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Abstrakt

Táto práca sa zameriava na návrh riešenia pre spúšt’anie ”pipeline” pre kon-
tinuálnu integráciu a dodávku pre konkrétne vývojové prostredie s maximálnym
využit́ım kontajnerov. Zaoberá sa opisom tohto prostredia, analýzou požiadaviek
a pripravou metŕık, ktoré sa neskôr využ́ıvajú na prieskum dostupných tech-
nológíı. Medzi tieto technológie patŕı Jenkins, GitLab a Tekton. Žiadna z
týchto technológíı nesṕlňa všetky stanovené požiadavky, a preto je navrhnuté
vlastné riešenie využ́ıvajúce mnoho prinćıpov využ́ıvaných v skúmaných tech-
nológiách. Toto riešenie je navrhnuté, implementované ako dôkaz konceptu
a otestované. Ponúka škálovatel’ný ”serverless” model exekúcie, využ́ıvajúci
technológiu orchestrácie kontajnerov Docker Swarm spolu s riadeńım pŕıstupu
integrovaným s externým poskytovatel’om ident́ıt OAuth2.0. Taktiež je na
navrhovanom riešeńı vykonané vyhodnotenie požiadaviek a metŕık.

Kĺıčová slova kontajnerizácia, kontinuálna integrácia, kontinuálna dodávka,
integrácia, pipeline, docker, Jenkins, GitLab, Tekton, Docker Swarm, autorizácia,
autentifikácia, OpenID Connect, OAuth2.0
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Abstract

This thesis is focused on designing solution for execution of continuous inte-
gration and delivery pipeline for specific development environment with max-
imum use of containers. It does so by describing this environment, analyzing
requirements and preparing metrics which are then used for research of avail-
able technologies. These technologies include Jenkins, GitLab and Tekton.
None of those technologies satisfy all the requirements and therefore custom
solution utilizing many principles used in researched technologies is proposed.
This solution is designed, implemented in proof-of-concept and tested. It of-
fers scalable serverless execution model leveraging Docker Swarm container
orchestration technology along with access control integrated with external
OAuth2.0 Identity provider. Also evaluation of requirements and metrics is
performed on proposed solution.

Keywords containerization, continuous integration, continuous delivery, in-
tegration, pipeline, docker, Jenkins, GitLab, Tekton, Docker Swarm, autho-
rization, authentication, OpenID Connect, OAuth2.0
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Introduction

Creating software does not only contain tasks such as writing code and com-
piling it but it is getting increasingly complex with more and more tasks
required. These tasks may include testing, accepting, releasing and many
other. Relations between these tasks are getting progressively intricate and
with this complexity comes a need to organize them into stages in which they
are executed. Focus of a developer is fragmented between these tasks or stages
and attention to creating software itself is significantly lowered. Demands on
quality and security of a software are continuously rising. To supply these de-
mands and to lower the time software spends in one of the stages, emphasis on
accelerating software development cycle is required. To support this emphasis,
need for automation, access control, separation and many other grows.

Usually more than one developer works on software, using resources re-
quired to execute tasks and stages previously mentioned. Therefore, it is
crucial to have possibility to share these resource between individual soft-
ware’s tasks, together with separating them on access layer. In the past, this
was achieved by using hardware servers. Later on by virtual machines on said
servers. And now, thanks to Docker and its fundamental simplification and
popularization of containerization, containers are one of the main means of
sharing and separating resources simultaneously.

Aim of this thesis is to demonstrate proof-of-concept of a solution intended
for continuous integration and delivery pipelines execution which will serve as
a foundation for further implementation in specific software house environ-
ment. This will be achieved by creating appropriate metrics and requirements
by which various technologies are evaluated.

At first, boundaries, in which this thesis will operate, must be set, this
will be done by specifying software house environment, which will use results
of this thesis. Next, basics of continuous software development and container-
ization will be described. Following this, requirements for solution will be
constructed along metrics, based on those requirements. Metrics will serve for
an evaluation of technologies described in consecutive chapter. After research
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Introduction

of technologies, design for such solution will be laid down with its implemen-
tation and basic testing in subsequent chapters. Last but not least, metrics
created in earlier chapter will be used to evaluate solution proposed in previous
chapters.
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Chapter 1
Software house environment

This chapter describes software house environment since the goal of this thesis
is to analyze requirements and to propose a solution for continuous integration
and delivery for this environment.

Software house environment is an environment dedicated to building and
maintaining software products.

The environment described in this chapter is derived from real software
production organization with more than one thousand developers and hun-
dreds of software projects.

1.1 Software development

Software in this environment is developed by small teams with about five
members, using agile approach. This means changes to software occur often
with regular releases. Therefore building, testing, packaging and releasing is
done in frequent short cycles. This creates need for an uniform solution for
continuous integration and delivery of software.

Teams are independent units, responsible for building, packaging and re-
leasing software, as was mentioned above. Teams are not limited to one project
and can work on multiple projects simultaneously.

Projects might have more than one team working on it at the same time.
As not every project is equal, access to some projects is limited. Diverse
projects for different customers exist in this environment. Hence isolation of
teams is very important.

1.2 Technology

Most software produced in this environment is built upon custom web ap-
plication framework, consisting of complete technology stack, ranging from
client front end, server back end, storage up to container image deployed in

3



1. Software house environment

production. This framework is available in several programming languages,
not in any particular order: Java, Node.js and C#. This helps to stream-
line development and establish standards in creating software. Usage of this
framework also means that development teams do not have to experiment with
every product. It provides a standard way of preparing local environment for
a developer.

To store and version source code, git is used with git-flow branching model.
Basic idea of this model is to have branch for each new feature, which is
merged to develop branch. Develop branch serves as ”staging ground” for
changes before being integrated to master branch.[3]

Objects related to software development are uploaded to software reposi-
tories managed by Nexus repository manager, which is technology able to
host, proxy and group multiple repository technologies such as java’s Maven
artifacts, node’s npms, docker’s registry images, arbitrary raw byte sequence
(e.g. zip) and many more.

Identities for authorization are provided by Open ID Connect protocol built
upon OAuth2.0

Released applications are packaged to containers, described more in chap-
ter 3, and run with Docker Swarm container orchestration engine.

1.3 Current continuous integration and delivery

Large number of decentralized development teams work in this environment,
divided by tree organizational structure. Therefore fairly large number of
organizational units exists within it. Every unit has its own delivery team,
which ensures that software is deliverable. This is done with help of local
quality assurance team.

Due to this decentralization many teams started using variety of different
tools for CI/CD, such as TeamCity, Jenkins, or no tools at all. These tools are
in general non-flexible solution with static configuration and small scalability
options, which usually provide no central authentication, nor authorization.
Maintaining these tools usually requires additional team, which must take
care of keeping them accessible, up-to-date and secure. This makes them
more difficult to manage.
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Chapter 2
Continuous software

development

Continuous software development is an approach to software engineering, in
which new versions of software are continually integrated, released and de-
ployed. It consists of three main parts:

• continuous integration,

• continuous delivery,

• continuous deployment.

Each of these parts are closely related to each other and are dependent on
the outputs of the previous one.

For an illustration, implementing a new version of software can be divided
into various stages such as writing code, compilation, integration with main
version of software, testing, packaging, accepting changes, release, deployment
and maintenance. If process of executing them is done continuously, these
stages belong to one of the parts of Continuous software development.

Relation between individual stages in context of continuous integration,
delivery and deployment is shown in figure 2.1.

Figure 2.1: Relation between continuous integration, delivery and deployment
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2. Continuous software development

To appropriately explain these three parts, basics of application deploy-
ment, version control system, software repository and quality assurance are
described.

2.1 Application deployment

Application deployment, also known as a software deployment is a process of
planning, maintaining, and executing on delivery of a specific software version
[4]. In other words, this process makes software available for users.

It can be made available for use in specific environment, which describes
set of configuration, topology and computing resources used by a software.
Environment can be dedicated, but is not limited to: development, integration,
staging and production, where every environment has its purpose.

Development environment is used to develop software or a functional-
ity by developer or small team. Isolation of environment enables frequent and
unstable changes to occur without worrying about affecting other versions of
software. Integration environment is where changes of development envi-
ronments meet. Its goal is to combine work of developers or teams working on
software and ensure certain level of quality of software before it is promoted
to staging environment. This environment is used to simulate production
as much as possible. It can be used for demonstrations, or to reveal breaking
changes, which would not be possible to detect in any of previously men-
tioned environments. Production environment is dedicated to consumer
use, hence most stable version of a software is here.

Node is used to represent resources available for a software in an environ-
ment . Node can represent physical hardware, virtual machine or container
(more about containers in section 3) and has defined processing power, mem-
ory, storage and network.

2.2 Version control system

Version control system (VCS) is a system designed to manage software source
code. It enables management of multiple versions of source code shared among
developers. Every developer works on its own version of a software and all
the changes made are then merged to main version. This by design supports
distributed cooperation among developers.

As work on software is distributed, changes made to functionality can
overlap. This can lead to conflicts among changes, usually referred to as merge
conflicts. It is up to developer to resolve merge conflicts, and resolving them
can take a significant amount of time, depending on the number of changes in
each version.

One of the most popular technologies used for version control is git[5]. In
git every version is referred to as a branch. These branches can ”branch out”
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2.3. Software repository

from other branches, but mainly from the main version of a code, usually
labeled as ”master” [6, Chapter: Git Branching]. This version of code is
usually run on production environment.

2.3 Software repository

Software repository, or repository for short, is used to store packages and other
immutable objects related to software during development. These objects are
called artifacts and may represent dependencies required for software build,
outputs of build process, or a distribution package of created software. It
groups packages by its technology, e.g. java archives, node modules or ruby
gems.

2.3.1 Repository manager

Repository manager is a server used to manage multiple types of repository.
These include different repository technologies, usage types, such as hosted,
proxy or group repository and repositories for different environments, e.g de-
velopment, integration, staging and production.

One of the main purposes of repository manager is to provide single access
control for different repositories, to control remote sources used in software
and to keep track of artifacts produced by built systems [7].

