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Abstrakt

Tato práce se zaměřuje na výběr vhodného nastavení náhradních modelů v
algoritmu DTS-CMA-ES pomocí fitness landscape analysis. Porovnává několik
přístupů pro doporučování náhradních modelů pomocí různých statistických
modelů. Mezi porovnané techniky patří klasifikace, klasifikace do více tříd
a regrese. Pro každou techniku je použito několik modelů a jejich správnost
klasifikace je porovnána pomocí přesnosti, senzitivity, specificity a F1 skóre.

Klíčová slova CMA-ES, black-box optimalizace, náhradní model, selekce
algoritmu, fitness landscape
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Abstract

This thesis focuses on selecting the most suitable settings of surrogate mod-
els in DTS-CMA-ES algorithm using a fitness landscape analysis. Thesis
compares different approaches for recommending the most suitable surrogate
models with a variety of statistical models. Compared approaches are de-
rived from classification, multi-label classification, and regression methods.
For each method, few different statistical models are trained and their classi-
fication correctness is assessed with accuracy, sensitivity, specificity, and F1
score.

Keywords CMA-ES, black-box optimization, surrogate model, algorithm
selection, fitness landscape
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Introduction

Optimization is a field of mathematics that has been studied for centuries.
Many problems can be reduced into a problem of finding global optima of a
function. Gradient descent methods or analytical solutions are often used to
solve these problems.

Expensive black-box optimization is addressing optimization problems in
settings where gradients are not available and evaluation of the optimized
process costs valuable resources such as money or time. Stochastic methods
are commonly used for such tasks.

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a
stochastic method suitable for optimization of a black-box function. Surro-
gate model is a regression model that can be used to accelerate the CMA-ES
algorithm. Instead of evaluating the black-box function in every search point,
the surrogate model is used to ease the number of expensive evaluations by
approximating the underlying black-box function utilizing a regression model.

However, the combination of the CMA-ES with a surrogate model presents
new challenges in tunning surrogate models to make the optimization more
effective.

Fitness landscape analysis is a technique that is trying to characterize the
structure of a fitness landscape. The fitness landscape structure can provide
an important information about which surrogate model is most suitable for
finding the global optima.

This thesis is addressing the problem of how to select the most conve-
nient surrogate model in every generation of the surrogate assisted CMA-ES
algorithm. To recommend the most convenient model, the fitness landscape
analysis is used as a description of the space, where surrogate model is fitted.

To recommend a surrogate model, various classification strategies can be
used, and by assessing their performance the most suitable classification model
can be later utilized to make surrogate-assisted versions of the CMA-ES more
effective.
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Introduction

The structure of this thesis is organized as follows. In Chapter 1, the the-
oretical background for surrogate assisted CMA-ES and the fitness landscape
analysis is presented. Chapter 2 presents the design for algorithm selection
and the design of classification models used for recommending the most con-
venient surrogate model. Finally, in Chapter 3, experiments with measured
accuracies, a discussion about the experiments, and ideas for future work are
presented.
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Chapter 1
Theoretical background

1.1 Black-box optimization
A black-box function is a function for which the analytical form is unknown.
For example a program without known source code, a numerical method for
partial differential equations, or a laboratory experiment [10].

Optimization is a field of mathematics studying the problem of finding
global optima (the minimal or the maximal function value) of a function
f : X → R. The function f is often called the objective function and the
set X is called the input space. In the case of finding the maximal function
value, the optimization process is trying to find x̃ ∈ X such that f(x̃) ≥ f(x)
for every x ∈ X.

Black-box optimization (BBO) is defined as the study of design and analysis
of algorithms that assume the objective and/or constraint functions are given
by black-boxes [2]. The BBO problem can be even more challenging in the
case when black-box functions are expensive to evaluate.

1.2 Surrogate modeling
Surrogate modeling is a technique based on building regression models of the
original function using the already evaluated data points. This technique
originated from response surface modeling where the regression models are
usually simple polynomial models. Response surface modeling was introduced
by George E. P. Box and K. B. Wilson in 1951 [6].

Surrogate modeling is often used for the optimization of a black-box func-
tion whose evaluations are expensive. It is used as a replacement for some
evaluations and hence can lower the number of evaluations when searching for
global optima.

The following definition is taken from the book [2] written by Charles
Audet and Warren Hare.

3



1. Theoretical background

The problem
min

x∈X⊂RD

{
f̃(x) | c̃(x) ≤ 0

}
, (1.1)

is said to be a surrogate for the problem

min
x∈X⊂RD

{f(x) | c(x) ≤ 0} (1.2)

if f̃ : X → R ∪ {∞} and c̃ : X → (R ∪ {∞})m share some similarities with f
and c but are much faster to evaluate. The function f̃ and c̃ are said to be
surrogate functions of the true functions f and c.

This thesis describes some of surrogate models used in the task of a single-
objective continuous black-box optimization [41], namely, polynomial models,
Gaussian processes, artificial neural networks, support vector machines, and
random forests.

1.2.1 Low degree polynomials
This approach uses a polynomial function to model the true objective function.
The smoothness of low degree polynomials might help with finding global
optima when the underlying function is noisy. This section is based on [14].

The most common models for predictor f̃ of a given black-box function
are linear and quadratic. The linear model is defined as

f̃(x) = β0 +
D∑

i=1
βixi + ε, (1.3)

and the quadratic model as

f̃(x) = β0 +
D∑

i=1
βixi +

D∑
i=1

βiix
2
i +

D∑
i=1

D∑
j>i

βijxixj + ε, (1.4)

where ε is a random error which is assumed to be normally distributed with
zero mean, β0, βi, βii and βij are unknown coefficients.

With enough sample points, the coefficients can be estimated with a stan-
dard method of the least squares. The estimation of β can be calculated with
the equation

β =
(
UT U

)−1
UT y, (1.5)

where

U =


1 x

(1)
1 . . . x

(1)
D

...
... . . . ...

1 x
(n)
1 . . . x

(n)
D
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1.2. Surrogate modeling

for the linear model,

U =


1 x

(1)
1 . . . x

(1)
D x

(1)
1 x

(1)
2 . . . x

(1)
D−1x

(1)
D

(
x

(1)
1

)2
. . .

(
x

(1)
D

)2

...
... . . . ...

... . . . ...
... . . . ...

1 x
(n)
1 . . . x

(n)
D x

(n)
1 x

(n)
2 . . . x

(n)
D−1x

(n)
D

(
x

(n)
1

)2
. . .

(
x

(n)
D

)2


for the quadratic model, x

(j)
i are values from domain space and y is a vector

of measured responses.

1.2.2 Gaussian processes
Another family of models used for surrogate modeling are Gaussian processes.

In the book [43], written by Rasmussen et al., the Gaussian process is de-
scribed as a generalization of the Gaussian probability distribution. However,
instead of describing a random variable, it aims to describe a distribution of
functions.

A Gaussian process is formally defined as a collection of random variables,
any finite number of which have a joint Gaussian distribution.

Because a Gaussian process has a joint Gaussian distribution it is de-
scribed by its mean and covariance function. The mean function m(x) and
the covariance function κ(x, x′) of a real process f(x) are defined as

m(x) = E [f(x)] ,

κ(x, x′) = E
[
(f(x)−m(x))(f(x′)−m(x′))T

] (1.6)

and these two functions describe the Gaussian process in the sense of the
Gaussian distribution

f(x) ∼ GP(m(x), κ(x, x′)). (1.7)

The posterior distribution can be inferred with rules for conditioning Gaus-
sians as

p(f∗|X∗, X, f) = N (µ∗, Σ∗) ,

µ∗ = µ(X∗) + K∗T
K−1(f − µ(X)),

Σ∗ = K∗∗ −K∗T
K−1K∗,

(1.8)

where f is a vector of measured responses, f∗ is a vector of estimations, X
is a matrix with inputs of known responses, X∗ is a matrix with inputs of
unknown responses, Kij = κ(xi, xj), K∗

ij = κ(xi, x∗
j ) and K∗∗

ij = κ(x∗
i , x∗

j )
for some covariance function κ.

The covariance function κ is often called a kernel. There is a large variety
of available kernels.

5



1. Theoretical background

There could be a very different outcome for different covariance functions,
therefore, it is important to know which to choose as a prior. Figure 1.1 shows
Gaussian processes realizations with different kernels. In sections below few
popular kernels are described in more detail.

−2

0

2

Squared exponential kernel

−10

−5

0

5

Linear kernel

0 1 2 3 4 5

−2

0

2

Rational quadratic kernel

0 1 2 3 4 5

−2

0

2

Matérn kernel with ν = 3/2

Figure 1.1: Examples of sampling functions from a prior of Gaussian processes
with different kernels.

1.2.2.1 Polynomial kernel

Polynomial kernels are defined as follows:

κ(x, x′) = (xT x′ + σ2
0)p, (1.9)

where p ∈ N.
For p = 1 the kernel is called linear (LIN) and for p = 2 the kernel is

quadratic (Q).
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1.2. Surrogate modeling

1.2.2.2 Squared exponential kernel

Squared exponential kernel (SE) is defined as follows:

κSE(x, x′) = σ2 exp
(
−∥x− x′∥22

2ℓ2

)
, (1.10)

where ℓ is the characteristic length-scale, a hyperparameter defining how far
should vectors be in the input space to be uncorrelated in the output space.
Figure 1.2 shows how changing the characteristic length-scale affects the pre-
diction of GP with SE kernel.

1.2.2.3 Rational quadratic kernel

Rational quadratic kernel can be viewed as a generalization of SE kernel. The
following equation defines the RQ kernel

κRQ(x, x′) = σ2
(

1 + ∥x− x′∥22
2αℓ2

)−α

. (1.11)

The hyperparameter α > 0 can be seen as a decomposition of the exponential
function in SE kernel. This relation is described as

lim
α→+∞

σ2
(

1 + ∥x− x′∥22
2αℓ2

)−α

= σ2 exp
(
−∥x− x′∥22

2ℓ2

)
. (1.12)

1.2.2.4 Matérn class kernels

This class of kernels was introduced by Matérn in 1960 [29] and is defined by
the following equation.

κMat(x, x′) = 21−ν

Γ(ν)

(√
2ν ∥x− x′∥2

ℓ

)ν

Kν

(√
2ν ∥x− x′∥2

ℓ

)
, (1.13)

where ν > 0, ℓ > 0, Kν is a modified Bessel function.
There are two versions of this kernel which are often used in this field. The

first is with ν = 3
2

κ
3
2
Mat(x, x′) =

(
1 +
√

3 ∥x− x′∥2
ℓ

)
exp

(
−
√

3 ∥x− x′∥2
ℓ

)
(1.14)

and second with ν = 5
2

κ
5
2
Mat(x, x′) =

(
1 +
√

5 ∥x− x′∥2
ℓ

+ 5 ∥x− x′∥2
3ℓ2

)
exp

(
−
√

5 ∥x− x′∥2
ℓ

)
.

(1.15)
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1. Theoretical background

0 2 4 6 8 10
x

10

5

0

5
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20

f(x
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Squared exponential kernel with = 0.4
true function
observations
prediction
95% confidence interval

0 2 4 6 8 10
x

10

5

0

5

10
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f(x
)

Squared exponential kernel with = 1.4
true function
observations
prediction
95% confidence interval

Figure 1.2: Gaussian process predictions using SE kernel for two different
values of ℓ.
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1.2. Surrogate modeling

1.2.2.5 Gibbs kernel

Another kernel was introduced by Gibbs in his dissertation thesis in 1997 [13].

κGibbs(x, x′) =
D∏

i=1

(
2ℓi(x)ℓi(x′)

ℓ2
i (x) + ℓ2

i (x′)

)1/2

exp
(
−

D∑
i=1

(xi − x′
i)2

ℓ2
i (x) + ℓ2

i (x′)

)
, (1.16)

where ℓi is a positive function which can be different for each i and D is a num-
ber of dimensions of the vector x. Making the hyperparameter ℓ configurable
in every dimension makes this kernel more flexible.

1.2.2.6 Neural network kernel

Also a neural network can be used as a kernel for GP. How to derive the
following neural network kernel is discussed in [43].

κNN(x, x′) = 2
π

arcsin

 2x̃T Σx̃′√
(1 + 2x̃T Σx̃′)(1 + 2x̃′T Σx̃′)

 , (1.17)

where x̃ is an augmented x with a bias component such that x̃ = (1, x1, . . . , xD)T

and Σ denotes a covariance function used for sampling network’s weights from
a multivariate normal distribution N (0, Σ).

1.2.2.7 Mixing of kernels

A valid kernel has to be positive semi-definite. This property holds for addition
and multiplication and hence these operations can be used to mix two kernels
[43].

For instance addition of a SE kernel to a Q kernel results in a new kernel
defined as follows:

κSE+Q(x, x′) = σ2 exp
(
−∥x− x′∥22

2ℓ2

)
+ (xT x′ + σ2

0)2. (1.18)

1.2.3 Artificial neural network
Artificial neural network (ANN) is similar to a biological neural network. ANN
models neurons and their activations using mathematical functions. In 1989,
Hornik showed that ANNs are capable to approximate any continuous function
[21].

Neural networks have been used in many cases for surrogate modeling [9,
22, 12].

Terminology and explanation of ANN basics are taken from [19].

9



1. Theoretical background

1.2.3.1 Perceptron

Perceptron is the simplest neural network with just one artificial neuron. Per-
ceptron, introduced by Frank Rosenblatt in 1958 [46], is defined by a sum of
weighted inputs and its activation function.

y = f

(
D∑

i=1
(wixi) + b

)
, (1.19)

where f(ξ) is a step function defined as

f(ξ) = step(ξ) =
{

1 if ξ ≥ 0,

0 otherwise,
(1.20)

D ∈ N is the number of dimensions of an input vector x ∈ RD, wi ∈ R is a
weight of xi and b ∈ R is a bias. Weights wi and the bias b are fitted in the
training phase.

The function f(ξ) is called an activation function. The step activation
function defined above is useful for binary classification since it has only two
possible outputs. Many activation functions have been defined and some of
them are described in the following section.

f y
∑ ξ

∗
x2

w2

...

∗
xD

wD

∗
x1

w1
b

Figure 1.3: A computational graph of a perceptron.

1.2.3.2 Activation function

An activation function transforms the weighted sum of a neuron’s inputs and
often works as a nonlinear element of the network. The type of activation
function differs based on ANN usage.

Step activation function has been already presented in Equation 1.20.

10



1.2. Surrogate modeling

Another activation function is a linear function

lin(x) = x. (1.21)

A combination of a linear and a step function is called rectified linear unit
(ReLU) and is widely used in deep learning:

relu(x) =
{

x if x ≥ 0,

0 otherwise.
(1.22)

A logistic function (see graph in Figure 1.4) is a monotone nonlinear acti-
vation function defined as

logistic(x) = ex

1 + ex
. (1.23)

A hyperbolic tangent function (see graph in Figure 1.4) is similar to the
logistic function

tanh(x) = ex − e−x

ex + e−x
. (1.24)

−6 −4 −2 0 2 4 6

−1

−0.5

0

0.5

1

x

f
(x

)

Activation functions

f(x) = tanh(x)
f(x) = logistic(x)
f(x) = step(x)

Figure 1.4: Graph of hyperbolic tangent, logistic and step activation functions.

1.2.3.3 Multilayer perceptron

One perceptron was found insufficient for solving problems such as separating
data from the XOR function. This was discussed in 1969 by Minsky and
Papert [33]. Later in 1985, a solution containing multiple neurons was found
by Rumelhart et al. [47].

11



1. Theoretical background

Connecting more neurons creates a graph structure. A feedforward neural
network is a special case where the created graph does not contain any cy-
cle. Feedforward neural network separable into layers, where neurons inside
individual layers are not connected, is called a multilayer perceptron.

There are three types of layers – the input layer, the output layer, and the
hidden layer.

