently is and to where he can navigate.
When comparing the bottom navigation bar to the side navigation bar and
navigation bar, several advantages for the bottom bar appear. As said, the
bottom navigation bar is always visible, which also can be a disadvantage
because it takes screen space permanently. Another advantage is that it
is in an always accessible area for the user and simple tap with his thumb
take him to the wanted page of the list. For the side navigation and top
navigation first tap is needed to see the menu. The second tap is needed to
navigate to the chosen item; also, these items are probably in the upper part
of the screen forcing the user to hold the phone differently or use a second hand.

(a) : Bottom navigation bar
(b) : Navigation from detail

Figure 5.1: Navigation in self acupressure application

The navigation menu will not be used because it is not an intuitive solution
for the user. The navigation menu should contain more advanced actions.
The side menu has an advantage as it can show information about the user
and his profile, but in this application, no profile will be created, and it is
also not a native part of the system.

24

....................................... 5.2. Design

In figure 5.1a, there is a visible bottom navigation menu with four menu
items. The home which serves as a landing page for the application. Search
page which contains list of acupressure points that are possible to be searched.
Body screen which has points grouped by their position. On top of the screen
in figure 5.1a, we can see a navigation bar with a large title, which is a feature
introduced in iOS 11. Large titles were used as they give application identity
because they take space with the theme color of the application. At the same
time, when used for the screen with the scrollable component, they behave
sticky, so when the user scrolls up, the large navigation bar reduces its height.
When in detail like 5.1b the top navigation bar can stay large or is reduced
based on the screen content. In both cases in the top left corner, there is a
back button for navigation to the previous screen. To speedup the navigation
swipe back gesture is present on each of these detail screens.

Figure 5.2: Navigation flow of Self-acupressure application

The basic flow of the application is displayed in figure 5.2. Screen 2. On-
boarding is displayed only once to show the user basics of the application.
Screens 3,4,5,6 refer to bottom navigation screens. With the exception of
screen 6. all these screen can be used to navigate to detail screen as it is
the most crucial screen of Self-acupressure application. Screen 6. setting
contains augmented reality for viewing acupressure points, about screen with
information about the app, contact screen to report bugs, and other setting
screens.

5.2 Design

This section shows the design of the most crucial screen of Self-acupressure
application. The rest of the design can be found in appendix B.

5.2.1 Onboarding

Onboarding is a vital part of many applications. Its purpose is to show the user
what to expect from the application and/or how to use some more complicated
parts of the application. The onboarding should be fast; otherwise, the user
could be discouraged by it. Onboarding for Self-acupressure was designed
that the user can swipe through its pages similar to a book. It is also possible
to tap the continue button to navigate to the next screen. Skip button allows

25

5. Design and UX....................................
users to skip onboarding entirely as the user might have seen it already before.
The dots in the top part describe the user position in this tutorial. The first
choice was to explain to the user how to like a point, how to find points with
search function, and that the tapping on the body, as seen in figure 5.6b,
leads to a list with points located on the corresponding body part.

Figure 5.3: Self acupressure onboarding design

5.2.2 Main screen

The landing page is the first screen ther user sees when he typically opens
the application. The screen has two states. First is visible when the user
has no liked points 6.3a. The screen in this state shows necessary pieces of
information about application and acupressure. Second state 6.3b is shown
when the user has at least one liked point. A list of favorite points is shown
in this state. User can also dislike previously liked point by tapping the like
button which would removes the point the point from the favourite points
list.

5.2.3 Search screen

The search screen has a table of every acupressure point. In the top navigation
bar, there is a field for searching. When the user writes his problem into this
field, the list is automatically updated with relevant results. This screen was
omitted from the final implementation for more information read the next
section comparing design and created application. 5.3

5.2.4 Settings screen

The setting screen consists of one scrollable table grouped into three categories
for faster navigation. It consists of navigation to augmented reality, app
settings, information about the application, and author.

26

......................... 5.3. Design and implementation differences

(a) : Main screen when no point
is liked

(b) : Main screen when the user
has liked acupressure point

Figure 5.4: Landing page of application

5.2.5 Detail screen

The detail screen was designed very simple, with large picture on the top of
the screen so the user has visual localization of the point. This picture could
be enlarged even more with a tap. Moreover, under the picture is located text
about how to use the acupressure point and where it is located. This screen
was changed heavily after feedback from the first testers. These changes are
explained in next section.

5.3 Design and implementation differences

The most significant differences between final application and flow are different
items in settings, quicker navigation to augmented reality, and search screen,
which been changed to problem screens. The following section compares these
differences and explains why they were made. For full design and implemented
application and how it looks on different devices, go to the appendix C and
D.

27

5. Design and UX....................................
5.3.1 Detail screen changes

The detail screen was augmented. In the top right corner, there is a navigation
button to augmented reality screen. This simplifies movements in the app
as previously user had to go back to setting screen and then to augmented
reality. This also makes it possible to zoom on a given point in the AR screen.

