
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague January 21, 2020

ASSIGNMENT OF MASTER’S THESIS
 Title: Implementation of a generalized version of a system for discriminant chronicles mining

 Student: Bc. Radek Buša

 Supervisor: prof. Ing. RNDr. Martin Holeňa, CSc.

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2020/21

Instructions

1. Get thoroughly acquainted with discriminant chronicles mining as described in the paper Dauxais et al.,
2017, provided by the supervisor.
2. Get familiar with the system for discriminant chronicles mining implemented by the authors of the
provided paper.
3. Analyze which changes in the system will be needed to generalize discriminant chronicles mining from
integer scalar inputs to real-valued vector inputs.
4. Design an extension of the original system for discriminant chronicles mining, incorporating
the proposed generalization.
5. Implement the designed system.
6. Propose and perform suitable testing methods for the implemented system.
7. Apply your implementation to real-valued vector input data provided by the supervisor.

References

Will be provided by the supervisor.





Master’s thesis

Implementation of a generalized version
of a system for discriminant chronicles
mining

Bc. Radek Buša
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Abstrakt

Tato práce se věnuje úpravě existuj́ıćıho systému pro vytěžováńı odlǐsných
pr̊uběh̊u událost́ı z dat (discriminant chronicles mining) tak, aby byl scho-
pen přij́ımat v́ıcedimenzionálńı vstupńı data. Upravený systém bude následně
použit na reálná data, která se týkaj́ı r̊ustu monokrystal̊u.

Kĺıčová slova vytěžováńı znalost́ı z dat, vytěžováńı vzor̊u z dat, vytěžováńı
odlǐsných pr̊uběh̊u událost́ı z dat, vytěžováńı pravidel z dat, automatizované
testováńı software, refaktorováńı, Python, C++

Abstract

This thesis is dedicated to modifying an existing system for discriminant
chronicles mining, resulting in a system for discriminant chronicles mining
capable of handling multi-dimensional input data. The modified system will
be applied to real-world data concerning crystal growth.

Keywords data mining, pattern mining, discriminant chronicles mining,
rules mining, automated software testing, refactoring, Python, C++
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Introduction

State-of-the-art

Discriminant chronicles mining is a field of data mining which helps to gain
insight into temporal data by mining temporal patterns called chronicles which
are considered significant in the context of the input dataset.

Currently implemented solutions for performing such type of data mining
task are, however, limited in terms of accepted input data.

Motivation

I chose this topic because mining discriminant chronicles is at the time of writ-
ing this thesis in its outset and extending the possibilities of the existing sys-
tem for discriminant chronicles mining might help this field of pattern mining
become more prominent among other methods for pattern mining.

Thesis Goals and Result

The goals of this thesis are stated in the following paragraphs:
To introduce the reader to the theory of discriminant chronicles, discrim-

inant chronicles mining and algorithms for discriminant chronicles mining.
To review a system implementing an algorithm for discriminant chronicles

mining and extend it in order to accept multi-dimensional input data and mine
discriminant chronicles containing multi-dimensional constraints.

To propose a suitable testing methodology and perform testing following
this methodology for ensuring the system extension works properly.

To apply the modified system to multi-dimensional input data concerning
crystal growth and interpret the resulting discriminant chronicles containing
multi-dimensional constraints.
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Chapter 1
Problem Faced

This chapter will introduce the reader to the problem of discriminant temporal
pattern mining.

Section 1.1 will present the field of temporal pattern mining – its charac-
teristics, practical usage and basic temporal pattern metrics.

Section 1.2 will introduce theoretical foundations important for grasping
algorithmic concepts of an algorithm introduced in the subsequent section.

Section 1.3 will introduce the aforementioned algorithm for mining dis-
criminant patterns proposed in [1] and describes its conceptual basis.

1.1 State-of-the-art

Temporal pattern mining is a research field of data science that studies algo-
rithms used for extracting interesting patterns from temporal data and finds
its usage in various fields of human research – medical data [2], sign language
research [3], human behavior schemata in computer systems [3] and many
more. [1]

Temporal pattern mining methods are discriminated by the types of pat-
terns they extract:

• Sequential patterns are patterns that take order of the events into ac-
count,

• Temporal rules and Chronicles are patterns that are based on inter-event
durations,

• Time interval patterns are patterns that bear inter-event durations
and timestamps. [1]
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1. Problem Faced

According to [1], not all temporal patterns obtained using temporal pat-
tern mining methods might be suited well for solving the problems they are
supposed to solve. Therefore, temporal pattern discriminancy is an important
qualitative property of temporal patterns.

Assume a dataset consisting of temporal data split into two disjoint parts.
Discriminant temporal patterns are temporal patterns that occur frequently
for the first part of temporal data (usually called positive temporal data) but
are not frequently present in the second part of temporal data (usually called
negative temporal data) [1].

1.2 Theoretical Foundations

Yann Dauxais et al. in their paper Discriminant chronicles mining: Applica-
tion to care pathways analytics [1] thoroughly sum up theoretical introduction
to the topic:

Assume that E is a set of event types totally ordered by <E, T ⊆ R
is a temporal domain and L = {+,−} is a label set.

An event is a couple (e, t) where e ∈ E and t ∈ T.
A sequence is a tuple 〈SID, 〈(e1, t1), (e2, t2), . . . , (en, tn)〉, L〉 where:

• SID is a sequence index,

• L ∈ L is a sequence label,

• 〈(e1, t1), (e2, t2), . . . , (en, tn)〉 is a finite sequence of events ordered by ≺
defined as ∀i, j ∈ n̂ : (ei, ti) ≺ (ej , tj) ⇐⇒ ti < tj ∨ (ti = tj ∧ ei <E ej)
where < denotes a traditional less-than relation between two elements
of R.

A temporal constraint is a tuple 〈e1, e2, t
−, t+〉, also denoted as e1[t−, t+]e2

where:

• e1, e2 ∈ E and t−, t+ ∈ T and t− ≤ t+ where ≤ denotes a traditional
less-than or equal to relation between two elements of R.

A temporal constraint e1[t−, t+]e2 is said satisfied by a couple of events
((e, t), (e′, t′)) if and only if e = e1 ∧ e′ = e2 ∧ t′ − t ∈ 〈t−, t+〉1.

A chronicle is a couple (E , T ) where:

• E = {{e1, e2, . . . , en}}2, ei ∈ E, i ∈ n̂ is an ordered multiset of event types
where ∀i, j : 1 ≤ i < j ≤ n, ei ≤E ej ,

• T = {e1[t−, t+]e2|e1, e2 ∈ E , e1 ≤E e2} is a temporal constraint set.
1〈a, b〉 represents a closed interval from a to b.
2{{e1, e2, . . . , en}} represents a multiset.
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1.2. Theoretical Foundations

1.2.1 Chronicle Occurrences

Assume that s is a sequence of n events and C = (E = {{e′1, e′2, . . . , e′m}}, T ),
m ∈ N is a chronicle.

An occurrence of chronicle C in sequence s = 〈(e1, t1), (e2, t2), . . . , (en, tn)〉
is a subsequence s̃ = 〈(ef(1), tf(1)), (ef(2), tf(2)), . . . , (ef(m), tf(m))〉, such that:

• f : m̂ 7−→ n̂ is an injective function,

• ∀i : e′i = ef(i),

• ∀i, j : tf(j) − tf(i) ∈ 〈a, b〉 where e′i[a, b]e′j ∈ T .

Chronicle C occurs in sequence s, C ∈ s if and only if there exists at least
one occurrence of C in s.

The support of a chronicle C in a sequence set S, defined as supp(C,S) =
|{s ∈ S|C ∈ s}|, is the number of sequences of S in which C occurs.

Given minimal support threshold denoted as σmin ∈ N1, chronicle C is fre-
quent if and only if supp(C,S) ≥ σmin.

Let S be a sequence set, l ∈ L a label and SID an arbitrary sequence
index. Sequence set label L(S) is defined for |S| > 0 as follows: L(S) = l ⇐⇒
∀s ∈ S, ei ∈ E, ti ∈ T, i ∈ n̂ : s = 〈SID, 〈(e1, t1), (e2, t2), . . . , (en, tn)〉, l〉.

1.2.2 Discriminant Chronicles

Assume that S− and S+ are two sequence sets fulfilling S+ ∪ S− = S ∧ S+ ∩
S− = ∅, σmin ∈ N minimal support threshold and gmin ∈ 〈1,∞) minimal
growth threshold.

Chronicle C is discriminant for sequence set S+ with respect to sequence
set S− if and only if supp(C,S+) ≥ σmin ∧ supp(C,S+) ≥ gmin · supp(C,S−).

Chronicle C is discriminant for sequence set S− with respect to sequence
set S+ if and only if supp(C,S−) ≥ σmin ∧ supp(C,S−) ≥ gmin · supp(C,S+).

Growth rate denoted as g(C,S) is defined as follows:

g(C,S) =
{ supp(C,S+)

supp(C,S−) for supp(C,S−) > 0
+∞ otherwise.

1N = {1, 2, 3, . . .}.
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1.3 Discriminant Chronicles Mining

DCM (Discriminant Chronicles Mining) is a data-mining task yielding a set
of chronicles discriminant for S+ with respect to S− with the following inputs
[1]:

• S−, S+ sequence sets where L(S−) = − and L(S+) = + respectively,

• σmin minimal support threshold,

• gmin minimal growth threshold.

The σmin minimal support threshold parameter serves for pruning unfre-
quent chronicles which are considered insignificant – discriminant chronicles
with the same event multiset and similar temporal constraints are, according
to [1, p. 5], considered redundant and thus insignificant for the result.

1.3.1 DCM Algorithm

The DCM algorithm is an algorithm for discriminant chronicles mining proposed
by Yann Dauxais et al. in [1, p. 5], mining an incomplete set of discriminant
chronicles considered by [1] as meaningful for S+ ⊂ S, determined by user-
supplied argument values σmin and gmin. The pseudocode of the algorithm
proposed in [1] is portrayed in Listing 1.1.

DCM(pos, neg, fmin, gmin) {
M := extractMultiSet(pos, fmin).
C := emptySet().

for (m of M) {
if (supp(pos, {m,tinf}) > (gmin * supp(neg, {m,tinf}))) {

C.add({m,tinf}). // adds a discriminant chronicle
// without temporal constraints

}
else {

for (t of extractDTC(pos, neg, m, fmin, gmin)) {
C.add({m,t}). // adds a discriminant chronicle

// with temporal constraints
}

}
}

return C.
}

Listing 1.1: DCM pseudocode

The meaning of symbols in the DCM pseudocode depicted in Listing 1.1
is as follows:
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1.3. Discriminant Chronicles Mining

The pos parameter represents S+ – sequence set containing sequences with
positive label (i.e. where L(S+) = +),

The neg parameter represents S− – sequence set containing sequences with
negative label (i.e. where L(S−) = −),

The fmin parameter represents σmin – minimal support threshold,

The gmin parameter represents gmin – minimal growth threshold,

The tinf constant represents T∞, i.e. a set of temporal constraints with all
bounds equal to ∞,

The extractMultiSet(...) function extracts a set of frequent multisets
of event types for S+, given σmin, further explained in Section 1.3.1.1,

The extractDTC(...) function elaborated in Section 1.3.1.2 extracts dis-
criminant temporal constraints from given frequent multiset and se-
quence sets, given σmin and gmin,

The M data structure represents a set of frequent multisets,

The C data structure represents a set of discriminant chronicles.

The branching statement in Listing 1.1 containing the compound condition
supp(pos, {m,tinf}) > (gmin * supp(neg, {m,tinf})) is used to check
whether given frequent multiset without further specific temporal constraints
is discriminant (a chronicle (E , T∞) is equivalent to E in terms of temporal
relations). If the given condition is true, no discriminant temporal constraints
are mined using the extractDTC(...) function because it would only yield
specialized cases of (E , T∞) which are considered redundant [1].

1.3.1.1 Frequent Multiset Extraction

The extractMultiSet(...) function extracts a set of frequent multisets from
a given sequence set and user-supplied minimal support threshold (σmin).

It applies a regular frequent itemset mining algorithm where an event
type a ∈ E occurring n times in a sequence is encoded by n items Ia1 , Ia2 , . . . , Ian.
An intermediate frequent itemset of size m denoted as (Iek

ik
)1≤k≤m is extracted

from the supplied sequence set and is further transformed into the resulting
multiset. [1]

The last phase of the algorithm incorporates converting each frequent
itemset (Iek

ik
)1≤k≤m to a multiset containing an event ek exactly ik times,

1 ≤ k ≤ m, while ignoring the itemsets containing two items Iek
ik

and Iel
il

where ek = el and ik 6= il – such itemsets are considered redundant. [1]
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1.3.1.2 Discriminant Temporal Constraints Mining

The extractDTC(...) function is used to mine discriminant temporal con-
straints from given frequent multiset E = {{a1, a2, . . . , an}}, sequence sets S+

and S−, S = S+ ∪ S−, S+ ∩ S− = ∅ and with user-defined parameters σmin
and gmin.

Assume that ei and ej are events. Aei→ej ∈ T represents an inter-event
duration between ei and ej .

Let E ∈ M be a frequent event multiset of size m, D a relational dataset,
EID an arbitrary example index, SID an arbitrary sequence index and l ∈ L
a sequence label. For each occurrence of E in S, a row also called an exam-
ple of form 〈EID, SID, (Aei→ej )1≤i,j≤m,ei<Eej , l〉 is added into the relational
dataset D [1]. An example of a relational dataset is illustrated in Table 1.1.
Note that the EID values are unique within the relational dataset, whereas
the SID values do not need to be unique.

EID SID AA→B AB→C AA→C Label
1 1 1 −4 6 +
2 1 9 5 3 +
3 2 1 4 3 +
4 3 −3 8 0 −

Table 1.1: Relational dataset example

After populating the relational dataset D, a numerical rule learning algo-
rithm will induce numerical rules while taking minimal growth threshold gmin
into account [1].