The input layer is formed from non-computational nodes representing the
input of the model. The hidden and output layers contain computational
neurons. The output layer computes the output of the ANN model. The
graphical representation of multilayer perceptron is depicted in Figure 1.5.

x1

x2

x3

x4

x5

x6

y

Input layer

Hidden layer 1

Hidden layer 2

Output layer

Figure 1.5: A multilayer perceptron with input layer composed of six neurons,
two hidden layers with four and three neurons and output layer with one
neuron.

1.2.4 Support vector machine

Support vector machine (SVM) was described by Vapnik in 1995 [50] as a
generalization of finding an optimal separating hyperplane. The optimal sep-
arating hyperplane is a method that can separate linearly separable data.
SVM uses a method called the kernel trick for problems that are not linearly
separable.

SVM was used as a surrogate model in many papers, for instance in [26, 27,
48]. For example in [48], authors used support vector regression as a surrogate
model of a fitness function. In [27] authors used support vector ranking for
predicting the ranking of individuals in an evolution strategy.
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1.2. Surrogate modeling

1.2.4.1 Separating hyperplane

The key element of SVM is a separating hyperplane (Figure 1.6). Suppose a
binary classification problem and the data

{(xi, yi) | xi ∈ RD, y ∈ {1,−1}, i = 1, . . . , n} (1.25)

which can be separated by a hyperplane

wT x− b = 0. (1.26)

The optimal hyperplane separates data without misclassification and the dis-
tance from the hyperplane and the nearest data point is maximal.

It can be shown that by minimizing ∥w∥ and satisfying inequalities

yi((wT xi)− b) ≥ 1, i = 1, . . . , n (1.27)

yields the optimal w for the optimal separating hyperplane.

4 5 6 7 8 9 10

0

2

4

6

8

10

12

wTx− b = 1

wTx− b = 0 optimal seperating hyperplane

wTx− b = −1

class A

class B

Figure 1.6: Optimal separating hyperplane for two classes.
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1. Theoretical background

The optimal hyperplane can be found using the Lagrange multipliers. The
Lagrange function for this particular case can be written as

L(w, b, α) = 1
2
∥w∥2 −

n∑
i=1

(αi((xT
i w − b)yi − 1)). (1.28)

Differentiation of the Lagrange function with respect to vector w and scalar
b produces two following equations:

∂L
∂w

=w −
n∑

i=1
αiyixi = 0,

∂L
∂b

=−
n∑

i=1
αiyi = 0.

(1.29)

The Lagrange function with the combination of its derivatives yields expres-
sion

W (α) =
n∑

i=1
αi −

1
2

n∑
i,j

αiαjyiyj(xT
i xj). (1.30)

The global maximum of the function W with subject to the constraints
n∑

i=1
αiyi = 0, αi ≥ 0, i = 1, . . . , n (1.31)

and signum function produces the decision function

f(u) = sign
(

n∑
i=1

yiαiu
T xi − b

)
(1.32)

which outputs the class of a new data point u.

1.2.4.2 Kernel trick

Frequently, the problem is not linearly separable. To solve this obstacle kernels
are used to transform data into a different space. To exploit this transforma-
tion the decision function changes to

f(u) = sign
(

n∑
i=1

yiαiκ(u, xi)− b

)
(1.33)

and similarly the function W is

W (α) =
n∑

i=1
αi −

1
2

n∑
i,j

αiαjyiyj(κ(xi, xj)). (1.34)

Figure 1.7 shows a problem which is not linearly separable in the input
space and is linearly separable in the space defined by RBF kernel function.
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1.2. Surrogate modeling
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Figure 1.7: RBF kernel on a problem which is not linearly separable in input
space.

1.2.4.3 Regression

Surrogate modeling is a regression task but SVM is defined for classification
problems. This section explains how SVM is transformed to solve regression
problems.

Support vector regression (SVR) estimates the true function with a linear
function f(x, α) = (wT x)−b and solves the problem by minimizing ∥w∥ with
respect to the ε-insensitive loss function. The form of the ε-insensitive loss
function is defined as

|y − f(x, α)|ε =
{

0 if |y − f(x, α)| ≤ ε,

|y − f(x, α)| − ε otherwise.
(1.35)

It can be shown [11] that the solution of this problem is to maximize the
quadratic form

W (α, α∗) = −ε
n∑

i=1
(α∗

i + αi) +
n∑

i=1
yi(α∗

i −αi)−
1
2

n∑
i,j=1

(α∗
i −αi)(α∗

j −αj)xT
i xj
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1. Theoretical background

subject to the constraints
n∑

i=1
α∗

i =
n∑

i=1
αi,

0 ≤ α∗
i ≤ C, i = 1, . . . , n,

0 ≤ αi ≤ C, i = 1, . . . , n,

where C ∈ R+ is a hyperparameter for regularization and (αi, α∗
i ) are Lagrange

multiplier pairs that need to be found.
A prediction for a new data point u is then calculated with an equation:

f(u) =
n∑

i=1
(α∗

i − αi)(uT xi)− b. (1.36)

1.2.5 Random forest
Random forest is an ensemble of decision trees. This method can be used either
for classification or regression tasks. The most popular regression random
forest training method is bagging [7].

First regression and classification trees were introduced by Leo Breiman et
al. in 1984 [8]. Since then they have been frequently used for their simplicity
and interpretability. The following explanation of a regression tree is taken
from [18].

1.2.5.1 Regression tree

A regression tree predicts the response value yi based on input values X. The
regression tree differs from others presented methods in its structure. Instead
of creating a mathematical function, it builds a set of decision rules which
when applied to input features yield the response.

The rules are constructed recursively such that the rule splits the data into
smaller groups with splitting criteria.

The algorithm for building the regression tree searches for the best variable
of the input space in which the data can be split into two most convenient
half-planes R1 and R2. In a regression task the splitting criteria is usually a
sum of squares (see Equation 1.37).

Considering a regression problem the algorithm minimizes the following
expression by searching a variable j and a split point s

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)2 + min
c2

∑
xi∈R2(j,s)

(yi − c2)2

 , (1.37)

where c1, c2 are average values in corresponding half-planes and R1, R2 are
half-planes described by the variable j and split point s such that R1(j, s) =
{X |Xj ≤ s} and R2(j, s) = {X |Xj > s}.
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1.2. Surrogate modeling

This method divides recursively input space into two regions where each
region has a constant response (Figure 1.8).

When building a tree a user needs to consider the depth of the tree because
a large tree can overfit the training data.
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Figure 1.8: Regions of a regression tree fitted on a subset of the Boston dataset.

1.2.5.2 Bagging

Bagging is an abbreviation of bootstrap aggregation and it is a method for
combining more predictive models. For the regression problem this method
trains n models f̃i(x) with a randomly selected subset of data from the training
set

[
Y X

]
. After the training phase, the bagging model yields the average

output of f̃i(x), which can be described as

f̃(x) = 1
n

n∑
i=1

f̃i(x). (1.38)

The idea behind this method is to reduce the overall variance by combining
weak learners (experts on a subset of the training dataset).
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1. Theoretical background

1.3 Evolution strategy
Evolution strategy (ES) is an optimization technique inspired by the evolu-
tion theory. ES has been researched since the 1970s [44] starting with Ingo
Rechenberg.

ES operates on population P, a set containing search points x ∈ RD a.k.a.
individuals. Individuals are compared by fitness, a function value of an indi-
vidual. ES abstracts evolution into three steps: recombination, mutation, and
selection. These steps are repeated in order to explore the input space and
find global optima. Every repetition is considered as a generation.

The recombination step is simulating the process of reproduction of organ-
isms. This process creates from parents (a subset of the population P) new
individuals a.k.a. offspring.

The mutation step simulates a genome mutation, this step usually slightly
modifies the values of an individual.

The selection step simulates the survival of the fittest and selects a popu-
lation for the new generation.

Evolution strategies are divided into categories [4] based on parameters of
the algorithm.

• (µ + λ)-ES is an evolution strategy that creates λ ≥ 1 new offspring in a
generation, mutates the offspring, adds the offspring into the population,
and then discards λ individuals to keep the population size constant at
µ individuals.

• (µ, λ)-ES creates λ new offspring from µ parents, mutates the offspring,
and only from the offspring selects µ best individuals for the next gen-
eration.

• (µ/ρ +, λ)-ES introduces a new parameter ρ to adjust how many par-
ents are involved in the recombination step. The selection of the new
generation is determined based on the variant “+” or “,”.

In evolution strategies a process called self-adaptation changes the muta-
tion operator through the generation [4]. One of the algorithm that utilize
self-adaptation process is Covariance Matrix Adaptation Evolution Strategy
[15]. This algorithm and his surrogate versions are frequently used in black-
box optimization.

1.3.1 CMA-ES

Covariance Matrix Adaptation Evolution Strategy (CMA-ES, see pseudocode
in Algorithm 1) [15] falls into the (µ/µ, λ)-ES category. The algorithm can be
simplified into a repetition of the following three steps:
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1.3. Evolution strategy

(1) sample a new population of size λ by sampling from multivariate normal
distribution N (m, Σ),

(2) select the µ best offspring from the sampled population based on their
fitness,

(3) update parameters of the multivariate distribution m and Σ with re-
spect to the selected µ offspring.

1.3.1.1 Sampling

A multivariate normal distribution is sampled λ times to get a new population
of points x

(g)
k for k ∈ 1, . . . , λ. The parameter g denotes a generation number.

The sampling is done with an equation:

x
(g+1)
k ∼ N

(
m(g),

(
σ(g)

)2
C(g)

)
∼m(g) + σ(g)N

(
0, C(g)

)
,

(1.39)

where

x
(g+1)
k ∈ RD is a k-th offspring from generation g + 1,

m(g) ∈ RD is a mean vector of the search distribution in generation g,

σ(g) ∈ R+ is a step-size in generation g,

C(g) ∈ RD×D is a covariance matrix in generation g.

The description of the m(g), C(g) and σ(g) parameter update derived from
[15] is described in the following sections.

1.3.1.2 Update of the mean

The mean vector m is computed from weighted average of the µ best selected
offspring.

m(g+1) =
µ∑

i=1
wix

(g+1)
i:λ , (1.40)

where

x
(g+1)
i:λ ∈ RD is i-th best individual from generation g + 1,

wi ∈ R+ is weight coefficients for recombination.

Weights are restricted with constraints
µ∑

i=1
wi = 1 and w1 ≥ w2 ≥ . . . ≥ wµ > 0.

A discussion in [15] suggests to set weights wi ∝ µ− i + 1.
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1. Theoretical background

1.3.1.3 Update of the covariance matrix

To update the covariance matrix C, the CMA-ES combines two concepts
rank-µ-update and rank-one-update.

Rank-µ-update
This update estimates covariance matrix from the best µ individuals. Their
weighted sum and covariance matrix from previous generation are utilized
to create a new covariance matrix. The exponential smoothing cµ is used to
adjust the influence of particular additions.

C(g+1) = (1− cµ)C(g) + cµ

µ∑
i=1

wi

(
x

(g+1)
i:λ −m(g)

σ(g)

)(
x

(g+1)
i:λ −m(g)

σ(g)

)T

,

(1.41)
where

cµ ∈ R+ is exponential smoothing learning rate,

wi ∈ R+ is weight coefficients for recombination.

Rank-one-update
Rank-one-update estimates the covariance matrix using the so-called evolution
path p

(g)
c . The reasoning behind this update is that the rank-µ-update does not

have an information about the sign of individuals because xxT = (−x)(−x)T .
The evolution path p

(g)
c is computed using the difference of two respective

mean vectors m and thus have the information about the sign.
The evolution path p

(g)
c has an exponential smoothing adjustable using

the parameter cc

p(g+1)
c = (1− cc)p(g)

c +
√

cc(2− cc)µeff
m(g+1) −m(g)

σ(g) , (1.42)

where

p
(g)
c ∈ RD is evolution path in generation g,

cc ≤ 1 is a parameter for exponential smoothing,

µeff ∈ R is a normalization constant (see [15]).

Finally, using the evolution path the covariance matrix estimation is cal-
culated with an equation

C(g+1) = (1− ccov)C(g) + ccovp(g+1)
c p(g+1)T

c , (1.43)

where ccov ∈ R+ is a learning rate.
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1.3. Evolution strategy

Combining updates
The covariance matrix C is computed using a combination of previously de-
fined components.

C(g+1) =(1− ccov)C(g) + ccov
µcov

p(g+1)
c p(g+1)T

c︸ ︷︷ ︸
rank-one-update

+

+ccov

(
1− 1

µcov

) µ∑
i=1

wi

(
x

(g+1)
i:λ −m(g)

σ(g)

)(
x

(g+1)
i:λ −m(g)

σ(g)

)T

︸ ︷︷ ︸
rank-µ-update

,
(1.44)

where µcov is a learning rate.

1.3.1.4 Update of the step-size

Similarly to the rank-one-update, the evolution path is utilized to update the
step-size parameter σ(g).

The update of the evolution path p(g) is defined with the following equa-
tion.

p(g+1)
σ = (1− cσ)p(g)

σ +
√

cσ(2− cσ)µeffC(g)− 1
2 m(g+1) −m(g)

σ(g) , (1.45)

where

p
(g)
σ ∈ RD is the evolution path in generation g,

cσ ≤ 1 is a parameter for exponential smoothing,

µeff ∈ R is a normalization constant (see [15]).

Finally, using the evolution path the step-size is calculated with the equa-
tion

σ(g+1) = σ(g) exp

 cσ

dσ


∥∥∥p(g+1)

σ

∥∥∥
E ∥N (0, I)∥

− 1

 , (1.46)

where dσ ≈ 1, is a damping parameter.

1.3.2 S-CMA-ES
Surrogate Covariance Matrix Adaptation Evolution Strategy (S-CMA-ES) is
a surrogate modification of the CMA-ES algorithm. S-CMA-ES utilizes surro-
gate modeling to decrease the number of evaluations of the objective function
f .

S-CMA-ES algorithm trains a regression models from the data points A =
{(xi, f(xi)) | i = 1, . . . , n}, where n is a number of f -evaluated points. Trained
models are sometimes used instead of the objective function f .
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1. Theoretical background

Algorithm 1: CMA-ES (simplified pseudocode) [3]
Input: original fitness function f , step-size σ(0) ∈ R+, initial mean m ∈ RD

Output: x̂opt point with the minimum achieved fitness
1 set the population size λ, µ, w1, . . . , wµ and other parameters

(cσ, dσ, cc, µcov, ccov) to default values (for λ and µ defaults are
λ = 4 + ⌊3 log(n)⌋, µ = ⌊λ/2⌋)

2 initialize the evolution path p
(0)
σ = 0, p

(0)
c = 0, covariance matrix C(0) = I

3 foreach generation g = 0, 1, 2, . . . until stopping conditions met do
4 xk ∼ N (m(g), (σ(g))2C(g)) for k = 1, . . . , λ // sample population
5 sorted x1:λ ← f -evaluate all x1, . . . , xλ // fitness evaluation
6 m(g+1) =

∑µ
i=1 wixi:λ // selection and recombination

7 p
(g+1)
σ ← aggregate the (σ(g))2C-normalized difference of means

(m(g+1) −m(g))/σ(g)
√

C(g) into evolution path p
(g)
σ

8 σ(g+1) ← update the step-size according to the length
∥∥∥p

(g+1)
σ

∥∥∥
9 p

(g+1)
c ← aggregate the σ(g)-normalized difference of means

(m(g+1) −m(g))/σ(g) into the evolution path p(g)

10 C(g+1) ← perform the rank-one update and rank-µ-update

Algorithm 2 shows the pseudocode of the S-CMA-ES with the Gaus-
sian process surrogate model. The main difference between CMA-ES (Al-
gorithm 1) and S-CMA-ES (Algorithm 2) is the use of a surrogate model
fM trained by the trainModel function (Algorithm 3) on a subset of already
evaluated points T ⊂ A. The process of switching between model-evaluated
points and f -evaluated points is controlled by generation’s attributes original-
fitness-evaluated, model-evaluated and variable gm. The variable gm counts the
amount of consecutive generations the algorithm should use the trained model
instead of the function f . The generation’s attributes are used for switching
to the branch where the algorithm evaluates one generation with function f
and trains a new model for the next gm generations.