(a) : Detail screen on iPhone 8 (b) : Proposed design of detail
screen

Figure 5.5: Landing page of the application

Another change on this screen is added support for multiple images of acu-
pressure points, which should improve localisation and visually show how to
press the point. Furthermore, different text layout was added which now also
explains how to use the acupressure point.

5.3.2 Settings screen changes

The language setting was removed from this screen as the application au-
tomatically changes its language based on the setting of the phone. Also,
the graphic settings only contains hint on how to change the dark mode and
could be theoretically removed.

5.3.3 Search screen

This screen now consists of a collection of cards-like views that contain
grouped points by problems as visible in figure 5.7b. The search functionality
was removed as the number of problems is relatively low, so it is not difficult
to navigate in them.

28

......................... 5.3. Design and implementation differences

(a) : Proposed design of set-
tings screen

(b) : Settings screen on iPhone 8

Figure 5.6: Settings screen design and implementation comparison

(a) : Proposed design of the
search screen

(b) : Search screen on iPhone 8

Figure 5.7: Search screen design and implementation comparison

29

30

Chapter 6
Implementation

6.1 Cocoa pod usage

Several pods were used when developing Self-acupressure application. The
following list is a quick summary of used pods. Most interesting pods are
described in detail in the following subsections..R.swift

- Management of resources like images and strings. This simplifies their
loading.. SteviaLayout
- This pod allows the programmer to create visual auto-layout constraints
in code..RxSwift
- This pod adds reactive pattern to SWIFT..RxDataSources
- This pod allows the binding of data and collections together. This
simplifies the handling of complex data that is changeable..Kingfisher
- This pod is taking care of downloading and caching images..Hero
- This pod is used to create between-screen animations.. SynBase
- This pod used to manage the key-chain and user defaults..CollieGallery
- This pod is used to show the detail of the image. This detail is zoomable,
and the user can also share the picture from there..Moya
- Moya is a pod for handling API requests..WeScan
This pod is used to scan images for augmented reality.

31

6. Implementation....................................
6.1.1 R.swift

R.swift is almost necessary for every project. Loading resources files in swift
is done via string name. This leads to problems as the existence of these
resources is not checked when building the project. This can lead to crashes
when not checked correctly. R.swift adds another build phase, which creates
a large file with all resources found. From this file, the programmer can
reference these resources in a fully typed way.
let icon = UIImage(named: "arrow_left")
let font = UIFont(name: "Roboto", size: 20)
let color = UIColor(named: "theme")
let string = NSLocalizedString("Cancel", comment: "")

Listing 6.1: Default loading of resources in SWIFT

let icon = R.image.arrow_left()
let font = R.font.Roboto(size: 20)
let color = R.color.theme()
let string = R.string.localizable.cancel()

Listing 6.2: Loading resources with R.swift

This approach has multiple advantages. As with R.swift, the resources
are now fully typed, checked during compilation, and auto-completed, which
means a that significant amount of time is saved as the programmer does
not have to guess or find the name elsewhere. Furthermore, the check during
compilation can find missing resources and thus prevent runtime crashes.

6.1.2 Stevia Layout

Stevia layout is a pod which simplifies syntax for creating layouts. This
simplification lies in the visual layout API, which allows the programmer to
create a visual representation of constraints in code. This representation is
also much shorter. This can be seen in code examples bellow. The second
example for usual constraints creation has only constrains for a view named
title.
textHolder.layout(0,

|title|,
8,
|subtitle|,
>=8)

Listing 6.3: Visual API of Stevia layout

title.topAnchor.constraint(equalTo: topAnchor,constant: 0).isActive = true
title.leftAnchor.constraint(equalTo: leftAnchor, constant: 0).isActive = true
title.rightAnchor.constraint(equalTo: rightAnchor, constant: 0).isActive = true

Listing 6.4: Creating contrains in code withou stevia

32

......................................6.2. BR-VIPER
6.1.3 RxSwift

This pod brings reactive programming for SWIFT via an Observable inter-
face. This is very useful as there are counterparts for this paradigm in every
major programming language. This can simplify on-boarding and adds the
possibility to share architectures and ideas between different platforms.

When writing with RX the created code can be easily made functional as the
created stream has clear inputs and outputs. It is also more natural not to
create overly-complicated state-full pieces of code. For front-end development,
it can observe UI events, which simplifies data passing between layers of
architecture. Also, thinking about code can become cleaner as everything in
RX is treated asynchronously.
request(.getAllPoints(language: code)).do(onSuccess: { [weak self] response in

print(response)
}, onError: { [weak self] error in

print(error)
})
.map(AppDataEntity.self)
.subscribe(onSuccess: { [weak self] model in

print("Data downloaded succesfully")
}, onError: { [weak self] error in

print("error loading data")
})

Listing 6.5: Handling request with RX

Another powerfull thing about RX is that the programmer has all information
on the end of the stream, which he needs. Single means this event will be
triggered only once. Observable means numerous events can happen. The
driver pattern is use-full for handling UI as it has no error and requires default
value to be passed when an error occurs. Rx can also be used to enhance
VIPER pattern [17]. Usually, both layers of architecture have to know about
each other. With RX, only the lower layer knows about the upper. The lower
layer informs the upper layer about actions and subscribes information it
needs.