Each such induced rule is an implication, containing conjunctions of form
Aei→ej ≥ x∧Aei→ej ≤ y where x, y ∈ T and ei, ej ∈ E in its premise and a la-
bel l ∈ L in its conclusion [1]. The x and y temporal values are called rule
values and the symbols Aei→ej representing durations between specified events
in a rule are called rule significands.

Such rules of form Aei→ej ≥ x∧Aei→ej ≤ y are transformed into temporal
constraints of form 〈ei, ej , x, y〉, i.e. ei[x, y]ej , which are added into the tem-
poral constraint set of the resulting discriminant chronicle [1].

1.3.2 DCM Algorithm Implementation

Based on the DCM algorithm proposed in Section 1.3.1, the authors of [1] im-
plemented a proof-of-concept tool for mining discriminant chronicles. It uti-
lizes the RIPPERk algorithm proposed in [4] for inducing numerical rules
as explained in Section 1.3.1.2. The original source code of the DCM imple-
mentation is available at [5]. The implementation will further be discussed
in Chapter 3. Note that the system also supports frequent chronicles mining
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and discriminant episodes mining which are out of assignment scope of this
thesis and will not be elaborated further.

Along with the implementation of the DCM algorithm, a tool used for gen-
erating classification rules named DC-PBC (Discriminant Chronicles Pattern-
Based Classification) was implemented by the authors of the aforementioned
DCM algorithm. The source codes of both of these projects are available at
[6].

1.4 Conclusion

This chapter presented an introduction to the field of temporal pattern mining
along with its theoretical basis and also introduced the reader to the DCM
algorithm proposed by Yann Dauxais et al. in [1] along with its important
concepts of operation.
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Chapter 2
Towards the Generalization
of Discriminant Chronicles

Mining

This chapter will introduce new theoretical foundations building on the origi-
nal theoretical foundations for discriminant chronicles mining elaborated in Sec-
tion 1.2, for generalizing the system for multi-dimensional input data.

Section 2.1 will state the reasons why the generalization of the existing
system for discriminant chronicles mining is desired.

Section 2.2 will introduce new generalized definitions to the theoretical
basis as introduced in Section 1.2.

2.1 Motivation

As described in the previous chapter, the original system along with its theo-
retical foundations is able to mine discriminant chronicles containing intervals
of extended real numbers.

The aforementioned scalar domain might be constraining in areas where
the input data are multi-dimensional, for instance.

A real-world example of such situation is mining classification rules based
on temperatures recorded by multiple sensors during a crystal growth process
in a furnace. In that case, the temperatures recorded at a particular time can
be represented by a vector of real numbers [7].
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Mining

2.2 Conceptual Changes

In contrast to the theoretical foundations introduced in Chapter 1, the theo-
retical concepts described in the following sections will be changed.

2.2.1 Event Types

Event type set E will not be totally ordered in contrast to the original definition
as introduced in Section 1.2.

2.2.2 Domain

The temporal domain T as introduced in Section 1.2 will lose its temporal se-
mantics and will be extended to vectors of extended real numbers of arbitrary
length, i.e. T ⊆ Rd.

2.2.3 Sequence Event Order

The domain T ⊆ Rd can’t be totally ordered, so the original relation ≺ im-
posing total order to events as sequence elements will be undefined.

2.3 New Concepts

2.3.1 Hyperrectangle Test

Assume ~a = (a1, a2, . . . , ad),~b = (b1, b2, . . . , bd) ∈ Rd and n ∈ N. Hyperrectan-
gle R(~a,~b) is a generalization of rectangle in d-dimensional space, represented
by a cartesian product of d orthogonal closed intervals 〈a1, b1〉×〈a2, b2〉× . . .×
〈ad, bd〉.

Let ~a,~b,~c ∈ Rd. Hyperrectangle test, denoted by ⊂= is defined as follows:

~c ⊂= R(~a,~b) ⇐⇒ ∀i ∈ d̂ : ci ∈ 〈ai, bi〉.

Geometrical interpretation of hyperrectangle test means that if ~c ⊂= R(~a,~b)
holds, the point ~c ∈ Rd is located inside a d-dimensional body of hyperrect-
angle R(~a,~b) where ~a,~b ∈ Rd.

2.3.2 Hyperrectangle Constraints

A hyperrectangle constraint is a tuple 〈e1, e2, ~t1, ~t2〉, also denoted as e1[[~t1,~t2]]e2
where e1, e2 ∈ E and ~t1, ~t2 ∈ T.

A hyperrectangle constraint e1[[~t1, ~t2]]e2 is said satisfied by a couple of events
((e,~t), (e′, ~t′)) if and only if e = e1 ∧ e′ = e2 ∧ ~t′ − ~t ⊂= R(~t1, ~t2).
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2.3.3 Multi-dimensional Chronicles

A multi-dimensional chronicle is a couple (E , T ) where:

• E = {{e1, e2, . . . , en}}, ei ∈ E, i ∈ n̂ is a multiset of event types,

• T = {e1[[~t1, ~t2]]e2|e1, e2 ∈ E} is a hyperrectangle constraint set.

2.3.4 Multi-dimensional Chronicle Occurrences

Assume that s is a sequence of n events and C = (E = {{e′1, e′2, . . . , e′m}}, T ),
m ∈ N is a chronicle.

An occurrence of chronicle C in sequence s = 〈(e1,~t1), (e2,~t2), . . . , (en,~tn)〉
is a subsequence s̃ = 〈(ef(1),~tf(1)), (ef(2),~tf(2)), . . . , (ef(m),~tf(m))〉, such that:

• f : m̂ 7−→ n̂ is an injective function,

• ∀i : e′i = ef(i),

• ∀i, j : ~tf(j) − ~tf(i) ⊂= R(~a,~b) where e′i[[~a,~b]]e′j ∈ T .

2.3.5 Discriminant Constraint Mining

Let M be a set of frequent event multisets, E ∈ M be a frequent event mul-
tiset of size m, D a relational dataset, EID an arbitrary example index,
SID an arbitrary sequence index and l ∈ L a sequence label. Analogically
as for the non-generalized definition, for each occurrence of E in S, a row
also called an example of form 〈EID, SID, (Aei→ej )1≤i,j≤m, l〉 is added into
the relational dataset D. An example of such relational dataset is illustrated
in Table 2.1.

EID SID AA→B AB→C AA→C Label
1 1 (1, 2.4) (−4.6, 5.1) (6.3, 0) +
2 1 (0, 0) (9.6,−7.4) (0, 1.9) +
3 2 (1.6,−2) (4, 7.8) (3.9,−1.5) +
4 3 (−3.6, 0.9) (8.4,−4.9) (0, 1.5) −

Table 2.1: Generalized relational dataset example

2.4 Conclusion

This chapter presented the motivation why the generalization of discriminant
chronicles mining is desired and also introduced the new theoretical basis
needed for implementing a generalized version of the system for discriminant
chronicles mining.
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Chapter 3
Current Implementation State

This chapter will discuss the current state of the system.
Section 3.1 will introduce the technological aspects of the system.
Section 3.2 will state current features of the system and implementation-

imposed limitations of the system.
Section 3.3 will explain the high-level modular structure of the system

and communication schemata between system components.
Sections 3.4 and 3.5 will elaborate the building blocks of each individ-

ual component of the system – packages, modules, classes, methods and at-
tributes.

Section 3.6 will state technical debt in the aforementioned projects in terms
of code issues.

3.1 Technologies Used

3.1.1 Python

Python is an interpreted object-oriented programming language with dynamic
typing known for its simple, concise and compact syntax. Python code is also
portable between supported platforms in the sense that it is not necessary
to recompile for the target platform. [8, p. 3]

3.1.2 C++

C++ is a high-level general-purpose compiled programming language back-
wards compatible with C programming language. As opposed to C, it pro-
vides features for writing object-oriented code which when written well, makes
the source code of the programs shorter, easier to understand and easier
to maintain. [9, p. 13]
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3.1.3 scikit-learn

scikit-learn (sklearn) is a set of tools for predictive data analysis usable in
Python environments, including implementation of classifiers, regressors, clus-
tering algorithms, data preprocessing algorithms, etc. [10]

3.1.4 WEKA

WEKA (Waikato Environment for Knowledge Analysis) is a collection of ML
(Machine Learning) algorithms and data preprocessing tools implemented
in Java with companion GUI (Graphical User Interface) used for experimen-
tal data mining – i.e. comparing different ML methods on given input data.
This toolkit also features a CLI (Command Line Interface) for batch ML task
processing. [11, p. 7]

3.1.5 RIPPERk

RIPPERk is a rule learning algorithm proposed as a modification of IREP rule
learning algorithm with lower error rates and faster rule induction for large
datasets by W. W. Cohen in [4], implemented in K&R (Kernighan and Ritchie)
C, an early version of C programming language.

3.1.6 CMake

”CMake is an open-source, cross-platform family of tools designed to build,
test and package software. CMake is used to control the software compilation
process using simple platform and compiler independent configuration files,
and generate native makefiles.” [12]

3.1.7 Doxygen

Doxygen is a configurable tool for generating documentation from source code
– both annotated using specific comment syntax and unannotated. Doxygen
is also able to visualize various kinds of relationships in the code, such as de-
pendency graphs, class diagrams and function call diagrams. [13]

3.2 System Features

The system in its initial version [6] as implemented by Yann Dauxais can
mine discriminant chronicles from user-supplied sequence sets and classify
them afterwards, yielding a list of discriminant chronicles and classification
results.

The implementation of the system is constrained to work with a temporal
domain T ⊂ Z because the implementation uses the int type for representing
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elements of T. [5] Conceptual temporal domain of the proposed algorithm
as stated in [1, p. 3] is T ⊆ R.

3.3 High-Level System Structure

The system consists of three components as depicted in Figure 3.1 cooperating
together to accomplish the desired task. Briefly:

1. The component DC-PBC (Discriminant Chronicle Pattern-Based Clas-
sification) is invoked by the user using its CLI with supplied input data
and other parameters regarding the mining task and classification rules
generation further described in its README file [6].

2. After data parsing and preprocessing, DC-PBC invokes DCM executable
– DCM mines discriminant chronicles from the dataset using an imple-
mentation of the DCM algorithm as described in Section 1.3.1.

3. After the mining task is completed, if specified using a CLI argument,
DC-PBC generates classification rules from the results of the mining
task accomplished by DCM – either by invocation of an external classi-
fier from the WEKA component, or by using a Python classifier imple-
mentation from scikit-learn.

4. Both the mining results and classification rules validation statistics if
present are written to systematically named output directory structure
further described in the README of DC-PBC located in [6].

Figure 3.1: Components of the system

The communication schema of individual components described in the pre-
vious paragraph is depicted in Figure 3.2.
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«component» «component» «component»

1 : CLI Invocation 2 : Parsing, Preprocessing for DCM

3 : Discriminant Chronicles Mining

«destroy»

4 : Preprocessing for classification
rules generation

5: Classification rules generation using WEKA

«destroy»

6: Classification rules generation using sklearn

7: Results formatting

if classifier is not SVC or none

[elseif
classifier
is SVC]

«destroy»

Figure 3.2: Component communication diagram

3.3.1 Component Integration

The components DC-PBC and DCM are integrated in two ways:

1. DC-PBC hands the mining task over to DCM using simple executable
invocation with CLI parameter passing – this is done for each fold
as specified by the --fold CLI parameter and each label of the input
in order to mine both chronicles discriminant for S+ with respect to S−
and chronicles discriminant for S− with respect to S+,

2. DCM passes the results of the mining tasks back to DC-PBC using file-
based integration – that means DC-PBC parses the result of the mining
task executed by DCM back to its internal data representation and fur-
ther generates the classification rules.
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The components DC-PBC and WEKA are integrated in a similar manner
as the previous couple of components, i.e.:

1. DC-PBC passes the classification rules generation task over to WEKA
using executable invocation with temporary input file encoded in the .arff
format WEKA accepts,

2. WEKA passes the results of the classification rules generation back
to DC-PBC using file-based integration.

3.4 DC-PBC Implementation Structure

The Python implementation of the DC-PBC project consists of application
entrypoint file main.py which is callable using CLI, a file GLOBAL.py contain-
ing paths to the executables of the WEKA and DCM components and a file
functions_p3.py containing three classes and several functions described
in the following sections.

Classes

The class Chronicle represents a chronicle (i.e. a couple (E , T ) as elaborated
in Section 1.2) and also provides the functionality to parse the output
of DCM mining task into an instance of this class.

The class McDataset represents an input dataset consisting of sequences
and also provides the functionality to parse input files.

The class Dataset provides functionalities similar to the functionality of
McDataset, however, is not consumed by any other code.

Functions

The aforementioned file contains numerous functions. The responsibilities
of the functions are briefly:

• classification rules generation using SVC (Support Vector Classifier)
from scikit-learn (functions fit_svm, mc_classify),

• classification rules generation using numerous classification methods from
WEKA along with WEKA input formatting and output parsing (func-
tions mc_generate_arff, generate_arff, mc_classify, classify,
extract_res_classify, extract_precision, extract_recall),

• classification rules validation statistics file formatting and writing
(compute_res_classify),

and a few other utility functions.
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3.5 DCM Implementation Structure

The C++ project DCM consists of a top-level package containing applica-
tion entry file main.cpp and seven packages (implemented as statically linked
CMake sublibraries), each with a different responsibility. Package dependen-
cies across the project are illustrated in Figure 3.3.

Figure 3.3: Dependencies among packages in the DCM project

The following sections will briefly describe each of the packages.

3.5.1 Abstraction

This package consists of just a single class – Abstraction which contains
purely static methods, i.e. is basically a collection of utility functions used
for preprocessing input data for discriminant chronicles mining using the DCM
component. The class exposes a single method named generatePathways
which does the aforementioned task.

3.5.2 Base

This package contains three classes - Event, Base and VerticalEventBase.

The class Event is a utility class used in algorithms contained within the meth-
ods of Base and VerticalEventBase classes – i.e. a data structure con-
sisting of an event, start time and end time. In addition to these prop-
erties, the class also implements a comparison operator < (less-than).