2.4 Quality assurance

Quality of a software can be ensured by running various types of tests. Unit
test, for example, is short block of code which calls method with predefined
input and compares it to predefined result. Another common tests are in-
tegration tests, which verify if the individual components of a system work
together. For example, if software integrates correctly with other software
interface such as database, queues and other. After integration tests comes
system tests which test system as a whole. This can include performance test-
ing, reliability testing, scalability testing, security testing, and many other.
Acceptance tests checks software functionality from user perspective. For ex-
ample it tests whether record is created, saved to database, and loaded from
database correctly [8]. Another means of ensuring quality of a software is
nonfunctional testing, such as static code analysis, code coverage and so on.

Each of these tests are done in different stage of software development,
for example unit tests, static analysis and code coverage are executed when
software is built, integration and acceptance tests only after unit tests are
passed and performance tests are executed after software’s functionality was
verified. There are numerous other types of tests but those are not discussed
here, as testing is not goal of this thesis.
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2.5 Continuous integration

Continuous integration (CI) is a process of integrating new code with prede-
termined quality to master branch as frequently as possible.

This differs from integrating branches in longer periods of time, such as
weeks, or months as number of changes in code are much bigger, thus finding
and isolating breaking change is much more difficult. On the other hand, with
frequent integration of smaller change sets, finding change causing problems
is much easier [4].

Quality assurance in continuous integration oftentimes include unit testing,
static code analysis, code coverage and other. If build passes these tests,
process of accepting this build as a deployable can start.

2.6 Continuous delivery

Continuous delivery (CD) is a process ensuring software can be deployed.
This is achieved by using set of automation tools and principles that allow
fast and regular software release [4]. Continuous delivery and integration are
tightly coupled together as continuous delivery builds on outputs of continuous
integration.

In continuous delivery quality is assured by executing acceptance and sys-
tem tests.

Process of continuous delivery can be described by delivery pipeline.
As Jez Humble and David Farley described in [9], delivery pipeline is an
automated manifestation of process for getting software from version control
to release. High level overview of delivery pipeline is shown in figure 2.2.

Figure 2.2: Example of a delivery pipeline

This manifestation has evolved over time to address continuous deploy-
ment as well. Therefore nowadays, if CI/CD pipeline is mentioned, it can
refer to automated process of continuous integration, delivery and sometimes
continuous deployment as well.

2.7 Continuous deployment

Continuous deployment is a process of deploying new versions of software to
production environment as frequently as possible with minimal downtime.
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2.7. Continuous deployment

In simpler pipelines continuous deployment is included a delivery process
and more complex deployment make use of specialized tools such as Spinnaker
[10].

This thesis main focus is proposing solution for continuous integration and
delivery.
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Chapter 3
Containerization and its

orchestration

As was stated in section 2.6, delivery pipeline is an automated manifesta-
tion of delivery process. This process is executed over various projects built
upon various technologies. Therefore it is necessary to use technologies which
provide control over consumed resources and separation of individual environ-
ments. By using such technologies it is possible to use different environment
configuration, different technologies, etc. side by side independently of each
other. Containerization is technology which provides this with type of sepa-
ration.

To describe containerization, one must start with virtualization. In a non-
virtualized system, applications communicate via libraries to operating system
and its kernel’s interaction with hardware to execute operations. As more
applications are running on same system, competition for system resources
grows. There are also potential security risks as all applications share one file
system and a process tree. This situation is illustrated in figure 3.1

3.1 Virtualization

Virtualization is a process of running virtual instance of computing system
in a layer abstracted from actual hardware [11]. This ensures separation of
individual systems for security and resource delegation benefits. Also it en-
ables to emulate various types of hardware or other operating systems on top
of existing hardware with existing operating system.

There are multiple ways to achieve this, for example, full virtualization
on hardware layer using CPU assistance (Intel VT or AMD-V)[12]. Software
responsible for this virtualization is called a hypervisor and virtualized com-
puting system is known as a guest. This type of virtualization offers strong
separation of guest operating systems from each other and hypervisor itself.
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Figure 3.1: Non-virtualized system

Individual guests usually have its file system and process tree represented in
hypervisor as a single file and process respectively. This is illustrated in figure
3.2.

Guest operating system’s requests for hardware resources are translated
by hypervisor to an actual interaction with hardware. This emulation might
overload hypervisor, thus making it bottleneck of virtualization. Also space
concerns might arise as every guest system needs its whole file system. This
can contribute to slower start-up times ranging from one to more than ten
minutes [13].

3.2 Containerization

Another way to virtualize computing system is to use OS-level virtualization,
sometimes referred to as containerization.

Main idea is to partition hardware resources at operating system level
making guests share a single kernel. This is in contrast to Full virtualization,
which enables to emulate various types of hardware and run operating systems
other than hypervisor’s.

To achieve this virtualization, operating system kernel must allow multiple
isolated name space groups and ideally resource sharing management. Com-
parison of full virtualization and OS-level virtualization is illustrated in figure
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Figure 3.2: Full virtualization

3.3

Many technologies enable this type of virtualization, such as containers
(Docker), zones (Solaris [14]) or jails (FreeBSD jail [15], unix chroot), and in
recent years, docker containers has gained popularity, mainly due to its ease
of use.

Container, according to Docker, is a standard unit of software that pack-
ages code and all its dependencies so the application runs quickly and reliably
from one computing environment to another [16].

This means that applications can be developed, delivered and deployed in
the same way. This eliminates many problems where environment of developer
is different from production environment whether it is different version of
library, different environment variables of a machine, etc.

There are many more containerization technologies besides docker (e.g.
podman, rkt, LXC, LXD), but they will not be described further as it is not
the main focus of this thesis.

Docker containerization technology was chosen for this thesis as it is widely
used across many production environments, its large user community and its
orchestration tool Swarm (described in section 3.5), which is used in provided
software house environment, described in chapter 1.

13



3. Containerization and its orchestration

Figure 3.3: Full hardware vs OS-level virtualization

3.3 Docker

Docker itself consists of mostly three main parts. These parts are: Docker
engine, containerd manager and runc runtime.

Docker engine primarily serves as application interface for user who wants
to interact with containerd. Containerd is daemon responsible for running
runc container runtimes. This hierarchy is illustrated in figure 3.4.

Figure 3.4: Docker engine - containerd - runc hierarchy. Taken from [1].
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This runtime allows spinning up containers using kernel namespace iso-
lation and cgroups. Namespace isolation separates groups of processes in
a way that one group cannot see resources of another group. These re-
sources can be processes, network interfaces, mount-points or inter-process
communication[17]. Control groups (cgroups) is a kernel component that lim-
its usage of resources (CPU, memory, disk I/O, networking etc.) of process
groups [18].

There are more ways to communicate with Docker engine. Mainly it is
docker CLI and docker API. API creates HTTP endpoints, via which any
HTTP client can communicate with Docker engine. Docker CLI serves as
an API client and prepares, then sends requests via socket, in Linux usually
located at path /var/run/docker.sock. These requests are same as requests
sent via API. Docker CLI can also serve as an client for remote docker machine,
which has Docker API enabled. This also means that any HTTP client capable
of sending requests to Linux sockets is able to communicate with docker engine
without docker CLI.

3.3.1 Docker concepts

Docker is based on Open container initiative (OCI) specification, which was
established by Docker [19], therefore most concepts are interchangeable with
OCI concepts, and usually docker is direct implementation of these concepts.

Docker image, or just image is a foundation of container. An image is an
ordered collection of steps, or layers, and metadata which describes container
runtime. These steps can be configuration changes, parameters for execution
but mainly installation of application and its libraries. Images typically inherit
layers of filesystems from other images. Dockerfile is used to describe image.
Example of a simple Dockerfile, which packages Node.js app, is given in listing
3.1.

Listing 3.1: Example Dockerfile
FROM node:latest
COPY . /app
RUN make /app
ENTRYPOINT [ "node", "/app/app.js" ]

Layer is a collection of filesystem changes (addition, change or deletion
of files) relative to its parent layer. Layers are used by layer-based or union
filesystem to present one cohesive filesystem [20]. This can be achieved by
filesystems such as AUFS or Btrfs.

As docker containers are a running instance of docker image and image
itself is based on docker image, size requirements for containers might seem
enormous. Especially, if there are more containers based on one image. This
is solved by adding thin writable layer to every container, leaving other layers
read-only. Writable layer is deleted when container is deleted. When layer
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needs read access to a file, existing file is used. When a file residing in read
layer needs to be modified (whether it is to change or delete it), copy is made
to writable layer and this copy is modified [2]. Situation with more containers
sharing one docker image is illustrated in figure 3.5.

Figure 3.5: Docker containers sharing layers. Taken from [2].

By default, docker containers are started with restricted set of Linux ker-
nel capabilities. This means that container cannot load or unload kernel
modules, mount raw devices (including cgroups control devices) and others.
Possible docker container capabilities are described in detail in [21].

Because data is written only in writable layer of a container, docker pro-
vides multiple ways to store this data. It can be a docker volume, a mount
from host filesystem or a temporary filesystem. It may be used for persistence
across container upgrades or to share data among containers themselves.

Docker registry is a hosted service which contains and provides docker
images through Registry API. Default registry is available on Docker Hub
(hub.docker.com) and can be browsed using web browser or using docker CLI
[22]. Registry itself is an implementation of OCI distribution specification
which specifies Registry API. There are many implementations of an API,
which can be self-hosted, such as Distribution (Docker, [23]), Nexus Reposi-
tory Manager 3 (Sonatype, [24]), Project Quay (RedHat, [25]).
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3.4 Container orchestration

With rising number of containers, also rises the need to manage their lifecycles.
This is especially true in a dynamic environment, where hundreds of containers
are run. In this situation, container orchestration becomes essential.

Container orchestration is used to control and automate many tasks, mainly:

• provisioning and deployment of containers;

• redundancy and availability of containers;

• creating or removing containers to spread application load evenly;

• redeployment of container in case host becomes unavailable;

• resource management of containers;

• load balancing between containers;

• health monitoring;

• networking between containers [26].

There are plenty container orchestration engines, such as Docker Swarm,
Kubernetes or Apache Mesos. This thesis describe Docker Swarm as it is used
in software house environment specified in chapter 1.

