
Ing. Karel Klouda, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague November 5, 2019

ASSIGNMENT OF MASTER’S THESIS
 Title: Fusion of heterogeneous models in agent networks

 Student: Bc. Martin Šmíd

 Supervisor: Ing. Kamil Dedecius, Ph.D.

 Study Programme: Informatics

 Study Branch: Knowledge Engineering

 Department: Department of Applied Mathematics

 Validity: Until the end of summer semester 2020/21

Instructions

Assume a network of agents observing and modelling some stochastic process with the goal to predict its
future or intermediate values. The agents are independent in the sense that they are allowed to locally
employ different models, for instance, physical, time-series, state-space, black or white box models. The
questions are the following: Can the agents improve their local predictions by considering predictions of
neighbouring nodes? How to incorporate this information into nodes' own local statistical knowledge about
the predicted variables?

The main points of the thesis are:
1. Study the topic of collaborative modelling in networks of interconnected agents.
2. Propose a method for improving local predictions by exploiting information provided by neighbouring
nodes. In particular, what information should be exchanged and how to combine it locally.
3. Demonstrate the proposed method properties on convenient simulation and/or real-world examples.
p { margin-bottom: 0.1in; line-height: 115%; background: transparent none repeat scroll 0% 0%; }

References

Will be provided by the supervisor.

Master’s thesis

Fusion of heterogeneous models in agent
networks

Bc. Martin Šmı́d

Department of Applied Mathematics
Supervisor: Ing. Kamil Dedecius, Ph.D.

June 1, 2020

Acknowledgements

I would like to thank everyone who supported me during my studies, especially
my family, friends, and special friends. It would be very difficult for me
without any single one of them. I would also like to thank my supervisor for
his guidance and patient help.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on June 1, 2020 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2020 Martin Šmı́d. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Šmı́d, Martin. Fusion of heterogeneous models in agent networks. Master’s
thesis. Czech Technical University in Prague, Faculty of Information Technol-
ogy, 2020.

Abstrakt

Tato práce se zabývá možnostmi zlepšeńı lokálńıch predikćı v agentńıch śıt́ıch
pomoćı sd́ıleńı informaćı se sousedńımi uzly. Agenti použ́ıvaj́ı r̊uzné modely,
v d̊usledku čehož je omezen typ informaćı, které si mohou vyměnit se sousedy.
Je navrženo několik variant ke zlepšeńı predikce, některé z nich umožňuj́ı zahr-
nut́ı nejistoty predikce. Varianty jsou následně implementovány a porovnány
na simulovaných i reálných datech.

Kĺıčová slova kolaborativńı modelováńı, heterogenńı modely, difúzńı śıtě

Abstract

This thesis looks into the ways of enhancing the local predictions in agent
networks using the information shared by their neighbouring nodes. Agents
locally employ different models, thus the type of information to share is lim-
ited. Multiple variants of improving the predictions are proposed, some of
them taking the prediction uncertainty into consideration. These are then
implemented and compared on both simulated and real-world data.

Keywords collaborative modelling, heterogeneous models, diffusion net-
works

vii

Contents

1 State of Art 1

2 Preliminary theory 3
2.1 Model . 3
2.2 Individual models . 3

2.2.1 Autoregressive (AR) model 3
2.2.2 Moving average (MA) model 4
2.2.3 ARIMA model . 4
2.2.4 SARIMA model . 4
2.2.5 Prophet model . 4
2.2.6 Exponential smoothing 4

2.3 Model selection criteria . 5
2.3.1 AIC . 5
2.3.2 BIC . 5

2.4 Combining models . 5
2.4.1 Standard approach . 5
2.4.2 Bayesian approach . 6

2.5 Distributed modelling . 7
2.5.1 Network properties . 7
2.5.2 Communication . 7
2.5.3 Strategies of learning in multi-agent networks 7

3 Proposed solution 9
3.1 Description of the issue . 9
3.2 Methods proposed . 9

3.2.1 General . 10
3.2.2 Weights . 10
3.2.3 Variant 0 – ignore . 11
3.2.4 Variant 1 – best neighbour 11

ix

3.2.5 Variant 2 – average . 11
3.2.6 Variant 3 – weighted average 12
3.2.7 Variant 4 – weighted median 12
3.2.8 Certainties in variants 1, 3, 4 13

3.3 Advantages . 14
3.4 Other possibilities . 14

4 Implementation 15
4.1 Software . 15

4.1.1 Python . 15
4.1.2 Jupyter . 16
4.1.3 Anaconda . 17

4.2 Module implementation – structure 17
4.2.1 CProcess . 18
4.2.2 CModel . 18
4.2.3 CAgent . 19
4.2.4 CNetwork . 21
4.2.5 Models used . 21
4.2.6 Code documentation . 22

4.3 How to run the implementation 23
4.3.1 Environment . 23
4.3.2 Jupyter notebook overview 23

4.4 Code discussion and further work on the implementation 24

5 Experiments and evaluation 27
5.1 General . 27

5.1.1 Properties examined . 27
5.1.2 Comparing the configurations 28
5.1.3 Network topology . 28
5.1.4 Models and their configuration used in the network . . . 29

5.2 Process 1 . 29
5.2.1 Test data . 30

5.3 Results – process 1 . 31
5.3.1 Comparison of variants with differing number of neigh-

bours . 31
5.3.2 Variating other attributes 36
5.3.3 Predictions without using certainty 41

5.4 Process 2 . 43
5.4.1 Test data . 43
5.4.2 Changes in the models used in the network 45

5.5 Results – process 2 . 45
5.5.1 Comparison of variants with differing number of neigh-

bours . 45
5.6 Summary . 49

x

5.6.1 Process 1 . 49
5.6.2 Process 2 . 50
5.6.3 Overall evaluation . 50

5.7 Adjustments proposed . 51
5.8 Alternative approaches . 51

Conclusion 53

Bibliography 55

A Glossary 59

B Contents of enclosed DVD 61

xi

List of Figures

2.1 Illustration of incremental strategy in the network. 8
2.2 Illustration of consensus strategy in the network. 8

4.1 Jupyter – illustration of the environment. 16
4.2 Anaconda – illustration of the environment. 17
4.3 Excerpt from simple HTML documentation generated by pydoc. . 22
4.4 Simple running of Jupyter notebook. 23
4.5 Models creation. 24

5.1 Network topology – 10 agents, each with 8 neighbours. 28
5.2 Network consisting of 20 agents, each with 8 neighbours. 29
5.3 Network consisting of 20 agents, each with 16 neighbours. 29
5.4 Plot of the process 1. 30
5.5 Detail on several selected plots of observed values of process 1. . . 30
5.6 ACF and PACF of process 1. 31
5.7 Predictions of the worst performing agent in variant 0 – ignore. . . 32
5.8 Predictions of the agent with lowest MSE, across all variants and

modifications. 33
5.9 Predictions of the worst agent in the best performing variant, com-

pared across variants in which certainty was used. 36
5.10 Predictions of the best agent from the modifications of the ”best”

performing variant. 38
5.11 Predictions of the worst agent from the best of the modifications

of the ”worst” performing variant. 41
5.12 Predictions of the best agent in the best performing variant, com-

pared across all variants and modifications. 43
5.13 Plot of the process 2. 44
5.14 Several selected plots of observed values of process 2. 44
5.15 ACF and PACF of process 2. 45
5.16 Predictions of the best performing agent, all variants considered. . 47

xiii

5.17 Predictions of the worst agent in the best configuration. 49

xiv

List of Tables

5.1 Process 1 – comparison of results for 4 neighbours. 32
5.2 Process 1 – comparison of results for 4 neighbours, MAE. 34
5.3 Process 1 – comparison of results for 2 neighbours. 34
5.4 Process 1 – comparison of results for 6 neighbours. 35
5.5 Process 1 – comparison of results for 8 neighbours. 35
5.6 Process 1 – comparison of various modifications of the ”best” con-

figuration. 37
5.7 Process 1 – comparison of certainties modifications of the ”best”

configuration. 38
5.8 Process 1 – comparison of various modifications of the ”worst”

configuration. 39
5.9 Process 1 – comparison of certainties modifications of the ”worst”

configuration. 40
5.10 Process 1 – comparison of results for 2 and 4 neighbours, without

certainties used. 42
5.11 Process 1 – comparison of results for 6 and 8 neighbours, without

certainties used. 42
5.12 Process 2 – comparison of results for 4 neighbours. 46
5.13 Process 2 – comparison of results for 4 neighbours, MAE. 46
5.14 Process 2 – comparison of results for 2 neighbours. 47
5.15 Process 2 – comparison of results for 6 neighbours. 48
5.16 Process 2 – comparison of results for 8 neighbours. 48

xv

Chapter 1
State of Art

Mathematical modelling is everywhere. It is absolutely necessary in multiple
fields of human activity – physics, meteorology, biology, chemistry, economics,
to name but a few.

The aim of modelling is typically to estimate hidden variables with or with-
out a clear and straightforward interpretation, to predict the future values, or
to interpolate the past ones.

Probabilistic and statistical modelling is one of the branches of modelling.
It infers the system behaviour based on assumptions of the observed variables.