6.2 BR-VIPER

For self-acupressure, the VIPER pattern was heavily modified. Two new
layers were added. Builder, which is per screen layer and takes the responsi-
bility of router to create VIPER modules. Repository, which handles per
feature business logic. Also, all dependencies are stored in one class to allow
for easy dependency passing. The interactor now serves only as a proxy to
repositories and can map or aggregate informations together; it also contains
dependencies and can serve information from them to the presenter when
asked. Nevertheless, it often serves only as a proxy from which we quickly see
how the screen is communicating with the repositories. The main difference

33

6. Implementation....................................
between repository and dependency is that the repository uses dependencies
and is created per feature. Dependency is created per functionality like
network communication, database storage, or key-chain access. Component
of viper are loosely coupled via protocols. This increases their testability and
intractability.

To speed up the development process, every screens basic VIPER module
was created automatically. This required to have all architecture layers
communication known before implementation. Automatically generated
boilerplates can save about 30 minutes per screen and means that every
screen module will be written in a similar way, which lower misunderstandings
between multiple programmers.

Figure 6.1: Ideal BR-VIPER abstract overview

.View
Consist of a View controller. Handles the layout of views and has
delegated actions from tables. All actions from used views are passing
through here to the presenter. It owns the presenter and observes its
data and updates its layout or its children’s layout by them..Presenter
The presenter owns an interactor and router. Deals with screen logic
and keep its state. It has no information about the view and does not
directly update it.. Interactor
The interactor is implemented as a struct. It gets data from repositories
and is also stateless. It contains dependencies and updates them or get
a data from them..Router
It can show another screen when told by the presenter. It should also
show alerts. It asks the builder to create a screen with which it is
associated. Router also tells other routers to show their screen.

34

................................. 6.3. Architecture overview

.Repository Can take care of caching. Handles business logic of one
feature. Gets or saves data to/from dependencies.

6.3 Architecture overview

6.3.1 Dependencies

Self-acupressure app is using following dependencies.. AcuPointsProvider.KeychainInteractor. UserDefaultsInteractor

AcuPointsProvider is taking care of networking. KeychainInteractor is han-
dling interaction with keychain. Keychain allows storing simple values; these
values, if the user has enabled iCloud, are distributed amongst his devices.
UserDefaultsInteractor is used to save information about app progress. For
Self-acupressure it stores information if onboarding and AR onboarding were
shown.

6.3.2 Repositories

Repositories handles features and provides functions to screen interactors to
avoid code repetition.. ArRepository. AcuPointsRepository

ArRepository contains information about available models, and points that
can be displayed in AR. AcuPointsRepository contains business logic for
acupressure points. Through interface it allows other part to reactivelly get
points or points for given part of body. It is also handling caching of down-
loaded acupressure points with fallback to file containing basic acupressure
points.

6.3.3 Screen modules

All these screen modules are created with full VIPER structure. Screens are
written without Storyboard, due to usage of Stevia pod.

6.4 Dark mode

The dark mode is one of the often requested features for apps and IDEs.
This feature has been introduced for iOS 13. An application like Facebook
messenger had implemented this functionality even before it was natively

35

6. Implementation....................................

Figure 6.2: Used architecture

supported, and Android has not got these features up to date. This feature
has become so popular because phones become an integral part of our lives,
and we used it everywhere and always. This includes night time and before
going to bed. Using dark mode reduces exhaustion of eyes and looks better
with a blue light reduction. Even though it is not significant dark mode can
save energy [3].

(a) : Main screen normal (b) : Main screen with dark mode

Figure 6.3: Landing page of application

36

..................................... 6.5. Resources

6.5 Resources

Creating a mobile application requires lots of resources. For Self-acupressure,
these resources are images, fonts, texts, colors, and augmented reality models.
These resources should be handled well, so they can be reusable, easy to find,
and use.

6.5.1 Localisation

Resources for the iOS application can be localized. This mainly applies to
text and images. This localization is done directly in Xcode, and no changes
in code are needed. Text localization of acupressure points is done on the
server-side, and the application only sends language code with its API calls.
Static string in the application is localized within the app. This file contains
key and value for every needed string. The key is used to reference string
from the application. However this format is not convenient for translations.
To simplify the work needed an online translation tool named Loco 1 was
used. This tool makes translation easier as the unlocalized strings are visible
and when localizing the source language string is visible as well. This tool
also offers easy exporting in many formats that came handy when localizing
the Self-acupressure Android project as these projects use the same strings
and keys, lowering the amount of time needed when deploying new or fixed
localization.