The class Base is an abstract class abstracting VerticalEventBase<T>, declar-
ing its interface with virtual abstract methods and defining numerous
common non-virtual utility methods.
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The class VerticalEventBase<T> which extends the class Base is a class
representing storage for sequences with a diverse set of responsibilities,
containing several implemented methods for:

• retrieving occurrences – subsequences of input sequence sets further
described in Section 1.2,
• retrieving episodes for frequent chronicles mining and discriminant

episodes mining,
• determining chronicle support,
• extracting the set of frequent multisets from the input sequence set

– i.e. the data structure represented by the symbol M as illustrated
in Listing 1.1,

and other utility methods.

3.5.3 CDA

This package consists of a single class called CDA.

The class CDA encapsulates the DCM algorithm elaborated in Section 1.1
and algorithms for frequent chronicles mining and discriminant episodes
mining along with their subroutines and state.

3.5.4 Chronicle

This package consists of five classes - Chronicle, EMSet, MSetOcc, TC and
TCIterator.

The class EMSet represents an event multiset, along with its additional prop-
erties, such as frequency of the multiset representing computed support
of (E , T∞) as elaborated in Section 1.3.1.

The class Chronicle represents a chronicle – a couple (E , T ) as defined in Sec-
tion 1.2.

The class MSetOcc represents an occurrence for given frequent event multiset
– a subsequence of a sequence from the input sequence set.

The class TC represents a temporal constraint as described in Section 1.2.

The class TCIterator is a wrapper around a shared pointer to an instance
of TC class. Despite its name, the implementation does not conform
to any of the standardized C++ STL (Standard Template Library) it-
erator concepts, just implementing the operators ->, unary *, =, ==
and custom methods isNull and isPunct.
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3.5.5 Parser

This package is a collection of functions and is responsible for parsing input
files and aside from functions intended for printing model classes provides
a total of three different parsers.

The function CSVParser(...) parses an input in CSV (Comma-Separated
Values) format if the program receives an input file with file extension
.csv.

The function LineParser(...) parses tabular data separated by spaces if
the input file has other extension than .csv and internal file structure
consists of one sequence per line.

The function TXTParser(...) parses tabular data separated by spaces if
the input file has other extensions than .csv and internal file format
is IBM format (enforced by supplying the -u CLI parameter to the pro-
gram).

3.5.6 Ripper

This package serving as an implementation-specific C++ wrapper around
the RIPPERk third-party K&R C library described in the next section con-
sists of a class Rule and a collection of utility functions used for initializing
the algorithm and transforming data to and from the algorithm implementa-
tion.

The class Rule is a model class representing a rule as an output from the rule
induction procedures of RIPPERk algorithm. The class represents a data
structure consisting of:

• rule label – an element of L as defined in Section 1.3.1.2,

• rule significand array as described in Section 1.3.1.2,

• an array of interval bounds for each rule significand as described
in Section 1.3.1.2,

• success and error rates (i.e. counts of samples correctly and incor-
rectly covered by the rule) returned from the RIPPERk algorithm
used later for determining resulting discriminant chronicle support.

3.5.7 ripper

This third-party library provides a K&R C Programming Language imple-
mentation of the RIPPERk algorithm by W. W. Cohen introduced in [4].
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3.6 Technical Debt

In the software engineering field, ”technical debt is the debt that accrues when
you knowingly or unknowingly make wrong or non-optimal design decisions”,
the authors of [14] state in the chapter about technical debt of their book
Refactoring for Software Design Smells: Managing Technical Debt.

Major design issues found after the evaluating source codes of the DC-PBC
and DCM components are stated in the following sections.

3.6.1 General Code Issues

The following code issues were identified in both projects:

• The code occasionally contains unused imports, dependencies and func-
tions/methods which when removed, will simplify the structure of the
project and reusability of individual packages.

• Variables in the code often do not follow self-descriptive naming conven-
tions which are perceived as a general good practice [14] - e.g. variables
named flag, tmp, etc. This issue greatly reduces code understandability
and thus makes the code closed for changes and closed for extensions.

• Some functions are very long in terms of LoCs (Lines of Code) and com-
plex in terms of cyclomatic complexity, causing significant cognitive load
[14] on the reader of the code.

3.6.2 DCM Issues

• Data types in the source files are not symbolic – i.e. their usage does
not convey their meaning – e.g. the int data type might represent an
event type or a temporal domain element. This will present a significant
challenge when designing the generalized version of the system.

• The project contains several so-called god classes – classes with multiple
responsibilities, essentially breaking the Single Responsibility Principle
[14] of maintainable object-oriented code.

• Formal parameter lists of some methods are excessively long and contain
boolean parameters to alter method behavior in runtime which is consid-
ered a code smell [14] concerning method invocation statement readabil-
ity – namely CDA::run accepts 15 formal parameters and five of them
are boolean.

• Some methods in numerous classes have unnecessary public access mod-
ifiers that should be private or protected in order to simplify public
interface complexity of their owner classes.
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3.7 Conclusion

This chapter described the structure of the system for discriminant chron-
icles mining – first its high-level structure and component communication
schemata, then each individual component by describing their modules, pack-
ages, classes, methods and attributes.
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Chapter 4
Analysis and Design

This chapter will introduce the changes to be implemented into the original
version of the system as elaborated in Chapter 3.

Sections 4.1 and 4.2 will state the goals and non-goals of the generalization
from a software implementation standpoint.

Sections 4.3 and 4.4 will propose particular changes to all components
of the system, elaborated in-depth.

4.1 Goals of the Generalization

F1: The system will be able to process datasets and produce results
with domain elements as real vectors of arbitrary length as intro-
duced in Chapter 2.

F2: The system will support a new input file format further de-
scribed in Section 4.4.3.

F3: The generalization itself should be implemented in a style that
allows further easy customization of the domain.

4.2 Non-goals of the Generalization

N1: The generalized version of the system will not support Fre-
quent Chronicles Mining and Discriminant Episodes Mining which
are out of thesis assignment scope.

N2: The system will be able to parse only files containing tabular
space-separated values (the one-sequence-per-line format) and the
new file format stated in the requirement F2.
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4.3 DCM Change Analysis

As discussed in Section 3.6, the implementation in the current as-is state
is closed to extensions due to numerous code issues. To make the system eas-
ier to maintain and extend in the future for further general use-cases, the pre-
requisites to implementing the requirements stated in Section 4.1 will include
code refactoring.

4.3.1 Refactoring

Girish Suryanarayana et al. in their book [14] state that ”performing refactor-
ing is the primary means of repaying technical debts”. As stated in Section 3.6,
both DC-PBC and DCM have significant amounts of technical debt. Thus
refactoring at least the most serious code issues will be needed to simplify
implementing further extensions to the system.

4.3.1.1 Project Structure Refactoring

In order to simplify modular structure of both projects, unused imports, dead
code, overly relaxed access modifiers and ambiguous package dependency links
will be removed. The simplified structure of the project after refactoring
is depicted in Figure 4.1.

Figure 4.1: Package dependencies in the DCM project after refactoring

4.3.1.2 Symbolic Type Refactoring

As stated in Section 3.6, some variable types used in the code of the DCM
project are not semantically named. In order to simplify further extensions
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to the system, the occurrences of the int type representing temporal domain
elements will be changed to a type alias called DomainElement. The type alias
approach was chosen over class inheritance because defining abstract operators
with polymorphic return value types is impossible to achieve in C++.

Operators

Based on code occurrences of the int variables representing original temporal
domain elements, any types further aliased by the DomainElement type alias
will need to specify and implement the following set of binary operators with
the following semantics:

• arithmetic operators +, - for adding/subtracting two realizations of the
DomainElement alias,

• equality operator == for equality checks between two realizations of the
DomainElement alias.

Some code occurrences also require using the >, < and <= operators. How-
ever, as stated in Chapter 2, temporal domain elements can not be totally
ordered in general.

The occurrences of >, < and <= operators will be deleted or rewritten
to code that does not utilize comparison operators between two DomainElement
realizations. The statements involving sorting of DomainElement realizations
utilizing the comparison operators transitively will also need to be deleted or
rewritten. Such changes will have further impact on several aspects of DCM
functionality and will be elaborated in the next section.

Substitution of Comparison Operators and Sorting

All operations involving comparing particular objects aliased by the alias
DomainElement in manners of interval tests will be substituted with gener-
alized method call bool isInsideBounds(lowerBound, upperBound), rep-
resenting a test whether given DomainElement is between lowerBound and
upperBound, both included and both realizations of DomainElement.

When pruning redundant rules, two semi-infinite interval checks using
the > operator in the package CDA in the file CDA.cpp on lines 40 and 42
happen. Such substitution will be dependent on internal structure and other
characteristics of future DomainElement realizations, thus the whole code
block will be extracted into a separate procedure in the Base package called
pruneRedundantIntervals, intended to be reimplemented for each realiza-
tion of the DomainElement alias. Its parameters are:

significand – an index of significand in an example of a relational dataset
further elaborated in Section 4.3.2.4,
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outputIntervals – an ordered collection of intervals indexed by significand
indices,

example – an example of the relational dataset.

When retrieving occurrences, event sequence sorting in the package Base
in the file VerticalEventBase.hh on line 321 happens. After evaluating
the rest of the code, the sequence sorted was not used anywhere. Deleting
this sorting statement will be safe and will not affect DCM operation.

After the parsing stage of DCM completes, there is a sorting statement
in the package Abstraction in Abstraction.hh on line 66 which sorts in-
dividual temporal elements sharing the same event type and the same input
sequence. Deleting this sorting statement implies that the dataset consisting
of the DCM input files ( pos.dat and neg.dat) must have all input sequence
events sorted chronologically from left to right. In situations where this does
not hold, manual data preprocessing should take place.

Substitution of Value Literals

At numerous places in the source codes, the int variables representing tem-
poral domain elements were initialized by numerical values (namely 0, 1, -1,
and special values conceptually representing inf/-inf).

In initialization statements where the scalar values are initialized to value
0, calls to the factory method DomainElementFactory::zero() will be intro-
duced to substitute the number 0 with its generalization dependent on the par-
ticular realization of the DomainElement alias, such as zero vectors, zero ma-
trices, etc.

In printing statements where special values representing ∞/−∞ values
occur, calls to methods DomainElementFactory::positiveInfinity() and
DomainElementFactory::negativeInfinity() will be introduced to substi-
tute given values with their generalizations with similar intents as described
in the previous paragraph.

Other values, in particular 1 and -1, are used in initialization statements
in the part of DCM responsible for mining frequent chronicles and discrimi-
nant episodes that are out of the scope of this thesis and thus will simply be
removed.

Final Contracts

The final set of operators and methods the realizations of the DomainElement
alias and the implementation of the DomainElementFactory class should im-
plement are listed in Table 4.1 and 4.2.
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Unit Responsibility
operator + adds two DomainElements together
operator - subtracts two DomainElements
operator == compares two DomainElements for equality
operator << inserts a DomainElements into a stream for printing
method bool isInsideBounds(lo, up) checks if the value of given DomainElement is between

lo and up, both of type DomainElement

Table 4.1: DomainElement contract

Method Responsibility
zero constructs a DomainElement generalizing the 0 value
positiveInfinity constructs a DomainElement generalizing the ∞ value
negativeInfinity constructs a DomainElement generalizing the −∞ value

Table 4.2: DomainElementFactory class contract

4.3.2 Changes Related to Requirements

4.3.2.1 RealVector Class

Related to symbolic type refactoring as stated in the previous section is an
implementation of vector data type RealVector representing a vector of ar-
bitrary length with real numbers as its elements – i.e. t ∈ Rd. The type
alias DomainElement will refer to this class. Both the RealVector class
and the DomainElement alias will be placed into a new package called Domain
in the DCM project.

Class Hierarchy

The class RealVector will extend the class std::vector<double> from C++
STL in order to be easily handled like a homogenous vector of floating-point
numbers. Because of utilizing the inheritance, the class will offer standard
std::vector methods, such as push_back, clear, etc.

Although inheriting from library-supplied classes such as std::vector
is often seen as an unsafe antipattern, the utilization of inheritance, in this
case, is not unsafe because the RealVector class will not redefine the original
functionality and implementation details of its parent class std::vector, thus
any changes made to C++ STL in the future will not break the functionalities
of the RealVector class and vice versa.

The class hierarchy described in the paragraphs above is depicted in Fig-
ure 4.2.
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Figure 4.2: Temporal domain element class hierarchy (DCM)

Operators

As required for each realization of the DomainElement alias, the RealVector
class will define the operators + and - and will inherit the operator == from
std::vector which already implements the desired functionality for compar-
ing two vectors. Specific operator definitions are listed below.

Given two vectors ~a = (a1, a2, . . . , ad) and ~b = (b1, b2, . . . , bd), ~a,~b ∈ Rd:

• The operator + will perform vector addition, i.e. the operation denoted
as ~a+~b will denote the vector (a1 + b1, a2 + b2, . . . , ad + bd) ∈ Rd.

• The operator - will perform vector subtraction, i.e. the operation de-
noted as ~a−~b will denote the vector (a1− b1, a2− b2, . . . , ad− bd) ∈ Rd.

• The operator == will perform equality vector comparison, i.e. the com-
parison denoted as ~a = ~b. ~a = ~b ⇐⇒ a1 = b1 ∧ a2 = b2 ∧ . . . ∧ ad = bd.

Hyperrectangle Test Implementation

The method bool isInsideBounds(lowerBound, upperBound) will perform
the hyperrectangle test as defined in Section 2.3.1.

Constructor

The parameterless constructor of RealVector will create a blank vector with
the size equal to zero, ready to be initialized with desirable elements if needed,
using standard std::vector methods.
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DomainElementFactory Implementation

The methods zero(), positiveInfinity() and negativeInfinity() of the
DomainElementFactory class will construct instances of RealVector, such
that its size equals to a static integer member variable VECTOR_SIZE of the
class DomainElementFactory discussed below and all its elements are equal
to 0, ∞ and −∞ respectively.

Aside from the zero(), positiveInfinity() and negativeInfinity()
factory methods in the DomainElementFactory class declared in Section 4.3.1.2,
a new static class member variable called VECTOR_SIZE will be added to the
class, representing the size of vectors the system will operate with.