We face the issue of choosing a suitable model reflecting the reality. How-
ever, multiple such models exist and it is often questionable to select only one
of them based on the observed data. That is why several approaches emerged
throughout the history. Bagging methods use data sampling to provide mod-
els with different subset of data [1]. Boosting methods sequentially improve
the model and then use their combination [2]. Bayesian model averaging takes
the prediction uncertainties of individual models into account [3], [4].

In the last decades, small devices with high computational ability are more
and more prevalent. Many applications arise with the same variable of interest
modelled by multiple independent devices. Their mutual connection can be
used to exchange information in attempt to improve the modelling process
instead of being only the information collectors.

Distributed estimation of parameters of the same models is rather exten-
sive topic [5], [6]. It can use one of the several communication protocols –
namely incremental, consensus with iterations, and diffusion without itera-
tions, or its variations [7], [8].

This thesis focuses on the rather omitted issue of collaborative predictions
in case that the individual agents employ different models and therefore the
parameter estimation is not to consider. The fusion of the predictions is par-
tially inspired by the adaptation and combination steps in diffusion networks
having low communication overhead, where it serves to estimate the model
parameters [7]. Further inspiration is found in Bayesian model averaging and

1

1. State of Art

its variants [3], [9].

Thesis structure

This project aims to propose, implement, and test some methods of collabora-
tion among agents which would improve the agents’ local predictions of some
observed process.

The purpose of Chapter 2 is to look into general ideas regarding the com-
bination of multiple models. Next, collaboration between models is discussed
and some of the approaches to the issue are briefly described.

The objective of Chapter 3 is to propose the methods improving the lo-
cal predictions of the agents. General overview of the information exchange
between agents and subsequent incorporation into the agent’s prediction used
later on is described in this part.

In Chapter 4, implementation is presented. Software necessary and its
usage is listed and commented on. Specific details and possibilities of the
implemented variants are described.

The objective of Chapter 5 is to test the implemented solution, compare
the proposed variants, discuss possible extensions to the variants proposed,
and, last but not least, mention other approaches.

Terms and expressions used are listed in the Appendix A.

2

Chapter 2
Preliminary theory

This chapter presents several theoretical concepts related to combinations
of models. Possible evaluation of models is briefly mentioned. Finally, dis-
tributed modelling is described.

2.1 Model

Model is defined as a description of certain system. Purpose of (mathematical)
modelling is to explain the behaviour of the system, infer the characteristics
of the system, and possibly predict its future behaviour.

Models can be categorized in multiple ways depending on the properties
studied. One of the important attributes is time-relevancy – static models
describe the systems constant with time, whereas dynamic models reflect the
changes in the state of the system. In particular, this thesis focuses on para-
metric statistical models. Statistical models comprise of statistical assump-
tions of how the sample data was generated. They are usually described as a
pair (S,P), where S is a set including possible observations and P is a set of
probability distributions on the possible observations. A parametric statisti-
cal model can be thought of as a model with finite number of parameters that
describe the model.

2.2 Individual models

2.2.1 Autoregressive (AR) model

Let Yt, t = 1, 2, . . . be a time series. Autoregressive model of order p, abbre-
viated as AR(p), is described as

Yt = c+ φ1Yt−1 + . . .+ φpYt−p + εt = c+
p∑

τ=1
φτYt−τ + εt,

3

2. Preliminary theory

where Yt is real and for simplicity scalar random variable, c is offset, φ1, . . . , φp
are regression coefficients, and εt ∼ N (0, σ2) is white noise.

2.2.2 Moving average (MA) model

Let Yt, t = 1, 2, . . . be a time series. Moving average model of order q, abbre-
viated as MA(q), is described as

Yt = µ+ εt + θ1εt−1 + θ2εt−2 + . . .+ θqεt−q,

where Yt is real and for simplicity scalar random variable, µ is the expected
value of Yt, θ1..p are MA coefficients, and εt ∼ N (0, σ2) is white noise.

2.2.3 ARIMA model

Autoregressive integrated moving average model ARIMA(p,d,q) is a mixed
combination of AR(p) and MA(q) models, applied to d-times differentiated
series obtained by subtracting the consequent observations

Y ′t = Yt − Yt−1,

where Yt and Yt−1 are real and for simplicity scalar random variable. ARIMA
models can be very powerful, with d=1 or d=2 usually applied. The differen-
tiation is used to suppress the trend in the data.

2.2.4 SARIMA model

SARIMA(p,d,q)(P,D,Q)s is an ARIMA(p,d,q) model with added seasonal
component ARIMA(P,D,Q), which is repeated s times in a year. It is used to
describe the data if periodicity is assumed.

2.2.5 Prophet model

Prophet is a time series model developed by Facebook. It employs three main
components in the model – trend, seasonality, and holidays. Therefore the
Prophet model is able to possibly reflect the impact of the calendar day in the
time series, which can be useful in real-life modelling. [10]

2.2.6 Exponential smoothing

Exponential smoothing is a technique similar to MA. However, it assigns the
past observations exponentially decreasing weights with time. It is described
as

st = αxt + (1− α)st−1 = st−1 + α(xt − st−1),
where α is the smoothing factor such that 0 < α < 1 and st is the smoothed
value at time t. These smoothed values can be considered as a prediction of
the next value, that is Yt = st.

4

2.3. Model selection criteria

2.3 Model selection criteria

When several statistical models are considered, a selection criterion can help
to choose the more appropriate model in comparison with the others. Akaike
information criterion (AIC) and Bayesian information criterion (BIC) are com-
monly used.

2.3.1 AIC

AIC can be defined in the following way:

AIC = 2k − 2 lnL,

where L is the maximized likelihood function of the model and k is the number
of estimated model parameters. Lower values of AIC imply a better model.
Therefore, if two models fit the model equally well, according to AIC, the
better model is the one with the lower number of independently adjusted
model parameters. [11]

2.3.2 BIC

BIC can be defined in the following way:

BIC = ln(n)k − 2 lnL,

where L is the maximized likelihood function of the model, k is the number of
estimated model parameters, and n is the number of observations. Incorpora-
tion of the number of observed samples can prevent preference of the overfitted
models. [12], [13]

2.4 Combining models

This part presents several methods of model combination in non-distributed
modelling.

2.4.1 Standard approach

Bagging

The idea of bagging methods is to create multiple models M1, . . . ,MK , each
fitting a distinct subset of the available data sampled uniformly with replace-
ment (meaning that the observations used for individual models might be
repeated). The models are then combined – the prediction is made as the aver-
age (or possibly another combination) of the predicted values of M1, . . . ,MK .
[1]

5

2. Preliminary theory

Boosting

The idea of boosting methods is to sequentially update the model and thus
creating multiple models M1, . . . ,MK . The model is updated in the manner
that it is gradually provided with the data previously handled the worst. The
models are then combined – the prediction is made as the average (or possibly
another combination) of the predicted values of M1, . . . ,MK . [2]

2.4.2 Bayesian approach

Bayesian approach is to incorporate the uncertainties into the model combi-
nation.

Bayesian model averaging (BMA)

Bayesian model averaging (BMA) is a static method to combine the models.
In case multiple models seem to fit the data comparably well, but provide
different predictions, model selection resulting in only one chosen model may
not be easy and appropriate.

Suppose that there is a set of possible candidate models M1, . . . ,MK ,
each modelling data D = {y0, . . . , yt−1} with a probability density function
p(yt | Mk, D). Then, we aim at deciding probabilities p(Mk | D) quantifying
the likelihood that the particular data D were generated according to each
Mk.

Posterior distribution of yt (the matter of interest) is

p(yt | D) =
K∑
k=1

p(yt |Mk, D)p(Mk | D),

where Mk are the models taken into consideration and are weighted by their
posterior model probability. Posterior probability for model Mk is

p(Mk | D) = p(D |Mk)p(Mk)∑K
l=1 p(D |Ml)p(Ml)

,

where integrated likelihood of model p(D |Mk) is

p(D |Mk) =
∫
p(D | θk,Mk)p(θk |Mk)dθk,

where θk is the vector of parameters of model Mk. Finally, the posterior mean
and variance of the modelled variable yt are

E[yt | D] =
K∑
k=0

ŷtkp(Mk | D)

V ar[yt | D] =
K∑
k=0

(V ar[yt | D,Mk] + ŷt
2
k)p(Mk | D)− E[yt | D]2,

where ŷt2k = E[yt | D,Mk]. [3]

6

2.5. Distributed modelling

Dynamic model averaging (DMA)

Dynamic model averaging (DMA) is a dynamic method to combine the indi-
vidual models M1, . . . ,MK . It is thus used in online predictions, where data
arrives sequentially.

DMA is a BMA extension, enabling the variation of both the regression
model and regression parameters with time. If one of the considered models
turn up to describe the data far better than the other models, DMA converges
to this model. That results in not getting worse predictions (which would be
caused only by the uncertainty related to this best model). [14], [15], [16]

2.5 Distributed modelling

2.5.1 Network properties

The network is represented by a graph composed of N nodes representing the
agents and by a set of edges creating the connections among the agents. The
neighbourhood of agent k consists of all the agents that are connected to k by
an edge, including k. Closed neighbourhood, denoted Nk, includes agent k,
open neighbourhood excludes k. Any two agents connected by an edge are
considered neighbours and can share information with each other. Cardinality
of the closed neighbourhood Nk is equal to the number of distinct nodes in
Nk and is denoted |Nk|.