6.5.2 Images

Images used in the application are in png and pdf format. Pdf format is
preferred as it is a supported vector format for iOS. Vector images are smaller
and can be scaled indefinitely, meaning they won’t be obsolete when a new
screen with higher resolution comes to the market. Non-vector images should
be divided into three categories of resolutions to support different screen sizes.
If these categories are supplied with only high resolutions photos, the final
application could be unnecessarily big. When provided with low resolution,
the application images will be pixellated for higher resolution screens.

1https://localise.biz/dashboard

37

38

Chapter 7
Augmented reality

Augmented reality is slowly becoming closer to be used on an everyday basis.
It could be viewed as the next step in product marketing. Similar to the
advances from text to images or from images to videos. Augmented reality
has many possible usages, such as displaying items in an interactive way,
indoor navigation or playing games. Another usage could be merging reality
in a more immersive way for example adding furniture to an existing room.

7.1 Basics

Experience with augmented reality could be divided into three categories
for purposes of this application. These categories are based on how much
the displayed content has to know about reality. The first category is a
tabletop presentation. With a tabletop presentation, the scene is added to
the horizontal plane. The added scene can be moved around, scaled, and be
interacted with. It does not have to be necessarily a horizontal plane but
could be any point in space. Such a presentation does not require almost any
info about its surroundings. This is well suited for showing merchandise or
presenting some games.

Second category is augmented presentation. This category can be used when
enchancing reality. This means the detection of more advanced structures,
such as images or objects. This can be used to alter the images in the frame,
or maybe display additional information about them.

Third category is the World scale or World presentation. The content of this
category should aim for the seamless integration of virtual objects and reality.
This can be used, for example, to navigate through a shopping mall, add new
furniture to the living room or play a game where players can intact with
virtual objects.
This division into the categories is to aid thinking about AR in more conceptual
way and its possibilities. There is no strict border between them, and one
AR application can use all these styles to deliver content to the user.

39

7. Augmented reality...................................

(a) : World scale [4]

(b) : Table top [1]

Figure 7.1: Possibilities of AR presentation

7.2 AR and acupressure

This section contains info on how augmented reality could be used to help
with the acupressure. Even though that the AR is evolving quickly not all
possibilities here are currently creatable with present technology provided by
the Apple..Presenting model

The most simple approach, which display whole body or part of interest
in augmented reality as tabletop..Augmenting view
This approach would show the model to the user on detected image or
frame..Model integration
This means when the user would point his camera to his hand, hand from
object would be placed on top of it. This object would mimic movements
of the real hand..Points integration
With this approach, only the acupressure points would be displayed on
target. This approach would be far better than the other as the user
would see the points exactly on his hand.

40

..................................... 7.3. Frameworks

All of these approaches would have interactive acupressure points. When
such a point would be tapped, detailed information should appear. This
information could appear like a new view controller or as a new layer over
the AR screen, but not to disrupt the AR experience this information should
be displayed while still in augmented reality.

7.3 Frameworks

To create augmented reality for iOS applications, programmers can choose
from native and third-party solutions. Third-party solutions have an advan-
tage as they can be created outside the mobile environment and then only
incorporated in the mobile application. This means when using Unity 1, or
Vuforia 2, one code base for AR can exist for iOS, Android, and Windows
mobile, for example. This comes at the possibly difficult incorporation into
the project.

ARKit is a native solution for augmented reality on Apple iPhones. Table 2.2
offers summary of version for ARKit. A higher version of ARKit is supported
only on newer iPhones or iPads as these technologies rely on specific hardware.

Version Release Features
ARkit June 2017 Object placement, and detection
ARkit 2 June 2018 Shared expirience, persistance tracking
ARkit 3 June 2019 People Occlusion, Motion capture
ARkit 3.5 March 2020 Lidar sensor support

Table 7.1: ARKIT evolution

ARKit 2 brings to augmented reality shared experience which allows
simple creation of multiplayer games or just sharing current AR experience.
Persistence tracking allows saving of current state to share it or reload it later
[7] [11]. ARKIT 3 aimed to create AR scene to look as real as possible. To do
so, people occlusion was introduced [5], this means that before the AR object
was on top of everything nevertheless the distance. Newer phones can now
hide object behind people which helps to create feeling that the object is in
reality. Motion capture allows to track human as simple skeleton with points
on their joints. ARKit 3.5 further increases potentional of AR, as it is trying
for higher understanding of scene meaning that previous feature should work
better.
ARkit was using Scene-Kit to create scenes for AR. This has changed with
ARKit 3 as new solution named Reality composer exist. Reality composer is
standalone software which can create scenes, simple logic and animations for
the AR.

1https://unity.com/products
2https://developer.vuforia.com/

41

7. Augmented reality...................................
7.4 Implementation

For the Self-acupressure Scene-Kit was used to create AR scenes as the Reality
composer is suported only for iOS 13 and higher. In current version it is
possible to display a hand with all acupressure points presented in application.
Two possibilities how to show object in AR were implemented.