1.3.3 DTS-CMA-ES
An improved version of S-CMA-ES called Doubly Trained Surrogate Covari-
ance Matrix Adaptation Evolution Strategy (DTS-CMA-ES) has been pro-
posed in [39]. Authors have found that this approach usually reduces the
number of necessary evaluations in expensive optimization more than the rest
of compared methods.

DTS-CMA-ES utilizes an estimation of the uncertainty of the surrogate
model prediction. Regression models such as Gaussian process or random
forest are used for their capability of predicting a whole distribution instead
of just function value prediction.

This algorithm differs from S-CMA-ES in evaluating points with the model
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1.4. Surrogate model selection

Algorithm 2: S-CMA-ES simplified version of [3]
Input: original fitness function f , step-size σ(0) ∈ R+, initial mean

m ∈ RD, the number of consecutive model-evaluated generations
gm, maximum training set size Nmax, kernel κ

Output: x̂opt point with the minimum achieved fitness from A
1 A ← ∅; λ, σ(0), m(0), C ← CMA-ES initialize
2 mark g = 0 as original-fitness-evaluated
3 foreach generation g = 0, 1, 2, . . . until stopping conditions met do
4 xk ∼ N (m(g), (σ(g))2C(g)) for k = 1, . . . , λ // CMA-ES sampling
5 if g is original-fitness-evaluated then
6 yk ← f(xk), k = 1, . . . , λ

7 A ← A∪ {(xk, yk)}λ
k=1

8 fM ← trainModel(A, Nmax, κ, σ(g), C(g))
9 mark (g + 1) as model-evaluated

10 else
11 ŷk ← fM(xk), k = 1, . . . , λ
12 if gm model generations have passed then
13 mark (g + 1) as original-fitness-evaluated
14 σ(g+1), m(g+1), C(g+1) ← CMA-ES update based on x1:λ,

sorted accordingly to y1:λ

Algorithm 3: trainModel simplified version of [3]
Input: archive of original-evaluated points A, maximum training set size

Nmax, kernel κ, CMA-ES state variables σ(g), C(g), m(g)

Output: fM trained GP model with hyperparameters (mµ, σ2
f , ℓ, σn)

1 (XN , yN )← selected at most Nmax points from archive A using selection
method (see [3])

2 XN ← transform the selected points into the (σ(g))2C(g) basis
3 yN ← standardize the f -values in yN to zero mean and unit variance
4 (mµ, σ2

f , ℓ, σn)← fit the hyperparameters of µ(x) and κ using ML estimation

M and the function f in every generation instead of switching between them
through the generations. To save expensive evaluations DTS-CMA-ES uses
parameter α(g) for controlling how many points in a generation will be eval-
uated by the function f . The points for evaluation are selected based on a
criterion C where the uncertainty of the prediction is utilized.

The DTS-CMA-ES algorithm is shown in Algorithm 4.

1.4 Surrogate model selection
In the step 4 of DTS-CMA-ES (Algorithm 4) a surrogate model is trained.
The question is how to select the most convenient model to improve the opti-
mization process.
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Algorithm 4: DTS-CMA-ES simplified version of [3]
Input: original fitness function f , step-size σ(0) ∈ R+, initial mean

m ∈ RD, initial ratio of original-evaluated points α(0), criterion for
the selection of original-evaluated points C, self-adaptation
parameters β, ϵ(0), ϵmin, ϵmax, αmin, αmax, maximum training set
size Nmax, kernel κ

Output: x̂opt point with the minimum achieved fitness
1 A ← ∅; λ, σ(0), m(0), C ← CMA-ES initialize // initialization
2 foreach generation g = 0, 1, 2, . . . until stopping conditions met do
3 xk ∼ N (m(g), (σ(g))2C(g)) for k = 1, . . . , λ // CMA-ES sampling
4 fM1 ← trainModel(A, Nmax, κ, σ(g), C(g)) // 1st model training
5 (ŷ, ŝ2)← fM1([x1, . . . , xλ]) // model-fitness evaluation
6 Xorig ← select ⌈α(g)λ⌉ best points according to the criterion C
7 yorig ← f(Xorig) // original-fitness evaluation
8 A = A ∪ {(Xorig, yorig)}
9 fM2 ← trainModel(A, Nmax, κ, σ(g), C(g)) // model retrain

10 y ← fM2([x1, . . . , xλ]) // 2nd model prediction
11 (y)k ← (yorig)i for all original-evaluated (yorig)i ∈ yorig // replace
12 (α(g+1), ϵ(g+1))← selfAdaptation(ϵ(g), ŷ, y; βϵmin, ϵmax, αmin, αmax)
13 sorted x1:λ ← sort x1, . . . , xλ on (y1, . . . , yλ)T // population sort
14 σ(g+1), m(g+1), C(g+1) ← CMA-ES update based on x1:λ

15 x̂opt ← xk from A corresponding to the minimal yk

Algorithm 5: selfAdaptation [3]
Input: smoothed error from the last generation ϵ(g), vector of the first

model prediction ŷ, vector of the second model prediction with
original evaluations y, update rate β, minimum and maximum
ranking error: ϵmin, ϵmax, min. and max. ratio of original-evaluated
points: αmin, αmax

Output: α(g+1)-ratio of original-evaluated points for the next generation,
ϵ(g+1)-new smoothed error

1 ϵRDE ← RDEµ(ŷ, y) // estimation of the model's error
2 ϵ(g+1) ← (1− β)ϵ(g) + βϵRDE // exponential smoothing of the error
3 α(g+1) ← αmin + max{0, min{1, ϵ(g+1)−ϵmin

ϵmax−ϵmin
}}(αmax − αmin) // α update

One way to describe the surrogate model selection problem is to use a
framework for algorithm selection proposed by Rice in [45]. This framework
is designed with five main components:

Problem space is a space of possible problems. This can be a possibly
infinite set of problems.

Algorithm space is a space of possible algorithms that can be used to solve
a problem from problem space.
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1.4. Surrogate model selection

Feature space is a space of possible characterizations. The feature space
has a finite dimension.

Performance space is a space describing the performance of a particular
algorithm for a particular problem.

Selection mapping is a function that gives a model M for a particular fea-
tures f(p) of a problem p such that it minimizes models error ε.

The following diagram [35, 45] (Figure 1.9) illustrates the main parts of this
framework and their relations.

p ∈ P

Problem
space

f(p) ∈ F

Feature
space

ε ∈ E

Performance
space

S

Selection mapping
minimizing ε
S : F → A

a ∈ A

Algorithm
space

Feature
extraction

Assess
performance

on p

Figure 1.9: Rice’s framework for Algorithm selection problem.

The problem of selecting surrogate model for DTS-CMA-ES is very similar.
The main question is: How to automatically select the best surrogate model
which can differ in every generation?

Model pooling which selects the best surrogate model based on the per-
formance of different models from the limited history of previous generations,
was addressing the same problem [20].

Cross validation could be used for every model to obtain the best model for
known data. This could be done by cross validating multiple models on known
data points, comparing their performance, and selecting the most promising
model with the premise that the selected model will have good performance
as well.
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This thesis further develops research published in [40, 42] where authors
used fitness landscape analysis to obtain a description of the fitness landscape
(feature space) from which a selection mapping S could recommend the most
suitable surrogate model.

1.4.1 Fitness landscape analysis
Fitness landscape analysis is trying to characterize the structure of a fitness
function with measurable features. Features are calculated from already eval-
uated data points. As these features are describing the structure of a fitness
function, they could give information from which the most suitable surrogate
model could be obtained.

The important set of high-level fitness landscape properties was proposed
in [32]. Authors call them high-level because an expert is needed to interpret
them correctly for a given landscape.

Considered high-level properties from [32] are described in the following
list and some of them are shown in Figure 1.10.

Multimodality is a property describing the number of local optima of a func-
tion. An unimodal function has only one optimum, unlike a multimodal
function, that can have multiple optima points.

Global structure is a structure formed from all non-optima points. This
refers to the overall structure of the optimized function.

Separability refers to a problem that can be separated into lower dimen-
sional subproblems which might be easier to solve.

Variable scaling is a dimension scaling. This can mean that in one dimen-
sion a smaller step size might be needed than in other dimensions.

Search space homogeneity refers to a search space without phase transi-
tions. In other words, the function behaves similarly in all areas.

Basin size homogeneity is a size relation between basins of attractions.
This could be viewed as how hard is it to overcome local optima.

Global to local optima contrast measures a difference between local and
global optima w.r.t. average fitness.

Plateaus refer to subspaces where the function is constant.

Later, in [31], the same authors discussed a new set of low-level features
that are linked to the mentioned high-level properties and can be automatically
measured with various techniques. The authors also proposed a relationship
graph (Figure 1.11) between the high-level and low-level features.
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Figure 1.10: Visual description of high-level properties. The left top figure
shows a function with multiple optima points, the top right figure shows a
function with one optima point, the left bottom figure shows a function with
a plateau area and the bottom right figure shows a rugged function with a
quadratic global structure.

Additional low-level features can be useful for analyzing the structure of
a fitness landscape such as Nearest-Better Clustering, Information Content of
Fitness Sequences, or Dispersion. These low-level features were used in [42].
All of the mentioned low-level features are described in the following sections.

1.4.1.1 Convexity

Authors in [31] have introduced two features for quantifying the convexity of
a fitness function.

Features are computed by sampling 1000 pairs of random points from the
input space. For each pair (x1, x2) a linear combination with random weights
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Figure 1.11: A relationship between high-level and low-level features [31].

is computed; then a difference di between the function value of the new point
and a convex combination of the original function values (f(x1), f(x2)) is
computed. Finally, the number of times this difference di is less than prede-
fined threshold −10−10 divided by the number of pairs gives the probability
of convexity.

The second feature is the average of the differences.

1.4.1.2 y-Distribution

Features based on the distribution of the fitness function values. In [31] au-
thors have presented three features attainable from y-Distribution: skewness,
kurtosis, and number of peaks.

The skewness of a distribution tells us how asymmetric the distribution is.
The skewness is computed from central moments with the following equation

s =
1
n

∑n
i=1(xi − x̄)3(√

1
n

∑n
i=1(xi − x̄)

)3 . (1.47)

The kurtosis of a distribution measures how much the distribution differs
from the normal distribution in the sense of tailedness.

γ = n

∑n
i=1(xi − x̄)4∑n

i=1(xi − x̄2)2 − 3 (1.48)

The last feature is an estimation of the number of peaks in the y-Distribution.
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1.4.1.3 Levelset

Levelset features are calculated from a dataset split into two classes based on
a threshold in function values. As a split value, the median value or quantile
values have been studied in [31].

Linear, quadratic, and mixture discriminant analysis are used on the par-
titioned dataset to separate classes. The idea is that for the right choice of
the threshold value a multimodal fitness landscape cannot be separated with
linear or quadratic discriminant analysis. However, the mixture discriminant
analysis should have better performance on a multimodal fitness landscape.

The features are defined as cross validated misclassification errors for each
type of discriminant analysis.

1.4.1.4 Meta-model

Features from this class are acquired from fitting a linear and quadratic re-
gression model.

The model performance, specifically the adjusted R2 value of linear and
quadratic models, has been used in [31] together with a minimum and a max-
imum value of the absolute values of the linear model coefficients. For the
quadratic model author used maximum absolute value divided by the mini-
mum absolute value of the fitted model’s coefficients.

1.4.1.5 Local search

This class of features is built upon a local search algorithm Nelder-Mead.
Nelder-Mead is applied to randomly selected points in input space and

for each point finds a local optimum. From the found local optima points a
variety of features can be calculated. Such as a number of unique local optima
points or features from hierarchically clustered optima points.

1.4.1.6 Curvature

Curvature is estimated from the numerically approximated gradients and from
Hessian matrices calculated from randomly sampled points of the input space.

The approximated gradients and Hessian matrices are used for calculating
the final features. In [31], authors formed various features based on statistics
derived from the approximated partial derivatives.

1.4.1.7 Nearest-Better Clustering

The features based on Nearest-Better Clustering (NBC) have been proposed
in [23]. The authors presented five features with an explanation of what they
should represent. These features should help recognize funnel structures in
the fitness landscape.
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1. Theoretical background

NBC features are computed from sets of nearest neighbor distances and
nearest-better neighbor distances.

The distance to the nearest neighbor of a point x from a population P is
defined as

dnn(x,P) = min{dist(x, y) | y ∈ P \ {x}} (1.49)
and the distance to the nearest-better neighbor is defined similarly but only
for the neighbors which have better fitness value

dnb(x,P) = min{dist(x, y) | f(y) < f(x) ∧ y ∈ P}. (1.50)

The set of all nearest neighbor distances and all nearest-better distances
within the population can be constructed from above equations as follows:

Dnn ={dnn(x,P) | x ∈ P},
Dnb ={dnb(x,P) | x ∈ P}.

(1.51)

From these sets, the authors constructed five features. The first one is a
division of standard deviations. The idea is that the set Dnb should contain
more extreme values if the problem is multimodal and therefore sd(Dnb) should
be a greater number.

nbf1 = sd(Dnn)
sd(Dnb)

(1.52)

Another feature is a division of mean values of the two sets.

nbf2 = mean(Dnn)
mean(Dnb)

(1.53)

The third feature measures the Pearson correlation between the two sets.
Authors expected that for a funnel structure, the correlation should be high,
whereas, in a random peaks setting, it should be much lower.

nbf3 = cor(Dnn,Dnb) (1.54)

The fourth feature is computed from the set Q formed from the division
of distances for every individual in a population P. This feature should be
larger for random peak landscapes.

Qnn/nb =
{

dnn(x,P)
dnb(x,P)

| x ∈ P
}

nbf4 =
sd(Qnn/nb)

mean(Qnn/nb)

(1.55)

The last feature is computed with indegree function deg−(x). This func-
tion yields the number of input vertices in the graph constructed from nearest-
better neighbors. The best optima of a funnel landscape should have a larger
indegree value than an optimum in a random peak landscape.

nbf5 = − cor({(deg−(x), f(x)) | x ∈ P}) (1.56)

30



1.4. Surrogate model selection

1.4.1.8 Dispersion

Dispersion of a function measures how close together sampled points are [28].
The dispersion features are derived from this idea. They average differences
between dispersion values below a certain moving threshold value.

A dispersion function is low when the sum differences of dispersions when
moving the threshold is less than zero. A dispersion function is high when the
sum differences is greater than zero.

In Figure 1.12, two functions are showing how different thresholds influence
the function values from which the dispersion can be calculated.
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Figure 1.12: A decrease in fitness threshold will tend to decrease the dispersion
on the Rastrigin function (figures on the right) and increase the dispersion of
the Schwefel function (figures on the left) [28].

To estimate the dispersion authors in [28] sampled the space and took the
best n% points from which they averaged distances between them. This step
was repeated with different n values and the final dispersion was computed
by subtracting those results. Specifically, they computed the value:

dispersion = dispersion(100, 409600)− dispersion(100, 100).

The dispersion function is presented with Pseudocode 6.
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1. Theoretical background

Algorithm 6: Dispersion [28]
Input: Integer sb - the fixed sample size, Integer sv - the variable sample

size, f(x) - the objective fitness function
Output: Float d - an estimation of the dispersion

1 foreach i = 1, . . . , sv do
2 Create a random point x
3 Evaluate its fitness f(x)
4 Add {x, f(x)} to array allPoints

5 bestPoints← best sb points of allPoints
6 d← average pairwise distance of bestPoints

1.4.1.9 Information Content of Fitness Sequences

Information Content of Fitness Sequences (ICoFS) introduced in [34], mea-
sures how difficult is it to describe a given fitness function. For instance, a low
information function would be a constant fitness function as opposed to a high
information function such as some multimodal complicated fitness function.

This method uses neighboring values and compares their fitness values.
The comparisons are later transformed into discrete information from which
the features are computed.