2.5.2 Communication

Communication in the network can be centralized or decentralized. If cen-
tralized communication is used, a fusion center exists wherein the data is
processed, and then possibly sent back to the agents. It can be a problem in
some cases, typically when the network is large and the emphasis is put on the
real-time processing. If sharing the data is a privacy issue or security concerns
pose a threat, centralized approach is also disqualified. Moreover, centralized
approach obviously represents a single point of failure – for those reasons, de-
centralized communication is assumed in many practical applications, that is,
agents communicate with several neighbours on a peer-to-peer level. [7], [8]

2.5.3 Strategies of learning in multi-agent networks

Three main strategies exist in order to distribute the modelling (or, generally,
minimize the error) in the network:

• incremental – the information is passed from node to node in a Hamil-
tonian cycle. This solution is quite robust with respect to information
processing. However, each node is a single point of failure and potential
recovery from a failure is an NP-hard problem. [7] Figure 2.1 depicts

7

2. Preliminary theory

the incremental strategy on the graph consisting of 8 nodes. Node 1 is
highlighted in red, along with its connections to neighbouring nodes.

• consensus – the network nodes share the information with their adja-
cent neighbours, forming the closed neighbourhood. The communication
and optimization runs in several iterations. [7]

• diffusion – the principle is similar to the consensus strategy, but the
information is exchanged only once, without any intermediate itera-
tions. The exchange comprises either observations (so-called adapta-
tion) and/or estimates (combination step). Based on the order of the
steps, the diffusion strategies are either ATC (adapt-then-combine) or
CTA (combine-then-adapt). [7] Figure 2.2 depicts the consensus/diffu-
sion strategy on the example graph of 8 nodes. Node 1 is highlighted in
red, along with its connections to neighbouring nodes.

1

2

8

3

4

5

6

7

Figure 2.1: Illustration of incremental strategy in the network.

1

2

6

8

3

5

47

Figure 2.2: Illustration of consensus strategy in the network.

8

Chapter 3
Proposed solution

This chapter aims to propose a general approach to the issue. Due to their
heterogeneity and diverse inner functioning, the models are to a large extent
considered black-boxes. That results in the need of using a general, universal
approach to gather and process the data they can provide to improve the local
predictions.

3.1 Description of the issue

Firstly, it is important to lay down the problem. Suppose a network of het-
erogeneous agents observing and modelling a stochastic process. The main
questions posed are:

• Can the agents improve their local predictions by considering predictions
of neighbouring nodes?

• How to incorporate predictions of neighbouring nodes into nodes’ own
local knowledge about the predicted variables?

3.2 Methods proposed

This work proposes a general method to combine the predictions (one time
step ahead) in distributed manner. Diffusion protocol served as the inspira-
tion because of its low communication overhead. The predictions are fused
using different simple approaches. The following lines describe some variants
that could be used to improve local predictions by using information from
neighbouring nodes. That is inspired by carrying out the combination part of
the diffusion strategy and is applied only for current prediction. Variants 0,
1, 2, 3, and 4 are implemented and compared in Chapters 4 and 5.

9

3. Proposed solution

3.2.1 General

The following parameters are generally varied in any of the methods proposed
(variant 0, variant 1, variant 2, variant 3, and variant 4):

• node degree of the network (number of neighbours)
• network size
• sharing or not of the observed value of the process – that is inspired by

carrying out the adaptation part of the diffusion strategy

If sharing of the observed value is performed, each node i uses the mean
value of the values ŷt(k) obtained from its closed neighbourhood Ni instead
of the observed value

yt(i) = 1
|Ni|

∑
k∈Ni

ŷt(k),

where ŷt(k) are the original observed values from Ni and yt(i) is the new,
updated observation.

Local mean squared error (MSE) of inner model of agent i after t predic-
tions evaluated by agent m is defined as

MSEmi = 1
t

t∑
τ=1

(yτ (m)− ŷτ (i))2,

where yτ (m) is the value observed by agent m at time τ (possibly updated by
the observations of neighbouring agents if sharing of observations is applied)
and ŷτ (i) is the inner prediction of agent i at time τ .

Similarly, local mean absolute error (MAE) of inner model of agent i after
t predictions evaluated by agent m is

MAEmi = 1
t

t∑
τ=1
|(yτ (m)− ŷτ (i))| ,

where yτ (m) is the value observed by agent m at time τ (possibly updated by
the observations of neighbouring agents if sharing of observations is applied)
and ŷτ (i) is the inner prediction of agent i at time τ .

3.2.2 Weights

Two of the variants proposed use local weights of nodes in Ni to combine the
predictions. Local weight evaluated in node i of node k before normalization
is

wiktmp = 1− errk∑
m∈Ni

errm
,

where errk, errm,m ∈ Ni are the errors of corresponding agents k or m equal
to MSEik or MSEim respectively. MAE (or possibly other error functions) can
also be applied.

10

3.2. Methods proposed

After normalization (in order to scale the predictions properly), we get

wik =
wiktmp∑

m∈Ni
wimtmp

,

where the weight before normalization is divided by the sum of all the weights
before normalization in the agent’s closed neighbourhood Ni.

3.2.3 Variant 0 – ignore

This variant, simple no collaboration scenario, is used as a comparison and is
considered the worst variant – each agent accounts for predictions of its inner
model only and ignores the predictions of the neighbouring nodes. In case of
competing variants being unable to outperform the accuracy of this variant 0,
that would signify that those variants only produce useless communication
and computation overhead without any contribution.

This variant is also referred to as variant ignore.

3.2.4 Variant 1 – best neighbour

This variant is a simple model selection method. Each agent shares its predic-
tion with neighbours and then selects the best prediction, based on the past
accuracy (evaluated by MSE or MAE). This approach should be better than
the variant 0, but it is really simplistic. On the other hand, its implementation
is rather trivial.

The prediction yt+1(i) of agent i is thus

yt+1(i) = ŷt+1(k),

where ŷt+1(k) are the predictions of inner models for k ∈ Ni and wk >= wm
for m ∈ Ni. If two or more such nodes exist, the arithmetic mean of their
inner predictions ŷt+1(k) should be used instead.

This variant is also referred to as variant best neighbour.

3.2.5 Variant 2 – average

This variant also employs a simple approach – the prediction is made as arith-
metic mean of agent’s neighbours (agent itself included). This approach could
be prone to outliers in some cases.

The prediction yt+1(i) of agent i is

yt+1(i) = 1
|Ni|

∑
k∈Ni

ŷt+1(k),

where ŷt+1(k) are the predictions of inner models for k ∈ Ni.

11

3. Proposed solution

In multiple real-life scenarios, it was empirically shown that simple arith-
metic mean of point predictions of the models can outperform more compli-
cated methods using weighting the predictions based on the MSE. [17] That
is why this variant is also implemented and compared.

This variant is also referred to as variant average.

3.2.6 Variant 3 – weighted average

Another variant proposed calculates the ”weights” of the nodes in agent’s
closed neighbourhood. Each agent then determines its prediction as a dot
product of the neighbours’ weights and the corresponding predictions (again,
closed neighbourhood is supposed, so the prediction of agent’s inner model is
taken into account).

The combined prediction yt+1(i) of agent i is

yt+1(i) =
∑
k∈Ni

ŷt+1(k)wik,

where ŷt+1(k) are the inner predictions of inner models for k ∈ Ni.
This variant is also referred to as variant weighted average.

3.2.7 Variant 4 – weighted median

The last variant proposed is very similar to the variant 3 mentioned above,
weighted average. The only difference is in the final prediction – it is not the
dot product of the neighbours’ weights and the corresponding predictions, but
weighted median of those values. Therefore, one of the predictions in agent’s
closed neighbourhood is chosen in the manner that the difference between the
dot products of the two parts divided by the median value is the least.

Supposing ordered inner model predictions ŷt+1 of agents in Ni, the com-
bined prediction yt+1(i) of agent i is

yt+1(i) = ŷt+1(k)

such that
k−1∑
p=1

wip ≤
1
2
∧ |Ni|∑

p=k+1
wip ≤

1
2

That means the ”middle” value (median) is selected with regard to models
weights. If two values ŷt+1(k) satisfy this condition, their arithmetic mean is
considered as the combined prediction yt+1(i).

This variant is also referred to as variant weighted median.

12

3.2. Methods proposed

3.2.8 Certainties in variants 1, 3, 4

Not dissimilar to Bayesian model averaging, several models can supply the
others with information describing the extent of belief in the prediction (”cer-
tainty”), which is then categorized as one of the values in a vector. This vector
(”mask”), such as [0.95, 1.0, 1.05], will be used with mean equal to one and
rather small variance – so that the weights are tuned conservatively. This
a priori mask is fixed throughout the experiment and transfers the responsi-
bility of determining the (un)certainty of its own prediction to each agent.

The advantage of this approach is the abstraction, independent on the
model – either the model supports it, or a default value of the mask [1.0]
is used. Another advantage is that the mask can be specifically tuned for
each agent separately, especially if model accuracy is known (or guessed) in
advance. The possible disadvantage is that the realisation and its results are
highly dependent on the type of the model and the quality of determining the
certainty.