3.5 Docker Swarm

Docker Swarm is a solution from Docker, used for orchestration of docker
containers. Its architectural components consist of manager nodes and worker
nodes, stacks, services and tasks.

Manager nodes are responsible for cluster management tasks such as
maintaining cluster state, scheduling services, serving Swarm mode HTTP
API endpoints. Manager nodes use Raft consensus algorithm to maintain
consistent state of cluster, stacks and services.

Worker nodes have only one purpose, and that is to run containers. They
do not participate in Raft consensus algorithm, make scheduling decisions or
serve HTTP API endpoints [27]. Every manager node is by default also worker
node. Therefore Swarm with only one node is possible. This can be useful for
development purposes.

Atomic part of scheduling in Docker Swarm is a task[22]. Task can also be
perceived as a container running on node specified by a service. Manager node
assigns task to worker nodes according to a definition, which was provided in
request to start a task. Tasks themselves cannot be defined as they are integral
part of services.
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Service is one or more instances (tasks) of an docker image. Service
can run in two modes: replicated or global. In replicated mode, specified
number of replicas are run in cluster whereas in global mode, container runs
on every instance specified by restraints. Restraints can be labels or roles in
docker Swarm (manager or worker). Additional resources can be assigned to
services, such as secrets or networks. Services can be also grouped together in
stack. To describe and distribute stack, compose file is used. Only services
and stacks can be scheduled on Docker Swarm.
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Chapter 4
Requirements for solution

Most of the requirements introduced in this chapter are based on software
house environment described in chapter 1, but they are not limited to it.

The aim of this thesis is to find continuous delivery pipeline execution
engine which fulfill requirements described in this chapter.

4.1 Containerization

Containerization is widely used technology across many different organiza-
tions. According to Portworx survey, 87% of respondents use container tech-
nologies [28]. As was stated in chapter 1, containers are widely used across
production environment of a software house this solution is intended for.

For programs, containerization provide confined workspace with isolated
process tree. This enables safer execution of arbitrary programs on infrastruc-
ture.

Programs which run in containers are well described by its container im-
ages. These images can be easily distributed via container registry and its
deployment is specified by compose files or other declaration files.

Also lot of software already has containerized version, which can be run
without complicated installation.

4.2 Serverless cloud computing execution model

There is no need to have always running instance of pipeline execution engine
which waits for requests. This lack of necessity is justified by the fact that
pipelines are not executed permanently and instance executing them would
run all the time even when not utilized and resources allocated to it could
have been used for other endeavors. This ineffectivity can be seen as both
financial and environmental.
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Serverless cloud computing execution model is a form of utility comput-
ing. Servers are still required for execution, but instance of application is not
running all the time. When there is incoming request, application spins up,
services incoming request and shuts down. If there are additional requests, it
can spawn more instances of itself and serve rest of requests. [29].

Benefits of serverless execution model include: savings on costs as resources
can be shared, delivery of updates is much faster, it is easily scalable and there
is no need for dedicated maintainer of server which is running this solution.

4.3 Multitenant operational mode

Software house environment defined in 1 consists of multiple teams which
might not event know each other, hence some form of multitenancy is required.
According to Gartner, multitenancy refers to mode of operation of software
where multiple independent instances operate in shared environment[30]. In
this particular case, instance can be seen as workspace of a team or a project
and environment is infrastructure of framework for CI/CD.

Solution must enable access control where entity is project and identities
accessing it are developers. Projects also cannot access other projects resources
such as workspaces or credentials to access other resources. Overall isolation
of projects and identities is required.

Common practice in multitenant environments is to limit access to re-
sources. This means that pipeline cannot allocate more resources than there
are declared in pipeline specification.

Also some form of accountability is required for usage statistics. Another
characteristic apart from isolation is self serviceability described in following
section.

4.4 Self-serviceability within project teams

Solution is intended for small independent teams in larger-scale organization.
This means that these teams should be able to create and maintain pipelines
for projects on its own and not depend on one team which will support all
pipelines.

This self-serviceability should be intuitive and easy to use, otherwise it can
be prone to errors or other ineffectiveness.

4.5 Open Source

Using open source projects as a foundation for solution provides many bene-
fits. Open source software provides control over itself with ability to examine
source code and ensure what does software do. This also means that bugs are
easier to detect and to pinpoint its origins and fix them. Economic aspect of
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open source is considerable as usage of it enables to shift costs from licensing
to customization and implementation itself. Also customization itself is big
benefit for instances when some functionality is not exactly as required, it can
be modified.

Open source licenses in general are implied with no particular license re-
quirements. Licenses listed by Open Source Initiative [31] such as Apache
License 2.0 or MIT license are preferred in solution which will be proposed in
this thesis.

4.6 Integration with the existing services

As numerous services exist in environment specified in chapter 1, solution is
ought to be able to integrate with them.

Starting point of a delivery pipeline is a source code, hence integration
with source code repository manager is required. Git technology is primary
source code management solution in software house environment, therefore
solution should be able to access external git repository specified by its link
and credentials used to access it.

Projects have dependencies which might not be accessible without au-
thentication, and also artifacts created in integration and delivery process are
meant to be stored in repositories (docker images, CDN libraries, or any arbi-
trary output), thus solution must have a way to provide arbitrary credentials
to it.

As git can have hooks installed, pipeline must be able to be started from
URL endpoint and also upon its completion some form of callback should be
possible.

In software house environment, central identity provider is used. This
provider is based on Open ID Connect technology, hence access control is
provided by identities from this provider.

4.7 Simple yet powerful

As was already explained in chapter 1, significant proportion of software com-
ing from this particular environment is based on standardized web application
framework, therefore standard usage should be as easy as specifying git repos-
itory and branch to build. Everything is then done automatically without the
need of a user input.

On the other hand, considerable amount of projects require non-standard
software. For example, it can be C library or Go integration application. This
minority of projects however should not have special treatment as this brings
unnecessary complexity to maintenance, as well as it can introduce security
risks. Therefore possibility to accommodate non-standard uses is not difficult.
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4.8 Design of metrics

Metrics used for technology research, are described in this section. These met-
rics will serve as foundations in Research of technologies described in chapter
5.

4.8.1 Declaration of a pipeline

Pipeline should be defined as a code, which means it is tracked in some form
of revision system and it enables to track which pipeline was executed.

The way in which pipeline is defined is important. This means that re-
quirements for creation of a new pipeline must be listed. This includes format
it uses.

User knowledge of containers must be defined to correctly estimate com-
plexity of creating new pipeline. This knowledge can be divided into four
levels:

• No experience - user does not need any experience with running con-
tainers.

• Basic - user knows what are containers.

• Medium - user knows how to build containers.

• Advanced - user has knowledge of container networking, persistence, etc.

Resources, which must be defined by user in order to use them in pipeline
need to be described. This is mainly oriented towards credentials used to
access external resources. These resources, along with pipeline itself, should
be scoped on specified entity, such as group, namespace, or other to provide
some form of multitenancy.

All of mentioned above can be summarized into following criteria:

• Support for ”pipeline as a code” definition.

• Required user experience.

• Scripting experience.

• Configuration format used to define pipeline.

• Self serviceability - how much can user define without need of maintainer
of solution to intervene.
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4.8.2 Usage of containers

How are containers used in solution must be defined. Whether containers are
used only as means of distribution of a solution or build itself is executed in
containers. Also if a method, in which containers are used, provides secure
way to define its execution. This means that how complex, or if even possible,
it is to gain access to underlying infrastructure if user with malicious intents
has access rights to execute pipeline.

These criteria are analogous to user knowledge defined in previous section:

• Basic - user can execute containers with some parameters.

• Medium - user gains access to execution environment of a container.

• Advanced - user can set up container networking, persistence, enable or
disable container capabilities, etc.

4.8.3 Access control

Access control should be present in solution as it will be used by numerous
users across whole software house environment, which is described in chapter
1.

To evaluate this, following criteria are used:

• Attribute-based access control.

• Role-based access control.

• No access control.

4.8.4 Integration

Identities and its access rights must be sourced from external services which
support OAuth2.0 authorization.

As was mentioned in section 4.6, integration with existing git repository
is required.

Also integration with Docker Swarm orchestration is required as it is or-
chestration engine in software house environment( 1). This integration must
be native without workarounds.

4.8.5 Resource requirements

One of the metrics are resources required to run the solution. These include
processing power, memory and storage.
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4.8.6 Scalability

As this solution will be used by high number of developers, scaling is also one
of the requirements.

To understand possibilities of scalability, how are pipelines executed on
infrastructure layer must be described.

Solution should be scalable in both vertical and horizontal manner. Ver-
tical scaling means that more resources application has available, more of
them it can use. Horizontal scaling means that more instances of the same
application are added thus increasing performance of application.

Following criteria can be derived from these two methods of scaling: ver-
tical, where it is not possible to add more instances to existing one; static
horizontal, where instance must be reconfigured to be scaled accordingly; and
dynamic horizontal, where no instance of a solution is running, when no exe-
cution is requested and if such request appears, it can be scaled accordingly.

4.8.7 Extensibility

Possibility of extending existing solution must be described. This include de-
scription of what can be extended. Execution inside pipeline, for example
different behavior if pipeline fails; execution outside pipeline, for example au-
thentication, authorization or audit; or tooling used during pipeline execution,
such as version of compiler or test suite used.

And also complexity of such extension should be described. Whether so-
lution does have defined API for extending or if extensions can be plugged in
or out.

4.8.8 Summary of metrics

Sections, which were mentioned above, describe metrics which will be used to
evaluate technologies, to help with this evaluation, table 4.1 was created.
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Table 4.1: Metrics used to evaluate researched technologies

Metric Criteria Evaluation

Declaration of pipeline

Pipeline as a code Yes/No
User knowledge None,Basic,Medium,Advanced

Declaration format JSON, YAML, arbitrary
Self serviceability Yes/No

Usage of containers
Basic Yes/No

Medium Yes/No
Advanced Yes/No

Access control Attribute-based access control Yes/No
Role-based access control Yes/No

Integration

Authentication Yes/No
Authorization Yes/No

External git repository Yes/No
Docker Swarm Yes/No

Scalability Static horizontal Yes/No
Dynamic horizontal Yes/No

Extensibility

Options Inside pipeline Yes/No
Outside pipeline Yes/No

Tooling Yes/No

Means API Yes/No
Plugins Yes/No
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Chapter 5
Research of technologies

This chapter is dedicated to the research of technologies available, which could
match requirements and metrics defined in chapter 4.