7.4.1 Plane detection

First is a plane detection. At first user has to move phone around a little
to detect a plane, on the detected plane the hand object is displayed. This
requires to have the horizontal plane detection enabled. This options is really
convenient for the user as it requires no additional setup and finding plane is
fast when in environment with enough light.

7.4.2 Image detection

This options requires additional setup as the user has to scan two images
which will be then detected. Ideal images are front and back side if some card.
Image scanning is done automatically with frame detection, so the scanned
image is immediately cropped. When the image is detected front or back of
the hand is showed in AR. The image is tracked live, so the image is rotating
with hand, or seen from the other side by flipping the card.

7.4.3 User interaction

The displayed model can be rotated with standard rotate gesture. This model
can also be scaled with the pinch gesture. This scaling is limited to avoid
problems when the user scaled object too much and would not be able find
it. In upper right corner is the advanced actions. These actions allows user
to switch between plane and image detection. Last action allows user to
restart current AR session. Furthermore tapping on acupressure point which
is depicted as green or blue sphere shows acupressure point detail. This detail
can be hiden when tapping on other acupressure point and is always rotated
so is the text on it visible to the user.

Handling tapping

Gesture recognizer was used when determining if the user has tapped on
an acupressure point node. The location of this tap was used to determine
if an object was hit in the scene with a ray-cast. If it was the hited an
object with a prefix of acupressure point, the tap is successful, and detail is
shown. This was unsatisfying when the object was far away from the screen
because the tap was often recognized as hitting hand instead of point even
though the user has a feeling he tapped the point. To determine tap, a more
user-friendly ray-cast could be replaced with a cone or cylinder, however this
solution would give false positive clicks. To determined the possible tapped

42

................................... 7.4. Implementation

points, another solution was implemented. When ray-cast hits another object,
distance to the closest acupressure node, is calculated. This distance is then,
based on the camera distance, evaluated as close enough to be a wanted click,
and therefore everything is performed the same way as when directly clicking
on the node or is far away and click is discarded.

7.4.4 Showing detail

Displaying detail in AR was a challenging problem. Ideally, the detail should
be displayed directly in AR, not to disrupt the experience. It should contain
all information from detail displayed as a screen in the application. It also
should be facing the user so that the text can be viewed.

(a) : AR with detail of point displayed (b) : AR options

Figure 7.2: Augmented reality in Self-acupressure application

The following code shows an implementation of a look at constrain that
secures that the text is facing the user.
let constraint = SCNLookAtConstraint(target: arSceneView.pointOfView)
constraint.localFront.z = 1
constraint.isGimbalLockEnabled = true
node.constraints = [constraint]
node.scale = SCNVector3(scale, scale, scale)
node.moveTowards(node: arSceneView.pointOfView, ammount: Double(5))
node.moveDown(ammount: 1)

Listing 7.1: Look at contraint

43

7. Augmented reality...................................
Displaying of detail was tried in three ways to discover the best solution
based on the hardness of implementation and user experience with the given
solution. The advantages and disadvantages of these solutions are described
in the following sections. All of these solutions would display content on a
plane created in the scene kit.

View controller

This solution displays a view controller on a plane. The view controller allows
further user interaction, like scrolling or navigation. This solution has a
problem with incorrectly used threads. It is possible to display the view
controller, but undefined behavior sometimes happens as it is updated by the
scene view, which runs on background threads, and the view controller needs
to be updated from the main thread.

AR object

Using an AR object would display text and background as Scene kit nodes.
Such a thing is possible, but it is hard as many things have to be handled.
The displayed nodes with text are meant for static text or simple dynamic as
a counter. There is no auto-layout for text nodes, which means that several
things have to take care of. At first, there has to be text wrapping, so the
text would not overflow. Then the height has to be calculated so that the
other text could be placed below the first one. This would be possible but
offers little space for changes and updates.

Image from view

This solution was used to display acupressure points detail in AR. This
solution displays images on the plane added in front of the accupressure point.
Image is created from view, which has to be added to the hierarchy; otherwise,
the renderer is missing context. This view is added below displayed AR view.
Crated image is scaled and added to the plane node with the same aspect
ratio.
extension UIView {

func asImage() −> UIImage {
let renderer = UIGraphicsImageRenderer(bounds: bounds)
return renderer.image { rendererContext in

layer.render(in: rendererContext.cgContext)
}

}
}

Listing 7.2: Extension to get UIImage from UIView

44

Chapter 8
User testing

The self-acupressure application was tested on six users. The testing was
done in two iterations, as the findings from the first three tests found some
major issues. These issues were fixed for the second iteration. Table 8.1 shows
a list of testers, which iteration they were part of, and the phone they were
using. Furthermore, these people were divided into three groups by their skill
level with iPhone’s. Least skilled is group Beginner is meant for people who
are using the phone only for basic tasks as calling and using a limited number
of applications. The second group was labeled as Intermediate. This group is
for regular users that know the system and use it on a daily basis for various
tasks. The most skilled group was labeled as Skilled. This group is meant
for iPhone enthusiastic, programmers, and designers. When choosing testers,
high diversity was kept in mind in terms of age, skill, and iPhone that they
possess.