In practice, this will be tested using the negative value of BIC (or AIC in
several cases) of the model as the certainty

certnon−Prophet = −BIC

In case of Prophet model, the certainty is determined based on the spread
of the prediction interval

certProphet = 1−
∣∣∣∣∣yhigh − ylowypred

∣∣∣∣∣ ,
where yhigh is the higher value of the boundary of the prediction interval, ylow
is the lower value of the boundary of the prediction interval, and ypred is the
predicted value.

After the certainty is calculated, it must be mapped on the values of the
mask. That is accomplished by the past certainty values – according to its
probability distribution, it is binned into the quantile corresponding to the
mask. For example, if the given past model certainties were [4, 5, 6, 7, 8] and
the mask was [0.95, 1.00, 1.05]:

• the value 4.5 would be masked to 0.95

• the value 5.3 would be masked to 1.00

• the value 6.9 would be masked to 1.05

Binned certainty values are distributed to the neighbouring nodes, where
they serve as weight modifiers. They are simply multiplied

wcerti = wici,

13

3. Proposed solution

where wi is local weight of node i in closed neighbourhood and ci is binned
prediction certainty corresponding to the node.

In order to determine the agent’s prediction, the normalized weight is
required

wni = wcerti∑
k∈Ni

wcertk
,

where normalized weight wni is calculated as a fraction – corresponding weight
modified by certainty wcerti is divided by the sum of the weights modified by
certainty of all agents k ∈ Ni. Then, these modified weights are used instead
of the ”standard” weights in the variants if applicable.

3.3 Advantages

Proposed variants have multiple advantages:

• abstract view of the models

• individual variants are straightforward in their interpretation

• most of the variants can be combined with using certainties, the agents’
predictions thus take into account discretized certainties of the nodes
in the closed neighbourhood (in case the agents support the certainty
calculation)

• low computational cost – in comparison with other approaches, the com-
putational burden of the variants is rather low (although it may be higher
if the certainty calculation is demanding)

3.4 Other possibilities

The disadvantage of the proposed variants is not considering all the informa-
tion some of the models may provide. If Bayesian approach is applied, the
whole predictive distributions could be combined instead of discretized values.

Other possible conceptions not implemented are mentioned and roughly
described in Sections 5.7 and 5.8.

14

Chapter 4
Implementation

Objective of this chapter is to present and describe the implementation of the
variants laid out in previous chapter. Fairly detailed description of the proce-
dure of running the developed code is given. Selected parts of inner workings
of the implementation are also described, along with their possibilities and
limitations.

4.1 Software

This section lists software necessary to run the implementation. Predomi-
nantly, this applies for:

• Python and its packages
• Anaconda, especially on Windows OS
• Jupyter

4.1.1 Python

In some cases, because of mutual package dependencies, problems could arise
while using different versions of packages, though the newest versions should
work. For convenience, packages and libraries used to process and model the
data are listed, in alphabetical order:

• fbprophet – version 0.6
• numpy – version 1.18.1
• pandas – version 1.0.1
• robustats – version 0.1.5
• scikit-learn – version 0.22.1
• scipy – version 1.4.1

15

4. Implementation

• statsmodels – version 0.11.0

More info regarding the usage and capabilities of these packages can be
found at: [10], [18], [19], [20], [21], [22], [23].

For visualization, packages used include graphviz (in version 2.38) and
matplotlib (in version 3.1.3). More reference can be found at: [24], [25].

Python itself is used in version 3.7.6.

4.1.2 Jupyter

Versions of important Jupyter [26] components used are listed below:

• jupyter core – version 4.6.1

• jupyter-notebook – version 6.0.3

• ipython – version 7.12.0

• ipykernel – version 5.1.4

• jupyter client – version 5.3.4

Figure 4.1: Jupyter – illustration of the environment.

Figure 4.1 is a screenshot from Jupyter notebook and shows Jupyter en-
vironment, running in the browser. The combination of code cells and mark-
down cells makes it a useful tool for visualization and presentation of the data
and outputs of data analysis, especially if it was processed by Python libraries.

16

4.2. Module implementation – structure

4.1.3 Anaconda

Anaconda is a platform distributing Python packages, in its basic form freely
available even for commercial use. Anaconda makes it easier to run Jupyter
along with other packages, especially on some platforms, such as Microsoft
Windows OS.

Anaconda was used in version 2020.02.

Figure 4.2: Anaconda – illustration of the environment.

Figure 4.2 shows the environment of Anaconda Navigator, from which
Jupyter can be started. Furthermore, Anaconda Prompt can be used to install
packages, using conda or pip commands.

4.2 Module implementation – structure

In order to demonstrate the variants described in Chapter 3, a Python im-
plementation was developed. Individual parts are to be found in the module
model fusion.py.

Mentioned module model fusion.py is comprised of four classes used to im-
plement the agent communication, predictions, time management, evaluation,
and overall workflow:

• CProcess

• CModel

• CAgent

• CNetwork

17

4. Implementation

Constants for limiting maximum size (and thus maximum running time)
of the inner variables of mentioned classes are also defined in this file. These
inner variables are used because of better memory management, faster access
than standard Python lists, and for better readability of the code, too.

4.2.1 CProcess

Class CProcess is a wrapper to provide other objects (or programmer) with
clear access to the value of the process in given time. Both real value (used
for accuracy evaluation after running the experiment) and observed value (for
the purpose of individual agents’ observations) can be accessed using multiple
methods, and in the desired time period. Illustrative example of extracting
the range of values (without documentation):

def va l range (s e l f , end , s t a r t =0, agen t id = −1):
i f agent id == −1:

return s e l f . va lue s [s t a r t : end]
return s e l f . observed [agen t id] [s t a r t : end]

4.2.2 CModel

Class CModel is a wrapper to provide agents with unified access to fitting
the model, making the predictions, and possibly getting certainties regard-
ing the prediction from the models, if provided (enabled by the model and
implemented).

Individual models are hardcoded in this class and differentiated by their
id obtained by a static method:

def t r a n s l a t e t y p e (model name) :
return CModel . types . index (model name)

Each type of model handles the prediction separately. Method refit() is
used to fit the model based on the data provided as argument when called.
Then, the method get prediction() can be called to obtain the model predic-
tion for given time. Usually, only the prediction for the next time step is
implemented in this class and therefore makes sense. If the model supports
calculation of the certainty of its prediction, it is determined while calling
the method get prediction() and its current value can be accessed via method
get certainty(). Certainty can be any number, but the simple fact should ap-
ply – the higher the model is self-confident about the quality of the current
prediction, the higher the certainty.

This manner of handling multiple model types is not ideal, but is rather
simply extensible if new types of models are to be added and is sufficient for
that matter. Individual capabilities of the models are mentioned further in
the text.

18

4.2. Module implementation – structure

4.2.3 CAgent

Class CAgent implements the communication between the inner model (in-
stance of the CModel class, assigned by assign model() method) and the outer
world (other models/agents and process, represented by a CNetwork object
and its methods).

Process observing

The method observe process() stores the argument provided as the observed
value of the process. If the observations of the neighbours are to be comprised,
calling the share observation update() method with the neighbours’ observa-
tions as argument updates the observed value to the arithmetic mean of the
agent’s neighbours, agent itself included.

Sharing the info

The methods share prediction get() and share cert get() are used to commu-
nicate the neighbours’ predictions and certainties to the given agent.

Making the prediction

Method fit ipredict() is a wrapper to call the agent’s model’s functions to fit
and then make an inner prediction. To be specific:

def f i t i p r e d i c t (s e l f) :
s e l f . imodel . r e f i t (s e l f . observed [: s e l f . time])
s e l f . i p r ed = s e l f . imodel . g e t p r e d i c t i o n (s e l f . time)
return s e l f . i p r ed

Method make prediction() is the key method – it provides the functionality
of incorporating other agents’ predictions and based on the cooperation mode
(i.e. variant proposed in Chapter 3), makes the final prediction of the agent.
Pivotal part of the code, edited for demonstration purposes, looks like this:

s h i f t e d w = [x∗y for x , y in zip (
weights , n e i g h b o u r c e r t s)]

s h i f t e d w n = [x/sum(s h i f t e d w) for x in s h i f t e d w]

i f mode == ’ average ’ :
l a s t p r e d = mean(ne ighbour preds)

e l i f mode == ’ w average ’ :
l a s t p r e d = np . dot (ne ighbour preds , s h i f t e d w n)

e l i f mode == ’ w median ’ :
l a s t p r e d = weighted median (ne ighbour preds ,

s h i f t e d w n)
e l i f mode == ’ ignore ’ :

19

4. Implementation

l a s t p r e d = s e l f . i p r ed
e l i f mode == ’ bes t ne ighbour ’ :

b s t n b r i d = s h i f t e d w n . index (max(s h i f t e d w n))
l a s t p r e d = s e l f . ne ighbour preds [b s t n b r i d]

The list variables weights, neighbour certs, and neighbour preds store also the
values of the agent itself (in the last position). The variable shifted w stores
weights of the neighbouring agents adjusted by the certainty provided by them.
Those new weights have to be normalized (variable shifted w n). The last pred
variable is set to the currently valid prediction made.