Aware of the risks of using public static class members which share their
flaws with global variables, this approach was chosen because:

• Each run of the mining task will utilize vectors of unified size and will
not change it after being set in the parsing phase of the algorithm.

• Every possible realization of the DomainElement alias produced by the
aforementioned factory methods zero(), positiveInfinity() and
negativeInfinity() might require different production interface (e.g.
for a matrix row count and column count, for a vector size), however
will in every case need to generalize a zero or positive/negative infinity
value. The usage of a static member will:

1. unify the interfaces of the factory methods to be parameterless
for every possible realization of the DomainElement alias,

2. deminish the impact on formal parameter lists of numerous caller
methods that would otherwise require a change involving adding
a parameter representing the vector size or different information
needed for producing the desired 0/∞/−∞ value generalizations
for further extensions, such as matrix row/column count.

The DomainElementFactory class will be placed into the Domain package
in the DCM project.

Stream Insertion Operator Function

In addition to the aforementioned operators, implementing a binary operator
<< for stream insertion used for printing the values to the output will also be
needed. The operator will be implemented as a function because C++ imposes
limits on left-hand side and right-hand side operand types when implementing
operator methods.

The function will be declared with friend modifier, allowing it to access
the private and protected members of RealVector objects.
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The function will format the vector as a comma-separated list of its ele-
ments enclosed in < and >.

For instance, for a RealVector representing a vector (1, 2, 3, 4, 5), the for-
matted version of it will be <1,2,3,4,5>.

Redundant Interval Pruning

As introduced in Section 4.3.1.2, the procedure pruneRedundantIntervals
will be altered – its original code will be wrapped into a for statement
called repeatedly component-wise, and altered to prune insignificant intervals
for each component of vector doubles in supplied vector interval set repre-
sented by the outputIntervals parameter. Listing 4.1 illustrates the original
body of the function as extracted in Section 4.3.1.2 and Listing 4.2 illustrates
the updated body of the function.

void pruneRedundantIntervals(
unsigned int significand,
std::vector<std::vector<DomainElement>>& outputIntervals,
const std::vector<DomainElement>& example) {

if (outputIntervals[significand][0] > example[significand]) {
outputIntervals[significand][0] = example[significand];

}
else if (outputIntervals[significand][1] < example[significand]) {

outputIntervals[significand][1] = example[significand];
}

}

Listing 4.1: Original pruneRedundantIntervals function body

void pruneRedundantIntervals(
unsigned int significand,
std::vector<std::vector<DomainElement>>& outputIntervals,
const std::vector<DomainElement>& example) {

for (int v = 0; v < DomainElementFactory::VECTOR_SIZE; ++v) {
if (outputIntervals[significand][0][v] > example[significand][v]) {

outputIntervals[significand][0][v] = example[significand][v];
}
else if (outputIntervals[significand][1][v] < example[significand][v]) {

outputIntervals[significand][1][v] = example[significand][v];
}

}
}

Listing 4.2: Generalized pruneRedundantIntervals function body

The pruneRedundantIntervals procedure will be changed according to the
description in the paragraph above and moved to a separate C++ module
interval_pruning.hh located in the Domain package.
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4.3.2.2 DCM CLI Changes

Associated with the change involving implementation of RealVector class
described in the next subsection, the d fulfilling d ∈ N in temporal domain Rd,
later referred to as vector size should be specifiable by the user using a new,
mandatory CLI parameter -s/--vecsize, standing for vector size.

This parameter will be stored into the VECTOR_SIZE static member variable
of the DomainElementFactory class.

The -e/--episode, -a/--all_different and -n/--not_calc_freq pa-
rameters related to frequent chronicles mining and discriminant episodes min-
ing will be removed as the aforementioned mining methods are out of the scope
of this thesis.

4.3.2.3 DCM Input Parser Changes

The parser functions CSVParser, TXTParser and related code calling them
will be removed from the DCM project based on the non-goal N2 introduced
in Section 4.2.

The parser function LineParser will be changed accordingly to be able
to parse variable-length vector domain inputs. Further analysis of changes
to the input file format will be discussed in the following sections.

Changes to Input File Format

The input file format will be derived from the current state of the format used
for LineParser, a parser parsing files with the one-sequence-per-line format.

A 15 B 23 C 29 D 37
A 15 B 16 C 28 D 29
A 15 B 16 C 25 D 26
A 15 C 21 B 22 D 28

Listing 4.3: Old file format example

A 15.0 15.0 B 23.0 23.0 C 29.0 29.0 D 37.0 37.0
A 15.0 15.0 B 16.0 16.0 C 28.0 28.0 D 29.0 29.0
A 15.0 15.0 B 16.0 16.0 C 25.0 25.0 D 26.0 26.0
A 15.0 15.0 C 21.0 21.0 B 22.0 22.0 D 28.0 28.0

Listing 4.4: Changed file format example
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4.3.2.4 Rule Induction Process Changes

At the moment, the Ripper C++ wrapper used for rule induction induces rules
with scalar values from input datasets containing scalar values as described
in Section 1.3.1.2. The process of rule induction in the original implementation
is illustrated in Figure 4.3.

Figure 4.3: Original rule induction process

This will be changed so that the wrapper will accept an input dataset con-
taining RealVector objects as inter-event durations and will produce a ruleset
with rule values of RealVector type.

Because the ripper third-party library does not accept datasets with vec-
tors as features nor produces rulesets consisting of vector values, the numerical
rule induction will be preceded by a global preprocessing phase, followed by
a local indexing phase and a global postprocessing phase. The scalar rule induc-
tion algorithm which will be unchanged will be called repeatedly component-
wise inbetween. High-level overview of the new rule induction process is illus-
trated in Figure 4.4.

Figure 4.4: New rule induction process

Note that the input dataset containing the RealVector values is generated
in earlier stages of the DCM algorithm, based on its corresponding frequent
event multiset E and input sequence set S as elaborated in Section 1.3.1.2.

New Data Structures

The Rule class representing a rule from the original implementation as de-
scribed in Section 3.5.6 will be removed.
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A new class SingleRule representing a rule obtained from a single RIP-
PERk rule induction run will be introduced. Rule values in this class will be
represented by values of type double.

A new class MultiRule representing a rule produced by the global postpro-
cessing phase, representing a result of multiple rule induction runs combined
will be introduced and will be used as the final rule induction wrapper out-
put. Rule values in this class will be represented by objects of the RealVector
class.

Both classes – SingleRule and MultiRule will share the same interface
encapsulated into the class GeneralRule<T> partly derived from the original
Rule class in order to maintain code compatibility. The SingleRule class will,
in addition to the GeneralRule<T> class, store a set of EIDs correctly/incor-
rectly covered by a given rule using its member variables correctExamples
and incorrectExamples respectively. The exact class hierarchy and class
interfaces are depicted in Figure 4.5.

Figure 4.5: Rule class hierarchy

Method Responsibility
getConstraints retrieves the significands of the rule
getValues retrieves the temporal constraints of the rule
getClass retrieves the label of the rule
getFrequency retrieves the number of examples correctly covered by the rule
getOFrequency retrieves the number of examples incorrectly covered by the rule
getCorrectExamples retrieves the set of EIDs correctly covered by the rule
getIncorrectExamples retrieves the set of EIDs incorrectly covered by the rule
setCorrectExamples changes the set of EIDs correctly covered by the rule
setIncorrectExamples changes the set of EIDs incorrectly covered by the rule

Table 4.3: GeneralRule<T>, SingleRule and MultiRule class methods
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All three classes – SingleRule, MultiRule and GeneralRule<T> will be
implemented to the package Ripper where the RIPPERk C++ wrapper code
resides.

Rule Induction Preprocessing

The preprocessing phase will split the input relational dataset containing inter-
event durations as RealVector objects with vector size equal to n into n
relational datasets with double floating point number values as features.
The aforementioned transformation named SplitDataset is depicted in List-
ing 4.5.

SplitDataset(dataset) {
D := [].

for (i of {1, ..., VECTOR_SIZE}) {
newTable := emptyTable().

for (row of dataset) {
newRow := emptyTableRow().

newRow[sid] := row[sid].
newRow[label] := row[label].

for (vector of row[durations]) {
if (vector != NULL) {

newRow[durations].push(vector[i]).
}
else {

newRow[durations].push(NULL).
}

}

newTable.push(newRow). // EIDs are preserved by maintaining
// the same index order

}

D.push(dataset).
}

return D.
}

Listing 4.5: SplitDataset algorithm pseudocode

The meaning of symbols in the pseudocode depicted in Listing 4.5 is as fol-
lows:

The dataset parameter represents the generalized relational dataset as de-
fined in Section 2.3.5 (an example of such dataset is illustrated in Ta-
ble 4.4), with individual rows indexed by EID, containing SID, label

36



4.3. DCM Change Analysis

and an ordered collection of inter-event durations as RealVector ob-
jects indexed by SignificandIndex illustrated in Table 4.7 – the data
structure implementing the dataset is illustrated in Table 4.8,

The newRow data structure represents a table row with the structure same
as the rows of the dataset parameter, except that the inter-event du-
rations are represented by the double value type,

The newTable data structure represents a table representing a scalar dataset
– i.e. an ordered collection of table rows, again indexed by EID – exam-
ples of such datasets are illustrated in Table 4.5 and Table 4.6,

The D data structure represents an ordered collection of relational datasets
(here represented by tables) with double floating point numbers as fea-
tures, maintaining the same inter-event duration column set as the input
table supplied to the dataset parameter. The RIPPERk algorithm will
use these datasets for scalar rule induction.

An example of operation of the SplitDataset algorithm is depicted in the
tables below – the relational dataset as input to the preprocessing phase de-
picted in Table 4.4 is split into two relational dataset parts called slices de-
picted in Table 4.5 and Table 4.6.

EID SID AA→B AB→C AA→C Label
1 1 (1, 2.4) (−4.6, 5.1) (6.3, 0) +
2 1 (0, 0) (9.6,−7.4) (0, 1.9) +
3 2 (1.6,−2) (4, 7.8) (3.9,−1.5) +
4 3 (−3.6, 0.9) - - −

Table 4.4: Relational dataset before preprocessing

EID SID AA→B AB→C AA→C Label
1 1 1 −4.6 6.3 +
2 1 0 9.6 0 +
3 2 1.6 4 3.9 +
4 3 −3.6 - - −

Table 4.5: Relational dataset slice for the first rule induction run

The Ripper wrapper will run the scalar numerical rule induction as de-
scribed in Section 1.3.1.2 for each such relational dataset slice separately
and will index its results into a rule map using the IndexRuleset algorithm
described in the next section.

Due to as-is implementation data structure constraints, the SplitDataset
transformation will be implemented into the ripper::run function while also
utilizing calls to a new procedure called ripper::splitDatasetPart.
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EID SID AA→B AB→C AA→C Label
1 1 2.4 5.1 0 +
2 1 0 −7.4 1.9 +
3 2 −2 7.8 −1.5 +
4 3 0.9 - - −

Table 4.6: Relational dataset slice for the second rule induction run

Significand AA→B AB→C AA→C
SignificandIndex 1 2 3

Table 4.7: Index mapping used for the implementation of relational datasets

# sid durations label

1 1

SignificandIndex duration
1 RealVector:<1,2.4>
2 RealVector:<-4.6,5.1>
3 RealVector:<6.3,0>

pos

2 1

SignificandIndex duration
1 RealVector:<0,0>
2 RealVector:<9.6,-7.4>
3 RealVector:<0,1.9>

pos

3 2

SignificandIndex duration
1 RealVector:<1.6,-2>
2 RealVector:<4,7.8>
3 RealVector:<3.9,-1.5>

pos

4 3

SignificandIndex duration
1 RealVector:<-3.6,0.9>
2 NULL
3 NULL

neg

Table 4.8: Implementation of the relational dataset from Table 4.4

Rule Indexing

The rule indexing phase realized by the new IndexRuleset algorithm intro-
duced below will store the rules produced by all scalar rule induction runs into
a shared data structure depicted in Table 4.11. Such indexation will allow
the algorithm of the postprocessing phase to access the data more optimally.

Pseudocode of the IndexRuleset algorithm is depicted in Listing 4.6.
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IndexRuleset(ruleMap&, scalarRuleset, runIndex) {
// IndexRuleset mutates the ruleMap parameter
// value, thus does not return anything

for (scalarRule of scalarRuleset) {
ruleMap[scalarRule.significands][runIndex] := scalarRule.

}
}

Listing 4.6: IndexRuleset algorithm pseudocode

The meaning of symbols in the IndexRuleset pseudocode depicted in List-
ing 4.7 is as follows:

The ruleMap parameter represents a mutable reference to the output rule
map with rule significand set as keys and maps with run numbers as-
signed to rules as values – an example of such rule map is illustrated
in Table 4.11,

The scalarRuleset parameter represents an ordered collection of scalar
rules,

The runIndex parameter represents ordinal number of scalar rule induction
run,

The scalarRule variable represents a rule produced by a scalar rule in-
duction run with runIndex-th dataset part as input – its only impor-
tant member variable, for now, is significands – an ordered collection
of rule significands as defined in Section 1.3.1.2.

Tables 4.9 and 4.10 depict the results of two scalar rule induction runs.
Such results will be subsequently stored into a rule map illustrated in Ta-
ble 4.11, later passed to the ruleMap parameter of the MergeRulesets algo-
rithm introduced in the next section.

The s(+) and s(−) table header identifiers in Tables 4.9, 4.10, 4.11, 4.12
and 4.13 denote sets of examples represented by EIDs correctly and incorrectly
covered by the given rule.

Note that the results of scalar rule induction illustrated below are intended
to illustrate the effect of the MergeRulesets algorithm and thus as such do
not correspond to the input dataset slices illustrated in Tables 4.5 and 4.6.