Authors in [34] used Latin Hypercube Design sampling with a sorting al-
gorithm for obtaining the neighboring values. To create a sequence of discrete
values from the measured data points, authors used equation

Ψ(i, ε) =


1̄ if yi+1−yi

∥xi+1−xi∥2
< −ε,

0 if
∣∣∣ yi+1−yi

∥xi+1−xi∥2

∣∣∣ ≤ ε,

1 if yi+1−yi

∥xi+1−xi∥2
> ε.

(1.57)

where ε ≥ 0 is the sensitivity parameter, (xi+1, yi+1) and (xi, yi) are two
neighboring data points.

From the above function a sequence ε = {1̄, 0, 1}n−1 is formed. The infor-
mation content is calculated from this sequence using

H(ε) = −
∑
a̸=b

pab log6 pab. (1.58)

Additionally, the partial information content M(ε) is calculated to ap-
proximate smoothness of the fitness function.

M(ε) = |Φ(ε)|
n− 1

, (1.59)

where Φ(ε) is a function which deletes 0 characters from the sequence ε and
squeezes repeating characters 1 and 1̄. The length of this new sequence ap-
proximates the number of concavity changes.
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From the information content and the partial information content four
metrics are computed: maximum information content

Hmax = max
ε
{H(ε)}, (1.60)

settling sensitivity

εs = log10

(
min

ε
{ε |H(ε) < 0.05}

)
, (1.61)

initial partial information

M0 = M(ε = 0), (1.62)

and half partial information sensitivity

ε0.5 = log10

(
max

ε
{ε |M(ε) > 0.5M0}

)
. (1.63)

1.4.1.10 CMA-ES features

Authors in [42] proposed features related to the DTS-CMA-ES algorithm.
They are computed from the CMA-ES settings, from points X = {xi | i =
1, . . . , n} for which the function value is known and from a dimension D of
optimized black-box function f .

Generation number ϕg is current number of generation g.

Step-size ϕσ is the σ(g) from the CMA-ES algorithm.

Number of restarts ϕrestart of the CMA-ES measures how many times the
DTS-CMA-ES was restarted, this can be signal how difficult the problem
is.

Mahalanobis mean distance ϕd(m) of the CMA-ES mean m(g) to the mean
of the empirical distribution of all points X.

C evolution path ϕpc is square of the evolution path length
∥∥∥p(g)

c

∥∥∥2
,

σ evolution path ratio is a ratio between σ evolution path length and the
expected length of a random evolution path

ϕpσ =

∥∥∥p(g)
σ

∥∥∥2

E ∥N (0, I)∥
.

CMA similarity likelihood is the log-likelihood of all points X with re-
spect to the CMA-ES distribution

ϕL =− n

2

(
D log 2πσ(g)2 + log det C(g)

)
−

1
2
∑

x∈X

(x−m(g)

σ(g)

)T

C(g)−1
(

x−m(g)

σ(g)

) .
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Chapter 2
Design

This chapter presents the design of the surrogate model selection for DTS-
CMA-ES based on the fitness landscape analysis. The design continues on
the research done by my supervisor and his colleagues in [40, 42].

It is important to understand the type of the data used to train a surrogate
model in the DTS-CMA-ES algorithm. Using the explanation from [40]: For
each generation g of the DTS-CMA-ES algorithm set of surrogate modelsM
are trained on a training set T . The training set T is a subset of all evaluated
data points archive A. Afterwards, the surrogate model M ∈M is utilized to
select new population P. The question is how to select the most convenient
surrogate model from sets A, T ,P? Figure 2.1 shows how this problem can
be implemented in the Rice’s framework defined in Section 1.4.

The design of each component of the presented framework for surrogate
model selection problem is described in the following sections. The main goal
of this chapter is to design the selection mapping.

2.1 Data space

In DTS-CMA-ES, three sets of data points are emerging. The first one is an
archive A containing all f -evaluated data points {xi, f(xi) | i = 1, . . . , n},
where n is a number of f -evaluated points. The second one is the training set
T containing f -evaluated data points which are a subset of A and are utilized
for fitting a surrogate model in DTS-CMA-ES. The training set is selected to
contains data points that are close to the space where the surrogate model is
fitted. The last set is sampled population P, where the function values are
unknown. These sets are changing each generation.

The problems used for retrieving the data {A(i), T (i),P(i) | i = 1, . . . , g} in
this thesis were obtained from running the DTS-CMA-ES algorithm on Black-
Box Optimization Benchmarks from the COmparing Continuous Optimisers
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Figure 2.1: Modified Rice’s framework for surrogate model selection in DTS-
CMA-ES.

(COCO) platform, namely, problems in dimensions 2, 3, 5, 10, and 20 on
instances 11-15 [16, 17].

2.2 Feature space

The features are computed on datasets A, T , and T ∪ P. Some of fitness
landscape features described in Section 1.4.1 need additional evaluations of
the fitness function f (e.g. Local search features) and therefore, they are
not suitable if the fitness function is expensive to evaluate. The following
low-level feature sets were measured: y-Distribution, Levelset, Meta-Model,
Nearest-Better Clustering, Dispersion, Information Content, and CMA-ES
features.

The data generated for this thesis were already used in [42]. Unlike in [42],
more metrics in the performance space are investigated (see Section 2.4). Fea-
tures were calculated using the code from R-package flacco [24] reimplemented
in MATLAB language.

The features were calculated from runs of the DTS-CMA-ES algorithm on
the benchmark functions mentioned in Section 2.1. Sets {A(i), T (i),P(i) | i =
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1, . . . , g} were extracted for 25 uniformly selected generations for 8 considered
surrogate models (see Section 2.3).

The algorithm was terminated if one of the following two conditions is
true:

(1) the target fitness value 10−8 is found, or

(2) the number of evaluations of the optimized fitness function f reached
250n.

2.3 Model space
Few surrogate models can be connected with the DTS-CMA-ES because the
used version of the algorithm needs an estimation of uncertainty for the cor-
responding prediction. Therefore, we have tested Gaussian processes with
various covariance functions.

To measure performance in the performance space following covariance
functions were used: κLIN, κSE, κRQ, κSE, κ

5
2
Mat, κNN, κGibbs, and κSE+Q. Co-

variance functions for GPs were described in Section 1.2.2.

2.4 Performance space
Performance can be measured with a variety of evaluation metrics and the
question is which metric would be the most convenient for surrogate model
selection task. In [42], authors used Ranking Difference Error. However, error
measures such as MSE, MAE, Kendall τ or R2 could be more convenient for
the investigation of the relationships between model performance and fitness
landscape features.

RDE Ranking Difference Error is an useful metric because CMA-ES state
variables depends on the best µ points from the population. Therefore,
the ranking is important and might provide sufficient information. RDE
is computed as follows:

RDEµ(ŷ, y) =
∑

i:(ρ(y))i≤µ |(ρ(y))i − (ρ(ŷ))i|
maxπ∈Permutations of (1,...,λ)

∑
i:π(i)≤µ |i− π(i)|

,

where (ρ(y))i is the rank of yi in the y vector.

Kendall rank correlation coefficient is a correlation coefficient which takes
into account the ranking of two measured series of observations. It is
computed as

τ = nc − nd
1
2n(n− 1)

,
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where nc is a number of concordant pairs and nd is a number of discor-
dant pairs. Concordant pairs are defined by set

{((yi, ŷi), (yj , ŷj)) | (yi > yj ∧ ŷi > ŷj) ∨ (yi < yj ∧ ŷi < ŷj), i < j}

and discordant by

{((yi, ŷi), (yj , ŷj)) | (yi > yj ∧ ŷi < ŷj) ∨ (yi > yj ∧ ŷi < ŷj), i < j}.

R2 is a coefficient of determination calculated from

R2 =
∑λ

i=1(ŷi −m(y))2∑λ
i=1(yi −m(y))2

,

where m(y) is the mean value of the vector y.

MSE Mean Squared Error which is a typical error measure for many prob-
lems.

MSE(ŷ, y) = 1
λ

λ∑
i=1

(yi − ŷi)2

MAE Mean Absolute Error which is similar to MSE but uses absolute dif-
ferences.

MAE(ŷ, y) = 1
λ

λ∑
i=1
|yi − ŷi|

2.5 Selection mapping
Selection mapping S : Φ →M represents a component which can map land-
scape features ϕ ∈ Φ to a model M ∈ M such that it minimizes the error ε
this model would have. Intelligibly, the goal is to select the best model for a
given set of landscape features.

For selection mapping we utilized the measured fitness landscape features
(see Section 2.2) and errors for eight different GP kernels. To obtain labels
for classification, the minimal error for every data point is found and its cor-
responding kernel used as a label. However, more surrogate models can yield
the same error for a given problem or the difference between errors is insignifi-
cant. Therefore, we measured accuracy of each classifier in two ways, the first
measures the exact match and the second measures matches for the group of
equally performing models.

We have followed the research in [40], where authors used a classification
tree for selection mapping. However, the results were not very convincing.
Therefore, we tests more classification models to have better performance.

One way to approach this is using regression models instead of classification
models and predict the error ε. This could provide greater flexibility with
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selecting the best model such as recommending more models with similar
performance. This approach was used in [37] for the flow shop scheduling
problem. Authors used multiple methods based on ranking, regression, and
classification for recommending the most suitable model. Additionally, the
classification approach could be exhaustively tested using more models and
their parameters.

We implement three methods: classification, regression, and multi-label
classification.

2.5.1 Classification approach
Classifier Sc : Φ→M can be trained on labels of the best performing models.
To obtain a label for a data point, the minimal error value for each GP kernel
can be found and its kernel set as a label. It is not always clear which model
should be selected as a label because multiple models can have equal errors.
To address this ambiguity, multi-label classifiers are considered in approach
from Section 2.5.3.

The classifier Sc is then trained with the training dataset and later can
be used as a recommender for a new data point in the run of DTS-CMA-ES
algorithm.

Eight different kernels are considered and the classifier should be able to
recommend one of them. Many of the classification models are only defined
for two classes, to solve this obstacle known strategies for making multiclass
classifier from binary classifiers can be used. The two used in this thesis are:
One-vs-One and One-vs-Rest [5].

One-vs-One strategy trains n(n−1)
2 classifiers, where n is the number of

classes, for every pair of classes. The dataset is split for every pair
of classes and a classifier is trained on this new dataset. The resulting
class is selected using votes of individual classifiers.

One-vs-Rest strategy trains n classifiers. For every class a binary classifier
is trained to classify if a data point belongs or does not belong to a given
class. Problem with this strategy is that constructed datasets are likely
to be imbalanced.

2.5.2 Regression approach
A regression model Sr : Φ → E |M| can be trained to predict an error of a
surrogate model for given landscape features. The Sr model yields errors
from which a minimum is found and its corresponding surrogate model is
recommended.

Because some regression models yield only one prediction, for every sur-
rogate model one regression model can be trained to predict multiple errors.
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2.5.3 Multi-label approach
We use multi-label classification because some models have very similar per-
formance for some data points and more labels could be assigned to them.

From the original dataset the best performing models are found and used
as labels for classification model Sc training. Trained model is then capable to
predict multiple labels for given landscape features. However, for a fair com-
parison with the single-label classification and with the regression approach,
only one label has to be predicted.

A regression model is utilized to predict best performing model to select
single-label from predicted labels by the multi-label classifier. Regression con-
siders only labels predicted by the multi-label classifier and from the regression
model the best performing model is selected as the final recommended label.

Because multi-label classifier can yield an empty prediction, a single-label
classifier is used together with the multi-label classifier. The single-label clas-
sifier is only used when the multi-label classifier yields empty prediction. The
single-label classifier could be replaced with a naive method that recommends
the most frequent label from the training set.

Pseudocode 7 shows how predictions from classifiers are mixed together in
order to get predictions for the unknown data points.

Algorithm 7: predict
Input: test data X, trained multi-label classifier Sm

c , trained single-label
classifier Ss

c , trained regression model Sr

Output: ŷ vector of predicted kernels
1 Ŷ m ← Sm

c (X) // predict multiple kernels for each data point
2 ŷs ← Ss

c (X) // predict exactly one kernel for each data point
3 Ŷ error ← Sr(X) // predict error of each kernel
4 Ŷ combined ← merge(Ŷ m, ŷs) // merge predictions such that for

empty multi-label prediction insert
the single-label prediction

5 Ŷ error ← setInfinity(Ŷ combined, Ŷ r)
// from regressed errors set non

relevant predictions to infinity
6 ŷ ← arg min(Ŷ error) // select kernels where predicted

error was minimal
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Chapter 3
Experiments

Experiments are implemented with open source Python [49] libraries: Jupyter
Notebook [25], scikit-learn [38], Numpy [36], Pandas [30], and TensorFlow [1].
Source code is available on a USB flash drive attached to this thesis.

The design of measured experiments is described in Section 2.5 and the
experiments are compared w.r.t. following measures:

Accuracy is defined as a fraction TP + TN
P+N , where TP is a number true positive

classifications, TN is a number true negative classification, and P + N is
a number of all data points.

Sensitivity measures how often data points for a binary classification are
correctly classified as the first class. It is defined by a fraction TP

P ,
where P is a number of values from a measured class.

Specificity measures how often data points for a binary classification are
correctly classified as the second class. It is defined by a fraction TN

N ,
where N is a number of values that are not the measured class.

F1 score is a measurement often used for imbalanced classification and it is
defined as a harmonic mean of precision and recall. It is defined by a
fraction 2 TP

2 TP + FP + FN , where FN is a number of false negative classifica-
tions.

Considering that multiple surrogate models can perform equally in some
cases, we have to define when the classified point can be marked as TP, TN,
FP, or FN. Therefore, we measure experiments with two versions for each
score measure. The first version of a measurement is calculated from exact
matches of classified class and the true class. The second measurement is
calculated from loose matches of similarly performing of surrogate models.
The loose measures are marked with a subscript 2 as: accuracy2, sensitivity2,
specificity2, and F1 score2.
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3.1 Data preprocessing
Data of measured fitness landscape features and errors of different GPs kernels
contains some numbers that are not in the set of real numbers R. How to deal
with infinity, negative infinity and NaN values had been iteratively discovered.

For landscape features NaN values were replaced with the mean value,
infinity values were replaced with a maximum and negative infinity values
were replaced with a minimum of the given feature. Feature values are later
scaled to have zero mean and unit variance.

The measured errors contain some NaN values. In this case, NaN values
are emerging when the model could not be fitted. Therefore, NaN values are
replaced with a maximum of the given error. Infinity values are replaced also
with a maximum value.

3.2 Selection mapping
As stated in Section 2.5 we are using different classifiers S : Φ→M to predict
most convenient model M for a set of features Φ. The following hyperparam-
eters of machine learning models we used as default.

Decision tree and random forest classifiers used as criterion for splitting
Gini index.

Support vector classifier used a linear kernel for faster training and maxi-
mum iteration was set to 1000.

Artificial neural network was trained with two hidden layers with 50 and
25 neurons respectively, dropout chance was set to 0.2, and training epochs
was set to 20.

Regression tree and random forest of regression trees used as criterion for
splitting MSE.

Support vector regression used a linear kernel, ε-insensitive loss function,
and maximum iteration was set to 1000.

Hyperparameters, that differs from stated defaults are described in respec-
tive sections.

3.2.1 Classification
Classification models were trained on 80 % of the dataset and hyperparameters
settings were searched with a 5-fold cross validation method. The depth of
trees are set low to find if the problem is easy to separate and not too high
because of overfitting.

The considered models and their hyperparameters are:

Decision tree classifier with a maximum depth parameter 2, 3, . . . , 19.

Random forest classifier with a maximum depth parameter 2, 3, . . . , 9 and
a number of estimators parameter set to 100, 200, . . . , 1000.
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Support vector classifier for one-vs-rest strategy and parameter C set to
0.01, 0.1, 1, 10, 100 and for one-vs-one strategy is only one parameter
considered as C = 0.1.

Artificial neural network used ReLU activation function in hidden layers
and softmax activation function in the output layer.

3.2.2 Regression
Regression model is trained to predict GPs kernel error for given landscape
features. Model with minimal predicted error is selected as recommended and
compared with the true minimal error model.