Jenkins, GitLab and Tekton were chosen. Choice of these technologies was
based on landscape provided by Continuous Delivery Foundation [32].

Jenkins is widely used solution across software house environment defined
in chapter 1. Many developers are familiar with its concepts, therefore, it is
reasonable to investigate possibilities it is offering.

Next in list of technologies which will be researched is GitLab. It is also
widely known for its Continuous integration and delivery capabilites.

Last but not least is Tekton. Project developed mainly by Google as
an open source tool for running pipelines in container orchestration engine
Kubernetes.

5.1 Jenkins

Jenkins is a self-contained, open source automation server which can automate
all sorts of tasks related to CI/CD [33] licensed under MIT License [34].

It is widely known service with more than 270 000 running installations
and more than a 1 000 000 execution nodes as of March 2020 [35].

Architecturally, Jenkins is made up of two main components, master and
agent servers. Master server is responsible for managing and controlling
execution of build jobs. It contains web portal, from which Jenkins is managed
and operated. Most operational tasks can be also performed via REST API.
For more advanced configuration, Groovy CLI can be used. Agents are nodes
on which execution of jobs takes place. They can have specific labels to be
distinguishable from other agents, for example Windows or GPU.

Build job is an essential part of Jenkins build process which can be
thought of as a particular task or step, or whole project build in a build
process. It can range from shell script, maven build project, pipeline build
and many more with a help of plugins.
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It is written in Java with Groovy as a main scripting language, which
allows to run arbitrary Groovy scripts within the Jenkins master runtime or
in the runtime of an agent [36, chapter Managing Jenkins].

There is also JenkinsX, which is derived from Jenkins, but it only supports
Kubernetes orchestration engine and uses Tekton to do so.

Summary of metrics discussed in subsequent sections is available as table
5.1.

Table 5.1: Summary of metrics for Jenkins

Metric Criteria Jenkins evaluation

Declaration of pipeline

Pipeline as a code Yes
User knowledge None, Basic, Medium, Advanced

Declaration format Jenkinsfile, Groovy script
Self serviceability No

Usage of containers
Basic Yes

Medium Yes
Advanced Yes

Access control Attribute-based access control No
Role-based access control Yes (by plugins)

Integration

Authentication Yes (by plugins)
Authorization Yes (by plugins)

External git repository Yes
Docker Swarm Yes (by plugins)

Scalability Static horizontal Yes (agents only)
Dynamic horizontal No

Extensibility

Options Inside pipeline Yes
Outside pipeline Yes

Tooling Yes

Means API Yes
Plugins Yes

5.1.1 Plugins

First of all, Jenkins plugins must be described as most of the functionality of
Jenkins is provided by them. This ranges from defining credentials to access
control.

Plugins are primary means of extending functionality of Jenkins to suit
user-specific needs[36, chapter Managing Jenkins]. There are more than thou-
sand available open source plugins [37].

They can vary from wrapping API of different service to be usable in build
jobs, enriching Jenkins with statistics and usage graphs, ability to configure
Jenkins via declarative configuration files to extending functionality of Jenkins
with Jenkins Pipelines.
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Plugins are distributed via Update center, which is hosted inventory of
plugins and its metadata with dependencies, versions etc.

To install plugins, one can use Update center or install plugins manually
on master via .hpi plugin files.

5.1.2 Declaration of pipeline

Pipeline in Jenkins is declared as file which usually resides in git repository.
Step is a fundamental building block of a pipeline. It tells Jenkins what to

do, e.g. retrieve source code from VCS, run maven build, upload built artifact
to repository, etc. and where to do it, for example, only agent nodes marked
with GPU label.

Steps can be grouped together in stages, which serve as an abstract sep-
aration for tasks which belong together. Stages can also contain metadata for
steps such as: agent node, on which execution will take place; environment
variables available for steps, and other. Examples of a stage are: build appli-
cation, run system tests, promote built artifact to release, etc. Files describing
Jenkins pipelines are called Jenkinsfiles.

To create a new pipeline, user should be familiar with Groovy scripting
language or use Jenkins’s own domain specific language (DSL), which has
structure similar to JSON.

Declaration of a pipeline usually resides in git repository. This repository
has to be accessible by Jenkins (that means private key to access non-public
repositories is required).

To access secured resources, credentials must be created in global configu-
ration of Jenkins. All other credentials to access resources outside of Jenkins
such as Software repository, Docker registry, etc. are created this way. This
means that users without administrator access rights are unable to create such
credentials.

5.1.3 Usage of containers

Containers in Jenkins can be used as an execution environment instead of
standard agent executors. This means that steps that were previously exe-
cuted as standard shell scripts at execution environment of an agent are now
executed inside a container.

It does not limit user in supplying specific arguments to docker daemon,
such as executing container with privileged flag, which disables all security
measures prepared by docker engine or mounting whole host filesystem.

5.1.4 Access control

Access control in Jenkins can be controlled in two axes [36, System adminis-
tration, Securing Jenkins] listed below.
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• Security realm, which determines users and their groups.

• Authorization strategy, which determines who has access to what.

Both of these can be modified by numerous plugins, such as GitHub Au-
thentication [38] or OpenId Connect Authentication [39] for security realm,
or Authorize Project [40], Role-based Authorization Strategy [41] or Matrix
Authorization strategy [42].

5.1.5 Integration

As was mentioned in previous section, integration with Identity provider can
be achieved by multiple plugins, such as OpenId Connect Authentication. To
authorize user, Matrix Authorization strategy can be used. This enables fine
grained permissions for projects such as viewing and starting pipeline.

Git repository integration is provided by creating credentials which have
access to external git repository.

Swarm integration can be achieved by Docker Swarm [43] plugin. This
plugin enables to spinning up Jenkins agents in Docker Swarm. Every agent
image must be manually preconfigured in global plugin configuration. This
means that if new image is required to start, service intervention is required.
Configuration requires Docker Swarm manager address and TLS certificate
for authentication to manager.

5.1.6 Resource requirements

Jenkins memory requirements can range from 200MB to 70+GB of RAM for
a single Jenkins master server. Also, each connection to agent node can take
at least 2MB of memory [36, Hardware recommendations].

Recommended hardware configuration for small team consists of 1 or more
GB of RAM and 50 or more GB of drive space [36, Installing Jenkins]. No
specific requirements for processing power are set but it must be noted that
Jenkins master will serve all HTTP requests to access Jenkins and also or-
chestrate execution of pipelines on agents.

5.1.7 Scalability

As was stated in introduction in 5.1, execution model consists of Master node,
which schedules pipelines on Agent node. If connection to agent is lost, master
schedules build of a pipeline on another available agent. Downtime of master
node means that no pipelines can be run.

Scalability in Jenkins is mainly achieved by connecting more agents to
master server. Recommended number of jobs per master is one hundred jobs
per core. Unfortunately, Jenkins does not support horizontal scaling of mas-
ters and when scaling is required, new instance of Jenkins is required [36,
Architecting for Scale].
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5.1.8 Extensibility

As was described in section 5.1.1, Jenkins is highly extensible by plugins.
Jenkins pipelines are also extensible by using shared libraries, which extend
functionality of pipelines itself. Plugins must be written in Java language but
shared libraries can be also written Groovy.

5.2 GitLab

GitLab is a web-based development and operation tool that provides git repos-
itory, container registry and also offers continuous integration and delivery
tooling. This is known as GitLab CI/CD.

GitLab comes in two editions, Community and Enterprise. In this section
Community edition will be taken into account as it uses MIT license which
conforms requirements on licensing described in section 4.5.

Pipeline in GitLab CI/CD can be divided into multiple jobs. Job is funda-
mental element of GitLab pipeline declaration. It is top-level element which
contains at least script clause. This clause defines what shell commands are
executed in a job context [44, CI/CD, .gitlab-ci.yml Reference].

Summary of metrics discussed in subsequent sections is available as table
5.2.

5.2.1 Declaration of pipeline

Pipeline in GitLab is declared in YAML configuration file, .gitlab-ci.yml
which resides in git repository of a project, which pipeline builds.

Declaring pipeline is straightforward. Pipeline YAML configuration file is
created. In this file, stages are declared from jobs. Jobs declaration is also
present in same configuration file.

Git repository, in which pipeline declaration is, must be present on GitLab
server. This means that no additional credentials to access git repository are
required.

Other secured resources, such as credentials, must be defined as variables in
project settings. This means that credentials used to access secured resources
outside GitLab are available as an environmental variable to all processes
running in job.

These resources are bound to project, on which access rights can be man-
aged. Access rights can be also managed on groups. Therefore multitenancy
is possible.

5.2.2 Usage of containers

Usage of containers is supported in GitLab pipelines. Image can be specified
per whole pipeline as well as per job in pipeline. Specifying any arguments to
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Table 5.2: Summary of metrics for GitLab CI/CD

Metric Criteria GitLab CI/CD evaluation

Declaration of pipeline

Pipeline as a code Yes
User knowledge None

Declaration format YAML
Self serviceability Yes

Usage of containers
Basic Yes

Medium Yes
Advanced No

Access control Attribute-based access control No
Role-based access control Yes (Only predefined groups)

Integration

Authentication Yes
Authorization No

External git repository No
Docker Swarm No

Scalability Static horizontal Yes
Dynamic horizontal No

Extensibility

Options Inside pipeline No
Outside pipeline No

Tooling Yes

Means API No
Plugins No (only File hooks)

docker itself is not enabled. This means that volumes or flags to containers
itself such as privileged flag are impossible. Scripts are then executed in
container.

5.2.3 Access control

Permissions in GitLab CI/CD rely on roles user has in GitLab, four roles
are present in total; admin, maintainer, developer, guest/reporter [44, User,
Account, Permissions]. Admin role has access to all pipelines in scope of
whole GitLab instance. Maintainer can create, remove and change pipelines
and jobs, developer is able to only execute pipelines and remove job artifacts
and guest/reporter can only see commits and jobs.