Rule s(+) s(−)
AA→B ≥ −2.4 ∧ AA→B ≤ 1.3 =⇒ + {1, 2, 3, 4} ∅

AA→B ≤ 6 ∧ AB→C ≥ 0 ∧ AB→C ≤ 1 =⇒ + {1, 2} {3, 4}

Table 4.9: Ruleset produced by the first run of rule induction

The IndexRuleset algorithm will be implemented into the indexRuleset
procedure in the Ripper package.
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Rule s(+) s(−)
AA→B ≥ 0 =⇒ + {1, 2, 3} {4}

Table 4.10: Ruleset produced by the second run of rule induction

Significand Set Run Results

{AA→B}

Run No. Run Rule s(+) s(−)
1 AA→B ≥ −2.4 ∧ AA→B ≤ 1.3 =⇒ + {1, 2, 3, 4} ∅
2 AA→B ≥ 0 =⇒ + {1, 2, 3} {4}

{AA→B,AB→C}
Run No. Run Rule s(+) s(−)

1 AA→B ≤ 6 ∧ AB→C ≥ 0 ∧ AB→C ≤ 1 =⇒ + {1, 2} {3, 4}
2 - - -

Table 4.11: Rule map containing run rulesets from Table 4.9 and 4.10

Rule Induction Postprocessing

After each scalar rule induction run completes and their results are stored into
the rule map as described in the previous section, the rulesets will be merged
using the MergeRulesets algorithm proposed in Listing 4.7.

MergeRulesets(ruleMap) {
R := emptySet().

for (runsRules of ruleMap) {
// merge rules from all runs sharing the same
// rule significand sets and input EID sets
multiRule := MergeRules(runsRules).

R.add(multiRule).
}

return R.
}

Listing 4.7: MergeRulesets algorithm pseudocode

The meaning of symbols in the MergeRulesets pseudocode depicted in List-
ing 4.7 is as follows:

The ruleMap parameter represents a table as a result of rule induction over
the same set of EIDs with rule significand set as keys and tables with
run numbers assigned to rules as values – an example of such map is il-
lustrated in Table 4.11,

The runsRules variable is a key-value pair representing a single item of the
ruleMap collection,
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The R data structure represents the final set of rules with RealVector objects
as values.

MergeRules(runsRules) {
outRule := MultiRule().
outRule.label := +. // RIPPERk runs in as-is implementation state

// produce only rules with positive label
outRule.significands := runsRules.key. // runsRules.key contains

// the significands array

for (si := significand.index of runsRules.key) {
outRule.values[si].lowerBound := negativeInfinity().
outRule.values[si].upperBound := positiveInfinity().

}

outCorrectExamples := emptySet().
outIncorrectExamples := emptySet().

for ((runIndex, runRule) of runsRules.value) {
MergeValues(

runRule.significands,
outRule.values,
runRule.values,
runIndex

).

if (outCorrectExamples.isEmpty()) {
outCorrectExamples := runRule.correctExamples.

}
else {

outCorrectExamples := intersect(
outCorrectExamples,
runRule.correctExamples

).
}

if (outIncorrectExamples.isEmpty()) {
outIncorrectExamples := runRule.incorrectExamples.

}
else {

outIncorrectExamples := intersect(
outIncorrectExamples,
runRule.incorrectExamples

).
}

}

outRule.correctExampleCount := outCorrectExamples.size().
outRule.incorrectExampleCount := outIncorrectExamples.size().

return outRule.
}

Listing 4.8: MergeRules procedure pseudocode
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The meaning of symbols in the MergeRules pseudocode depicted in List-
ing 4.8 is as follows:

The runsRules parameter is a key-value pair where the key is an ordered
collection of rule significands and the value is a key-value pair consisting
of run number as key and run rule as value,

The outRule variable represents an output rule which contains the merged
RIPPERk C++ wrapper run results – its member variables are:

• label – a label assigned to the rule located in rule conclusion as de-
fined in Section 1.3.1.2,
• significands – an ordered collection of rule significands as defined

in Section 1.3.1.2,
• correctExampleCount – a number representing the count of cor-

rectly covered relational dataset examples by the rule,
• incorrectExampleCount – a number representing the count of in-

correctly covered relational dataset examples by the rule,
• values – an ordered collection of rule values for each significand

from the rule signicicand collection located in the significands
member variable,

The negativeInfinity() and positiveInfinity() functions represent the
vectors (−∞, . . . ,−∞) and (∞, . . . ,∞), of desired vector size – the func-
tions will be implemented into the DomainElementFactory class and the
size of the vectors constructed will be equal to VECTOR_SIZE,

The outCorrectExamples variable represents the set of correctly covered
relational dataset examples by the merged rule, represented by EIDs,

The outIncorrectExamples variable represents the set of incorrectly covered
relational dataset examples by the merged rule, represented by EIDs,

The runIndex variable represents the ordinal number of scalar rule induction
run,

The runRule variable represents a rule produced by a scalar rule induction
run with runIndex-th dataset part as input – its member variables are:

• label – a label assigned to the rule located in rule conclusion as de-
fined in Section 1.3.1.2,
• significands – an ordered collection of rule significands as defined

in Section 1.3.1.2,
• correctExamples – a set of correctly covered relational dataset

examples by the rule, represented by EIDs,
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• incorrectExamples – a set of incorrectly covered relational dataset
examples by the rule, represented by EIDs,

• values – an ordered collection of rule values for each significand
from rule signicicand collection located in the significands mem-
ber variable.

MergeValues(significands, resultValues&, inputValues, runIndex) {
// MergeValues mutates the resultValues parameter
// value, thus does not return anything

for (si := significand.index of significands) {
resultValues[si].lowerBound[runIndex] := CoalesceValue(

inputValues[si].lowerBound,
BoundType.LOWER_BOUND

).
resultValues[si].upperBound[runIndex] := CoalesceValue(

inputValues[si].upperBound,
BoundType.UPPER_BOUND

).
}

}

Listing 4.9: MergeValues procedure pseudocode

The meaning of symbols in the MergeValues pseudocode depicted in List-
ing 4.9 is as follows:

The significands parameter represents an ordered collection of rule signif-
icands,

The resultValues parameter represents a mutable reference to an ordered
collection of merged rule values for each rule significand,

The inputValues parameter represents an ordered collection of scalar rule
induction output rule values for each rule significand,

The runIndex parameter represents ordinal number of a scalar rule induction
run,

The si variable represents an index of a significand in the significands
collection,

The BoundType enumeration models a type of interval bound and has got
two members: LOWER_BOUND representing lower bound of an interval
and UPPER_BOUND representing upper bound of an interval.
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CoalesceValue(ruleValue?, boundType) {
if (boundType == BoundType.LOWER_BOUND) {

return NEGATIVE_INFINITY if ruleValue == undefined else ruleValue.
}
else if (boundType == BoundType.UPPER_BOUND) {

return POSITIVE_INFINITY if ruleValue == undefined else ruleValue.
}

}

Listing 4.10: CoalesceValue procedure pseudocode

The meaning of symbols in the CoalesceValue pseudocode depicted in List-
ing 4.10 is as follows:

The ruleValue parameter represents a scalar number which might or might
not be defined,

The boundType parameter represents interval bound type and can be of
BoundType enumeration type described in symbol explanation for the
MergeValues procedure,

The NEGATIVE_INFINITY constant represents a numeric value for negative
infinity, i.e. −∞,

The POSITIVE_INFINITY constant represents a numeric value for positive
infinity, i.e. ∞.

Table 4.13 illustrates the result of running the MergeRulesets algorithm
with data illustrated in Table 4.12 as its input.

Significand Set Run Results

{AA→B}

Run No. Run Rule s(+) s(−)
1 AA→B ≥ −2.4 ∧ AA→B ≤ 1.3 =⇒ + {1, 2, 3, 4} ∅
2 AA→B ≥ 0 =⇒ + {1, 2, 3} {4}

{AA→B,AB→C}
Run No. Run Rule s(+) s(−)

1 AA→B ≤ 6 ∧ AB→C ≥ 0 ∧ AB→C ≤ 1 =⇒ + {1, 2} {3, 4}
2 - - -

Table 4.12: Rule map as an input to the MergeRulesets algorithm

Merged Rule |s(+)| |s(−)|
AA→B ≥ (−2.4, 0) ∧ AA→B ≤ (1.3,∞) =⇒ + |{1, 2, 3}| = 3 |∅| = 0

AA→B ≤ (6,∞) ∧ AB→C ≥ (0,−∞) ∧ AB→C ≤ (1,∞) =⇒ + |{1, 2}| = 2 |{3, 4}| = 2

Table 4.13: Rules extracted using MergeRulesets from rule map in Table 4.12

The MergeRulesets algorithm will be implemented into the mergeRulesets
function and the mergeRules, mergeValues and coalesceValue procedures
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implement the MergeRules, MergeValues and CoalesceValue procedures
proposed in Listing 4.8, 4.9 and 4.10 respectively.

All the functions and procedures will be implemented into the Ripper
package, alongside the original functions used as a wrapper around the ripper
K&R C third-party library.

RIPPER Input Data Format Changes

The scalar rule induction implemented by the ripper third-party library oper-
ating on scalar values will newly accept a collection of floating point numbers
represented by the double data type instead of a collection of int values.

4.4 DC-PBC Change Analysis

DC-PBC will undergo only the substitution of value literals refactoring – other
refactoring techniques analogous to the techniques used in DCM component
refactoring will not be utilized because:

• the structure of the project is simple – consisting of only 3 Python
modules as stated in Section 3.4,

• changes to the DC-PBC codebase regarding the replacement of int vari-
ables by a custom temporal domain type is straight-forward in loosely
typed languages without required variable types such as Python.

4.4.1 Substitution of Value Literals

Substitution of value literals in the DC-PBC component will be straight-
forward – the values ∞ and −∞ used for initializing several variables will be
replaced by calls to the positive_infinity and negative_infinity meth-
ods of the class DomainElementFactory introduced in the next section.

4.4.2 RealVector Class

Analogous to the RealVector class proposed for DCM component in Sec-
tion 4.3.2.1, this class with the same name will represent a vector of arbitrary
length with real numbers as its elements – i.e. t ∈ Rd.

Contrary to the C++ implementation of the RealVector class, this class
will not have any abstraction declaration such as type alias because Python
is loosely typed and the codebase of DC-PBC itself does not utilize optional
type annotations – adding type annotations would be counterproductive.

45



4. Analysis and Design

In addition to the RealVector class, a class DomainElementFactory anal-
ogous to the one introduced in Section 4.3.2.1 will be implemented, with
the same intents and design considerations considering its VECTOR_SIZE static
member variable as its DCM counterpart. Class diagram of the aforemen-
tioned classes is depicted in Figure 4.6.

Figure 4.6: Temporal domain element class hierarchy (DC-PBC)

Method Responsibility
sub subtracts two RealVectors
neg negates the RealVector
str converts the DomainElement to a string serialization

format for dcm input converts the DomainElement to a string representation used as DCM input
is inside bounds(a, b) checks if the RealVector denoted as ~c fulfills the hyperrectangle test,

i.e. ~c ⊂= R(~a,~b) where a and b are of type RealVector

Table 4.14: RealVector class interface

Both RealVector and DomainElementFactory classes will be implemented
in a python module vectors.py.

Operators

The operator set implemented in the RealVector class is based on code occur-
rences of operators that were used with the previous representation of temporal
domain elements – i.e. int values. Specific algebraic operator and method
definitions are listed below.
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Given two vectors ~a = (a1, a2, . . . , ad) and ~b = (b1, b2, . . . , bd), a, b ∈ Rd:

• The operator binary - will perform vector subtraction, i.e. the operation
denoted as ~a−~b and will represent a vector (a1−b1, a2−b2, . . . , ad−bd) ∈
Rd.

• The operator unary - will perform vector negation, i.e. the operation
denoted as −~a and will represent a vector (−a1,−a2, . . . ,−ad) ∈ Rd.

Substitution of Comparison Operators

The only occurrences of comparison operators in the source code of DC-PBC
component are interval checks. Similarily to the substitution of interval checks
in the DCM component, interval checks in the DC-PBC component were sub-
stituted by calls to the RealVector.is_inside_bounds method implementing
the hyperrectangle test as defined in Section 2.3.1.

String Conversion Methods

The RealVector class will implement two different methods for converting an
instance of the class to a string:

• The __str__() magic method definition will convert the instance to a
string representation suitable for output file formatting,

• The format_for_dcm_input() method will convert the instance to a
string representation used for DCM input file formatting before the dis-
criminant chronicles mining phase as described in Section 3.3.

4.4.3 DC-PBC Input Parser Changes

Because the main entry point for the whole process of discriminant chronicles
mining and subsequent classification will be DC-PBC, this project will undergo
more changes to its parsing code in order to comply with the goal F2 stated
in Section 4.1.

AS-IS Input File Format Change

The original parser located in the McDataset::load_db_line(...) method
will be altered to accept a file format the same as the file format proposed
for the DCM component in Section 4.3.2.3.
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New File Format

A new file format accepted by DC-PBC will be based on Matlab CSV ex-
port format (using the writematrix function) of the datasets provided by
the supervisor of the thesis.

The datasets represented in this format will be split into a total of 3 files.
Dataset file structure and file content description is depicted in Figure 4.7.

<dataset directory> ........................... the dataset directory
input.csv ...................... the file containing sequence events
satisfactory.csv ...............the file containing sequence labels
temperatures.csv .......the file containing sequence temporal data

Figure 4.7: New file format dataset directory structure

Listing 4.11, 4.12 and 4.13 depict internal formats of particular input files
listed in Figure 4.7. Worth noting that values in input.csv are not separated
by any separator, thus limiting event type names to single-character names.

ABCD
BCDA
CDAB
DABC

Listing 4.11: input.csv data example

1
1
0
0

Listing 4.12: satisfactory.csv data example

15.0,15.0,23.0,23.0,29.0,29.0,37.0,37.0
15.0,15.0,16.0,16.0,28.0,28.0,29.0,29.0
15.0,15.0,16.0,16.0,25.0,25.0,26.0,26.0
15.0,15.0,21.0,21.0,22.0,22.0,28.0,28.0

Listing 4.13: temperatures.csv data example

The datasets represented in this format will be converted to the modi-
fied as-is input file format (proposed in Section 4.3.2.3) using a new class
NewFileFormatConverter implementing the conversion. The converted input
files will be placed into the temp/dataset/ directory located in the project
root and both the classification and mining process will continue with the con-
verted representation.