Regression models were trained on the same 80 % part of the dataset
as the classification models. Hyperparameters were found by searching the
hyperparameter space with a 5-fold cross validation method.

The considered models and their hyperparameters are slightly different.
More hyperparameters could be explored, however, the regression approach
does not seem to outperform baseline method. Following models for regression
were measured:

Regression tree with a maximum depth parameter 10, 11, . . . , 18.

Random forest of regression trees with a maximum depth parameter 6, 7, 8, 9
and a number of estimators parameter set to 100.

Support vector regression with one-vs-rest strategy and parameter C set to
0.01, 0.1 and parameter ε set to 0, 0.1.

Artificial neural network used ReLU activation function in hidden layers
and linear activation function in the output layer.

3.2.3 Multi-label classification
Multi-label classification model is trained to give a prediction about viable
GPs kernels. Predictions can contain none or multiple kernels which is a
problem for comparing with other methods. To obtain a single recommended
model, both previous methods are utilized to select single GP kernel for a
given data point. Exact explanation of this method is in Section 2.5.3.

Multi-label classification models were trained on the same 80 % part of the
dataset as the classification models. Hyperparameters were found by searching
the hyperparameter space with a 5-fold cross validation method.

Following models were trained:

Decision tree with a maximum depth parameter 6, 7, . . . , 19.

Random forest of classification trees with a maximum depth parameter
6, 7, . . . , 10 and a number of estimators parameter set to 100.
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Support vector classifier with one-vs-rest strategy and parameter C set to
0.01, 0.1, 1, 10, 100.

Artificial neural network used ReLU activation function in hidden layers
and sigmoid activation function in the output layer.

3.3 Accuracy comparison
The final performance was measured on the test dataset containing 20 % of
the original dataset.

We used a baseline model that recommends the most frequent class in the
training dataset, solely for comparing if the naive solution is not the best one.

Table 3.1 and Table 3.2 compares models in terms of accuracy and accuracy2
respectively. For comparisons in terms of sensitivity, specificity and F1 score
see Appendix B.

Table 3.1: Exact accuracy for each considered model trained with landscape
features and predicting the best performing model w.r.t. different error mea-
sures. The table is divided into three categories based on used strategies for
classification.

Model Error measure
RDE MSE R2 MAE Kendall

Single-label classification
Baseline 0.220 0.259 0.207 0.266 0.390
Decision tree 0.239 0.294 0.285 0.295 0.396
Random forest 0.250 0.308 0.300 0.319 0.401
SVC one-vs-rest 0.239 0.288 0.282 0.289 0.392
SVC one-vs-one 0.239 0.286 0.287 0.291 0.394
Neural network 0.247 0.295 0.299 0.300 0.399

Regression
Regression tree 0.192 0.199 0.156 0.203 0.358
Random forest 0.198 0.214 0.165 0.214 0.372
SVR 0.193 0.175 0.161 0.182 0.362
Neural network 0.187 0.258 0.172 0.102 0.370

Multi-label classification
Decision tree 0.221 0.243 0.242 0.269 0.351
Random forest 0.246 0.280 0.300 0.317 0.401
SVC 0.194 0.246 0.266 0.278 0.398
Neural network 0.248 0.281 0.300 0.315 0.401
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Table 3.2: Loose accuracy2 for each considered model trained with landscape
features and predicting the best performing model w.r.t. different error mea-
sures. The table is divided into three categories based on used strategies for
classification.

Model Error measure
RDE MSE R2 MAE Kendall

Single-label classification
Baseline 0.309 0.350 0.209 0.293 0.422
Decision tree 0.319 0.383 0.293 0.323 0.428
Random forest 0.333 0.399 0.308 0.346 0.434
SVC one-vs-rest 0.323 0.380 0.290 0.317 0.423
SVC one-vs-one 0.324 0.380 0.295 0.320 0.426
Neural network 0.329 0.383 0.306 0.327 0.432

Regression
Regression tree 0.318 0.315 0.163 0.247 0.396
Random forest 0.321 0.331 0.170 0.257 0.412
SVR 0.315 0.268 0.166 0.219 0.400
Neural network 0.308 0.350 0.175 0.134 0.410

Multi-label classification
Decision tree 0.320 0.347 0.249 0.304 0.387
Random forest 0.334 0.389 0.308 0.346 0.434
SVC 0.309 0.353 0.271 0.313 0.429
Neural network 0.334 0.388 0.308 0.344 0.434

3.4 Discussion and future work
The baseline model was outperformed with almost every presented classifica-
tion method. However, the differences between highest accuracy scores and
the baseline scores are very small. From the accuracy tables in the previous
section it is clear that the best model is random forest for almost all consid-
ered approaches. For the purpose of DTS-CMA-ES random forest does not
have to be the most suitable option because time complexity of prediction
might be too large. The neural network model might be better in terms of
time but its performance is slightly worse. Single-label classification approach
have the highest accuracy, but its accuracy is very similar to the multi-label
classification method. The advantage of the multi-label classification is that
it provides more flexibility for tuning the settings and hence provides more
room for improvement.

The poor performance of considered models does not suggest if trained
classifiers should be employed for improvement of the DTS-CMA-ES. To pro-
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vide more clarity to this question, DTS-CMA-ES should be run on the bench-
mark functions and its performance should be assessed.

From my perspective, future research should be focused on the regression
approach because in many applications this approach have satisfying results,
for instance, in [37] or in SATzilla [51], but in this case this approach was signif-
icantly worse compared to other approaches. Additionally, with improvement
of the regression approach, the multi-label approach could be also improved
since it depends on it.

More investigation could be focused on imbalance of the data and also
researching if more measured benchmark functions and the data from them
would help classifiers to better separate the landscape feature space.

Another improvement of presented methods could be derived solely from
improvement of FLA research by obtaining more descriptive landscape fea-
tures. The FLA features could also be improved with feature selection that
could reduce the feature space and help machine learning models to have
better performance.

Additional improvement could be from utilizing more surrogate models
than GP and its kernels, because GP kernels could behave too similarly for
given data and hence they could be hard to distinguish in FLA space.
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Conclusion

Expensive black-box optimization is an important research topic because many
engineering tasks are expansive to evaluate. An engineering experiment might
cost significant amount of money or might take a lot of time to evaluate.
Therefore, having a fast and reliable algorithm for optimizing such task is
very valuable.

This thesis investigated how to utilize fitness landscape analysis for pre-
dicting the most suitable surrogate model the DTS-CMA-ES algorithm. In
the first chapter, an introduction of regression models suitable for surrogate
assisted CMA-ES was presented. The DTS-CMA-ES algorithm was explained
and closely studied to describe how the surrogate models are used. Further,
framework for algorithm selection problem was presented and features derived
from fitness landscape analysis were described. The second chapter explains
how the framework for algorithm selection problem was used in DTS-CMA-ES
for surrogate model recommendation through fitness landscape analysis.

A design of various methods for classifying the data from FLA to predict
the most convenient surrogate model were presented. In the last chapter, set-
tings of experiments with the classification methods were introduced in detail
and they were compared with a variety of classification metrics. Experiments
were also compared with a naive method of recommending the most frequent
model as a baseline.

Used classification methods had better performance than the baseline
method, however, the accuracy is better only by a small margin. From the
results of sensitivity it seems that the classifiers often learn only how to dis-
tinguish between two classes. Possible problems might be with an imbalance
of classes in the training dataset and/or with similar performance of some
surrogate models for some data points. The later one was addressed with a
multi-label classification methods but this approach did not bring significant
improvement. Although the accuracy scores are not very large, trained classi-
fiers might improve performance of the DTS-CMA-ES algorithm because even
a small improvement in accuracy might useful.
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Conclusion

Further research, that is beyond the scope of this thesis, might be needed.
Number FLA features could be reduced with a feature selection method and
in reduced space classifiers might have better performance. Another improve-
ment may be found by exploring the regression approach which had satisfying
results in [37, 51].

48



Bibliography

1. ABADI, Martı́n et al. Tensorflow: A system for large-scale machine learn-
ing. In: 12th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16). 2016, pp. 265–283.

2. AUDET, Charles; HARE, Warren. Derivative-Free and Blackbox Opti-
mization. Springer International Publishing, 2017. ISBN 978-3-319-68913-
5.

3. BAJER, Lukáš; PITRA, Zbyněk; REPICKỲ, Jakub; HOLEŇA, Mar-
tin. Gaussian process surrogate models for the CMA evolution strategy.
Evolutionary computation. 2019, vol. 27, no. 4, pp. 665–697.

4. BEYER, Hans-Georg; SCHWEFEL, Hans-Paul. Evolution strategies–A
comprehensive introduction. Natural computing. 2002, vol. 1, no. 1, pp.
3–52.

5. BISHOP, Christopher M. Pattern recognition and machine learning. springer,
2006. ISBN 978-0387310732.

6. BOX, G. E. P.; WILSON, K. B. On the Experimental Attainment of
Optimum Conditions. Journal of the Royal Statistical Society: Series
B (Methodological). 1951, vol. 13, no. 1, pp. 1–38. Available from DOI:
10.1111/j.2517-6161.1951.tb00067.x.

7. BREIMAN, Leo. Bagging predictors. Machine learning. 1996, vol. 24,
no. 2, pp. 123–140.

8. BREIMAN, Leo; FRIEDMAN, Jerome; STONE, Charles J; OLSHEN,
Richard A. Classification and regression trees. CRC press, 1984. ISBN
978-1138469525.

9. CARPENTER, William C; BARTHELEMY, J-FM. A comparison of
polynomial approximations and artificial neural nets as response surfaces.
Structural Optimization. 1993, vol. 5, no. 3, pp. 166–174.

49

http://dx.doi.org/10.1111/j.2517-6161.1951.tb00067.x


Bibliography

10. CASSIOLI, Andrea. A Tutorial on Black–Box Optimization. Available
also from: https://www.lix.polytechnique.fr/~dambrosio/blackbox_
material/Cassioli_1.pdf. [Online; visited 4. 2. 2020].

11. DRUCKER, Harris; BURGES, Christopher JC; KAUFMAN, Linda; SMOLA,
Alex J; VAPNIK, Vladimir. Support vector regression machines. In: Ad-
vances in neural information processing systems. 1997, pp. 155–161.

12. GASPAR-CUNHA, Antonio; VIEIRA, Armando. A multi-objective evo-
lutionary algorithm using neural networks to approximate fitness evalu-
ations. Int. J. Comput. Syst. Signal. 2005, vol. 6, no. 1, pp. 18–36.

13. GIBBS, Mark N. Bayesian Gaussian processes for regression and classi-
fication. 1998. PhD thesis. Citeseer.

14. HAN, Zhong-Hua; ZHANG, Ke-Shi, et al. Surrogate-based optimization.
Real-world applications of genetic algorithms. 2012, pp. 343–362.

15. HANSEN, Nikolaus. The CMA evolution strategy: a comparing review.
In: Towards a new evolutionary computation. Springer, 2006, pp. 75–102.

16. HANSEN, Nikolaus; AUGER, Anne; FINCK, Steffen; ROS, Raymond.
Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless
Functions Definitions. 2010. Technical report. Citeseer.

17. HANSEN, Nikolaus; AUGER, Anne; FINCK, Steffen; ROS, Raymond.
Real-Parameter Black-Box Optimization Benchmarking 2012: Experi-
mental Setup. 2012. Technical report. Citeseer.

18. HASTIE, Trevor; TIBSHIRANI, Robert; FRIEDMAN, Jerome. The el-
ements of statistical learning: data mining, inference, and prediction.
Springer Science & Business Media, 2009. ISBN 978-0-387-84858-7.

19. HAYKIN, Simon. Neural networks: a comprehensive foundation. Prentice
Hall PTR, 1994. ISBN 978-0-02-352761-6.

20. HEJL, Vojtěch. Selection of surrogate models for evolutionary black-
box optimization in noisy environment. Thákurova 9, 160 00 Praha 6,
Czech Republic, 2018. Master’s thesis. Faculty of Information Technol-
ogy, Czech Technical University in Prague.

21. HORNIK, Kurt. Approximation capabilities of multilayer feedforward
networks. Neural Networks. 1991, vol. 4, no. 2, pp. 251–257. Available
from DOI: 10.1016/0893-6080(91)90009-t.

22. JIN, Yaochu; OLHOFER, Markus; SENDHOFF, Bernhard. A framework
for evolutionary optimization with approximate fitness functions. IEEE
Transactions on evolutionary computation. 2002, vol. 6, no. 5, pp. 481–
494.

50

https://www.lix.polytechnique.fr/~dambrosio/blackbox_material/Cassioli_1.pdf
https://www.lix.polytechnique.fr/~dambrosio/blackbox_material/Cassioli_1.pdf
http://dx.doi.org/10.1016/0893-6080(91)90009-t


Bibliography

23. KERSCHKE, Pascal; PREUSS, Mike; WESSING, Simon; TRAUTMANN,
Heike. Detecting funnel structures by means of exploratory landscape
analysis. In: Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation. 2015, pp. 265–272.

24. KERSCHKE, Pascal; TRAUTMANN, Heike. Comprehensive Feature-
Based Landscape Analysis of Continuous and Constrained Optimization
Problems Using the R-package flacco. In: BAUER, Nadja; ICKSTADT,
Katja; LÜBKE, Karsten; SZEPANNEK, Gero; TRAUTMANN, Heike;
VICHI, Maurizio (eds.). Applications in Statistical Computing – From
Music Data Analysis to Industrial Quality Improvement. Springer, 2019,
pp. 93–123. Studies in Classification, Data Analysis, and Knowledge Or-
ganization. Available from DOI: 10.1007/978-3-030-25147-5_7.

25. KLUYVER, Thomas et al. Jupyter Notebooks – a publishing format for
reproducible computational workflows. In: LOIZIDES, F.; SCHMIDT, B.
(eds.). Positioning and Power in Academic Publishing: Players, Agents
and Agendas. 2016, pp. 87–90.

26. LOSHCHILOV, Ilya; SCHOENAUER, Marc; SEBAG, Michele. Self-adaptive
surrogate-assisted covariance matrix adaptation evolution strategy. In:
Proceedings of the 14th annual conference on Genetic and evolutionary
computation. 2012, pp. 321–328.

27. LOSHCHILOV, Ilya; SCHOENAUER, Marc; SEBAG, Michele. Intensive
surrogate model exploitation in self-adaptive surrogate-assisted cma-es
(saacm-es). In: Proceedings of the 15th annual conference on Genetic
and evolutionary computation. 2013, pp. 439–446.

28. LUNACEK, Monte; WHITLEY, Darrell. The dispersion metric and the
CMA evolution strategy. In: Proceedings of the 8th annual conference on
Genetic and evolutionary computation - GECCO ’06. ACM Press, 2006.
Available from DOI: 10.1145/1143997.1144085.

29. MATÉRN, Bertil. Spatial variation. 1960. Technical report.
30. MCKINNEY, Wes et al. Data structures for statistical computing in

python. In: Proceedings of the 9th Python in Science Conference. 2010,
vol. 445, pp. 51–56.

31. MERSMANN, Olaf; BISCHL, Bernd; TRAUTMANN, Heike; PREUSS,
Mike; WEIHS, Claus; RUDOLPH, Günter. Exploratory landscape anal-
ysis. In: Proceedings of the 13th annual conference on Genetic and evo-
lutionary computation. 2011, pp. 829–836.

32. MERSMANN, Olaf; PREUSS, Mike; TRAUTMANN, Heike. Benchmark-
ing evolutionary algorithms: Towards exploratory landscape analysis. In:
International Conference on Parallel Problem Solving from Nature. 2010,
pp. 73–82.

51

http://dx.doi.org/10.1007/978-3-030-25147-5_7
http://dx.doi.org/10.1145/1143997.1144085


Bibliography

33. MINSKY, Marvin; PAPERT, Seymour. Perceptrons: An Introduction to
Computational Geometry. The MIT Press, 1969. ISBN 9780262534772.