Tester code Age Skill Phone Iteration
TesterK12 23 Skilled iPhone 8 1,2
TesterF1 51 Intermediate iPhone X 1
TesterZ1 24 Beginner iPhone SE 1
TesterN2 35 Intermediate iPhone 8 2

TesterD2 18 Skilled iPad Pro
(3. generation) 2

TesterK2 28 Beginner iPhone XR 2

Table 8.1: Self-acupressure testers

Tests were done with one user at a time. No information was given to the
tester before the start of the test. Summary of tasks is visible in figure
8.1. These tasks were given out by the test conductor. When the task was
completed, another task was given out. This was without further intervention
of the test conductor. There was also a short interview about application
upon completing all of the tasks. This interview consisted of several open
questions what would the tester liked to be improved, removed, or added.

45

8. User testing1. You have installed a new acupressure application. Open it and find
information about any acupressure point which you might find interesting...2. Let’s say you have a problem with nose bleeding. Find acupressure point
which would help you with that problem...3. Find information about where is the point localized...4. You started to like some points, add at least 3 of them to the favorite
screen...5. You are curious about which points are localized on the head. Display a
list that contains all of them...6. You started to feel, that you liked too many points. Remove the points
from the favorite list until there is only one left...7. Find a tutorial about augmented reality and read it...a. Open augmented reality and display a hand in it...b. Switch option how the hand is showed in the AR...c. Display detail information about some point while still in the AR...8. Navigate to the point detail, which is on hand...a. You are not sure about the point location, view that point in the

augmented reality...b. The hand is too small try to scale it...c. Try to rotate the hand...9. You found some nasty bug. Try to send a bug report to the developer
directly from the application.

Figure 8.1: Task for the testers

8.1 First iteration

Task 1-6 and 9 from 8.1 were, in most cases, done fast without any problems,
with the small exception that the tester TesterF1 has issues to distinguish
between the list of problems and list with locations. Some of the tasks were
done in other than it was initially anticipated, but that’s not a problem as
the user can choose his own method to complete the task. More problematic
was tasks 7 and 8, which were testing augmented reality. All tester expected
that the acupressure points would be displayed on their hand. They were
also navigation through the application very quickly, which meant they could
do tasks 1-6 quickly with few errors, but for the AR task, they were little
lost when they did not find what they were expecting.

46

................................... 8.2. Second iteration

These findings resulted in splitting testing into two iterations, so the problems
with AR could be resolved. Improvement done between first and second
iteration are in the following table.. Point detail in AR is opened automatically.. Improved text in AR tutorial with images.. Descriptive text added when scanning images.

All these fixes were done to make AR less prone to mistakes and in a way
that the user can find a description on how to use it fast.

8.2 Second iteration

The second iteration was done on four testers. Task 1-6 and 9 were done
with no problems whatsoever. Sadly the problem with AR persisted. Testers
labeled as beginners were slower, but they also carefully read everything
on the screen before proceeding, and so they were making fewer mistakes
when navigating in application. TesterK2, which belongs to that group, had
no problems with AR as he read the descriptions carefully, the only issue
which he had was being stuck on was rotating the model in AR as he did
not know ho tot perform pinch gesture. The more skilled users were fast and
performed most of the tasks in seconds, but they tended to ignore on-screen
information. That was not a problem for tasks without AR, where the flow is
straightforward. They still tend to get stuck on AR as they were not directly
guided on what to do. Furthermore, more skilled tester tends to scan two
same images which result in only one side of the hand is showing.

The user feedback after completing tasks was positive. There was some alert
about spelling in text, and ideas about UI improvement like better visibility of
like button on acupressure point detail screen. They also liked the possibility
of the dark mode.

47

8. User testing
8.3 Future work and improvements

All of these improvements are derived from user feedback and behavior during
testing. Most of these improvements are proposed to make augmented reality
more apparent to the users. This clarity could be brought with video tutorials
or simple animations that would exactly show the user what to do. Another
possibility of how to improve the AR experience would be to implement step
by step game-like tutorial. Another idea is to give feedback for actions even
to disabled elements. For example, at the screen, when the user chooses the
bottom of the scanned image to proceed button could do shake animation
when disabled and elements which are needed to proceed could pulsate to
draw user attention. Following list quickly summarizes possible improvements. Enlarge detail of acupressure point in AR..Make AR flow with clear user actions.. Disabled elements animation.. Video for as AR tutorial.. Check if scanned images are different.. Detail not covered by AR objects.

48

Chapter 9
Conclusion

This thesis should give the reader enough information about acupressure and
existing applications that aim to teach it. With this knowledge, a whole new
application was designed and implemented. This design is coherent with iOS
guidelines. To see full design go to appendix B.

The application was written in a modified VIPER architecture and should be
easily extendable. To increase the speed of development, basic boiler-plate
code for VIPER structure was automatically generated. For user convenience,
a dark mode was implemented for the whole application. Self-acupressure
application is currently available in Czech and English languages.