The NewFileFormatConverter class will also automatically infer input
temporal element vector length for the rest of the process, so the -s/--vecsize
CLI argument will not need to be specified when using this input file format.
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A 15.0 15.0 B 23.0 23.0 C 29.0 29.0 D 37.0 37.0
B 15.0 15.0 C 16.0 16.0 D 28.0 28.0 A 29.0 29.0

Listing 4.14: positive sequence set after conversion

C 15.0 15.0 D 16.0 16.0 A 25.0 25.0 B 26.0 26.0
D 15.0 15.0 A 21.0 21.0 B 22.0 22.0 C 28.0 28.0

Listing 4.15: negative sequence set after conversion

New File Format Converter

As discussed in the previous section, the class NewFileFormatConverter re-
sponsible for parsing and converting the new file format will be placed into
a Python module named new_file_format_converter.py.

4.4.4 DC-PBC CLI Changes

Analogically to DCM CLI changes stated in Section 4.3.2.2, a new CLI pa-
rameter -s/--vecsize will be introduced in order to specify domain element
vector size, again stored into the DomainElementFactory.VECTOR_SIZE static
member variable. For temporal element vector size equal to 1 or when using
the new file format (see the paragraph below), the parameter will be non-
mandatory.

The parameter -e/--episode related to discriminant episodes mining will
be removed as it is out of the scope of this thesis.

Related to the new file format as discussed in Section 4.4.3, the program
will accept a new CLI flag -l/--legacy which will use the changed as-is
file format for input data instead of the new file format proposed in Sec-
tion 4.4.3. This file format will be used mainly for regression testing the sys-
tem on the datasets provided with the implementation by its authors in [6].

Note that for each usage of the legacy file format (i.e. when specifying the
-l/--legacy CLI flag) where domain element vector has size greater than 1,
a CLI parameter -s/--vecsize must be defined too.

4.5 Conclusion

This chapter discussed the changes to be implemented into the original ver-
sion of the system – beginning with stating the high-level description of im-
plementation goals and non-goals, then elaborating particular changes to each
component in depth.
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Chapter 5
Testing

This chapter will discuss software testing performed on the generalized version
of the system for discriminant chronicles mining.

Section 5.1 will briefly introduce the reader to high-level principles of in-
tended testing methodology further elaborated in subsequent sections.

Section 5.2 will state the methods utilized in the testing methodology
for testing the system.

Sections 5.3 and 5.4 will elaborate unit tests applied to individual sys-
tem units – listing performed assertions and introducing additional changes
to the code of the system for increasing code testability.

Section 5.5 will elaborate component tests applied to individual system
components – discussing test kinds and particular test cases.

Section 5.6 will elaborate integration tests applied to the system as a whole
– again, discussing test kinds and particular test cases.

Finally, Section 5.7 will state the results of the testing performed on
the system and additional fixes performed to fix the bugs found in the system
by testing.

5.1 Testing Methodology

”As software takes on ever more vital functions in life-critical and mission-
critical applications and in applications that carry massive financial stakes,
it becomes increasingly important to ensure that software products fulfil their
function with a high degree of dependability” [15]. Choosing appropriate
software testing methodology consisting of complementing software testing
techniques will help ensure that the system as a whole is dependable upon.

The original implementation proposed by Yann Dauxais et al. available at
[5] and [6] did not include any tests as in traditional software testing manners –
thus it is assumed that the implementations of the DCM and DC-PBC projects
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in its original state were tested by its author and are correct – any assertions
concerning backward compatibility and regression testing will be compared
to the output of the original implementation.

In order to test the changes implemented in the scope of this thesis,
the most affected parts of the system will be tested using the following ap-
proaches:

• unit tests will be applied for newly created code units,

• regression and generalization component testing will be applied to indi-
vidual system components (DCM, DC-PBC ),

• regression and generalization integration testing will be applied to the sys-
tem as a whole.

All the tests will be automated using scripts in order to allow implementing
any changes to the system faster in the future.

5.2 Testing Methods

5.2.1 Unit Testing

Unit tests are short tests initially written by software implementors in the de-
velopment phase of the software development cycle, performing assertions over
software units to comply with given deterministic specification [15].

Worth noting, the assertions in unit tests are usually and if possible writ-
ten to test solely the responsibilities of given software unit – i.e. the unit test
should test a single class/a single method. Any further integrations and link-
ings to/with other software units should be disbanded prior to writing the unit
tests. Examples of techniques realizing such functional isolation of software
units include mocking, stubbing and faking. Utilizing such techniques allows
the classes to be tested more rigorously and also makes the tests less fragile
when implementing changes in unrelated classes.

5.2.2 Component Testing

Component testing is a type of software testing where individual system
components are tested separately, i.e. without integrating the components
of the system together. Such isolation of software components is usually
achieved by the technique called mocking – providing files imitating an in-
put from another component to the tested component.

Contrary to unit testing, functional isolation is applied to components
instead of individual classes or methods.
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5.2.3 Integration Testing

Integration testing tests the system when all of its components are integrated
together. Contrary to the deterministic nature of specifications used for unit
testing, here the requirements for testing might contradict each other or not
even cover the whole spectrum of system functionalities [15].

Integration testing is the final stage of the testing methodology proposed
in Section 5.1, thus no functional isolation will be applied to the components
in this type of testing.

5.2.4 Regression Testing

According to [15], regression testing takes place in the maintenance phase
of the software development cycle to ensure that when software requirements
or configuration changes, the system will be tested to check that the changes
did not break existing functionalities of the system.

5.3 DCM Unit Testing

Unit testing will be applied to new classes and significantly changed parts
of the code of DCM :

• The RealVector class introduced in Section 4.3.2.1,

• The DomainElementFactory class introduced in Section 4.3.2.1,

• The GeneralRule<T> and SingleRule classes introduced in Section 4.4.3,

• The extractSingleData, run and extractMultiRule functions located
in the ripper package proposed in Section 4.3.2.4.

The catch2 C++ unit testing framework available from [16] will be used
for defining the unit tests, formulating their assertions and compiling into an
executable invoked using a system command line interpreter of choice.

The unit testing assertions for the DCM component listed in the following
sections will test only public class members and methods. Private and pro-
tected members and methods of the classes are not by design of the C++ pro-
gramming language accessible, thus will be tested by creating stimuli for public
members and methods that will test them transitively.

All the unit tests will be placed into the tests package in the DCM project
and can be built independently of the main DCM executable.
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5.3.1 RealVector Unit Testing

This class is not coupled to any other class, thus is well testable as-is, without
applying any specific unit testing technique.

Unit testing assertions for the RealVector class are listed in Table 5.1.

Units Assertions
constructors It creates a blank RealVector when using the parameterless constructor.

operator+ It adds two RealVectors together correctly.

operator- It subtracts two RealVectors correctly.

isInsideBounds It performs a hyperrectangle test correctly.
It works correctly for points on hyperrectangle bounds.
It works correctly for some coordinates outside of hyperrectangle bounds.
It works correctly for all coordinates outside of hyperrectangle bounds.
It works correctly for hyperrectangle bounds containing inf/-inf values.

operator<< It formats a RealVector containing integers correctly.
It formats RealVectors containing inf/-inf values correctly.
It formats a RealVector containing floating point numbers correctly.
It formats a RealVector containing very small floating point numbers
using scientific notation.

Table 5.1: RealVector class unit testing assertions (DCM)

5.3.2 DomainElementFactory Unit Testing

This factory class is coupled to the RealVector class because it produces
instances of it. However, assuming that the assertions need to be made over
the produced RealVector instances themselves, no further mocking or other
unit testing technique will be applied in the testing process.

Unit testing assertions for the DomainElementFactory class are listed
in Table 5.2.

Units Assertions
zero It constructs a RealVector with all zeroes correctly.

It reacts to VECTOR SIZE value changes properly.

positiveInfinity It constructs a RealVector with all infinity values correctly.
It reacts to VECTOR SIZE value changes properly.

negativeInfinity It constructs a RealVector with all negative infinity values correctly.
It reacts to VECTOR SIZE value changes properly.

Table 5.2: DomainElementFactory class unit testing assertions (DCM)
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5.3.3 Rule Classes Unit Testing

Both classes are not coupled to any other class, thus are well testable as-are,
without applying any specific unit testing technique.

Because the SingleRule class extends the already separately tested class
GeneralRule<double>, while adding two protected members and its corre-
sponding public getters and setters, only the aforementioned getters and set-
ters will be tested.

Unit testing assertions for the classes GeneralRule<T> and SingleRule
are listed in Table 5.3 and Table 5.4.

Units Assertions
constructor It constructs an instance of GeneralRule<int> correctly.

getClass, getConstraints,
getValues, getFrequency,
getOFrequency

All the getters access object properties properly.

Table 5.3: GeneralRule class unit testing assertions

Units Assertions
setCorrectExamples,
setIncorrectExamples

All the setters mutate object properties properly.

getCorrectExamples,
getIncorrectExamples

All the getters access object properties properly.

Table 5.4: SingleRule class unit testing assertions

5.3.4 RIPPER Wrapper Procedures Unit Testing

Unit testing assertions for the new procedures of the Ripper C++ wrapper
namespace are listed in Table 5.5.

Units Assertions
indexRuleset It stores the rules correctly for the significand set {AA→B}.

It stores the rules correctly for the significand set {AA→B,AB→C}.
It does not store given rule into the rule map if no rule is present for given run.

mergeRulesets It creates a correct number of resulting rules.
It assigns the pos label to all resulting rules.
It assigns a distinct significand set for each resulting rule.
It merges rule values correctly.
It merges rule values correctly for some run rules missing.
It computes the count of correctly/incorrectly covered examples correctly.

Table 5.5: Ripper procedures unit testing assertions
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5.4 DC-PBC Unit Testing

Unit testing will be applied to all classes newly introduced to the codebase
of DC-PBC :

• RealVector introduced in Section 4.4.2,

• DomainElementFactory introduced in Section 4.4.2,

• NewFileFormatConverter introduced in Section 4.4.3.

The unittest unit testing framework bundled with Python 3 will be used
for defining the unit tests, formulating their assertions and running the tests
using a CLI.

All the unit tests will be placed into the tests directory in the DC-PBC
project.

5.4.1 RealVector Unit Testing

This model class is not coupled to any other dependency in terms of standard
library calls or calls to methods of any other class, so it is testable well as-is.

Unit testing assertions for the RealVector class are listed in Table 5.6.

5.4.2 DomainElementFactory Unit Testing

Similarily to its DCM counterpart, no mocking or other unit testing tech-
nique will be performed and the assertions will be made over the produced
RealVector objects.

Unit testing assertions for the DomainElementFactory class are listed
in Table 5.7.

5.4.3 NewFileFormatConverter Unit Testing

Opposed to the previous classes, this class is tightly coupled to the stan-
dard Python library by calling the os.open and os.path.isfile methods
used for working with the file system. Such coupling makes the class difficult
to test in performance-oriented environments, so the methods _open_file,
_write_output and _is_file substituting direct calls to functions os.open
and os.path.isfile will be introduced to the class.

Along with the _open_file, _write_output and _is_file methods in-
troduced in the previous paragraph, a new optional constructor parame-
ter mock_input_files and new instance member variables _mock_infiles
and _mock_outfiles will be introduced to the class in order to allow for in-
put and output file mocking, resulting in simplified unit testing assertions
and thus better testability of the NewFileFormatConverter class.
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Units Assertions
init It constructs a RealVector from a tuple correctly.

is in interval It performs closed interval check correctly.
It works correctly for edge values.
It works correctly for inf/-inf bound values.
It raises an exception when interval bounds are not properly ordered.
It does not raise an exception for lower bound equal to upper bound.

sub It subtracts two RealVectors correctly.

is inside bounds It performs a hyperrectangle test correctly.
It works correctly for points on hyperrectangle bounds.
It works correctly for some coordinates outside of hyperrectangle bounds.
It works correctly for all coordinates outside of hyperrectangle bounds.
It works correctly for hyperrectangle bounds containing inf/-inf values.

neg It negates all RealVector elements correctly.

is tuple It correctly marks a tuple literal as tuple.
It raises an exception when supplied a dictionary.
It raises an exception when supplied an instance of RealVector.

is realvector It correctly marks a RealVector object as RealVector instance.
It raises an exception when supplied a tuple.
It raises an exception when supplied a dictionary.

vectors are same length It works correctly for two RealVectors of the same length.
It raises an exception for two RealVectors of different length.

format for output, str It formats a RealVector containing whole numbers correctly.
It formats RealVectors containing inf/-inf values correctly.
It formats a RealVector containing floating point numbers correctly.

Table 5.6: RealVector class unit testing assertions (DC-PBC)

Units Assertions
positive infinity It produces a vector of positive infinity values correctly.

It reacts to VECTOR SIZE value changes properly.

negative infinity It produces a vector of negative infinity values correctly.
It reacts to VECTOR SIZE value changes properly.

tuple literal is correct It marks well-formed tuple literals as correct.
It raises an exception for malformed tuple literals.

parse from cpp It parses tuple literals containing whole numbers correctly.
It parses tuple literals containing inf/-inf values correctly.
It parses tuple literals containing floating point numbers correctly.

Table 5.7: DomainElementFactory class unit testing assertions (DC-PBC)

Unit testing assertions for the NewFileFormatConverter class are listed
in Table 5.8.
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Units Assertions
convert new to old It converts positive sequences to old format correctly.