5.2.4 Integration

GitLab can be configured to use OpenID Connect provider to retrieve iden-
tities. Assigning groups from identity provider token is not supported and
users must be invited to groups or request access to it. Therefore, external
authorization using OpenID Connect Identity provider is not supported.
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Community edition of GitLab CI/CD does not support creating pipelines
from external repositories, such as GitHub, Bitbucket or arbitrary git reposi-
tory [44, CI/CD, External repositories].

Swarm integration is also unavailable [45].

5.2.5 Resource requirements

To run GitLab server, at least 2 cores and 8GB of RAM are required [44,
Install, Requirements]. These requirements only cover master server which
serves mainly for scheduling jobs and serving front end of GitLab CI/CD.
These requirements are for instances for up to 100 users [44, Administrator,
Reference Architectures]

There are no specific requirements for GitLab Runner, which executes jobs
from pipelines.

5.2.6 Scalability

GitLab server is required to run at all times. Execution of pipelines in GitLab
is provided by GitLab Runner, which is compiled binary that executes jobs
in pipelines. This binary registers to GitLab server and retrieves jobs defi-
nitions which are then executed. This can be SSH command, shell, Docker,
Kubernetes and many others [46, Executors].

GitLab runners can be added during runtime of GitLab server. This means
that horizontal scalability of execution agents is provided by adding more
GitLab Runners.

GitLab master server can run on one host but its deployment can be
switched to distributed, where multiple services which form up GitLab run.
In this type of deployment, GitLab supports up to 50 000 users[44, Adminis-
trator, Reference Architectures]. This scaling is static and does not support
serverless execution model.

5.2.7 Extensibility

As containers can be used to execute specific jobs in GitLab CI/CD pipeline,
tools used inside pipelines can be extended (or switched) by using different
images of containers.

GitLab offers possibility to execute action on specific event called File
hooks, these events can be for example actions around project or user such
as creation, deletion, rename etc. Various other system hooks exist, they are
available at GitLab Docs [44, Administration, Configure, System hooks]. File
hook can be any executable file which consumes JSON from standard input.

Other than options mentioned above, there is no other way of extending
GitLab present except for editing source code itself.
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5.3 Tekton

Tekton is a framework for creating continuous integration and delivery pipelines.
It is licensed under Apache License 2.0. Pipelines in Tekton consist of multiple
tasks. Tasks are main building blocks and are comprised of steps as contain-
ers. Parameters are passed to steps but no additional execution is taken inside
containers in contrast to GitLab CI/CD, 5.2.2 or Jenkins, 5.1.3.

Pipelines and tasks are defined in advance, and runs itself are called
PipelineRun and TaskRun respectively.

It is deeply integrated with Kubernetes orchestration engine, therefore, a
lot of its aspects are delegated to Kubernetes. Tekton itself is possible thanks
to leveraging custom resource definitions which are provided by Kubernetes
to extend Kubernetes API[47].

Summary of metrics discussed in subsequent sections is available as table
5.3.

Table 5.3: Summary of metrics for Tekton

Metric Criteria Tekton evaluation

Declaration of pipeline

Pipeline as a code Yes
User knowledge Basic, Medium, Advanced

Declaration format YAML
Self serviceability Yes

Usage of containers
Basic Yes

Medium No
Advanced Yes

Access control Attribute-based access control Yes
Role-based access control Yes

Integration

Authentication Yes
Authorization Yes

External git repository Yes
Docker Swarm No

Scalability Static horizontal Yes
Dynamic horizontal Yes

Extensibility

Options Inside pipeline No
Outside pipeline No

Tooling Yes

Means API No
Plugins No

5.3.1 Declaration of pipeline

Pipeline is defined as an ordered set of Tasks. Its definition is saved as an
YAML file. Tasks definitions are located in additional YAML file. These files
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are then sent to Kubernetes via standard ways of creating resources in cluster.
User must be be acquainted to way Kubernetes resources are declared.
To use secured resources, Tekton offers two builtin types of authentication.

First is basic authentication which consists of username and password, and the
other one is SSH private key authentication. To use other types of credentials,
they first must be declared in Kubernetes and then mounted as a volume to
a container in Task declaration.

These resources are bound to namespaces in Kubernetes, on which access
rights can be managed. Therefore some form of multitenancy is possible.

5.3.2 Usage of containers

Tekton natively uses containers as its pipelines are executed in container or-
chestration engine. Raw arguments to container execution cannot be passed,
but security context can be changed to privileged, and also bind mounts are
possible.

5.3.3 Access control

Authentication and authorization is provided by Kubernetes. As in this the-
sis’ scope, Docker Swarm is an orchestration engine, it will not be described
in great detail. Briefly, user must be authenticated to call Kubernetes API
requests. There are multiple authentication methods, more about them in [48,
Accessing the API, Authenticating]. Authorization can have multiple modes
(RBAC, ABAC) which is tied to namespace in which pipelines are run. Details
can be studied at [48, Accessing the API, Authorization Overview].

5.3.4 Integration

To issue requests to run Tekton pipelines, Kubernetes authorization is re-
quired. Integration is possible by using client-go credential plugins. It can be
configured in such a way, that it prompts user to log in at identity provider.
From provider, it retrieves token and sends this token to Kubernetes which
will then submit token to identity provider. Identity provider then verifies
this token and returns user’s username and groups.

To execute Tekton pipelines with existing git repository, credentials to
remote repository are required. Otherwise, no other integration steps are
required.

Swarm is not supported as an orchestration engine, as Tekton’s deep inte-
gration with Kubernetes orchestrator.

5.3.5 Resource requirements

Because Tekton itself does not serve requests by itself, it does not have any
specific resource requirements. On the other hand, as Tekton is highly cou-
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pled with Kubernetes cluster, resource requirements for Kubernetes are worth
noticing.

Kubernetes cluster requires at least 2GB of RAM per machine and 2 CPUs
[49] only for its runtime, therefore more resources are required for an actual
execution of pipelines.

5.3.6 Scalability

Tekton itself is not permanently running and uses serverless execution model.
This means that it natively support scaling. Therefore only limitation is
scalability of Kubernetes cluster underneath.

5.3.7 Extensibility

Tekton steps consist of containers which are then executed in TaskRuns, there-
fore tooling modularity is provided by default.

Tekton currently does not support Pipeline extensibility [50], nor Task
extensibility [51].
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Evaluation of technologies

Jenkins is widespread standard [35], which laid foundations for pipeline as a
code [52]. It offers great deal of extensibility with plugins and its idea of using
shared libraries satisfy DRY (Do not Repeat Yourself) principles. As process
of building and releasing software in software house environment 1, is mostly
the same and projects have its predefined structure, shared libraries can serve
as a basis for custom framework which would implement individual steps from
pipeline such as build, test, release, etc. Unfortunately, Jenkins architecture
is not dynamically scalable and does not support serverless execution model.
Also access control is only supplied by plugins not built into core. Therefore,
to maintain this solution and operate it, is deemed inefficient.

GitLab is complex solution providing not only pipeline orchestration engine
but also git repositories, request management, docker registry and other. But
these features are unusable in software house environment 1, as other features
it provides are already present in this environment.. Also inability to use
external repositories proved GitLab as inapplicable for proposed solution.

Tekton is the youngest of the compared technologies and with its architec-
ture, it best supports containerization and scalability. Its scalability supports
serverless execution model and modular execution of containers allows to start
images, which might not have user shell available in containers environment.
Due to Tekton’s deep integration and reliance on Kubernetes, it does not allow
deployment to Docker Swarm.

Among all the technologies, Tekton best fits the requirements given in
chapter 4. Unfortunately, it is not currently possible to switch software house
environment container orchestration engine from Docker Swarm to Kuber-
netes.

Jenkins is considered as second best fit. It is already used in software
house environment, but as was stated before, its architecture does not enable
scalability and management of access control is unsustainable with growing
number of users.

Since Docker Swarm is more of a technology in decline [53], and Kubernetes
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on the rise [54], it can be expected that software house environment will
eventually move to Kubernetes. When this happens, Tekton will be the most
fitting technology.

Because aim of the thesis is to provide prototype of continuous integra-
tion and delivery pipeline, option of combining principles mentioned above is
investigated. Core idea is to use Jenkins’ extensibility with Tekton’s server-
less execution model which utilizes underlying container orchestration engine.
This is possible by using Jenkinsfile runner, which will be described further
in section 7.1 in conjunction with Jenkins shared libraries and capabilities of
Docker Swarm.

By using these principles, eventual switch from Docker Swarm to Kuber-
netes and Tekton can be relatively simple.
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Proposed prototype design

General idea of the design proposed in this chapter, is that Jenkins will not be
installed on server but will still serve as an pipeline execution engine. It will
execute pipeline, which is defined as a file in git repository. This means that
every time, request to execute arrives, container of Jenkins is started, which
then begins to perform tasks and steps defined in pipeline. Individual tasks
defined in pipeline are then executed as separate containers in Swarm cluster.
This allows flexibility as provided by Tekton with only difference that instead
of Kubernetes orchestration engine, Docker Swarm is used.

For a detailed description of the prototype, it is necessary to explain several
principles such as shared storage over which individual steps of pipeline oper-
ate and credentials used to access external secured resources, like git reposi-
tories.

7.1 Principles

7.1.1 Docker storage

By default all data written by docker containers is stored in writable layer of a
container. As was mentioned in section 3.3.1, if container is deleted, writable
layer is also deleted. This means that all data created by container is lost.
Also data cannot be shared between containers.

Docker has three options of persisting and sharing data across containers:
volumes, bind mounts and tmpfs mount. [55]

Volumes are a type of storage, where files are stored in Docker engine man-
aged area, which can be also described as installation directory. This directory
is, on Linux, usually located in path /var/lib/docker. These files should not be
modified by processes that are not related to docker. According to Docker, it
is preferred way of sharing files and persisting data across container restarts.

Bind mounts are files or directories, mounted directly from host filesystem
to container. It can be mounted from anywhere on the host. This can be useful
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for sharing configuration for programs such as .ssh directory or /etc/hosts file.