Calculating neighbours’ weights

Method update neighbours params() sets the weights based on the given mea-
sure, default is MSE. To avoid storing all historical data of the other agents
(i.e. past errors) locally, only the mean value is stored and the weights are up-
dated based on the number of predictions made (thus, the result is the same).
It is calculated from the errors based on their predictions and observed value
of the process like this:

def update neighbours params (s e l f , measure=’ mse ’) :
t ime weight = time − t r a i n t i m e
i f measure == ’ mse ’ :

cu r e = [abs (observed [time]−x)∗∗2
for x in ne ighbour preds]

e l i f measure == ’mae ’ :
cu r e = [abs (observed [time]−x)

for x in ne ighbour preds]
new e = [x∗(1 /(t ime weight +1))

+ y∗(t ime weight /(t ime weight +1))
for x , y in zip (cur e , avg e)]

avg e = new e
weights = CAgent . g e t we i gh t s (new e)

The variable avg e stores the average error and is updated after the recalcu-
lation and incorporating the current prediction error. After that, weights are
updated. To do so, the following static method is called:

def ge t we i gh t s (e r r o r s) :
ws = [1 − x/sum(e r r o r s) for x in e r r o r s]
ws n = [x/sum(ws) for x in ws]
return ws n

Because the certainties have to be mapped from ”random” values provided
by the models into the reasonable numbers, preferably close to 1, the static
method binner() is implemented. Based on the distribution (the quantiles) of

20

4.2. Module implementation – structure

the array, the value is mapped into one of the values of the certainty mask
(usually, that is something like a triplet [0.95, 1.00, 1.05]).

4.2.4 CNetwork

Class CNetwork implements the flow of the time and ensures the information
transfer between agents. It also collects the predcited values for further analy-
sis. Several auxiliary methods are also created to simplify the code generation
necessary and depiction of the predicted values.

The method make time steps() calls the method make time step() for given
number of times, records the progression of the run, and measures the execu-
tion time.

The method make time step() executes one round of prediction – all agents
fit their inner model, predict the next value, and then share the predicted
value with their neighbours (the appropriate CAgent methods are called with
the corresponding arguments). After all the agents get the predictions of
neighbouring nodes, they make the final prediction based on the cooperation
mode specified when the network was created. Finally, the agents observe the
process, potentially exchange the observed values (if specified by the network)
and update the parameters denoting weights of the neighbours’ predictions.

The method eval acc() is used for evaluation of the prediction accuracy.

4.2.5 Models used

This section describes various models and their possible functionalities sup-
ported by the class CModel. The prediction certainty is implemented in all
models – Prophet uses the ratio of size of the prediction interval divided by the
prediction value (or rather 1 minus this value, because the larger the interval,
the lower the certainty). The other models use the negative BIC.

AR

AR uses autoregressive model (AutoReg from statsmodels module). The lags
keyword argument is supported by the CModel wrapper.

ARIMA

ARIMA uses autoregressive integrated moving average model (ARIMA from
statsmodels module). The order keyword argument is supported by the
CModel wrapper.

SARIMAX

SARIMAX uses seasonal autoregressive integrated moving average model (SARI-
MAX from statsmodels module). The order keyword argument and sea-

21

4. Implementation

sonal order keyword arguments are supported by the CModel wrapper.

Prophet

Prophet uses Prophet model (from fbprophet module). The start keyword
argument is supported by the CModel wrapper.

Exponential Smoothing

ExpSm uses exponetial smoothing model (ExponentialSmoothing from statsmod-
els module). The seasonal periods keyword argument is supported by the
CModel wrapper. The window keyword argument is implemented – only last
window observations are used to fit the model.

4.2.6 Code documentation

Because not every single detail can be discussed, in order to help with code
orientation and usage, simple documentation was generated.

Created code is briefly commented with docstrings and using reStructured-
Text format. Simple documentation was generated by pydoc. This generated
HTML document is available on the enclosed DVD.

Figure 4.3: Excerpt from simple HTML documentation generated by pydoc.

Figure 4.3 shows the structure of generated documentation. However,
methods are commented using reStructuredText as markup language, so that
more solid documentation (e.g. using Sphinx) can be generated and main-
tained in case of further work on the code or incorporation in another project.

22

4.3. How to run the implementation

4.3 How to run the implementation

This section describes how the code can be run and results visualized using
the created Jupyter notebook(s), available on enclosed DVD.

4.3.1 Environment

For visual and demonstrative purposes, a Jupyter notebook was made. It
can be launched either from command line, or using the Anaconda Navigator.
Some Python packages have to be installed, possibly in specific version – conda
or pip commands are able to do that. More details are in the first part of this
chapter.

4.3.2 Jupyter notebook overview

For convenience, the notebook is recommended to be run at once using the
Restart & Run All option in the Kernel menu, as shown in Figure 4.4.

Figure 4.4: Simple running of Jupyter notebook.

First cell of the notebook contains necessary imports. Several of them are
from the implemented model fusion module. Therefore, the file model fusion.py
should be in the same folder as the notebook in order to be imported. Several
warnings or informative messages from fbprophet and other libraries are often
displayed when running some parts of the code. The behaviour can be easily
managed by (un)commenting the function calls in the first cell.

In the next cells, the process is created, along with the noise for the ob-
servers. Also, several process statistics are shown.

23

4. Implementation

Creating the objects based on implementation follows. Firstly, the models
are specified. Then, the agents and network structure – to ease the code
creation, the function CNetwork.generate code() was created. It prints the
code, which can be then copied, modified as desired, and finally run. Excerpt
from this part is illustrated in Figure 4.5.

Figure 4.5: Models creation.

The next section runs the experiment for desired number of steps. The
default value is set in the developed module to 100. In case of running the
experiment for more steps, the variable should be changed in the module
because the created objects depend on it.

After that, the predictions of individual agents are plotted and basic statis-
tics shown.

Finally, agent details – e.g. individual certainties – can be examined, but
the manual selection of what is a matter of interest is recommended. At the
end of the notebook, the network structure is displayed.

4.4 Code discussion and further work on the
implementation

Current implementation is sufficient for making various experiments related
to the network structure, node degrees, and many more. However, its pri-
mary usage is to simulate the network communication, and could not be put
into real-life production usage that easily as such. The exchange of informa-
tion between agents is provided by a centralized unit, instance of CNetwork
class. Multiple changes would have to be done, mainly regarding the time
synchronization. The advantage of doing so would be parallel and possibly

24

4.4. Code discussion and further work on the implementation

independent execution of the code, mainly of model fitting. The slight disad-
vantage would be less managable running of experiments and data gathering.

Subsequent development could be focused on the predictive capabilities in
the sense of incorporating more types of models. Certainties calculations could
be also tweaked or corrected in order to offer more robustness and reliability.

25

Chapter 5
Experiments and evaluation

This chapter deals with hands-on experience with the implemented variants.
Demonstrations of several configurations are made in order to empirically
evaluate the quality of individual aspects of the variants. Finally, after the
evaluation of executed experiments, some other methods and approaches that
could be tested are proposed.

5.1 General

This part aims to compare the proposed variants and to put various configu-
rations of the agents cooperation to the test.

5.1.1 Properties examined

The most important attributes explored are:

• variant used to combine the individual predictions – can be one of the five
proposed in Chapter 3: ignore, best neighbour, average, weighted average,
weighted median
• number of neighbouring agents (node degree) – 2, 4, 6, or 8

Other attributes investigated and compared include:

• certainty mask used – for simplicity, mask is same for all of the agents,
usually [0.95, 1.0, 1.05], but is varied in some cases
• inner metric used to evaluate the prediction quality – usually MSE, MAE

is tested in some cases
• sharing the observed value of the process – the observed value of the

process is usually shared, but not in some cases
• network size – in most cases, the network has 10 agents, but larger

network is also considered

27

5. Experiments and evaluation

5.1.2 Comparing the configurations

Generally, in each configuration of the experiment, MSE is used as metric
to evaluate – and more importantly, compare – the ability of the network to
predict the future values. To be specific:

Average agent performace (MSE) arithmetic mean of the individual MSE
values of each agent; primary indicator used to compare the configura-
tions

Best agent performace (MSE) MSE of the best predciting agent; in com-
parison, this indicates if the network enables to preserve or even enhance
the predictive capabilities of the well performing agents

Worst agent performace (MSE) MSE of the worst predciting agent; this
indicates if the network enables to enhance the inferior models

To run each configuration, 100 observations of train data (observed values
of the process known to the agent) was provided to the agents and then, a
round of 100 iterative predictions (and refitting of the models) was run in the
Jupyter notebook.

5.1.3 Network topology

The network structure is similar in all experiments. Every time, it is a regular
graph – every node has the same degree. Also, it is constructed as n-hops –
resulting in a circular structure, as shown in Figure 5.1.

1_AR0_SARIMAX

2_ARIMA

3_AR

4_ExpSm

5_ARIMA 6_ExpSm

7_Prophet

8_SARIMAX 9_SARIMAX

Figure 5.1: Network topology – 10 agents, each with 8 neighbours.

In two cases, larger networks are created in attempt to improve the pre-
diction accuracy. Their structures are depicted in Figures 5.2 and 5.3.

28

5.2. Process 1

1_AR

0_SARIMAX

2_ARIMA

18_SARIMAX

19_SARIMAX

14_ExpSm

15_ARIMA

16_ExpSm

17_Prophet

3_AR

4_ExpSm

5_ARIMA

6_ExpSm

10_SARIMAX

7_Prophet

11_AR

8_SARIMAX

12_ARIMA

9_SARIMAX

13_AR

Figure 5.2: Network consisting
of 20 agents, each with 8 neigh-
bours.