34. MUÑOZ, Mario A; KIRLEY, Michael; HALGAMUGE, Saman K. Ex-
ploratory landscape analysis of continuous space optimization problems
using information content. IEEE transactions on evolutionary computa-
tion. 2014, vol. 19, no. 1, pp. 74–87.

35. MUÑOZ, Mario A; SUN, Yuan; KIRLEY, Michael; HALGAMUGE, Saman
K. Algorithm selection for black-box continuous optimization problems:
A survey on methods and challenges. Information Sciences. 2015, vol. 317,
pp. 224–245.

36. OLIPHANT, Travis E. A guide to NumPy. Trelgol Publishing USA, 2006.
ISBN 978-1517300074.

37. PAVELSKI, Lucas Marcondes; DELGADO, Myriam Regattieri; KESSACI,
Marie-Éléonore. Meta-learning on flowshop using fitness landscape anal-
ysis. In: Proceedings of the Genetic and Evolutionary Computation Con-
ference. 2019, pp. 925–933.

38. PEDREGOSA, Fabian et al. Scikit-learn: Machine learning in Python.
Journal of machine learning research. 2011, vol. 12, no. Oct, pp. 2825–
2830.

39. PITRA, Zbyněk; BAJER, Lukáš; HOLEŇA, Martin. Doubly trained evo-
lution control for the surrogate CMA-ES. In: International Conference
on Parallel Problem Solving from Nature. 2016, pp. 59–68.

40. PITRA, Zbyněk; BAJER, Lukáš; HOLEŇA, Martin. Knowledge-based
Selection of Gaussian Process Surrogates. In: Workshop & Tutorial on
Interactive Adaptive Learning. 2019, p. 48.

41. PITRA, Zbyněk; BAJER, Lukáš; REPICKÝ, Jakub; HOLEŇA, Martin.
Overview of surrogate-model versions of covariance matrix adaptation
evolution strategy. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference Companion on - GECCO ’17. ACM Press, 2017.
Available from DOI: 10.1145/3067695.3082539.

42. PITRA, Zbyněk; REPICKỲ, Jakub; HOLEŇA, Martin. Landscape anal-
ysis of gaussian process surrogates for the covariance matrix adaptation
evolution strategy. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference. 2019, pp. 691–699.

43. RASMUSSEN, Carl. Gaussian processes for machine learning. Cam-
bridge, Mass: MIT Press, 2006. ISBN 978-0262182539.

44. RECHENBERG, Ingo. Evolutionsstrategien. In: Simulationsmethoden in
der Medizin und Biologie. Springer, 1978, pp. 83–114.

45. RICE, John R. et al. The algorithm selection problem. Advances in com-
puters. 1976, vol. 15, no. 65-118, pp. 5.

52

http://dx.doi.org/10.1145/3067695.3082539


Bibliography

46. ROSENBLATT, Frank. The perceptron: a probabilistic model for infor-
mation storage and organization in the brain. Psychological review. 1958,
vol. 65, no. 6, pp. 386.

47. RUMELHART, David E; HINTON, Geoffrey E; WILLIAMS, Ronald J.
Learning internal representations by error propagation. 1985. Technical
report. California Univ San Diego La Jolla Inst for Cognitive Science.

48. ULMER, Holger; STREICHERT, Felix; ZELL, Andreas. Evolution strate-
gies with controlled model assistance. In: Proceedings of the 2004 Congress
on Evolutionary Computation (IEEE Cat. No. 04TH8753). 2004, vol. 2,
pp. 1569–1576.

49. VAN ROSSUM, Guido; DRAKE, Fred L. Python 3 Reference Manual.
Scotts Valley, CA: CreateSpace, 2009. ISBN 978-1441412690.

50. VAPNIK, Vladimir N. The nature of statistical learning theory. 1995.
ISBN 978-0-387-94559-0.

51. XU, L.; HUTTER, F.; HOOS, H. H.; LEYTON-BROWN, K. SATzilla:
Portfolio-based Algorithm Selection for SAT. Journal of Artificial Intel-
ligence Research. 2008, vol. 32, pp. 565–606. ISSN 1076-9757. Available
from DOI: 10.1613/jair.2490.

53

http://dx.doi.org/10.1613/jair.2490




Appendix A
Acronyms

ANN Artificial Neural Network

BBO Black-Box Optimization

CMA-ES Covariance Matrix Adaptation Evolution Strategy

DTS-CMA-ES Doubly Trained Surrogate Covariance Matrix Adaptation
Evolution Strategy

ES Evolution Strategy

FLA Fitness Landscape Analysis

FN False Negative

FP False Positive

GP Gaussian Process

MAE Mean Absolute Error

MSE Mean Squared Error

MZOE Mean Zero One Error

NaN Not a Number

NN Neural Network

RDE Ranking Difference Error

SVC Support Vector Classifier

SVM Support Vector Machine

SVR Support Vector Regression
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TN True Negative

TP True Positive
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Appendix B
Measurements

B.1 Classification
The following tables show measured metrics for defined single-label classifiers.
For each classifier and each class sensitivity, specificity and F1 score were
computed.
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Table B.1: Measured F1 score, sensitivity and specificity with two defined
variants. The first variant measures exact matches with the dataset and the
second measures when the classified kernel was in the group of similarly per-
forming kernels. Table is separated into subtables where each subtable shows
measured metrics w.r.t. used error measure.

Decision tree

kernel F1 score sensitivity specificity F1 score2 sensitivity2 specificity2

RDE

NN 0.000 0.000 1.000 0.000 0.000 1.000
SE 0.000 0.000 1.000 0.000 0.000 1.000
LIN 0.018 0.014 0.999 0.018 0.009 0.999
Q 0.000 0.000 1.000 0.000 0.000 1.000
Mat 0.472 0.707 0.462 0.472 0.675 0.470
RQ 0.030 0.012 0.992 0.030 0.015 0.994
SE+Q 0.000 0.000 1.000 0.000 0.000 1.000
Gibbs 0.349 0.573 0.611 0.349 0.559 0.619

MSE

NN 0.156 0.134 0.933 0.156 0.114 0.934
SE 0.115 0.074 0.979 0.115 0.064 0.985
LIN 0.090 0.132 0.996 0.090 0.049 0.995
Q 0.192 0.193 0.945 0.192 0.154 0.944
Mat 0.542 0.583 0.624 0.542 0.603 0.665
RQ 0.179 0.121 0.948 0.179 0.109 0.956
SE+Q 0.045 0.029 0.992 0.045 0.024 0.993
Gibbs 0.333 0.519 0.713 0.333 0.478 0.710

R2

NN 0.250 0.240 0.875 0.250 0.242 0.876
SE 0.093 0.057 0.984 0.093 0.055 0.984
LIN 0.453 0.555 0.851 0.453 0.546 0.854
Q 0.218 0.226 0.891 0.218 0.224 0.892
Mat 0.382 0.553 0.651 0.382 0.549 0.650
RQ 0.039 0.021 0.996 0.039 0.020 0.996
SE+Q 0.000 0.000 1.000 0.000 0.000 1.000
Gibbs 0.248 0.254 0.902 0.248 0.253 0.902

MAE

NN 0.174 0.122 0.945 0.174 0.132 0.947
SE 0.071 0.041 0.986 0.071 0.039 0.987
LIN 0.137 0.120 0.996 0.137 0.081 0.996
Q 0.037 0.022 0.997 0.037 0.019 0.997
Mat 0.465 0.662 0.510 0.465 0.658 0.515
RQ 0.159 0.121 0.944 0.159 0.104 0.944
SE+Q 0.184 0.133 0.949 0.184 0.138 0.951
Gibbs 0.313 0.394 0.780 0.313 0.390 0.780

Kendall

NN 0.060 0.033 0.989 0.060 0.032 0.990
SE 0.000 0.000 1.000 0.000 0.000 1.000
LIN 0.603 0.932 0.176 0.603 0.921 0.174
Q 0.126 0.086 0.950 0.126 0.082 0.951
Mat 0.000 0.000 1.000 0.000 0.000 1.000
RQ 0.001 0.001 1.000 0.001 0.001 1.000
SE+Q 0.055 0.022 0.995 0.055 0.029 0.996
Gibbs 0.175 0.133 0.949 0.175 0.130 0.951
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Table B.2: Measured F1 score, sensitivity and specificity with two defined
variants. The first variant measures exact matches with the dataset and the
second measures when the classified kernel was in the group of similarly per-
forming kernels. Table is separated into subtables where each subtable shows
measured metrics w.r.t. used error measure.

Random forest

kernel F1 score sensitivity specificity F1 score2 sensitivity2 specificity2

RDE

NN 0.071 0.045 0.980 0.071 0.042 0.980
SE 0.011 0.007 0.997 0.011 0.006 0.997
LIN 0.061 0.027 0.997 0.061 0.032 0.998
Q 0.044 0.020 0.995 0.044 0.023 0.996
Mat 0.475 0.693 0.494 0.475 0.659 0.502
RQ 0.069 0.049 0.978 0.069 0.038 0.979
SE+Q 0.004 0.001 0.999 0.004 0.002 0.999
Gibbs 0.365 0.573 0.643 0.365 0.558 0.652

MSE

NN 0.098 0.082 0.975 0.098 0.059 0.974
SE 0.052 0.037 0.994 0.052 0.027 0.996
LIN 0.119 0.180 0.995 0.119 0.067 0.995
Q 0.197 0.182 0.956 0.197 0.149 0.956
Mat 0.573 0.760 0.463 0.573 0.773 0.502
RQ 0.138 0.100 0.966 0.138 0.080 0.970
SE+Q 0.104 0.060 0.974 0.104 0.062 0.976
Gibbs 0.293 0.376 0.801 0.293 0.339 0.798

R2

NN 0.241 0.206 0.911 0.241 0.205 0.912
SE 0.076 0.044 0.992 0.076 0.042 0.992
LIN 0.469 0.643 0.815 0.469 0.636 0.818
Q 0.139 0.093 0.966 0.139 0.094 0.966
Mat 0.406 0.699 0.545 0.406 0.693 0.544
RQ 0.055 0.029 0.992 0.055 0.030 0.993
SE+Q 0.000 0.000 1.000 0.000 0.000 1.000
Gibbs 0.221 0.189 0.935 0.221 0.189 0.935

MAE

NN 0.164 0.096 0.970 0.164 0.108 0.972
SE 0.037 0.022 0.997 0.037 0.019 0.998
LIN 0.185 0.163 0.997 0.185 0.110 0.997
Q 0.041 0.024 0.997 0.041 0.021 0.997
Mat 0.499 0.787 0.437 0.499 0.780 0.443
RQ 0.118 0.081 0.975 0.118 0.069 0.976
SE+Q 0.178 0.119 0.961 0.178 0.124 0.964
Gibbs 0.324 0.406 0.787 0.324 0.400 0.786

Kendall

NN 0.061 0.037 0.990 0.061 0.033 0.991
SE 0.002 0.001 1.000 0.002 0.001 1.000
LIN 0.603 0.977 0.095 0.603 0.969 0.093
Q 0.029 0.016 0.990 0.029 0.015 0.991
Mat 0.001 0.001 1.000 0.001 0.001 1.000
RQ 0.008 0.002 0.999 0.008 0.004 0.999
SE+Q 0.067 0.023 0.995 0.067 0.035 0.997
Gibbs 0.165 0.114 0.973 0.165 0.107 0.974
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Table B.3: Measured F1 score, sensitivity and specificity with two defined
variants. The first variant measures exact matches with the dataset and the
second measures when the classified kernel was in the group of similarly per-
forming kernels. Table is separated into subtables where each subtable shows
measured metrics w.r.t. used error measure.

SVC one-vs-rest

kernel F1 score sensitivity specificity F1 score2 sensitivity2 specificity2

RDE

NN 0.092 0.060 0.967 0.092 0.058 0.968
SE 0.004 0.002 0.997 0.004 0.002 0.997
LIN 0.015 0.006 0.999 0.015 0.007 1.000
Q 0.059 0.030 0.985 0.059 0.033 0.986
Mat 0.478 0.732 0.426 0.478 0.710 0.437
RQ 0.059 0.038 0.970 0.059 0.033 0.970
SE+Q 0.025 0.008 0.995 0.025 0.013 0.996
Gibbs 0.324 0.433 0.723 0.324 0.419 0.728

MSE

NN 0.092 0.062 0.970 0.092 0.056 0.970
SE 0.011 0.005 0.997 0.011 0.005 0.998
LIN 0.070 0.104 0.996 0.070 0.038 0.996
Q 0.175 0.157 0.958 0.175 0.128 0.959
Mat 0.569 0.771 0.420 0.569 0.795 0.460
RQ 0.133 0.100 0.950 0.133 0.080 0.951
SE+Q 0.056 0.039 0.979 0.056 0.032 0.978
Gibbs 0.257 0.305 0.825 0.257 0.274 0.821

R2

NN 0.248 0.227 0.900 0.248 0.221 0.900
SE 0.062 0.037 0.986 0.062 0.036 0.986
LIN 0.442 0.646 0.786 0.442 0.638 0.789
Q 0.118 0.072 0.963 0.118 0.080 0.965
Mat 0.391 0.632 0.582 0.391 0.627 0.582
RQ 0.019 0.009 0.995 0.019 0.010 0.995
SE+Q 0.000 0.000 1.000 0.000 0.000 1.000
Gibbs 0.191 0.168 0.926 0.191 0.168 0.926

MAE

NN 0.110 0.055 0.968 0.110 0.070 0.971
SE 0.005 0.002 0.999 0.005 0.003 0.999
LIN 0.107 0.089 0.998 0.107 0.060 0.998
Q 0.024 0.014 0.996 0.024 0.013 0.996
Mat 0.485 0.790 0.386 0.485 0.790 0.393
RQ 0.106 0.067 0.961 0.106 0.064 0.962
SE+Q 0.111 0.078 0.962 0.111 0.075 0.962
Gibbs 0.274 0.314 0.811 0.274 0.310 0.810

Kendall

NN 0.020 0.008 0.993 0.020 0.010 0.994
SE 0.025 0.015 0.997 0.025 0.013 0.997
LIN 0.603 0.947 0.140 0.603 0.940 0.140
Q 0.115 0.079 0.946 0.115 0.075 0.947
Mat 0.052 0.032 0.991 0.052 0.029 0.992
RQ 0.000 0.000 1.000 0.000 0.000 1.000
SE+Q 0.005 0.002 0.999 0.005 0.002 1.000
Gibbs 0.093 0.065 0.977 0.093 0.057 0.977
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Table B.4: Measured F1 score, sensitivity and specificity with two defined
variants. The first variant measures exact matches with the dataset and the
second measures when the classified kernel was in the group of similarly per-
forming kernels. Table is separated into subtables where each subtable shows
measured metrics w.r.t. used error measure.