It converts negative sequences to old format correctly.
It infers vector size correctly.
It raises an exception for fluctuating number of items within file lines.

check same file length It raises an exception when input files have differing line count.

check file presence It raises an exception when some input files are missing in the dataset.

parse input line It parses a line of input.csv correctly.
It parses a line correctly when in a file with LF line endings.
It parses a line correctly when in a file with CRLF line endings.
It parses a line with trailing whitespace correctly.
It does not raise an exception for event types named using metacharacters.

parse satisfactory line It parses a line of satisfactory.csv correctly.
It parses a line correctly when in a file with LF line endings.
It parses a line correctly when in a file with CRLF line endings.
It raises an exception for a line not containing the ”0” or ”1” character.
It raises an exception for a line containing multiple characters.

parse temperatures line It parses a line of temperatures.csv correctly.
It parses a line correctly when in a file with LF line endings.
It parses a line correctly when in a file with CRLF line endings.
It raises an exception for a line containing incorrectly formatted number.

convert output list to str It serializes a list of arbitrary stringified values correctly.
It serializes an empty list to empty line.

get input filename It produces correct input file paths for known file types.
It raises an exception for unknown file type.

get output filename It produces correct output file paths for known sequence labels.
It raises an exception for unknown sequence label.

Table 5.8: NewFileFormatConverter class unit testing assertions

5.5 Component Testing

Unit testing itself as elaborated in Section 5.3 and Section 5.4 will certainly
prevent errors in the newly introduced code units, however, will not prove
itself sufficient for verifying overall correct functionality of individual system
components – DCM and DC-PBC alone.

Testing both components of the system separately will ensure that each
component works correctly on its own without errors propagating from one
component to another.

Particular approaches used for testing system components separately are
elaborated in the following sections.
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5.5.1 DCM Component Testing

5.5.1.1 Regression Testing

The testing will be set up as a set of equality assertions between the output
of the generalized version of the system and testing data based on the output
of the original version of the system while supplying both versions the same
arguments and the same dataset. The list of test cases is illustrated in Ta-
ble 5.9. Note that the min(|E|) and max(|E|) parameters represent the min-
imal and maximal chronicle event multiset size and when mining chronicles
discriminant for S+ with respect to S−, relative minimal support threshold
fmin ∈ 〈0, 1〉 is defined as fmin = σmin

|S+| .

Dataset Arguments
proportionality fmin = 0.25, gmin = 2.0,min(|E|) = 2,max(|E|) = 5
ECG fmin = 0.5, gmin = 5.0,min(|E|) = 2,max(|E|) = 5
BIDE-D/unix fmin = 0.5, gmin = 2.0,min(|E|) = 2,max(|E|) = 3
BIDE-D/blocks fmin = 0.5, gmin = 20.0,min(|E|) = 5,max(|E|) = 5
BIDE-D/asl-bu fmin = 0.5, gmin = 1.0,min(|E|) = 6,max(|E|) = 8
BIDE-D/context fmin = 0.9, gmin = 7.0,min(|E|) = 7,max(|E|) = 9

Table 5.9: DCM component regression test cases

Component Testing Helper Tool

Because the output format of the generalized version differs slightly from
the output format of the original version of DCM, a tool called dcm_differ
will be implemented using Python programming language, allowing for auto-
mated component testing while respecting the differences between the output
of the original and the generalized version of DCM.

The main features of dcm_differ are:

• equality assertions among output chronicles,

• tolerating minor changes in the output format of the generalized version,
namely the mandatory < and > characters in RealVector serialization
as specified in Section 4.3.2.1,

• simple generalization testing (tolerating duplicated vector items for gen-
eralization testing as specified in Section 5.5.1.2),

• tolerating different order of chronicles in the resulting chronicle output
list (introduced by the changes described in 4.3.1.2).
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The dcm_differ testing tool will accept the following CLI parameters:

• --old <filename> (mandatory) will specify the output of the original
implementation saved to a file,

• --new <filename> (mandatory) will specify the output of the new im-
plementation saved to a file,

• --check-equivalence (non-mandatory) will turn on the generalization
testing feature as described in the previous bullet list.

5.5.1.2 Generalization Testing

For the needs of testing the generalization code itself, a new dataset called
proportionality_2D will be derived from the proportionality dataset.

Both datasets will share the same event types and counts of positive
and negative sequences. The proportionality_2D dataset will have vector
size equal to 2 and its events will have its two domain vector elements dupli-
cated and equal to the same value as its equivalents in the original dataset.

An example of the generalization step between the proportionality and
proportionality_2D datasets containing equivalent sequences is illustrated
in Listing 5.1 and Listing 5.2.

A 15 B 23 C 29 D 37
A 15 B 16 C 28 D 29
A 15 B 16 C 25 D 26
A 15 C 21 B 22 D 28

Listing 5.1: proportionality dataset example

A 15 15 B 23 23 C 29 29 D 37 37
A 15 15 B 16 16 C 28 28 D 29 29
A 15 15 B 16 16 C 25 25 D 26 26
A 15 15 C 21 21 B 22 22 D 28 28

Listing 5.2: Equivalent proportionality 2D dataset example

With such changes to the input dataset, the resulting chronicles are ex-
pected to have the same multisets, the same support and equivalent hyperrect-
angle constraints (equivalent in terms of duplicated vector elements) compared
to the original output. The test cases used for testing the generalization are
listed in Table 5.10.

The dcm_differ testing tool introduced in Section 5.5.1.1 will be used
for constructing equivalence assertions for this kind of tests.
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Datasets Arguments
proportionality,
proportionality 2D

fmin = 0.25, gmin = 2.0,min(|E|) = 2,max(|E|) = 5

proportionality,
proportionality 2D

fmin = 0.7, gmin = 2.0,min(|E|) = 3,max(|E|) = 6

proportionality,
proportionality 2D

fmin = 0.1, gmin = 30.0,min(|E|) = 1,max(|E|) = 3

Table 5.10: DCM component generalization test cases

5.5.2 DC-PBC Component Testing

Because the DC-PBC component requires input from the DCM component,
input file mocking functionality will be implemented into the DC-PBC com-
ponent as described in Section 5.2.2. Schematics depicting the DC-PBC com-
ponent in original mode and input mocking mode are illustrated in Figure 5.1
and 5.2, respectively.

A new parameter --component-debug-in <fold 1 neg>,<fold 1 pos>,
...,<fold k neg>,<fold k pos> for DC-PBC CLI will implement the DCM
input mocking mode. Each file represents a single mock input from the DCM
component for each fold and each label (pos/neg). The number of folds
for a given test run will be inferred automatically as k. Thus the number
of mock files must be even and the mock files must be supplied to the param-
eter in exact order.

The new --disable-randomness CLI parameter will, when present, make
all stochastic elements in the component deterministic – all random number
generators will produce a single fixed value and dataset shuffling in dataset
fold splitting phase will not be executed so the testability of the component
will be deterministic between individual test runs.

To simplify performing assertions over DC-PBC outputs, the new non-
mandatory --out <dir> CLI argument will be implemented to specify the out-
put directory for DC-PBC results containing mining and classification results.

Note that, as described in Section 3.3, the DC-PBC component is also
integrated with third-party WEKA component while utilizing it in the clas-
sification process. The WEKA component will not be mocked while testing
the DC-PBC component because it has the same responsibility as the internal
sklearn SVC classifier, essentially being part of the DC-PBC component.

61



5. Testing

Figure 5.1: DC-PBC and DCM component integration schema

Figure 5.2: DC-PBC in DCM input mocking mode

5.5.2.1 Testing Data

The data for DC-PBC component testing will be prepared by modifying
the original implementation of DC-PBC so that it will reveal its DCM com-
ponent inputs. The patch for the original implementation used to generate
mock files is listed in Appendix B.

Modified DCM mock inputs (with < and > added to RealVector serial-
ization), CLI parameters and accordingly modified DC-PBC outputs will be
grouped into test cases and prepared for automatic execution. The standard
Unix diff tool will be used for DC-PBC output assertions.

5.5.2.2 Regression Testing

Both DC-PBC implementations – the original implementation and the gener-
alized implementation will be supplied the proportionality dataset supplied
with the original implementation. Particular test cases for regression testing
of the DC-PBC component are illustrated in Table 5.11. Note that the n
parameter represents a number limiting the total count of resulting chronicles
per class and the k parameter represents growth rate bias, both elaborated
in the README file bundled with the original implementation.
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Datasets Arguments
proportionality fmin = 0.25, gmin = 2.0,min(|E|) = 2,max(|E|) = 5,

#folds = 1, classifier = SVC, n = 90, k = 1

proportionality fmin = 0.4, gmin = 20.0,min(|E|) = 1,max(|E|) = 3,
#folds = 1, classifier = none, n = 90, k = 1

proportionality fmin = 0.25, gmin = 2.0,min(|E|) = 2,max(|E|) = 5,
#folds = 1, classifier = none, n = 90, k = 0

proportionality fmin = 0.3, gmin = 4.0,min(|E|) = 1,max(|E|) = 3,
#folds = 5, classifier = J48, n = 90, k = 1

Table 5.11: DC-PBC component regression test cases

5.5.2.3 Generalization Testing

In addition to the steps described in Section 5.5.2.1, the original DCM input
mock data and DC-PBC output data from a task with proportionality
dataset as input will be extended to two vector elements with duplicated
values. The input dataset for the generalized component will be the new
dataset proportionality_2D. Particular test cases for generalization testing
of the DC-PBC component are illustrated in Table 5.12.

Datasets Arguments
proportionality, fmin = 0.4, gmin = 20.0,min(|E|) = 1,max(|E|) = 3
proportionality 2D #folds = 1, classifier = SVC, n = 90, k = 1

proportionality, fmin = 0.4, gmin = 20.0,min(|E|) = 1,max(|E|) = 3
proportionality 2D #folds = 1, classifier = none, n = 90, k = 5

proportionality, fmin = 0.25, gmin = 2.0,min(|E|) = 1,max(|E|) = 3
proportionality 2D #folds = 2, classifier = none, n = 5, k = 1

Table 5.12: DC-PBC component generalization test cases

5.6 Integration Testing

Testing the system as a whole will share test cases with the DC-PBC com-
ponent, except that DCM input mocking using the --component-debug-in
CLI argument will be disabled and real DCM component will be used for dis-
criminant chronicles mining instead.
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5.6.1 Regression Testing

Particular test cases for regression testing of the system are illustrated in Ta-
ble 5.11.

5.6.2 Generalization Testing

Particular test cases for generalization testing of the system are illustrated
in Table 5.12.

5.7 Testing Results

5.7.1 Unit Testing

The unit tests were written ex-post the implementation was completed –
meaning the author did not follow TDD (Test-Driven Development) or BDD
(Behavior-Driven Development) development methodologies utilizing tests in
the implementation phase of the development cycle.

The assertions themselves as seen in Section 5.3 and Section 5.4 were
constructed to partly reflect the examples illustrated in Chapter 4, capture
important corner cases and test basic expected functionality.

After running the completed suite of unit tests, the testing uncovered
some minor bugs – those bugs were fixed trivially afterwards, making the unit
testing efforts profitable.

5.7.2 Component Testing

After successful implementation of the changes for each component as spec-
ified in Chapter 4 and after running unit tests for each of the components,
component testing took place.

The component testing itself proved worth the effort because it uncovered
some more critical, hard-to-find bugs which could not be covered by the unit
tests directly.

The aforementioned bugs were removed using programming in the debug-
ger and using internal data structure assertions in runtime between specified
application breakpoints.

5.7.3 Integration Testing

Last but not least, integration testing was performed as the last of the three,
testing the system as a whole to ensure it is dependable upon for both the min-
ing and classification tasks. All the bugs found in the previous testing stages
were fixed prior to executing the integration tests.
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5.8. Conclusion

Thanks to the efforts made in the unit and component testing stages,
the integration testing stage did not uncover any new bugs, signifying that
the implementation did neither break the functionality of the original system
nor the generalization worked incorrectly.

5.8 Conclusion

This chapter introduced a testing methodology utilizing various methods of soft-
ware testing for verifying and validating the changes introduced to the system.
The testing methodology proposed was later elaborated in subsequent sections.
The last part of this chapter evaluated the results of the testing process.
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Chapter 6
Proof of Concept

The last chapter of this thesis will demonstrate the abilities of this system on
a dataset containing multi-dimensional input data.

Section 6.1 will describe the dataset used to demonstrate the functionality
of the system.

Section 6.2 will impose qualitative and quantitative criteria on the resulting
set of chronicles.

Section 6.3 will propose a new metric for determining the qualitative prop-
erties of chronicles.

Section 6.4 will introduce a set of metrics which will be used for mining
parameter tuning in subsequent sections.

Section 6.5 will propose a tool which will generate parameter tuning met-
rics tables and extract chronicles with several qualitative properties.

Section 6.6 will describe the mining parameter tuning process and its out-
comes.

Section 6.7 will list the resulting chronicles of the mining process.

Finally, Section 6.8 will discuss the characteristics of the resulting chroni-
cles in the context of the input dataset.

6.1 Dataset

The dataset is based on real-world data introduced in [7], containing multi-
dimensional inputs consisting of temperatures recorded by five sensors during
a crystal growth process (i.e. T ⊂ R5) in a furnace and several event types
representing clusters of two-dimensional vectors recording the power of two
heaters inside the furnace.
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The dataset consists of two sequence sets:

• S+, the positive sequence set, containing a total of 90 sequences in which
the position of the solid/liquid interface is greater than 2500,

• S−, the negative sequence set, containing a total of 165 sequences in
which the position of the solid/liquid interface is lower than 2500.

All the sequences in both sequence sets contain 20 events.
The dataset itself is encoded in the new Matlab Export file format as elab-

orated in Section 4.4.3.

6.2 Output Criteria

The resulting chronicle set C should contain about 20-30 elements and also
should contain both chronicles discriminant for S+ with respect to S− and chron-
icles discriminant for S− with respect to S+.

Each chronicle (E , T ) ∈ C should contain only a minimal number of hyper-
rectangle constraints of type e[[(−∞,−∞,−∞,−∞,−∞), (∞,∞,∞,∞,∞)]]e′
where e, e′ ∈ T .

6.3 Chronicle Specificity

Assume that C = (E , T ) is a chronicle, C is a set of chronicles and ts ∈ 〈0, 1〉.
Chronicle specificity denoted as s(C) is defined as:

s(C) = |{e[[t, t
′]]e′|{e[[t, t′]]e′ ∈ T ∧ [e 6= (−∞, . . . ,−∞) ∨ e′ 6= (∞, . . . ,∞)]}|

|T |
.