1_AR

0_SARIMAX

2_ARIMA

10_SARIMAX

14_ExpSm

15_ARIMA

16_ExpSm

17_Prophet

18_SARIMAX

19_SARIMAX

11_AR

12_ARIMA 13_AR

3_AR

4_ExpSm

5_ARIMA

6_ExpSm

7_Prophet

8_SARIMAX

9_SARIMAX

Figure 5.3: Network consisting of
20 agents, each with 16 neigh-
bours.

5.1.4 Models and their configuration used in the network

Following models and their configurations were used to model and predict the
value of the stochastic process:

Agent 0 used SARIMAX with order=(1,1,1), seasonal order=(1,1,1,10)

Agent 1 used AR with lags=20

Agent 2 used ARIMA with order=(1,0,2)

Agent 3 used AR with lags=10

Agent 4 used ExpSm with window=3

Agent 5 used ARIMA with order=(1,0,1)

Agent 6 used ExpSm

Agent 7 used Prophet with dummy start=’2015-01-01’

Agent 8 used SARIMAX with order=(0,1,0), seasonal order=(1,1,1,20)

Agent 9 used SARIMAX with order=(0,1,1), seasonal order=(1,1,1,10)

5.2 Process 1

Following lines are dedicated to the first process on which the proposed vari-
ants are tested and compared.

29

5. Experiments and evaluation

5.2.1 Test data

First process used for modelling is generated artificially. It is a sum of sine
function (with period 20) and Bernoulli process Bern(p=0.6).

This process was chosen mainly to guarantee both periodicity and random
elements in the data.

Figure 5.4 shows the real values of the process. Its mean value is 8.193
and standard deviation is 0.753.

0 25 50 75 100 125 150 175 200
time

7.0

7.5

8.0

8.5

9.0

9.5

pr
oc

es
s v

al
ue

Process

Figure 5.4: Plot of the process 1.

It should be noted that some of the models are better because of their
a priori coefficients – e.g. for agent 1, the number of lags is equal to the
period, so this model (and possibly its neighbours) is one of the candidates to
generally be the best model in this network.

Each agent is provided with slightly different observed values based on
random, gaussian noise N (0, 0.012) . This is shown in Figure 5.5. The in-
dividual differences are very tiny, but can be spotted by eye only with some
amount of effort made.

0 5 10 15 20 25
time

7

8

9

pr
oc

es
s v

al
ue

Process + noise_0

0 5 10 15 20 25
time

7

8

9

pr
oc

es
s v

al
ue

Process + noise_2

0 5 10 15 20 25
time

7

8

9

pr
oc

es
s v

al
ue

Process + noise_4

0 5 10 15 20 25
time

7

8

9

pr
oc

es
s v

al
ue

Process + noise_6

Figure 5.5: Detail on several selected plots of observed values of process 1.

As we can see in Figure 5.6, ACF and PACF behave as could be expected
based on the process properties, mainly periodicity.

30

5.3. Results – process 1

0 5 10 15 20 25
lags

0.5

0.0

0.5

1.0

ac
f

Process autocorrelation

0 5 10 15 20 25
lags

0.50

0.25

0.00

0.25

0.50

0.75

1.00

pa
cf

Process partial autocorrelation

Figure 5.6: ACF and PACF of process 1.

5.3 Results – process 1

Following part describes and examines all the experiments in setting and con-
figuration made with the data from process 1. Several tables with results are
presented for clarity – values in green signify the best value (lowest MSE) in
the row of the given table (specific configurations), values in red denote the
worst value in the row and values in grey signify that the value is taken as
reference from previous experiments, if not stated specifically otherwise.

5.3.1 Comparison of variants with differing number of
neighbours

As one of the main points is to compare the various proposed methods and
study the behaviour of the network with different number of neighbours, dif-
ferent number of neighbours is tried out for each variant. Other attributes
stay the same.

For four neighbours, MAE is tested as the inner measure to evaluate the
errors of past predictions in order to calculate weights of the neighbours.

31

5. Experiments and evaluation

4 neighbours

Table 5.1: Process 1 – comparison of results for 4 neighbours.

Nodes 10 10 10 10 10
Neighbours 4 4 4 4 4
Cooperation ignore best n average w average w median
Measure MSE MSE MSE MSE MSE
Shared observation True True True True True
Average agent
performance (MSE) 0.1803 0.1150 0.1085 0.1025 0.1170

Best agent
performance (MSE) 0.0807 0.0823 0.0781 0.0770 0.0824

Worst agent
performance (MSE) 0.5931 0.1724 0.1467 0.1419 0.1512

Given that each agent has 4 neighbours, weighted average variant gives the
best results in all of the three from average, best, and worst agent perfor-
mances. Details are listed in Table 5.1.

0 25 50 75 100 125 150 175 200
time

7.0

7.5

8.0

8.5

9.0

9.5

pr
oc

es
s v

al
ue

Process and predictions of agent 7(Prophet)
predicted
real

Figure 5.7: Predictions of the worst performing agent in variant 0 – ignore.

Figure 5.7 displays the predictions of the worst agent 7 (Prophet) in vari-
ant 0 (ignore), that is the configuration from the first column of Table 5.1. Its

32

5.3. Results – process 1

MSE reaches almost 0.6, but every other variant lowers this extreme value.
Besides, in each of the other variants, the worst performing agents is either
agent 6 or agent 8 (neighbours of agent 7), but not the agent 7 itself.

0 25 50 75 100 125 150 175 200
time

7.0

7.5

8.0

8.5

9.0

9.5

pr
oc

es
s v

al
ue

Process and predictions of agent 1(AR)
predicted
real

Figure 5.8: Predictions of the agent with lowest MSE, across all variants and
modifications.

Figure 5.8 shows the predictions of agent 1, that is AR model with lags up
to 20 from weighted average variant. This is the configuration from the fourth
column of Table 5.1. It performs the best from all of the tested variants and
modifications with its MSE equal to 0.0770.

33

5. Experiments and evaluation

Table 5.2: Process 1 – comparison of results for 4 neighbours, MAE.

Nodes 10 10 10 10 10
Neighbours 4 4 4 4 4
Cooperation ignore best n average w average w median
Measure MAE MAE MAE MAE MAE
Shared observation True True True True True
Average agent
performance (MSE) 0.1803 0.1148 0.1085 0.1054 0.1170

Best agent
performance (MSE) 0.0807 0.0823 0.0781 0.0775 0.0824

Worst agent
performance (MSE) 0.5931 0.1740 0.1467 0.1444 0.1512

Table 5.2 presents the results with MAE used as inner metric to evaluate
the prediction qualitities of agent and its neighbours and calculate weights
of the neighbouring predictions. Because variants ignore and average do not
do these calculations, their results were, not surprisingly, equal to the results
displayed in Table 5.1. Therefore, these two variants are depicted in grey
colour.

When compared with MSE variant mentioned before, both the best and
the worst agents in the MAE variant were equal or worse. In the best neighbour
variant, the average performance of MAE variant was slightly better, but that
is the only case.

2 neighbours

Table 5.3: Process 1 – comparison of results for 2 neighbours.

Nodes 10 10 10 10 10
Neighbours 2 2 2 2 2
Cooperation ignore best n average w average w median
Measure MSE MSE MSE MSE MSE
Shared observation True True True True True
Average agent
performance (MSE) 0.1804 0.1148 0.1228 0.1114 0.1228

Best agent
performance (MSE) 0.0809 0.0841 0.0862 0.0819 0.0829

Worst agent
performance (MSE) 0.5953 0.1677 0.1960 0.1665 0.1620

As visible in Table 5.3, in the case of only 2 neighbouring agents, the results
are generally worse than in the case of each agent having four neighbours.

34

5.3. Results – process 1

6 neighbours

Table 5.4: Process 1 – comparison of results for 6 neighbours.

Nodes 10 10 10 10 10
Neighbours 6 6 6 6 6
Cooperation ignore best n average w average w median
Measure MSE MSE MSE MSE MSE
Shared observation True True True True True
Average agent
performance (MSE) 0.1807 0.1033 0.1021 0.0974 0.1083

Best agent
performance (MSE) 0.0806 0.0864 0.0809 0.0800 0.0822

Worst agent
performance (MSE) 0.5982 0.1724 0.1293 0.1242 0.1396

Table 5.4 provides comparison of the five variants used with each agent sharing
predictions with 6 other nodes. The average performace of agents gets better
than in the case of 4 neighbours scenario, with the exception of variant ignore.

8 neighbours

Table 5.5: Process 1 – comparison of results for 8 neighbours.

Nodes 10 10 10 10 10
Neighbours 8 8 8 8 8
Cooperation ignore best n average w average w median
Measure MSE MSE MSE MSE MSE
Shared observation True True True True True
Average agent
performance (MSE) 0.1804 0.0960 0.0982 0.0948 0.1032

Best agent
performance (MSE) 0.0807 0.0921 0.0891 0.0882 0.0846

Worst agent
performance (MSE) 0.5970 0.1044 0.1044 0.1007 0.1197

As visible in Table 5.5, the best performing variant (regarding the average pre-
diction of all agents in the network) across all configurations using certainties
of the prediction is weighted average combined with 8 neighbouring nodes.