Temporary file system, or tmpfs for short, is functionality provided by
Linux kernel. It enables to store files in memory. This can be useful for data
which is not desired to be persisted either on host or within container, such
as credentials and such.

7.1.2 Docker secrets

Docker secret is a functionality of a Docker Swarm orchestration technology.
It enables to share data which is not meant to be transferred over network or
stored unencrypted in Dockerfile or source code repository. This data can be
passwords, SSH private keys, SSL certificates or any other file or data which
cannot be passed to container via environment variable.

This data is then mounted as tmpfs to target container. Secrets cannot be
used in standalone containers, but only with Docker Swarm.

7.1.3 Jenkins Pipeline

Jenkins pipelines can be written in scripted or declarative style, where both
types are based on Groovy engine as a foundation. Specific steps can be
used in scripted and declarative pipelines which share ”pipeline as a code”
principle, where pipeline is defined in VCS and every change is versioned. Main
difference is in syntax where scripted pipeline follows imperative programming
model and declarative pipeline declarative programming model.

Scripted pipeline is much more reminiscent of pure Groovy syntax with
variable definitions, control flow elements such as loops and conditions, ob-
jects declaration and many more. This provides great amount of flexibility
and extensibility, but as Groovy learning curve is not always desired, declara-
tive pipeline was created [36, chapter Pipeline]. Example of Jenkins scripted
pipeline can be seen in listing 7.1.
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Listing 7.1: Jenkins Scripted Pipeline
node {

def maven_version = "3" + "-alpine"
node("maven:${maven_version}") {

stage(’Example Build’) {
echo ’Hello Maven’
sh ’mvn --version’

}
}
for (def i = 0; i < 10; i++) {

def version = ""
if ( i % 2 ) version = "8-jre"
else version = "8-alpine"
node("openjdk:${version}") {

stage("Example Test ${i}") {
echo ’Hello, JDK’
sh ’java -version’

}
}

}
}

Declarative pipeline has simpler and easier to understand, but much
stricter syntax and pre-defined structure. It is much better suited for simpler
continuous delivery pipelines. Example of Jenkins declarative pipeline can be
seen in listing 7.2.

Listing 7.2: Jenkins Declarative Pipeline
pipeline {

agent none
stages {

stage(’Example Build’) {
agent { docker ’maven:3-alpine’ }
steps {

echo ’Hello, Maven’
sh ’mvn --version’

}
}

stage(’Example Test’) {
agent { docker ’openjdk:8-jre’ }
steps {

echo ’Hello, JDK’
sh ’java -version’

}
}

}
}
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7.1.4 Jenkins shared libraries

Another means of extending functionality of Jenkins pipelines, otherwise than
plugins, is by creating shared libraries. This can be especially useful when
patterns among pipelines emerge, as they are used for sharing its reusable
parts, or functionality, across projects in an organization.

As Jenkins pipelines are based on Groovy foundations, shared libraries are
also written in Groovy language. In fact, declarative pipeline model definition
is mostly written in Groovy in a manner similar to shared libraries [56].

Shared library is defined by its identifier, its link to VCS, default version
and optionally VCS credentials to access it. Identifier is then used in con-
junction with version in pipelines. Version can be anything what VCS can
understand, such as git commit hashes, tags or branches.

Specific directory structure for shared library is required by Jenkins, to
understand library and correctly load it. It can be described as follows:

root
src..................................Groovy source files

org
foo

Bar.groovy................for org.foo.Bar class
vars

foo.groovy . global variable ’foo’, available as a step in
pipeline
foo.txt........................help for ’foo’ variable

resources................................. resource files
org

foo
bar.json......static helper data for org.foo.Bar

Variables become available as pipeline steps under file name, specified
in vars directory. Only files with .groovy extension following camelCase
convention are loaded.

Functions defined in .groovy files are available in pipelines by dot-notation.
For example, if in file vars/log.groovy is a function def info(message), it
is accessed in pipeline as log.info "Hello World". Default function which
is executed on call is named call(...).

Libraries can be loaded explicitly at a start of a pipeline, statically by
@Library(’id@version’) notation or dynamically by library(...) step,
anywhere, where steps are valid.

Another way to load libraries is to load them implicitly. This can be useful
if it is desired to alter functionality of existing steps, or to pre-define version
of library, which will be used. Implicit loading of libraries is set up in Jenkins
configuration of a shared library, where identifier and VCS link is defined.

More about Jenkins shared libraries can be read at [36, chapter Pipeline,
section Extending with Shared Libraries].
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7.1.5 Jenkinsfile runner

Jenkinsfile runner is an experimental command line tool which packages Jenk-
ins to provide pipeline execution environment without the need of a master
server.

This means it can be used in executing Jenkins pipelines in a confined
ephemeral environment, such as containers, without need of exposing ports or
complex management of an always running master node. It can also be used
for assistance in editing Jenkinsfiles locally and run integration tests of shared
libraries.

Jenkinsfile runner utilizes only jenkins.war file, which is core of a Jenkins,
thus no web user interface is available. Therefore, plugin installation and
configuration is achieved by other means.

Plugin installation can be accomplished by manual installation of plugin
.hpi files, but this can be tedious as many plugins require additional plugins
as a dependency. To mitigate this problem many helper tools were created
such as install-plugin.sh, available in docker distribution of Jenkins [57]
or Plugin Installation Manager Tool, which goal is to replace other plugin
installation tools [58].

Configuration is achieved with help of plugins, specifically Configuration
as Code Plugin, which provides a way to serve a human-readable declarative
configuration for Jenkins. This is mainly used to declare shared libraries,
configuration for plugins and credentials available in pipelines.

With use of plugin installation tool and Configuration as a Code plugin it is
possible to prepare this application in a container image for easier distribution
and faster setup.

More documentation and information about Jenkinsfile runner can be
found at its source code repository [59].

7.1.6 Tekton tasks

As was mentioned in section 5.3, Tekton pipeline consists of Tasks. Task then
executes containers as individual steps.

Task runs on a Kubernetes pod. In short, pod is a group of containers
running together on one host as if they were on same machine. This means
that they share Linux namespaces and all have access to shared volumes and
services within pod are available at localhost hostname.

This enables to share workspace of steps which are tightly coupled to-
gether, such as unit tests, compilation and packaging. On the other hand,
separate tasks do not need to run on same underlying host and can be run
across whole cluster to evenly distribute load of a pipeline.
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7.2 Architecture

This section contains description of components used in architecture of a pro-
posed prototype, together with their roles. Next is described topology of
components and their interaction between each other in 7.2.2. Last but not
least, principles used in design are described in section 7.2.3.

7.2.1 Components

Core components and their role in overall architecture are described in this
section.

7.2.1.1 Task

Task is main building block of a pipeline. It is analogous to stage in Jenk-
ins pipeline, job in GitLab CI/CD or Task Tekton. Task defines multiple
steps which are fundamental in pipelines. Steps perform single action such as
checkout from source code, execution of a script etc.

Main difference between task and stage from Jenkins pipeline is that steps
in tasks are executed as containers on one host in Docker Swarm. It provides
separation of pipeline from an underlying infrastructure. Running on one host
is also advantageous as it provides shared workspace between individual steps
because local docker volumes cannot be shared across cluster and are bound
to one host.

7.2.1.2 Task executor

Task executor is an application running on a Swarm node. It is responsible for
execution of tasks. Input is a list of steps to run with additional information
such as volumes to mount, environment variables, and so on.

Steps cannot be direct docker binary commands to create containers, as
it would enable bind mount filesystem of an underlying host or add Linux
capabilities such as load and unload kernel modules, access device and many
more.

Therefore, only arguments to containers itself can be arbitrary and every-
thing else, such as volumes, environment variables etc. must be included in
additional structured information.

To execute steps, task executor requires docker daemon, by which contain-
ers are spawned. Therefore docker socket is mounted to task executor.

This is different than creating Docker-in-docker, where container run by
docker daemon spawns another docker daemon to execute containers in. To
enable this, container, which will run daemon must be started with privileged
flag, which effectively disables security measures [21].

Hence Docker-on-docker principle is used. This forwards docker socket,
used for control of a docker daemon, to container, which can then issue re-
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quest to Docker API on host it is running. As this container’s only input
is task specification with predetermined structure passed to container as a
environmental variable, attack surface on this exposure is narrow.

7.2.1.3 API server

API server handles compose files which define stacks running on Docker swarm.
These stacks can be tasks, pipelines itself or any arbitrary compose file pro-
vided.

Compose files were chosen for declaration of services as they are used to
declare Docker Stacks. They enable deployment of multiple services with ad-
ditional resources defined, such as volumes, secrets and many more. Docker
compose file format is not bound to Docker Swarm and can be used in lo-
cal developer environment. Additionally, compose files can be easily parsed
and converted to describe services in other container orchestrator, such as
Kubernetes [60].

Handling of compose files is required as Docker Swarm does not support
deploying stacks via API. Parsing compose files is also required as it might
contain bind to docker socket, or enable containers various kernel capabilities
such as mounting devices.

Also authorization whether user sending requests can execute pipeline in
specified namespace is done at API server. Claims to resources are provided
by Reverse proxy, described in 7.2.1.4.

7.2.1.4 Reverse proxy

Reverse proxy operates as a server which inspects requests incoming to API
server and authenticates them against OAuth 2.0 or Open ID Connect identity
provider.

Claims supplied in token provided by identity provider are forwarded to
API server as means to authorize incoming requests. These claims must
contain authorization privileges for user, who sent the request.

7.2.1.5 Jenkinsfile runner

Core of solution is Jenkinsfile Runner. It allows execution of Jenkins pipelines
in a container without running Jenkins master. With addition of plugins, it
is possible to preconfigure Jenkins in such a way that it has access to shared
libraries which are implicitly loaded.

Default Jenkinsfile which loads Jenkinsfile from repository is present. This
allows pipeline to do some default action, such as if project has file structure
according to predefined format, default pipeline is executed.

Request to execute pipeline with its definition is send to API server and
then pipeline is executed in Docker swarm.
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7.2.1.6 Jenkins Shared Library

Jenkins shared library serves as a main integrating component between Jenk-
insfile Runner and Docker Swarm. It implements new step for existing Jenkins
pipeline which allows to define tasks that are then executed in Docker Swarm.