Chronicle set C specific for a specificity threshold ts denoted as s(C, ts)
is defined as:

s(C, ts) = {C|C ∈ C ∧ s(C) ≥ ts}.

6.4 Metrics For Parameter Tuning

The metrics used for evaluating the convenience of parameters passed to the
DC-PBC component are:

• |M| is the size of frequent multisets set as introduced in Section 1.3.1,
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6.5. Parameter Tuning Tools

• |E| is the count of distinct frequent multisets which occurred in some
discriminant chronicle of the resulting chronicle set C – i.e. |E| =
|{E|(E , T ) ∈ C}|,

• maxs(C) = max{s(C)|C ∈ C} is the maximal specificity value found
among the chronicles in C,

• |s(C, ts)| is the count of chronicles specific for ts found in given resulting
chronicle set C.

6.5 Parameter Tuning Tools

For the needs of generating CSV files containing tables with parameter tun-
ing metric values, a tool chronicle_statgen was developed in Python pro-
gramming language while also allowing to extract specific chronicles given
a specificity threshold ts.

The CLI parameters of the chronicle_statgen tool are:

• --chrofile (mandatory) specifies the file containing all the chronicles
in the output format of the DC-PBC component,

• --logfile (mandatory) specifies the file containing the log of the DC-
PBC component in verbose mode using its --verbose CLI flag,

• --vecsize (mandatory) specifies the size of vectors in the output file of
DC-PBC,

• --category (non-mandatory) is a parameter used for generating output
table row captions,

• --minspec (non-mandatory) specifies the specificity threshold used for ex-
tracting specific chronicles set from the output file.

6.6 Parameters Tuning

The DC-PBC component will be used for mining the resulting set of chron-
icles as it produces both chronicles discriminant for S+ with respect to S−
and chronicles discriminant for S− with respect to S+ as opposed to DCM
which produces chronicles discriminant only for S+ with respect to S−.

The classification rules generation capabilities of the DC-PBC component
will not be used in this scenario, thus only the parameters affecting the mining
process itself will be tuned:

• fmin ∈ 〈0, 1〉 implemented by the --fmin parameter represents relative
minimal support threshold related to the minimal support threshold pa-
rameter of the DCM algorithm further elaborated in Section 1.3 as follows:
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6. Proof of Concept

– Assume S ′ ∪ S ′′ = S ∧ S ′ ∩ S ′′ = ∅, σmin ∈ N. When mining
chronicles discriminant for S ′ with respect to S ′′, fmin = σmin

|S′| ,

• gmin ∈ 〈1,∞) implemented by the --gmin parameter represents the min-
imal growth rate threshold parameter of the DCM algorithm further elab-
orated in Section 1.3,

• min(|E|) ∈ N implemented by the --mincs parameter represents mini-
mal chronicle event multiset size,

• max(|E|) ∈ N implemented by the --maxcs parameter represents maxi-
mal chronicle event multiset size.

In addition to the parameters stated in the previous paragraph, the speci-
ficity threshold fs will be tuned for the chronicle_statgen tool in order to ex-
tract only a certain number of chronicles satisfying given specificity thresh-
old value. The process of discriminant specific chronicles mining is depicted
in Figure 6.1.

«system» «tool»
Discriminant
Chronicles C

Specific
Discriminant
Chronicles
s(C, ts)

Parameters:
- fmin
- gmin
- min(|E|)
- max(|E|)

Parameters:
- ts

The result

Figure 6.1: Resulting chronicle set mining

6.6.1 Chronicle Event Multiset Size

With fmin, gmin and ts set to fixed values – fmin = 0.2, gmin = 5000 and fs =
0.3, the min(|E|) and max(|E|) parameters were tuned while min(|E|) was kept
equal to max(|E|).

After evaluating the |s(C, 0.3)| metric in Table 6.1, the chronicle event
multiset size was limited by choosing min(|E|) = 2 and max(|E|) = 5.
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6.6. Parameters Tuning

min(|E|),max(|E|) |M| |E| maxs(C) |s(C, 0.3)|
2 86 81 1.000 10
3 242 238 1.000 36
4 545 541 0.500 18
5 1030 1025 0.300 1
6 1670 1666 0.133 0
7 2369 2366 0.048 0
8 2968 2967 0.036 0
9 3293 3293 0.028 0
10 3230 3230 0.000 0

Table 6.1: Tuning metrics for parameters min(|E|) and max(|E|), rouded to 3
decimal places

6.6.2 Minimal Support Threshold and Specificity Threshold

With gmin = 5000, min(|E|) = 2 and max(|E|) = 5, the parameters fmin with
respect to fs were tuned simultaneously – lower fmin values result in a higher
number of chronicles and specific chronicles while the count of specific chron-
icles in the resulting chronicle set should be kept at about 20-30 as specified
in Section 6.2.

fmin |M| |E| maxs(C) |s(C, 0.3)|
0.1 3067 3049 1.0 208
0.3 1220 1216 1.0 21
0.5 558 554 1.0 6
0.7 292 291 1.0 2
0.9 145 144 1.0 2
0.95 79 79 1.0 1
0.96 60 60 1.0 1
0.97 60 60 1.0 1
0.98 60 60 1.0 1
0.99 52 52 1.0 1

Table 6.2: Tuning metrics for parameter fmin with ts = 0.3

The parameter values that were chosen based on data in Table 6.2, 6.3
and 6.4 are fmin = 0.1 and ts = 0.7, mainly because the count of specific
chronicles is adequate to what was stated as required in Section 6.2.

6.6.3 Minimal Growth Threshold

With fmin = 0.1, ts = 0.7, min(|E|) = 2 and max(|E|) = 5 fixed values,
the gmin parameter was tuned while checking if the |s(C, 0.7)| metric would
raise.
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fmin |M| |E| maxs(C) |s(C, 0.5)|
0.1 3067 3049 1.0 84
0.3 1220 1216 1.0 7
0.5 558 554 1.0 3
0.7 292 291 1.0 1
0.9 145 144 1.0 1
0.95 79 79 1.0 1
0.96 60 60 1.0 1
0.97 60 60 1.0 1
0.98 60 60 1.0 1
0.99 52 52 1.0 1

Table 6.3: Tuning metrics for parameter fmin with ts = 0.5

fmin |M| |E| maxs(C) |s(C, 0.7)|
0.1 3067 3049 1.0 26
0.3 1220 1216 1.0 6
0.5 558 554 1.0 2
0.7 292 291 1.0 1
0.9 145 144 1.0 1
0.95 79 79 1.0 1
0.96 60 60 1.0 1
0.97 60 60 1.0 1
0.98 60 60 1.0 1
0.99 52 52 1.0 1

Table 6.4: Tuning metrics for parameter fmin with ts = 0.7

gmin |M| |E| maxs(C) |s(C, 0.7)|
1 3067 3054 1.0 12
5 3067 3049 1.0 22
50 3067 3049 1.0 25
500 3067 3049 1.0 26
5000 3067 3049 1.0 26
50000 3067 3049 1.0 26

Table 6.5: Tuning metrics for parameter gmin

The effect of gmin on the size of specific resulting chronicle set proved to be
compliant with the assumption stated in the previous paragraph. The initial
gmin value was sufficient for yielding an optimal amount of specific chronicles
for ts = 0.7, thus the value was left as-is – i.e. gmin = 5000.
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6.7 Obtained Results

Based on the observations from Section 6.6, the system was invoked using
the DC-PBC component entry point with the following set of arguments:

• --mincs 2,

• --maxcs 5,

• --fmin 0.1,

• --gmin 5000.

The chronicle_statgen tool was called subsequently with the argument
--minspec 0.7.

The system produced a total of 26 specific discriminant chronicles – 18
of them were discriminant for S+ with respect to S−, while 8 of them were
discriminant for S− with respect to S+. Those chronicles are listed in Table 6.6
and 6.7.

Note that for a chronicle C = (E , T ), the table row caption E(C) repre-
sents the event type multiset E and the table row caption T(C) represents
the temporal constraint set of the chronicle.

6.8 Results Interpretation

One very interesting aspect shared across all the resulting chronicles is that
each chronicle C+ discriminant for S+ with respect to S− has its support
value supp(C+,S−) = 0 and each chronicle C− discriminant for S− with re-
spect to S+ has supp(C−,S+) = 0, signifying that the events in the sequence
sets S+ and S− are different to a large extent.

6.9 Conclusion

The last chapter of this thesis described the input dataset and the important
criteria on the resulting set of discriminant chronicles. Next, a set of metrics
used for mining parameters tuning along with a new metric called specificity
were proposed along with a tool for evaluating the chronicle set specificity
and extracting specific chronicles. Afterwards, multi-step parameter tuning
was performed in order to obtain a result satisfying the criteria. Lastly, the re-
sults of the mining were listed in two tables and discussed in the context
of the input dataset.
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Conclusion

All the goals of this thesis were fulfiled:
Chapter 1 introduced the reader to the theoretical basis for discriminant

chronicles mining and presented an implementation of an algorithm used
for discriminant chronicles mining.

Chapter 2 proposed changes to the original theoretical basis along with
new concepts needed for generalizing discriminant chronicles mining for multi-
dimensional data.

Chapter 3 elaborated the original implementation – its technological as-
pects, modular structure and technical issues.

Chapter 4 proposed changes to be made to the original implementation
in order to generalize the system for multi-dimensional data.

Chapter 5 proposed a multi-modal testing methodology which was later ex-
ecuted and helped to fix the bugs in the system after implementing the changes
proposed in the previous chapter.

Chapter 6 applied the modified system to multi-dimensional input data
concerning crystal growth and interpreted the discriminant chronicles from
the resulting set.

Future Development

The modified version of the system is, thanks to its refined modular structure
and automatic tests, easy to quickly and reliably extend or modify further
for any other type of input data – possibly supporting a more diverse set of use-
cases where discriminant chronicles mining might be a useful data mining
technique.
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Appendix A
Acronyms

BDD Behavior-Driven Development

CLI Command Line Interface

CSV Comma-Separated Values

DC-PBC Discriminant Chronicles Pattern-Based Classification

DCM Discriminant Chronicles Mining

GUI Graphical User Interface

K&R Kernighan and Ritchie

LoC Line of Code

ML Machine Learning

STL Standard Template Library

SVC Support Vector Classifier

TDD Test-Driven Development

WEKA Waikato Environment for Knowledge Analysis
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Appendix B
Contents of enclosed CD

README.md ............................ file with CD contents description
results.directory with resulting chronicles and parameter tuning results
src .................. directory with source codes of the implementation

DCM............................source codes of the DCM component
DC-PBC.....................source codes of the DC-PBC component
datasets old..........datasets provided by DCM/DC-PBC authors
datasets new.......................datasets used for demonstration
evaluation tools...chronicle statgen tool used for demonstration
testing patches...........patches used for generating the test data
testing tools ............. dcm differ tool used as a testing helper
component testing ............. source codes of the component tests
integration testing...........source codes of the integration tests

thesis src ................ directory of LATEX source codes of the thesis
DP Busa Radek Bc.pdf.......................thesis text in PDF format

83


	Introduction
	State-of-the-art
	Motivation
	Thesis Goals and Result

	Problem Faced
	State-of-the-art
	Theoretical Foundations
	Chronicle Occurrences
	Discriminant Chronicles

	Discriminant Chronicles Mining
	DCM Algorithm
	Frequent Multiset Extraction
	Discriminant Temporal Constraints Mining

	DCM Algorithm Implementation

	Conclusion

	Towards the Generalization of Discriminant Chronicles Mining
	Motivation
	Conceptual Changes
	Event Types
	Domain
	Sequence Event Order

	New Concepts
	Hyperrectangle Test
	Hyperrectangle Constraints
	Multi-dimensional Chronicles
	Multi-dimensional Chronicle Occurrences
	Discriminant Constraint Mining

	Conclusion

	Current Implementation State
	Technologies Used
	Python
	C++
	scikit-learn
	WEKA
	RIPPERk
	CMake
	Doxygen

	System Features
	High-Level System Structure
	Component Integration

	DC-PBC Implementation Structure
	DCM Implementation Structure
	Abstraction
	Base
	CDA
	Chronicle
	Parser
	Ripper
	ripper

	Technical Debt
	General Code Issues
	DCM Issues

	Conclusion

	Analysis and Design
	Goals of the Generalization
	Non-goals of the Generalization
	DCM Change Analysis
	Refactoring
	Project Structure Refactoring
	Symbolic Type Refactoring

	Changes Related to Requirements
	RealVector Class
	DCM CLI Changes
	DCM Input Parser Changes
	Rule Induction Process Changes


	DC-PBC Change Analysis
	Substitution of Value Literals
	RealVector Class
	DC-PBC Input Parser Changes
	DC-PBC CLI Changes

	Conclusion

	Testing
	Testing Methodology
	Testing Methods
	Unit Testing
	Component Testing
	Integration Testing
	Regression Testing

	DCM Unit Testing
	RealVector Unit Testing
	DomainElementFactory Unit Testing
	Rule Classes Unit Testing
	RIPPER Wrapper Procedures Unit Testing

	DC-PBC Unit Testing
	RealVector Unit Testing
	DomainElementFactory Unit Testing
	NewFileFormatConverter Unit Testing

	Component Testing
	DCM Component Testing
	Regression Testing
	Generalization Testing

	DC-PBC Component Testing
	Testing Data
	Regression Testing
	Generalization Testing


	Integration Testing
	Regression Testing
	Generalization Testing

	Testing Results
	Unit Testing
	Component Testing
	Integration Testing

	Conclusion

	Proof of Concept
	Dataset
	Output Criteria
	Chronicle Specificity
	Metrics For Parameter Tuning
	Parameter Tuning Tools
	Parameters Tuning
	Chronicle Event Multiset Size
	Minimal Support Threshold and Specificity Threshold
	Minimal Growth Threshold

	Obtained Results
	Results Interpretation
	Conclusion

	Conclusion
	Future Development

	Bibliography
	Acronyms
	Contents of enclosed CD