Also, the network structure is shown in Figure 5.1 mentioned earlier.

35

5. Experiments and evaluation

0 25 50 75 100 125 150 175 200
time

7.0

7.5

8.0

8.5

9.0

9.5

pr
oc

es
s v

al
ue

Process and predictions of agent 4(ExpSm)
predicted
real

Figure 5.9: Predictions of the worst agent in the best performing variant,
compared across variants in which certainty was used.

Figure 5.9 shows the predictions of agent 4 (Exponential smoothing, with
window equal to 3 – only last three predictions are used) in the configuration of
8 neighbours in the weighted average variant. This configuration produced the
best agents’ average MSE (0.0948), and even its worst agent predicts better
than 8 out of 10 agents in the variant ignore, with any number of neighbours
(individual agent predictions can be reviewed in any of the executed Jupyter
notebooks).

5.3.2 Variating other attributes

After performing and evaluating basic configurations of the network with dif-
ferent number of neighbours, two interesting configurations were selected and
further investigation was made.

Variating parameters of the best configuration

Variation weighted average with eight neighbouring nodes – fourth column
from Table 5.5 – was chosen and furthermore referred to as the ”best” con-
figuration because of its lowest average MSE. Several experiments were made

36

5.3. Results – process 1

in order to try and find a configuration similar to this one that would give at
least slightly better results.

In the first round, these are:

• larger network – 20 nodes of degree 16 (doubled) were used, as can be
noticed in the diagram 5.3; the other ten nodes use same models as the
first ten nodes, but they do observe different values of the process
• not sharing the observed value of the process
• AIC used as the criterion when calculating certainty

Table 5.6: Process 1 – comparison of various modifications of the ”best” con-
figuration.

Nodes 10 20 10 10
Neighbours 8 16 8 8
Cooperation w average w average w average w average
Measure MSE MSE MSE MSE
Shared observation True True False True

Note on change ”best”
configuration

larger
network

observations
not shared

AIC as
certainties

Average agent
performance (MSE) 0.0948 0.0961 0.0948 0.0949

Best agent
performance (MSE) 0.0882 0.0874 0.0883 0.0883

Worst agent
performance (MSE) 0.1007 0.1061 0.1008 0.1008

Table 5.6 shows the results of the attempts to improve already well per-
forming configuration. The bigger network configuration (second column with
the data in the mentioned table) found a better performing best agent, though
at the cost of worsening in the remaining two compared categories, average and
worst MSE. The other two experiments, not sharing the observed values and
using AIC, give almost the same numbers as the original ”best” configuration.

In the second round, extent of certainties of the models was changed in
order to investigate the impact:

• larger span in certainty masks of all agents – namely [0.85, 1, 1.15]
instead of default [0.95, 1 and 1.05]

• smaller span in certainty masks of all agents – namely [0.98, 1, 1.02]
• combined span in certainty masks – agents A3, A4, A5, A6, and A8

performed worse than the other agents and therefore get lower span
masks [0.98, 1, 1.02]; remaining agents get larger span of certainty mask
[0.85, 1, 1.15]

37

5. Experiments and evaluation

• inversed combined span in certainty masks – same as the mixed span,
but inversed, i.e. the worst agents A3, A4, A5, A6, and A8 get larger
span of certainty mask [0.85, 1, 1.15] and the rest gets lower span masks
[0.98, 1, 1.02]

Table 5.7: Process 1 – comparison of certainties modifications of the ”best”
configuration.

Nodes 10 10 10 10 10
Neighbours 8 8 8 8 8
Cooperation w avg w avg w avg w avg w avg
Measure MSE MSE MSE MSE MSE
Shared observ. True True True True True

Note on change ”best”
config.

larger
mask

smaller
mask

comb 1
mask

comb 2
mask

Average agent
perf. (MSE) 0.0948 0.0954 0.0946 0.0952 0.0949

Best agent
perf. (MSE) 0.0882 0.0886 0.0881 0.0883 0.0884

Worst agent
perf. (MSE) 0.1007 0.1022 0.1007 0.1020 0.1010

The results provided by Table 5.7 indicate that the changes have rather
small effect and it seems that the smaller the certainty span, the better.

0 25 50 75 100 125 150 175 200
time

7.0

7.5

8.0

8.5

9.0

9.5

pr
oc

es
s v

al
ue

Process and predictions of agent 16(ExpSm)
predicted
real

Figure 5.10: Predictions of the best agent from the modifications of the ”best”
performing variant.

38

5.3. Results – process 1

Figure 5.10 shows the predictions of the agent 16 (Exponential smoothing)
with MSE equal to 0.0874, the best model found while tweaking the ”best”
configuration. The agent itself is better than the originally ”best” agent in
this configuration, but still far behind the totally best agent (across all con-
figurations) with its MSE as low as 0.0770.

Varying parameters of the worst configuration

Variation weighted median with four neighbouring nodes – fifth column from
Table 5.1 – was chosen and furthermore referred to as the ”worst” configu-
ration. It was chosen as such, even though it is not actually the worst one.
The point is to select a configuration employing either weighted average or
weighted median variant and with each node having degree at least 4, and
from these, it is the worst one. Several experiments were made in order to try
and find a configuration that would perform better than this ”worst” config-
uration.

Very similarly as before, the tested changes are:

• larger network – 20 nodes of degree 8 (doubled) used, as can be noticed
in the diagram 5.2; the other ten nodes use same models as the first ten
nodes, but they do observe different values of the process
• not sharing the observed value of the process
• AIC used as the criterion when calculating certainty

Table 5.8: Process 1 – comparison of various modifications of the ”worst”
configuration.

Nodes 10 20 10 10
Neighbours 4 8 4 4
Cooperation w median w median w median w median
Measure MSE MSE MSE MSE
Shared observation True True False True

Note on change ”worst”
configuration

larger
network

observations
not shared

AIC as
certainties

Average agent
performance (MSE) 0.1170 0.1035 0.1163 0.1170

Best agent
performance (MSE) 0.0824 0.0844 0.0820 0.0824

Worst agent
performance (MSE) 0.1512 0.1203 0.1504 0.1512

As recorded in Table 5.8, the larger network provides significantly better
results on average (and also with its worst agent), but at the cost of having
its best agent non-competitive in comparison with the other.

39

5. Experiments and evaluation

Again, similarly as before (with the exception of changed set of the worst
agents) – in the second round, extent of certainties of the models was changed
in order to investigate the impact:

• larger span in certainty masks of all agents – namely [0.85, 1, 1.15]
instead of default [0.95, 1 and 1.05]

• smaller span in certainty masks of all agents – namely [0.98, 1, 1.02]

• combined span in certainty masks – agents A3, A4, A5, A6, and A7
performed worse than the other agents and therefore get lower span
masks [0.98, 1, 1.02]; remaining agents get larger span of certainty mask
[0.85, 1, 1.15]

• inversed combined span in certainty masks – same as the mixed span,
but inversed, i.e. the worst agents A3, A4, A5, A6, and A7 get larger
span of certainty mask [0.85, 1, 1.15] and the rest gets lower span masks
[0.98, 1, 1.02]

Table 5.9: Process 1 – comparison of certainties modifications of the ”worst”
configuration.

Nodes 10 10 10 10 10
Neighbours 4 4 4 4 4
Cooperation w med w med w med w med w med
Measure MSE MSE MSE MSE MSE
Shared observ. True True True True True

Note on change ”best”
config.

larger
mask

smaller
mask

comb 1
mask

comb 2
mask

Average agent
perf. (MSE) 0.1170 0.1167 0.1170 0.1170 0.1174

Best agent
perf. (MSE) 0.0824 0.0831 0.0824 0.0825 0.0824

Worst agent
perf. (MSE) 0.1512 0.1574 0.1512 0.1512 0.1527

Results resemble the situation with variating the parameters of the ”best”
configuration – changes in certainties have small effect on performance and if
so, it gets worse – Table 5.9 is filled with the specific numbers.

40

5.3. Results – process 1

0 25 50 75 100 125 150 175 200
time

7.0

7.5

8.0

8.5

9.0

9.5

pr
oc

es
s v

al
ue

Process and predictions of agent 5(ARIMA)
predicted
real

Figure 5.11: Predictions of the worst agent from the best of the modifications
of the ”worst” performing variant.

Figure 5.11 depicts the predictions of the worst agent 5 (ARIMA) with
MSE equal to 0.1203. Its configuration is in the second column with data
of Table 5.8. This configuration is the best from the ”worst” configuration
attempted adjustments. It improved the average MSE from 0.117 to 0.1035 –
that is relatively high enhancement.

5.3.3 Predictions without using certainty

In following experiments, the configurations do not use certainty (it is always
masked to 1). Therefore, ignore and average variants would have the same
results, because they do not incorporate the certainties into their predictions.

Results for variant weighted median were exactly the same as in the case
of certainty used (for all of the 2, 4, 6, and 8 neighbours scenarios). That was
probably caused by the fact that the weights of the neighbours are usually
similar, and the weighted median consistently chose the same values regardless
the small changes in the certainty masks. That is why the variant is missing
in the following overview of results.

41

5. Experiments and evaluation

Table 5.10: Process 1 – comparison of results for 2 and 4 neighbours, without
certainties used.