7.2.2 Topology

Reverse proxy is the only input to whole solution. API server is tightly coupled
with Swarm manager as it forwards commands to it.

Jenkinsfile runner and Task executor run on Swarm workers as stacks
deployed to Swarm.

Task executor executes containers on Swarm worker outside the scope of
Docker Swarm orchestration.

This topology is described in figure 7.1.

Figure 7.1: Topology of proposed solution

7.2.2.1 Running pipelines

To execute pipeline, request to API server is made. This request contains
parameters for Jenkinsfile runner and declaration of pipeline. Reverse proxy
authenticates this request and API server authorizes it. Request is then for-
warded to Swarm manager. Swarm manager deploys Jenkinsfile runner to
certain swarm node.

Jenkinsfile runner loads shared library and pipeline definition. Pipeline
definition contains tasks declaration and order, in which they are executed.
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Jenkinsfile runner parses task declaration thanks to Shared library and
sends requests to Reverse proxy to execute Task executor with definition of
task. Task executor parses this definition and starts containers accordingly.

While task is running, Jenkinsfile runner asks for a status of task until
task is completed or failed.

When Task executor finishes, Jenkinsfile runner asks API server for a
status and logs from task executor and sends a request to delete Task executor.
Jenkinsfile runner executes all tasks in same manner until pipeline is finished.

To help illustrate this flow, figure 7.2 is available. In this figure, flow of
Task executor deployment is not described as it is analogous to deployment
of Jenkinsfile runner.

Figure 7.2: Execution of pipeline task

7.2.3 Architecture principles

7.2.3.1 Credentials

Pipelines themselves often need to access some resources. These resources such
as software repository, to upload docker image; zip file for CDN or package
such as npm or java archive. Also pipeline might need to access another git
repository or any arbitrary resource.

Access to credentials used in pipelines is ensured by leveraging docker
secrets. User can create credentials bound to project by calling API server
and use them in pipeline via Jenkinsfile declaration.

To transfer credentials to tasks runtime, docker secret is assigned to Task
executor stack. Credential is accessible by Task executor via temporary file
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system mounted to its container. Task executor also has additional temporary
file system mounted to container. This container is used to share secrets
among Task executor and its steps, which are containers executed by it. As
this volume is temporary, contents of it exist only during Task executor ’s
runtime, therefore on completion or failure of a task, credentials are removed.

This approach is better than creating standard docker volume as it would
leave credentials accessible as a volume even after Task executor finishes its
execution. Also it is much more fitter to use than environmental variables as
many tools and programs dump environment variables on failed execution.

Whole concept is described in figure 7.3.

Figure 7.3: Mounting secrets to non-service containers

7.2.3.2 Access control

Authentication and authorization is linked to claims from OAuth2.0 JSON
web token(JWT) [61]. It is an internet standard that defines a way to securely
transmit data among parties[62]. JSON web tokens are signed by asymmetric
key. It contains header, payload and signature encoded in base64 encoding
separated by dots(’.’). In this usage, header contains algorithm used to sign
this token, payload contains claims issued by Identity provider such as subject,
to whom token was issued, who issued the token, time of issue, expiration time,
etc.

In this case, payload also contains claim to resources to which subject has
access rights. This token is provided by Identity Provider. It is authenticated
by Reverse proxy and request for resource is forwarded to API server with
claims from JWT in HTTP headers.
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API server authorizes request for resource by parsing it and checking
claims against resource. If successful, request passes and in case of failure,
request is denied.

7.2.3.3 Self-serviceability

Self-serviceability is based on leveraging docker secrets and Pipeline’s server-
less execution with access rights derived from claims provided in access token
from Identity provider.

To make changes to pipeline, such as updating building tools, only change
required is to change specification of a pipeline as its modular design fully
leverages container and their interchangeability.

Also to create secrets which serve as credentials to access external re-
sources user is required to have access rights to API server. This means that
credentials does not need to be declared by system administrator.

7.2.3.4 Multitenancy

To separate tenants, claims to resources (or namespaces) must be present in
access token. Resources separation and authorization to them must be done
on API server as Docker swarm itself does not distinguish multiple tenants in
cluster. API server ensures that only user which has corresponding names-
paces present in claims has access to requested resources.
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Prototype implementation

8.1 Pipeline

Pipeline execution engine, Jenkinsfile runner, is named Pipeline in implemen-
tation to distinguish between the two, as implementation used in this solution
has additional plugins installed, static but parametrized configuration and
predefined Jenkinsfile.

8.1.1 Plugins

Workflow aggregator is a collection of plugins implementing Jenkins pipeline.
It provides dependencies for individual plugin components of Pipeline imple-
mentation in Jenkins.

Configuration as Code plugin is used by Jenkins to load configuration file,
which declares basic credentials necessary for proper functionality.

Also additional plugins required as dependency by plugins mentioned above
are installed.

8.1.2 Configuration

Configuration provided to Configuration as a Code plugin contains library
definition and its credentials declaration.

Definition of credentials itself is done via API server with help of Docker
secrets. Reference to defined credentials is then passed to Pipeline as an
environment variable.

Configuration itself is written in YAML data-serialization language as re-
quired by Configuration as a Code plugin.

8.1.3 Docker image

Docker image is created from Pipeline with all plugins installed. This im-
age is based on jenkins4eval/jenkinsfile-runner, which is base image image of
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Jenkinsfile Runner [63]. Additional plugins are installed using Plugin Instal-
lation Manager Tool available from github.com [64]. Also, default Jenkinsfile
is present in image, which retrieves git repository from which pipeline is run
and loads its Jenkinsfile.

8.1.4 Compose file

Compose file to execute pipeline is provided. It defines environment variables
used in pipeline such as API server URL, namespace to which tasks are de-
ployed, username by which tasks are deployed and URL, where this user can
retrieve authorization token.

Restart policy is also set to none as other policies would result in indefinite
execution of a pipeline.

8.2 Jenkins shared library

Shared library is accessible by Pipeline as a git repository.
Shared library itself is written in Groovy as one class. It provides one step,

which can be written in Jenkinsfile. This step can be used in Declarative or
Scripted pipeline.

This step contains definition and declaration of task’s steps and its meta-
data. Steps are docker images and arguments that are passed to its execution.
Its metadata can be workspaces, environment variables, credentials or working
directory, which are all shared among containers.

Class, this library provides, requests API server to deploy task executor
stack with declaration of task. Then it waits for completion of its execution,
retrieves execution logs and requests API server to delete this stack.

8.3 Task executor

Task executor is implemented as Node.js application, which prepares run com-
mands for docker binary, according to metadata it retrieves. Then it executes
them in given order.

Declaration of task is retrieved from environmental variable which is then
parsed as a JSON.

To prevent users from injecting malicious code to steps arguments using
single(’) or double(”) quotes or semicolons(;), execution is not done through
shell but arguments are passed directly to docker binary.

8.3.1 Docker image

Docker image with built application is created. This image is based on node
image which has pre-installed binaries for execution of Node.js.
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8.4. API server

Also docker binary is additionally installed as it is required for spawning
docker containers.

8.3.2 Compose file

Compose file is also created for Task executor as it is required by API server.
It has mount to docker socket on underlying host to ensure that docker

containers can be executed. Temporary file system volume is declared for
secrets to be stored in and environment variables are passed to it.

Also restart policy must be set to none same as in Pipeline, otherwise it
would lead to endless execution of task.

8.4 API server

API server is written in Node.js technology using Express web framework
[65]. It provides API for interaction with Docker Swarm. Most of commands
executed on back end are executed by docker binary. Binary provides interface
for docker stacks.

Before calling docker binary, compose file is parsed by API server to ensure
services use only resources, which are accessible by user. These claims are
provided as headers by reverse proxy. If header is appended by _trusted
suffix, validation is skipped.

8.4.1 API

API is designed as REST based. This means that communication is based
on HTTP, is stateless and resources are part of HTTP paths. As this is
proof of concept, it does not fully satisfy CRUD (create, read, update, delete)
operations.

Every path starts with /:namespace identifier, which describes namespace
or a project, for which the requests are intended.

Following identifier is a type of resource, which is requested. It can be one
of /stack or /secret. Overview of paths is described in table 8.1.

8.4.2 Docker image

This image is almost identical to Task executor image, with only difference
are dependencies and source code of an API server.

8.4.3 Compose file

Compose file of API server and Reverse proxy is also available as means of
convenient installation on Docker Swarm. Services are setup in a way to run
on every Docker swarm manager as API Server communicates with it.
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8. Prototype implementation

Table 8.1: Overview of API Server’s API
Method Path Data Description

GET /:ns/secret No body.
Returns secrets asso-
ciated with names-
pace :ns.

POST /:ns/secret/create Name, base64
encoded secret.

Creates secret asso-
ciated to namespace
:ns.

GET /:ns/stack No body.
Returns stacks associ-
ated with namespace
:ns.

POST /:ns/stack
Name, compose
file, parameters
for compose file.

Creates stack asso-
ciated to namespace
:ns.

DELETE /:ns/stack/:stId No body. Deletes stack identi-
fied by :stId

GET /:ns/stack/:stId/services No body.
Returns services as-
sociated with stack
identified by :stId

GET /:ns/stack/:stId/services/:serviceId/status No body.

Returns service status
identified by :servi-
ceId associated with
stack identified by
:stId

GET /:ns/stack/:stId/services/:serviceId/logs No body.

Returns service logs
identified by :servi-
ceId associated with
stack identified by
:sId

8.5 Apache Reverse Proxy

Reverse proxy is implemented using Apache HTTP server. Requests are au-
thenticated using mod auth openidc, where Apache validates JWT signature
on URL provided in configuration file. Configuration parameters such as API
Server ’s host and port, and metadata of Identity provider are passed as envi-
ronment variables.

8.5.1 Docker image

Docker image is also created for reverse proxy. This image has installed
mod auth openidc authorization module with its dependencies and proxy con-
figuration.
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Chapter 9
Testing

9.1 Testing environment

This chapter describes components used in testing proposed solution and its
configuration.