The augmented reality feature was added to the application to simplify the
localization of the acupressure points. This feature uses native ARKit from
Apple. The implemented solution is able to display a hand with acupressure
points on any detected surface. This hand can also be displayed on scanned
images. Other possibilities of how to use AR for acupressure besides imple-
mented solutions are discussed in chapter 7.

The implemented application was tested on five users. Their feedback was
taken into account, and changes were made based on this feedback. Con-
ducted user tests can be found in appendix D. Screenshots from the completed
application are in appendix C with both light and dark variants.

The final application has been uploaded to the App Store Connect and was
reviewed by the Apple review team successfully. The application has not been
distributed yet as the acupressure points and their description have not yet
been checked by a medical professional. In the future, the application could
be extended with more languages and acupressure points. Another extension
of the application could be adding more models and points to the augmented
reality feature with the possibility of adding animations on how to press the
acupressure points.

49

50

Appendix A
Bibliography

[1] Display scene in tabletop ar. https://developers.arcgis.com/
android/latest/java/sample-code/display-scene-in-tabletop-
aru/display-scene-in-tabletop-ar.png. Accesed: 16.5.2020.

[2] Mvc-basic. https://commons.wikimedia.org/wiki/File:
MVC-basic.svg. Accesed: 16.5.2020.

[3] Your guide to the best services. https://www.reviews.com/tech/
consumer/using-dark-mode/.

[4] First commercially-available ar navigation app. https:
//ssvar.ch/apple-ar-blippar-charts-new-territory-with-
launch-of-first-ar-navigation-app-for-iphones-ipads/,
November 2018. Accesed: 16.5.2020.

[5] What’s new in arkit 3? https://orangeloops.com/2019/09/whats-
new-in-arkit-3/, Nov 2019.

[6] Acupressure. https://en.wikipedia.org/wiki/Acupressure, May
2020.

[7] Apple unveils arkit 2. https://www.apple.com/newsroom/2018/06/
apple-unveils-arkit-2/, Feb 2020.

[8] Rida Aftab. Viper architecture using rxswift. https://medium.com/
@rida_36291/viper-architecture-using-rxswift-9a006bc7f8f3,
Dec 2018. Accesed: 16.5.2020.

[9] Fabrizio Brancati. Swift package manager vs cocoapods vs carthage
for all platforms. https://www.codementor.io/blog/swift-package-
manager-5f85eqvyg.

[10] Edzard Ernst and Myeong Soo Lee. Acupressure: An overview of
systematic reviews. Journal of pain and symptom management, 40:e3–7,
10 2010.

[11] Michelle Fitzsimmons. What is arkit 2? here’s what
you need to know about apple’s latest ar update. https:

51

https://developers.arcgis.com/android/latest/java/sample-code/display-scene-in-tabletop-aru/display-scene-in-tabletop-ar.png
https://developers.arcgis.com/android/latest/java/sample-code/display-scene-in-tabletop-aru/display-scene-in-tabletop-ar.png
https://developers.arcgis.com/android/latest/java/sample-code/display-scene-in-tabletop-aru/display-scene-in-tabletop-ar.png
https://commons.wikimedia.org/wiki/File:MVC-basic.svg
https://commons.wikimedia.org/wiki/File:MVC-basic.svg
https://www.reviews.com/tech/consumer/using-dark-mode/
https://www.reviews.com/tech/consumer/using-dark-mode/
https://ssvar.ch/apple-ar-blippar-charts-new-territory-with-launch-of-first-ar-navigation-app-for-iphones-ipads/
https://ssvar.ch/apple-ar-blippar-charts-new-territory-with-launch-of-first-ar-navigation-app-for-iphones-ipads/
https://ssvar.ch/apple-ar-blippar-charts-new-territory-with-launch-of-first-ar-navigation-app-for-iphones-ipads/
https://orangeloops.com/2019/09/whats-new-in-arkit-3/
https://orangeloops.com/2019/09/whats-new-in-arkit-3/
https://en.wikipedia.org/wiki/Acupressure
https://www.apple.com/newsroom/2018/06/apple-unveils-arkit-2/
https://www.apple.com/newsroom/2018/06/apple-unveils-arkit-2/
https://medium.com/@rida_36291/viper-architecture-using-rxswift-9a006bc7f8f3
https://medium.com/@rida_36291/viper-architecture-using-rxswift-9a006bc7f8f3
https://www.codementor.io/blog/swift-package-manager-5f85eqvyg
https://www.codementor.io/blog/swift-package-manager-5f85eqvyg
https://www.techradar.com/news/what-is-arkit-2-heres-what-you-need-to-know-about- apples-latest-ar-update
https://www.techradar.com/news/what-is-arkit-2-heres-what-you-need-to-know-about- apples-latest-ar-update
https://www.techradar.com/news/what-is-arkit-2-heres-what-you-need-to-know-about- apples-latest-ar-update

A. Bibliography.....................................
//www.techradar.com/news/what-is-arkit-2-heres-what-you-
need-to-know-about-apples-latest-ar-update, Jun 2018.