SVC one-vs-one

kernel F1 score sensitivity specificity F1 score2 sensitivity2 specificity2

RDE

NN 0.102 0.073 0.958 0.102 0.068 0.959
SE 0.014 0.008 0.994 0.014 0.007 0.994
LIN 0.040 0.017 0.997 0.040 0.021 0.998
Q 0.097 0.060 0.971 0.097 0.061 0.973
Mat 0.472 0.705 0.453 0.472 0.681 0.463
RQ 0.080 0.049 0.966 0.080 0.045 0.967
SE+Q 0.035 0.012 0.991 0.035 0.018 0.993
Gibbs 0.324 0.422 0.736 0.324 0.408 0.742

MSE

NN 0.113 0.077 0.958 0.113 0.073 0.959
SE 0.031 0.013 0.994 0.031 0.016 0.996
LIN 0.066 0.096 0.996 0.066 0.036 0.996
Q 0.177 0.166 0.953 0.177 0.134 0.953
Mat 0.565 0.731 0.462 0.565 0.757 0.504
RQ 0.141 0.104 0.950 0.141 0.085 0.953
SE+Q 0.076 0.057 0.967 0.076 0.047 0.966
Gibbs 0.269 0.323 0.819 0.269 0.293 0.816

R2

NN 0.257 0.248 0.886 0.257 0.241 0.886
SE 0.086 0.055 0.979 0.086 0.052 0.979
LIN 0.458 0.602 0.828 0.458 0.595 0.831
Q 0.162 0.115 0.951 0.162 0.121 0.952
Mat 0.387 0.599 0.610 0.387 0.595 0.610
RQ 0.053 0.029 0.989 0.053 0.029 0.989
SE+Q 0.000 0.000 1.000 0.000 0.000 1.000
Gibbs 0.224 0.222 0.905 0.224 0.222 0.905

MAE

NN 0.139 0.073 0.957 0.139 0.096 0.961
SE 0.009 0.005 0.998 0.009 0.005 0.998
LIN 0.117 0.099 0.997 0.117 0.067 0.997
Q 0.061 0.037 0.988 0.061 0.036 0.988
Mat 0.483 0.755 0.425 0.483 0.755 0.432
RQ 0.119 0.076 0.957 0.119 0.073 0.959
SE+Q 0.142 0.106 0.956 0.142 0.100 0.956
Gibbs 0.286 0.329 0.812 0.286 0.324 0.811

Kendall

NN 0.013 0.006 0.995 0.013 0.007 0.995
SE 0.013 0.009 0.998 0.013 0.007 0.998
LIN 0.604 0.958 0.118 0.604 0.955 0.119
Q 0.092 0.061 0.962 0.092 0.056 0.962
Mat 0.055 0.033 0.992 0.055 0.030 0.993
RQ 0.004 0.003 0.999 0.004 0.002 0.999
SE+Q 0.002 0.001 0.999 0.002 0.001 0.999
Gibbs 0.105 0.074 0.977 0.105 0.065 0.977
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Table B.5: Measured F1 score, sensitivity and specificity with two defined
variants. The first variant measures exact matches with the dataset and the
second measures when the classified kernel was in the group of similarly per-
forming kernels. Table is separated into subtables where each subtable shows
measured metrics w.r.t. used error measure.

Neural network

kernel F1 score sensitivity specificity F1 score2 sensitivity2 specificity2

RDE

NN 0.093 0.053 0.973 0.093 0.057 0.974
SE 0.000 0.000 1.000 0.000 0.000 1.000
LIN 0.128 0.046 0.992 0.128 0.073 0.995
Q 0.155 0.092 0.971 0.155 0.099 0.974
Mat 0.470 0.659 0.519 0.470 0.632 0.530
RQ 0.023 0.016 0.991 0.023 0.012 0.990
SE+Q 0.001 0.000 1.000 0.001 0.000 1.000
Gibbs 0.360 0.589 0.637 0.360 0.558 0.642

MSE

NN 0.142 0.127 0.947 0.142 0.098 0.946
SE 0.070 0.035 0.993 0.070 0.036 0.998
LIN 0.084 0.127 0.995 0.084 0.047 0.995
Q 0.214 0.211 0.944 0.214 0.174 0.945
Mat 0.560 0.667 0.526 0.560 0.698 0.571
RQ 0.091 0.064 0.973 0.091 0.051 0.974
SE+Q 0.017 0.013 0.996 0.017 0.009 0.996
Gibbs 0.327 0.480 0.743 0.327 0.439 0.740

R2

NN 0.275 0.270 0.880 0.275 0.267 0.880
SE 0.011 0.005 0.999 0.011 0.005 0.999
LIN 0.485 0.587 0.863 0.485 0.575 0.866
Q 0.213 0.185 0.927 0.213 0.185 0.928
Mat 0.394 0.672 0.547 0.394 0.667 0.546
RQ 0.039 0.021 0.995 0.039 0.021 0.995
SE+Q 0.000 0.000 1.000 0.000 0.000 1.000
Gibbs 0.210 0.170 0.945 0.210 0.170 0.945

MAE

NN 0.202 0.152 0.921 0.202 0.174 0.925
SE 0.007 0.004 1.000 0.007 0.004 1.000
LIN 0.094 0.078 0.998 0.094 0.052 0.998
Q 0.093 0.064 0.983 0.093 0.058 0.984
Mat 0.482 0.699 0.498 0.482 0.697 0.504
RQ 0.142 0.104 0.957 0.142 0.089 0.957
SE+Q 0.083 0.051 0.977 0.083 0.051 0.977
Gibbs 0.335 0.431 0.779 0.335 0.424 0.778

Kendall

NN 0.072 0.040 0.991 0.072 0.039 0.992
SE 0.014 0.007 0.999 0.014 0.007 0.999
LIN 0.603 0.952 0.137 0.603 0.943 0.135
Q 0.092 0.059 0.962 0.092 0.056 0.962
Mat 0.000 0.000 1.000 0.000 0.000 1.000
RQ 0.001 0.001 1.000 0.001 0.001 1.000
SE+Q 0.054 0.015 0.995 0.054 0.029 0.997
Gibbs 0.169 0.123 0.968 0.169 0.113 0.969
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B.2. Regression

B.2 Regression
The following tables show measured metrics for defined regressor models later
utilized to select a class with the minimal predicted value. For each classifier
and each class sensitivity, specificity and F1 score were computed.
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Table B.6: Measured F1 score, sensitivity and specificity with two defined
variants. The first variant measures exact matches with the dataset and the
second measures when the classified kernel was in the group of similarly per-
forming kernels. Table is separated into subtables where each subtable shows
measured metrics w.r.t. used error measure.

Regression tree

kernel F1 score sensitivity specificity F1 score2 sensitivity2 specificity2

RDE

NN 0.045 0.023 0.986 0.045 0.025 0.987
SE 0.151 0.089 0.912 0.151 0.099 0.916
LIN 0.280 0.083 0.983 0.280 0.179 0.992
Q 0.062 0.030 0.990 0.062 0.034 0.992
Mat 0.325 0.342 0.686 0.325 0.331 0.685
RQ 0.374 0.507 0.557 0.374 0.468 0.554
SE+Q 0.158 0.109 0.933 0.158 0.110 0.938
Gibbs 0.058 0.037 0.980 0.058 0.032 0.980

MSE

NN 0.040 0.021 0.983 0.040 0.022 0.984
SE 0.183 0.096 0.920 0.183 0.121 0.931
LIN 0.002 0.002 0.999 0.002 0.001 0.999
Q 0.003 0.002 0.999 0.003 0.002 0.999
Mat 0.355 0.320 0.704 0.355 0.331 0.713
RQ 0.378 0.521 0.580 0.378 0.476 0.581
SE+Q 0.181 0.215 0.852 0.181 0.184 0.851
Gibbs 0.013 0.007 0.994 0.013 0.007 0.993

R2

NN 0.123 0.085 0.946 0.123 0.086 0.946
SE 0.139 0.128 0.902 0.139 0.130 0.902
LIN 0.072 0.040 0.975 0.072 0.043 0.975
Q 0.085 0.055 0.962 0.085 0.057 0.963
Mat 0.262 0.276 0.782 0.262 0.275 0.782
RQ 0.182 0.398 0.604 0.182 0.393 0.604
SE+Q 0.087 0.082 0.916 0.087 0.088 0.917
Gibbs 0.122 0.095 0.941 0.122 0.096 0.941

MAE

NN 0.061 0.023 0.986 0.061 0.034 0.987
SE 0.197 0.129 0.903 0.197 0.157 0.911
LIN 0.020 0.004 0.999 0.020 0.010 0.999
Q 0.011 0.007 0.995 0.011 0.006 0.995
Mat 0.318 0.307 0.747 0.318 0.304 0.748
RQ 0.296 0.490 0.592 0.296 0.447 0.586
SE+Q 0.213 0.259 0.828 0.213 0.267 0.831
Gibbs 0.019 0.010 0.992 0.019 0.010 0.992

Kendall

NN 0.158 0.095 0.958 0.158 0.105 0.961
SE 0.187 0.187 0.908 0.187 0.177 0.912
LIN 0.602 0.701 0.563 0.602 0.685 0.567
Q 0.238 0.241 0.844 0.238 0.227 0.845
Mat 0.066 0.043 0.976 0.066 0.043 0.977
RQ 0.093 0.071 0.972 0.093 0.063 0.973
SE+Q 0.065 0.053 0.962 0.065 0.044 0.961
Gibbs 0.182 0.147 0.960 0.182 0.129 0.960
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Table B.7: Measured F1 score, sensitivity and specificity with two defined
variants. The first variant measures exact matches with the dataset and the
second measures when the classified kernel was in the group of similarly per-
forming kernels. Table is separated into subtables where each subtable shows
measured metrics w.r.t. used error measure.

Random forest

kernel F1 score sensitivity specificity F1 score2 sensitivity2 specificity2

RDE

NN 0.007 0.004 0.998 0.007 0.004 0.998
SE 0.074 0.037 0.983 0.074 0.040 0.988
LIN 0.307 0.084 0.984 0.307 0.195 0.994
Q 0.004 0.001 1.000 0.004 0.002 1.000
Mat 0.378 0.439 0.601 0.378 0.438 0.606
RQ 0.367 0.545 0.493 0.367 0.496 0.480
SE+Q 0.074 0.045 0.976 0.074 0.042 0.977
Gibbs 0.026 0.018 0.991 0.026 0.014 0.990

MSE

NN 0.045 0.023 0.979 0.045 0.025 0.979
SE 0.223 0.083 0.946 0.223 0.137 0.969
LIN 0.000 0.000 1.000 0.000 0.000 1.000
Q 0.000 0.000 1.000 0.000 0.000 1.000
Mat 0.399 0.412 0.638 0.399 0.414 0.646
RQ 0.345 0.510 0.576 0.345 0.436 0.563
SE+Q 0.179 0.165 0.898 0.179 0.155 0.900
Gibbs 0.000 0.000 1.000 0.000 0.000 1.000

R2

NN 0.067 0.039 0.976 0.067 0.039 0.976
SE 0.118 0.085 0.953 0.118 0.085 0.954
LIN 0.000 0.000 1.000 0.000 0.000 1.000
Q 0.000 0.000 1.000 0.000 0.000 1.000
Mat 0.319 0.450 0.643 0.319 0.446 0.642
RQ 0.182 0.497 0.471 0.182 0.492 0.470
SE+Q 0.042 0.020 0.984 0.042 0.025 0.985
Gibbs 0.005 0.003 0.995 0.005 0.003 0.995

MAE

NN 0.034 0.017 0.985 0.034 0.019 0.985
SE 0.179 0.088 0.943 0.179 0.121 0.952
LIN 0.000 0.000 1.000 0.000 0.000 1.000
Q 0.000 0.000 1.000 0.000 0.000 1.000
Mat 0.350 0.383 0.684 0.350 0.374 0.683
RQ 0.289 0.528 0.542 0.289 0.470 0.532
SE+Q 0.218 0.186 0.886 0.218 0.218 0.892
Gibbs 0.000 0.000 1.000 0.000 0.000 1.000

Kendall

NN 0.127 0.061 0.976 0.127 0.076 0.980
SE 0.219 0.233 0.901 0.219 0.218 0.906
LIN 0.615 0.749 0.521 0.615 0.733 0.524
Q 0.240 0.229 0.868 0.240 0.214 0.869
Mat 0.071 0.035 0.981 0.071 0.044 0.983
RQ 0.070 0.060 0.977 0.070 0.045 0.977
SE+Q 0.070 0.052 0.957 0.070 0.049 0.957
Gibbs 0.181 0.142 0.966 0.181 0.124 0.966
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Table B.8: Measured F1 score, sensitivity and specificity with two defined
variants. The first variant measures exact matches with the dataset and the
second measures when the classified kernel was in the group of similarly per-
forming kernels. Table is separated into subtables where each subtable shows
measured metrics w.r.t. used error measure.

Support vector regression

kernel F1 score sensitivity specificity F1 score2 sensitivity2 specificity2

RDE

NN 0.077 0.046 0.966 0.077 0.049 0.967
SE 0.187 0.113 0.913 0.187 0.123 0.922
LIN 0.002 0.002 0.999 0.002 0.001 0.999
Q 0.030 0.014 0.992 0.030 0.016 0.992
Mat 0.347 0.338 0.719 0.347 0.338 0.726
RQ 0.348 0.432 0.642 0.348 0.388 0.638
SE+Q 0.240 0.224 0.846 0.240 0.227 0.854
Gibbs 0.083 0.054 0.961 0.083 0.050 0.961

MSE

NN 0.151 0.115 0.910 0.151 0.120 0.912
SE 0.206 0.089 0.941 0.206 0.129 0.959
LIN 0.128 0.037 0.941 0.128 0.113 0.946
Q 0.106 0.080 0.944 0.106 0.081 0.945
Mat 0.254 0.152 0.893 0.254 0.170 0.910
RQ 0.197 0.188 0.793 0.197 0.169 0.782
SE+Q 0.127 0.066 0.945 0.127 0.087 0.950
Gibbs 0.301 0.457 0.670 0.301 0.457 0.673

R2

NN 0.115 0.081 0.938 0.115 0.082 0.939
SE 0.163 0.172 0.884 0.163 0.167 0.884
LIN 0.134 0.105 0.923 0.134 0.105 0.923
Q 0.114 0.090 0.941 0.114 0.088 0.941
Mat 0.162 0.129 0.878 0.162 0.128 0.878
RQ 0.202 0.315 0.767 0.202 0.307 0.767
SE+Q 0.026 0.016 0.981 0.026 0.016 0.981
Gibbs 0.222 0.398 0.727 0.222 0.398 0.728

MAE

NN 0.070 0.052 0.954 0.070 0.048 0.954
SE 0.152 0.086 0.932 0.152 0.108 0.938
LIN 0.062 0.122 0.930 0.062 0.094 0.930
Q 0.132 0.104 0.941 0.132 0.116 0.943
Mat 0.224 0.189 0.815 0.224 0.183 0.813
RQ 0.263 0.255 0.760 0.263 0.285 0.769
SE+Q 0.081 0.048 0.967 0.081 0.052 0.968
Gibbs 0.278 0.378 0.730 0.278 0.380 0.731

Kendall

NN 0.045 0.024 0.984 0.045 0.025 0.985
SE 0.147 0.125 0.937 0.147 0.119 0.939
LIN 0.607 0.796 0.415 0.607 0.783 0.417
Q 0.171 0.141 0.902 0.171 0.133 0.902
Mat 0.090 0.064 0.973 0.090 0.060 0.974
RQ 0.163 0.150 0.941 0.163 0.141 0.944
SE+Q 0.056 0.036 0.978 0.056 0.034 0.979
Gibbs 0.098 0.069 0.974 0.098 0.061 0.974
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Table B.9: Measured F1 score, sensitivity and specificity with two defined
variants. The first variant measures exact matches with the dataset and the
second measures when the classified kernel was in the group of similarly per-
forming kernels. Table is separated into subtables where each subtable shows
measured metrics w.r.t. used error measure.