9.1.1 Docker Swarm

Docker swarm used in testing consists of one Swarm manager and two Swarm
worker nodes. No additional configuration is required as everything else is
taken care of by API server.

9.1.2 Keycloak

As an Identity provider, Keycloak [66] is used. One testing realm is present.
This realm has an OpenID endpoint. This realm has also accessible OAuth2.0
token endpoint, where JWTs are issued.

Users created in Keycloak can belong to groups. These groups represent
namespaces, or projects, for which user has access rights. To achieve this,
additional mapping in client scope is required. This mapping takes users
groups and adds them to namespaces claim when issuing JWT.

Two clients are created. Clients in Keycloak are entities which request
Keycloak to authenticate user. Usually clients are applications and services.
Client for Apache reverse proxy is created as well as client for retrieving tokens
which are then sent along requests to start pipeline.

9.1.3 Shared library

Shared library resides in private git repository. This repository is accessible
by private SSH key, which is defined in Docker Swarm using API server.
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9. Testing

9.1.4 Docker Registry

Private docker registry using Nexus repository manager [67] was created for
testing this solution. In this repository, docker images of API server, Apache
reverse proxy, Pipeline and Task executor reside.

9.2 Demonstration project

Basic project is created to demonstrate capabilites of solution as well as to test
it. This project contains simple Node.js script which sums up values included
in input file. It has input file and output path mandatory arguments; and
optional argument for time measurement.

9.2.1 Git repository

Project resides in private git repository accessible by private SSH key.
Repository contains two directories, src and test. Directory src contains

simple function and test directory contains unit test which is executed during
build. Repository also contains simple Dockerfile which builds docker image
used in test.

It also contains two Jenkinsfiles, written in both, Declarative and Scripted
syntax.

9.2.2 Jenkinsfiles

Jenkinsfile includes three tasks. One task is building docker image from project
and other two are parallel test tasks.

Build task consists of five steps. First retrieves git repository which is
meant as a workspace for task. Next, dependencies are installed and unit
tests are run. Last step is building a docker image. This step is provided
by kaniko [68], which is used to build docker images without requiring docker
daemon.

Other tasks are purely for demonstration purposes. They are run in par-
allel and consist of running docker image, which was created in previous step
over various data.
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Chapter 10
Evaluation

This section focuses on evaluation of metrics, defined in chapter 4.8, regarding
solution proposed in chapter 7.

10.1 Pipeline definition

Pipeline is defined as a Jenkinsfile. This file can be placed in arbitrary git
repository as checkout must be performed manually in task. This enables to
define multiple pipelines in one git repository and therefore, pipelines does
not have to be bound to one project.

User is required to have basic knowledge of Groovy syntax or Jenkins
Declarative pipeline. Basic knowledge of containers is required as only im-
ages and its parameters are provided by users. But to extend pipeline steps,
medium knowledge is required as steps consist of docker images.

To declare resources used by pipeline, such as SSH private key for retrieving
source code or uploading images to docker registry, user must create this
resource by sending request to API server. This communication must be
done via HTTPS and therefore be encrypted.

As every resource such as pipeline or credentials is created in a names-
pace, and valid token is required to access this resource, basic multitenancy
is provided. Resource limiting is another factor of multitenancy but is not
implemented in prototype.

10.2 Usage of containers

Proposed solution natively uses containers as execution steps of a pipeline.
Containers cannot be set up in arbitrary way. This means that user cannot
specify raw arguments to docker. Also it does not provide possibilities to
execute commands inside containers. Therefore only basic usage of containers
is available.
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10.3 Access control

User must authenticate against Identity Provider, which will provide token to
user. This token is then sent with every request to API server, which is sent
to Identity provider by Reverse Proxy to be verified. After this verification,
user is authenticated. User’s request is then sent to API server along with
claims extracted from token.

Namespaces claim must be present to authorize request by API server.
API server checks if every request to run pipeline, or task, use only resources
(volumes, secrets) from specified namespace. Also it checks if pipeline declara-
tion does not contain bind mounts or other added capabilities such as load and
unload kernel modules, access device or other. Namespaces claims which are
appended by _trusted suffix are not checked by API server for bind mounts
as that would leave Task executor unusable.

By using namespace claims, proposed solution provides role-based access
control.

10.4 Integration

Authentication and authorization claims are supplied only by Identity Provider
as API server does not handle users. Therefore, it is fully integrated with
OAuth2.0 identity provider.

Any arbitrary git repository can be used for pipeline definition. As cre-
dentials used for accessing it are created by users themselves.

Solution runs natively on Docker Swarm and leverages its scheduling and
secrets.

10.5 Resource requirements

To appropriately estimate resource requirements, several measurements were
made. These measurements can be found in enclosed media. API server takes
from 28 MiB on idle to around 40 MiB spikes while running 10 simultaneous
pipelines. Apache reverse proxy requires around 40 MiB on average on 10
simultaneous pipeline runs. Pipeline requires around 1GiB of memory for
execution. Task executor allocates around 33 MiB of memory for execution.
As it executes docker containers, this value stays approximately the same.

10.6 Scalability

Pipeline executes in serverless execution model, which means that it is running
only when request to run a pipeline is made. It is always bound to execution
of one pipeline. Thus, it is scalable by its nature and supports dynamic
horizontal scaling.
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10.7. Extensibility

API server requires Docker Swarm manager to forward its requests to
and is bound to number of managers present in cluster. Docker recommends
running maximum of seven managers in one cluster [27].

10.7 Extensibility

Extensibility of this solution is based on task principle described in 7.2.1.1. It
executes containers in specified order and this provides great deal of flexibility
as tooling does not need to be installed on host executing the task. Docker
images can be created according to needs for specific project.

Another means of extensibility are Jenkins Libraries. As core of this
solution is Jenkinsfile Runner with custom library, it enables to include an-
other libraries as well. Such library can greatly extend functionality of this
solution as is demonstrated in library provided in this solution.

Also Jenkins plugins can be used to extend functionality of this solution.
Numerous plugins are available for Jenkins [37]. Plugins in conjunction with
Jenkins Libraries enable extending proposed solution inside and outside of
pipeline execution.

10.8 Summary

Summarized metrics are available in table 10.1.
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10. Evaluation

Table 10.1: Summary of metrics for proposed solution

Metric Criteria Proposed solution evaluation

Declaration of pipeline

Pipeline as a code Yes
User knowledge Basic

Declaration format Jenkinsfile, Groovy script
Self serviceability Yes

Usage of containers
Basic Yes

Medium No
Advanced No

Access control Attribute-based access control No
Role-based access control Yes

Integration

Authentication Yes
Authorization Yes

External git repository Yes
Docker Swarm Yes

Scalability Static horizontal Yes
Dynamic horizontal Yes

Extensibility

Options Inside pipeline Yes
Outside pipeline Yes

Tooling Yes

Means API Yes
Plugins Yes
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Conclusion

Objective of this thesis was to analyze requirements, prepare metrics and to
design and implement proof-of-concept of a solution for continuous integration
and delivery pipeline execution. All of those objectives are met.

Requirements and metrics are prepared in chapter 4. For design of the
proposed solution, technologies such as Jenkins, GitLab CI/CD and Tekton
were evaluated in research chapter 5. Research has shown that none of these
technologies alone are able to cover all requirements required for the target
solution. From architecture point of view, the Tekton technology was the
most feasible option but because it cannot be used on the Docker Swarm
environment, it could not be used directly for proposed solution.

An alternative solution was designed in chapter 7, based on the execution
principles of Tekton and technology provided by Jenkins. This proposal was
successfully verified on proof-of-concept implementation 8.

This solution enables serverless execution model which is inherently hori-
zontally scalable. Individual parts of pipeline consist of containers, which pro-
vide great modularity. That means that any part of pipeline can be changed
by switching containers responsible for its execution. Also direct leverage of
containers enables usage of containers which might not have user shell avail-
able. This is mostly advantageous for minimalist containers which do not
come prepackaged with additional binaries.

Access control is secured by direct integration with OAuth2.0 Identity
provider, where every request must be authenticated by it and then is autho-
rized by proposed prototype. Also basic form of multitenancy is provided by
claims from OAuth2.0 Identity provider, which enable sharing of resources by
multiple organizational units.

Aside from solution proposed, content of this thesis can also serve as a
research of technologies for some, who might have similar requirements for
an execution engine for CI/CD pipelines. API server (from chapter Imple-
mentation 8.4) can be used as basis for solution for deploying applications to
Docker Swarm with access control provided by Identity provider and without
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Conclusion

the need of giving access to underlying infrastructure. Also Task executor
serves as an example of parsed execution of set of docker containers without
directly providing access to docker daemon.

Use of compose files enables straightforward deployment of services inside
arbitrary Docker Swarm without any installation requirements to cluster. Also
compose files enable simple migration to other container orchestration engines
such as Kubernetes in a future.
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Appendix A
Acronyms

ABAC Attribute-based access control

API Application programming interface

CI Continuous integration

CD Continuous delivery

CDN Content delivery network

CLI Command line interface

CRUD Create, read, update, delete

CPU Central processing unit

DSL Domain-specific language

DRY Do not Repeat Yourself

GPU Graphical processing unit

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

JSON JavaScript object notation

JWT JSON Web Token

OCI Open container initiative

OIDC OpenID Connect

OS Operating system

RAM Random Access Memory
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A. Acronyms

RBAC Role-based access control

REST Representational state transfer

SSH Secure Shell

SSL Secure Socket Layer

TLS Transport Layer Security

URL Uniform Resource Locator

URI Uniform Resource Identifier

VCS Version control system

XML Extensible markup language

YAML YAML Ain’t Markup Language
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Appendix B
Contents of enclosed media

readme.txt.....................the file with media contents description
src.......................................the directory of source codes

practical...................................practical part of thesis
main

api server ............. implementation sources of API Server
reverse proxy.......implementation sources of Reverse Proxy
pipeline.................. implementation sources of Pipeline
task executor.......implementation sources of Task Executor

task library ............ implementation sources of Task Library
demonstration project.............demonstration git repository
measurements................measurements of solutions resources

thesis..............the directory of LATEX source codes of the thesis
text..........................................the thesis text directory

DP Le Henrich 2020.pdf..............the thesis text in PDF format
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