[12] Apple Inc. https://developer.apple.com/design/human-interface-
guidelines/ios/overview/themes/.

[13] Jiří Janča. Reflexní terapie. Eminent, Praha, 2. vyd edition, 1996.

[14] Petr Ješke. Android application for acupressure, 2020.

[15] Carl Llor and Lars Bjerrum. Antimicrobial resistance: risk associated
with antibiotic overuse and initiatives to reduce the problem - carl
llor, lars bjerrum, 2014. https://journals.sagepub.com/doi/full/
10.1177/2042098614554919.

[16] Amy O’Donnell. Clinical effectiveness: acupressure, acupuncture and
nerve stimulation. https://www.ncbi.nlm.nih.gov/books/NBK390515/.

[17] Vojtěch Pajer. Speech development application. https:
//dspace.cvut.cz/bitstream/handle/10467/82334/F8-DP-2019-
Pajer-Vojtech-thesis.pdf, 2019.

[18] Neha Sharma. Mvvm design pattern. https://medium.com/codewave/
mvvm-design-pattern-c5d9f4a10758, Jul 2019. Accesed: 16.5.2020.

[19] E Werntoft and A K Dykes. Effect of acupressure on nausea and
vomiting during pregnancy. a randomized, placebo-controlled, pilot study.
https://www.ncbi.nlm.nih.gov/pubmed/11584487, Sep 2001.

52

https://www.techradar.com/news/what-is-arkit-2-heres-what-you-need-to-know-about- apples-latest-ar-update
https://www.techradar.com/news/what-is-arkit-2-heres-what-you-need-to-know-about- apples-latest-ar-update
https://www.techradar.com/news/what-is-arkit-2-heres-what-you-need-to-know-about- apples-latest-ar-update
https://www.techradar.com/news/what-is-arkit-2-heres-what-you-need-to-know-about- apples-latest-ar-update
https://developer.apple.com/design/human-interface-guidelines/ios/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/ios/overview/themes/
https://journals.sagepub.com/doi/full/10.1177/2042098614554919
https://journals.sagepub.com/doi/full/10.1177/2042098614554919
https://www.ncbi.nlm.nih.gov/books/NBK390515/
https://dspace.cvut.cz/bitstream/handle/10467/82334/F8-DP-2019-Pajer-Vojtech-thesis.pdf
https://dspace.cvut.cz/bitstream/handle/10467/82334/F8-DP-2019-Pajer-Vojtech-thesis.pdf
https://dspace.cvut.cz/bitstream/handle/10467/82334/F8-DP-2019-Pajer-Vojtech-thesis.pdf
https://medium.com/codewave/mvvm-design-pattern-c5d9f4a10758
https://medium.com/codewave/mvvm-design-pattern-c5d9f4a10758
https://www.ncbi.nlm.nih.gov/pubmed/11584487

Appendix B
Design

(a) : Part of on-boarding (b) : Splash screen

53

B. Design

(a) : Empty landing page (b) : Lading page with like points

(a) : Search problem screen (b) : Choose location screen

54

.. B. Design

(a) : About screen (b) : Settings screen

(a) : Detail screen (b) : List of grouped points by location

55

56

Appendix C
Self acupressure screenshots

Set of screenshots from application taken on iPhone 8 with iOS 13.3 .

(a) : Default main screen (b) : Default body screen

57

C. Self acupressure screenshots

(a) : Default settings screen (b) : Settings screen in dark mode

(a) : Default search screen (b) : Search screen in dark mode

58

...............................C. Self acupressure screenshots

(a) : Problems list screen (b) : Detail screen

(a) : Augmented reality with detail showed (b) : AR image detection

59

	Introduction
	Acupressure
	iOS application
	Structure

	Existing solutions
	Existing apps analyze
	 Acupressure: Heal yourself
	 Lite apps
	 Acupressure: Self Healing massage therapy

	Conclusion

	Application functionality
	Functional requirements
	Non-functional requirements
	Use cases

	Development for iOS
	Language choice
	Swift
	Design patterns
	Arc
	Libraries
	Distribution
	Architecture Patterns

	Design and UX
	Navigation and flow
	Design
	 Onboarding
	Main screen
	Search screen
	 Settings screen
	Detail screen

	Design and implementation differences
	Detail screen changes
	Settings screen changes
	Search screen

	Implementation
	Cocoa pod usage
	R.swift
	Stevia Layout
	RxSwift

	BR-VIPER
	Architecture overview
	Dependencies
	Repositories
	Screen modules

	Dark mode
	 Resources
	 Localisation
	 Images

	Augmented reality
	Basics
	AR and acupressure
	Frameworks
	Implementation
	Plane detection
	Image detection
	User interaction
	Showing detail

	User testing
	First iteration
	Second iteration
	 Future work and improvements

	Conclusion
	Bibliography
	Design
	Self acupressure screenshots