Neural network

kernel F1 score sensitivity specificity F1 score2 sensitivity2 specificity2

RDE

NN 0.000 0.000 1.000 0.000 0.000 1.000
SE 0.039 0.017 0.990 0.039 0.020 0.993
LIN 0.004 0.002 1.000 0.004 0.002 1.000
Q 0.034 0.003 0.997 0.034 0.017 0.999
Mat 0.412 0.418 0.703 0.412 0.422 0.720
RQ 0.346 0.583 0.338 0.346 0.547 0.306
SE+Q 0.049 0.020 0.988 0.049 0.026 0.990
Gibbs 0.000 0.000 1.000 0.000 0.000 1.000

MSE

NN 0.000 0.000 1.000 0.000 0.000 1.000
SE 0.000 0.000 1.000 0.000 0.000 1.000
LIN 0.000 0.000 1.000 0.000 0.000 1.000
Q 0.000 0.000 1.000 0.000 0.000 1.000
Mat 0.519 0.999 0.000 0.519 1.000 0.000
RQ 0.000 0.000 1.000 0.000 0.000 1.000
SE+Q 0.000 0.000 1.000 0.000 0.000 1.000
Gibbs 0.000 0.000 1.000 0.000 0.000 1.000

R2

NN 0.287 0.575 0.590 0.287 0.556 0.588
SE 0.179 0.248 0.788 0.179 0.255 0.790
LIN 0.000 0.000 1.000 0.000 0.000 1.000
Q 0.000 0.000 1.000 0.000 0.000 1.000
Mat 0.220 0.294 0.639 0.220 0.293 0.638
RQ 0.000 0.000 1.000 0.000 0.000 1.000
SE+Q 0.000 0.000 1.000 0.000 0.000 1.000
Gibbs 0.009 0.004 0.997 0.009 0.004 0.997

MAE

NN 0.177 0.439 0.561 0.177 0.413 0.557
SE 0.231 0.474 0.428 0.231 0.498 0.427
LIN 0.000 0.000 1.000 0.000 0.000 1.000
Q 0.000 0.000 1.000 0.000 0.000 1.000
Mat 0.000 0.000 1.000 0.000 0.000 1.000
RQ 0.000 0.000 1.000 0.000 0.000 1.000
SE+Q 0.000 0.000 1.000 0.000 0.000 1.000
Gibbs 0.000 0.000 1.000 0.000 0.000 1.000

Kendall

NN 0.000 0.000 1.000 0.000 0.000 1.000
SE 0.140 0.099 0.940 0.140 0.110 0.943
LIN 0.611 0.861 0.310 0.611 0.853 0.314
Q 0.107 0.072 0.956 0.107 0.067 0.956
Mat 0.083 0.063 0.987 0.083 0.049 0.987
RQ 0.182 0.174 0.924 0.182 0.175 0.929
SE+Q 0.045 0.032 0.979 0.045 0.027 0.979
Gibbs 0.057 0.039 0.987 0.057 0.032 0.987
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B.3 Multi-label classification
The following tables show measured metrics for defined multi-label classifiers.
How multi-label classifiers were utilized see description Section 2.5.3. For each
classifier and each class sensitivity, specificity and F1 score were computed.

68



B.3. Multi-label classification

Table B.10: Measured F1 score, sensitivity and specificity with two defined
variants. The first variant measures exact matches with the dataset and the
second measures when the classified kernel was in the group of similarly per-
forming kernels. Table is separated into subtables where each subtable shows
measured metrics w.r.t. used error measure.

Decision tree

kernel F1 score sensitivity specificity F1 score2 sensitivity2 specificity2

RDE

NN 0.102 0.074 0.960 0.102 0.068 0.960
SE 0.129 0.075 0.946 0.129 0.077 0.950
LIN 0.246 0.086 0.979 0.246 0.163 0.987
Q 0.069 0.045 0.975 0.069 0.042 0.975
Mat 0.371 0.412 0.683 0.371 0.388 0.685
RQ 0.277 0.206 0.855 0.277 0.210 0.869
SE+Q 0.068 0.038 0.972 0.068 0.040 0.973
Gibbs 0.315 0.479 0.698 0.315 0.431 0.697

MSE

NN 0.243 0.143 0.908 0.243 0.197 0.921
SE 0.388 0.238 0.855 0.388 0.316 0.896
LIN 0.070 0.107 0.992 0.070 0.040 0.991
Q 0.190 0.191 0.941 0.190 0.156 0.941
Mat 0.370 0.386 0.704 0.370 0.353 0.699
RQ 0.129 0.097 0.939 0.129 0.080 0.939
SE+Q 0.123 0.094 0.950 0.123 0.084 0.951
Gibbs 0.292 0.370 0.801 0.292 0.338 0.798

R2

NN 0.225 0.213 0.879 0.225 0.212 0.879
SE 0.156 0.137 0.925 0.156 0.133 0.925
LIN 0.388 0.421 0.881 0.388 0.409 0.882
Q 0.179 0.158 0.921 0.179 0.158 0.922
Mat 0.332 0.417 0.716 0.332 0.414 0.715
RQ 0.127 0.101 0.927 0.127 0.104 0.928
SE+Q 0.071 0.055 0.958 0.071 0.055 0.958
Gibbs 0.192 0.186 0.906 0.192 0.186 0.906

MAE

NN 0.168 0.135 0.937 0.168 0.134 0.938
SE 0.177 0.119 0.933 0.177 0.127 0.937
LIN 0.138 0.124 0.993 0.138 0.089 0.993
Q 0.091 0.066 0.975 0.091 0.061 0.975
Mat 0.405 0.477 0.653 0.405 0.467 0.653
RQ 0.246 0.191 0.890 0.246 0.195 0.897
SE+Q 0.183 0.141 0.934 0.183 0.147 0.936
Gibbs 0.312 0.385 0.788 0.312 0.380 0.788

Kendall

NN 0.148 0.092 0.954 0.148 0.100 0.957
SE 0.139 0.094 0.959 0.139 0.098 0.962
LIN 0.574 0.756 0.383 0.574 0.744 0.382
Q 0.129 0.097 0.930 0.129 0.090 0.929
Mat 0.088 0.069 0.968 0.088 0.062 0.968
RQ 0.072 0.049 0.978 0.072 0.045 0.979
SE+Q 0.102 0.076 0.960 0.102 0.071 0.960
Gibbs 0.157 0.129 0.950 0.157 0.115 0.951
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Table B.11: Measured F1 score, sensitivity and specificity with two defined
variants. The first variant measures exact matches with the dataset and the
second measures when the classified kernel was in the group of similarly per-
forming kernels. Table is separated into subtables where each subtable shows
measured metrics w.r.t. used error measure.

Random forest

kernel F1 score sensitivity specificity F1 score2 sensitivity2 specificity2

RDE

NN 0.070 0.045 0.980 0.070 0.041 0.980
SE 0.062 0.029 0.987 0.062 0.032 0.992
LIN 0.288 0.078 0.986 0.288 0.179 0.995
Q 0.034 0.018 0.995 0.034 0.018 0.996
Mat 0.444 0.635 0.520 0.444 0.592 0.520
RQ 0.132 0.076 0.960 0.132 0.076 0.967
SE+Q 0.024 0.007 0.997 0.024 0.012 0.998
Gibbs 0.341 0.560 0.656 0.341 0.510 0.657

MSE

NN 0.169 0.086 0.964 0.169 0.107 0.971
SE 0.445 0.218 0.896 0.445 0.328 0.952
LIN 0.091 0.140 0.995 0.091 0.051 0.995
Q 0.195 0.182 0.956 0.195 0.147 0.956
Mat 0.448 0.588 0.547 0.448 0.536 0.537
RQ 0.089 0.068 0.974 0.089 0.050 0.974
SE+Q 0.110 0.062 0.973 0.110 0.066 0.976
Gibbs 0.293 0.376 0.801 0.293 0.339 0.798

R2

NN 0.241 0.206 0.911 0.241 0.205 0.912
SE 0.076 0.044 0.992 0.076 0.042 0.992
LIN 0.469 0.643 0.815 0.469 0.636 0.818
Q 0.139 0.093 0.966 0.139 0.094 0.966
Mat 0.406 0.699 0.545 0.406 0.693 0.544
RQ 0.055 0.029 0.992 0.055 0.030 0.993
SE+Q 0.000 0.000 1.000 0.000 0.000 1.000
Gibbs 0.221 0.189 0.935 0.221 0.189 0.935

MAE

NN 0.166 0.095 0.969 0.166 0.109 0.972
SE 0.069 0.030 0.993 0.069 0.037 0.996
LIN 0.185 0.163 0.997 0.185 0.110 0.997
Q 0.041 0.024 0.997 0.041 0.021 0.997
Mat 0.486 0.768 0.449 0.486 0.748 0.448
RQ 0.164 0.099 0.969 0.164 0.098 0.974
SE+Q 0.178 0.118 0.961 0.178 0.124 0.964
Gibbs 0.324 0.406 0.787 0.324 0.400 0.786

Kendall

NN 0.097 0.043 0.986 0.097 0.054 0.988
SE 0.005 0.002 1.000 0.005 0.002 1.000
LIN 0.602 0.977 0.098 0.602 0.966 0.094
Q 0.030 0.016 0.990 0.030 0.016 0.991
Mat 0.002 0.001 1.000 0.002 0.001 1.000
RQ 0.006 0.003 1.000 0.006 0.003 1.000
SE+Q 0.054 0.020 0.996 0.054 0.029 0.997
Gibbs 0.149 0.110 0.975 0.149 0.095 0.975
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Table B.12: Measured F1 score, sensitivity and specificity with two defined
variants. The first variant measures exact matches with the dataset and the
second measures when the classified kernel was in the group of similarly per-
forming kernels. Table is separated into subtables where each subtable shows
measured metrics w.r.t. used error measure.

SVC

kernel F1 score sensitivity specificity F1 score2 sensitivity2 specificity2

RDE

NN 0.015 0.008 0.994 0.015 0.008 0.994
SE 0.196 0.149 0.838 0.196 0.153 0.837
LIN 0.022 0.006 0.998 0.022 0.011 0.998
Q 0.034 0.017 0.988 0.034 0.019 0.988
Mat 0.347 0.368 0.660 0.347 0.368 0.664
RQ 0.332 0.297 0.781 0.332 0.294 0.795
SE+Q 0.104 0.042 0.961 0.104 0.064 0.966
Gibbs 0.241 0.271 0.809 0.241 0.250 0.809

MSE

NN 0.159 0.117 0.929 0.159 0.118 0.932
SE 0.375 0.256 0.848 0.375 0.311 0.884
LIN 0.064 0.076 0.993 0.064 0.036 0.993
Q 0.140 0.116 0.966 0.140 0.096 0.966
Mat 0.412 0.497 0.583 0.412 0.463 0.576
RQ 0.193 0.125 0.928 0.193 0.124 0.937
SE+Q 0.088 0.065 0.964 0.088 0.055 0.964
Gibbs 0.233 0.243 0.863 0.233 0.220 0.861

R2

NN 0.212 0.172 0.926 0.212 0.168 0.926
SE 0.152 0.165 0.871 0.152 0.163 0.871
LIN 0.437 0.518 0.864 0.437 0.502 0.866
Q 0.109 0.072 0.973 0.109 0.069 0.973
Mat 0.367 0.574 0.595 0.367 0.570 0.595
RQ 0.043 0.023 0.992 0.043 0.023 0.992
SE+Q 0.009 0.005 0.997 0.009 0.004 0.997
Gibbs 0.219 0.215 0.907 0.219 0.215 0.907

MAE

NN 0.085 0.054 0.981 0.085 0.051 0.981
SE 0.154 0.082 0.937 0.154 0.107 0.943
LIN 0.138 0.117 0.998 0.138 0.079 0.998
Q 0.026 0.014 0.997 0.026 0.014 0.997
Mat 0.447 0.648 0.497 0.447 0.637 0.498
RQ 0.210 0.140 0.911 0.210 0.153 0.918
SE+Q 0.158 0.127 0.944 0.158 0.121 0.944
Gibbs 0.283 0.317 0.821 0.283 0.312 0.821

Kendall

NN 0.040 0.022 0.990 0.040 0.022 0.991
SE 0.005 0.003 1.000 0.005 0.002 1.000
LIN 0.602 0.977 0.081 0.602 0.973 0.081
Q 0.030 0.016 0.990 0.030 0.016 0.990
Mat 0.002 0.002 1.000 0.002 0.001 1.000
RQ 0.002 0.002 1.000 0.002 0.001 1.000
SE+Q 0.008 0.004 0.999 0.008 0.004 1.000
Gibbs 0.149 0.106 0.974 0.149 0.095 0.975
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Table B.13: Measured F1 score, sensitivity and specificity with two defined
variants. The first variant measures exact matches with the dataset and the
second measures when the classified kernel was in the group of similarly per-
forming kernels. Table is separated into subtables where each subtable shows
measured metrics w.r.t. used error measure.

Neural network

kernel F1 score sensitivity specificity F1 score2 sensitivity2 specificity2

RDE

NN 0.070 0.045 0.980 0.070 0.041 0.980
SE 0.066 0.035 0.987 0.066 0.035 0.991
LIN 0.269 0.076 0.986 0.269 0.166 0.995
Q 0.045 0.020 0.995 0.045 0.024 0.996
Mat 0.445 0.640 0.522 0.445 0.592 0.522
RQ 0.133 0.078 0.960 0.133 0.077 0.968
SE+Q 0.015 0.006 0.997 0.015 0.007 0.998
Gibbs 0.343 0.559 0.656 0.343 0.513 0.657

MSE

NN 0.187 0.086 0.960 0.187 0.120 0.969
SE 0.402 0.179 0.909 0.402 0.283 0.959
LIN 0.120 0.182 0.995 0.120 0.068 0.995
Q 0.197 0.182 0.956 0.197 0.149 0.956
Mat 0.457 0.599 0.540 0.457 0.552 0.534
RQ 0.102 0.075 0.970 0.102 0.057 0.972
SE+Q 0.104 0.060 0.974 0.104 0.062 0.976
Gibbs 0.293 0.376 0.801 0.293 0.339 0.798

R2

NN 0.241 0.206 0.911 0.241 0.205 0.912
SE 0.076 0.045 0.992 0.076 0.042 0.992
LIN 0.469 0.643 0.815 0.469 0.636 0.818
Q 0.139 0.093 0.966 0.139 0.094 0.966
Mat 0.406 0.699 0.545 0.406 0.693 0.544
RQ 0.055 0.029 0.992 0.055 0.030 0.993
SE+Q 0.000 0.000 1.000 0.000 0.000 1.000
Gibbs 0.220 0.189 0.935 0.220 0.189 0.935

MAE

NN 0.170 0.098 0.969 0.170 0.112 0.972
SE 0.087 0.032 0.988 0.087 0.047 0.993
LIN 0.185 0.163 0.997 0.185 0.110 0.997
Q 0.041 0.024 0.997 0.041 0.021 0.997
Mat 0.482 0.758 0.452 0.482 0.738 0.451
RQ 0.158 0.097 0.968 0.158 0.095 0.972
SE+Q 0.177 0.118 0.962 0.177 0.123 0.964
Gibbs 0.324 0.406 0.787 0.324 0.400 0.786

Kendall

NN 0.078 0.039 0.988 0.078 0.043 0.989
SE 0.009 0.002 0.999 0.009 0.005 1.000
LIN 0.602 0.975 0.098 0.602 0.965 0.094
Q 0.030 0.016 0.990 0.030 0.016 0.991
Mat 0.003 0.001 1.000 0.003 0.002 1.000
RQ 0.007 0.002 0.999 0.007 0.004 0.999
SE+Q 0.072 0.023 0.995 0.072 0.038 0.997
Gibbs 0.154 0.111 0.974 0.154 0.099 0.975
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Appendix C
Contents of Flash Drive

readme.txt.................the file with Flash drive contents description
src.........................................the directory of source codes

experiments..........................the directory with experiments
*_classifier.ipynb.......the Jupyter Notebook source code files

for training classifiers
Accuracy_report.ipynb...the Jupyter Notebook source code file

for assessing models performance
*.py.the Python source code files with a commonly used functions
models............the directory of trained models in Pickle format

tex...............................the directory of LATEX source codes
figures....................directory of Jupyter Notebook for gen-

erating figures
*.tex..................... the LATEX source code files of the thesis

text............................................ the thesis text directory
thesis.pdf........................the Diploma thesis in PDF format

75


	Introduction
	Theoretical background
	Black-box optimization
	Surrogate modeling
	Low degree polynomials
	Gaussian processes
	Artificial neural network
	Support vector machine
	Random forest

	Evolution strategy
	CMA-ES
	S-CMA-ES
	DTS-CMA-ES

	Surrogate model selection
	Fitness landscape analysis


	Design
	Data space
	Feature space
	Model space
	Performance space
	Selection mapping
	Classification approach
	Regression approach
	Multi-label approach


	Experiments
	Data preprocessing
	Selection mapping
	Classification
	Regression
	Multi-label classification

	Accuracy comparison
	Discussion and future work

	Conclusion
	Bibliography
	Acronyms
	Measurements
	Classification
	Regression
	Multi-label classification

	Contents of Flash Drive