Nodes 10 10 10 10
Neighbours 2 2 4 4
Cooperation best n w average best n w average
Measure MSE MSE MSE MSE
Shared observ. True True True True
Average agent
perf. (MSE) 0.1123 0.1115 0.1024 0.1024

Best agent
perf. (MSE) 0.0866 0.0824 0.0844 0.0774

Worst agent
perf. (MSE) 0.1586 0.1666 0.1557 0.1406

In Table 5.10, colour of the numbers denotes comparison with the same
experiment, but run with the certainties equal to [0.95, 1, 1.05] (these values
are in Tables 5.3) and 5.1 – green means no certainty performs better, red the
other way around. These configurations show that the best models generated
perform slightly worse than in the case when certainty is used. However, the
mean value of configurations without certainty used is usually better.

Table 5.11: Process 1 – comparison of results for 6 and 8 neighbours, without
certainties used.

Nodes 10 10 10 10
Neighbours 6 6 8 8
Cooperation best n w average best n w average
Measure MSE MSE MSE MSE
Shared observ. True True True True
Average agent
perf. (MSE) 0.0983 0.0974 0.1002 0.0945

Best agent
perf. (MSE) 0.0843 0.0800 0.0950 0.0881

Worst agent
perf. (MSE) 0.1103 0.1243 0.1042 0.1006

In Table 5.11, colour of the numbers denotes comparison with the same
experiment, but run with the certainties equal to [0.95, 1, 1.05] (these values
are in Tables 5.4) and 5.5 – green means no certainty performs better, red the
other way around, grey is for same numbers.

42

5.4. Process 2

0 25 50 75 100 125 150 175 200
time

7.0

7.5

8.0

8.5

9.0

9.5

pr
oc

es
s v

al
ue

Process and predictions of agent 2(ARIMA)
predicted
real

Figure 5.12: Predictions of the best agent in the best performing variant,
compared across all variants and modifications.

Figure 5.12 shows the agent 2 (ARIMA) with MSE equal to 0.0881. It is
the best agent from the best performing network configuration modelling the
process 1 (however, it is not the best agent overall) – the average MSE of the
network was only 0.0945. The configuration is the fourth column with data
in Table 5.11.

5.4 Process 2

Following lines are dedicated to the second process on which the proposed
variants are tested and compared.

5.4.1 Test data

Second process used for modelling is real (not generated) time series. Its
values are the daily close values of BTCUSD, from Coinbase exchange. The
process start is on 1st January 2018.

The goal of using this data is rather to observe the results behaviour when
network configuration is changed. However, the process resembles the random

43

5. Experiments and evaluation

walk, as the financial data often does, so only some adaptive characteristics of
the tested variants can be seen because of the low quality of predictions made
by the individual agents.

The dataset was downloaded from https://www.cryptodatadownload.com/
data/coinbase/ and is available on the enclosed DVD.

0 25 50 75 100 125 150 175 200
time

7000

8000

9000

10000

11000

12000

13000

pr
oc

es
s v

al
ue

Process

Figure 5.13: Plot of the process 2.

Figure 5.13 shows the real values of the process. Its mean value is 9283.960
and standard deviation is 1494.398.

As in the case of the first process, each agent is provided with slightly
different observed values – they are multiplied by a small coefficient based
on random, gaussian noise N (0, 0.0012) . This tries to imitate the situation
when multiple sources of data are available, all varying, but in the extent
dependent on the value of the process. This is shown in Figure 5.14. The
individual differences are tiny, but can be spotted by eye only with some
amount of effort made.

0 5 10 15 20 25
time

6750
7000
7250
7500

pr
oc

es
s v

al
ue

Process + noise_0

0 5 10 15 20 25
time

6750
7000
7250
7500

pr
oc

es
s v

al
ue

Process + noise_2

0 5 10 15 20 25
time

6750
7000
7250
7500

pr
oc

es
s v

al
ue

Process + noise_4

0 5 10 15 20 25
time

7000

7500

pr
oc

es
s v

al
ue

Process + noise_6

Figure 5.14: Several selected plots of observed values of process 2.

In Figure 5.15, ACF and PACF indicate that the process is a lot like a
random walk, dependent mainly on the last value.

44

https://www.cryptodatadownload.com/data/coinbase/
https://www.cryptodatadownload.com/data/coinbase/

5.5. Results – process 2

0 5 10 15 20 25
lags

0.5

0.0

0.5

1.0

ac
f

Process autocorrelation

0 5 10 15 20 25
lags

0.0

0.2

0.4

0.6

0.8

1.0

pa
cf

Process partial autocorrelation

Figure 5.15: ACF and PACF of process 2.

5.4.2 Changes in the models used in the network

In order to at least partially reflect the modelled data, following changes in
the model configurations were made:

• Agent 0 used a SARIMAX model, with changed seasonal order=(1,1,1,7)
• Agent 7 used a Prophet model, with changed start – not a dummy

variable, but real start date of the time series, i.e. ’2018-01-01’
• Agent 8 used a SARIMAX model, with changed seasonal order=(1,1,1,7)
• Agent 9 used a SARIMAX model, with changed seasonal order=(1,1,1,7)

These changes should help at least a little bit to reflect the real situation,
because the previous configuration aimed to model the process with known
period.

5.5 Results – process 2

Similarly to process 1, following part describes and examines all the experi-
ments in setting and configuration made with the data from process 2. Several
tables with results are presented for clarity – values in green signify the best
value (lowest MSE) in the row of the given table (specific configurations), val-
ues in red denote the worst value in the row, and values in grey signify that
the value is taken as reference from previous experiments

5.5.1 Comparison of variants with differing number of
neighbours

Again, as one of the main points of this work is to compare the various pro-
posed methods and study the behaviour of the network with different number
of neighbours, different number of neighbours is tried out for each variant.
Other attributes stay unchanged.

For four neighbours, MAE is tested as the inner measure to evaluate the
errors of past predictions in order to calculate weights of the neighbours.

45

5. Experiments and evaluation

4 neighbours

Table 5.12: Process 2 – comparison of results for 4 neighbours.

Nodes 10 10 10 10 10
Neighbours 4 4 4 4 4
Cooperation ignore best n average w average w median
Measure MSE MSE MSE MSE MSE
Shared observation True True True True True
Average agent
performance (MSE) 334 700 251 999 255 746 248 407 248 037

Best agent
performance (MSE) 240 475 240 929 240 896 238 800 239 860

Worst agent
performance (MSE) 1 015 502 266 845 269 583 257 921 255 106

Table 5.12 summarizes results of experiments with configurations where the
node degree was equal to 4. Clearly, the weighted variants weight average and
weight median outperform the other ones.

Table 5.13: Process 2 – comparison of results for 4 neighbours, MAE.

Nodes 10 10 10 10 10
Neighbours 4 4 4 4 4
Cooperation ignore best n average w average w median
Measure MAE MAE MAE MAE MAE
Shared observation True True True True True
Average agent
performance (MSE) 334 700 249 109 255 746 249 969 248 022

Best agent
performance (MSE) 240 475 237 130 240 896 240 809 239 932

Worst agent
performance (MSE) 1 015 502 264 653 269 583 259 564 255 106

Table 5.13 gives the results with MAE used as inner metric to calculate
weights of the neighbouring predictions. Because variants ignore and average
do not do these calculations, their results were, not surprisingly, equal to the
results displayed in Table 5.12. Therefore, these two variants are depicted in
grey colour.

When compared with MSE scenario tested before (see Table 5.12, variant
weighted average has higher MSE in all categories, weighted median is approx-
imately the same and best neighbour performs better in all categories.

46

5.5. Results – process 2

2 neighbours

Table 5.14: Process 2 – comparison of results for 2 neighbours.

Nodes 10 10 10 10 10
Neighbours 2 2 2 2 2
Cooperation ignore best n average w average w median
Measure MSE MSE MSE MSE MSE
Shared observation True True True True True
Average agent
performance (MSE) 334 307 254 068 268 307 251 400 248 997

Best agent
performance (MSE) 241 113 240 624 235 258 235 456 239 784

Worst agent
performance (MSE) 1 016 074 282 961 309 508 269 111 273 371

0 25 50 75 100 125 150 175 200
time

7000

8000

9000

10000

11000

12000

13000

pr
oc

es
s v

al
ue

Process and predictions of agent 5(ARIMA)
predicted
real

Figure 5.16: Predictions of the best performing agent, all variants considered.

Considering node degree equal to two, Table 5.14 indicates that the aver-
age MSE usually gets worse, as expected. Nevertheless, the average variant
created the best agent predicting the process 2 overall, with MSE as low as
235 258 (third column in the mentioned table) – that is agent 5 (ARIMA).
The predictions of this agent are illustrated in Figure 5.16. However, this
configuration is also the worst one regarding the average MSE of its agents (if
ignore variants are omitted).

47

5. Experiments and evaluation

6 neighbours

Table 5.15: Process 2 – comparison of results for 6 neighbours.

Nodes 10 10 10 10 10
Neighbours 6 6 6 6 6
Cooperation ignore best n average w average w median
Measure MSE MSE MSE MSE MSE
Shared observation True True True True True
Average agent
performance (MSE) 334 681 248 031 250 024 246 397 243 576

Best agent
performance (MSE) 240 503 237 623 245 312 239 911 239 183

Worst agent
performance (MSE) 1 014 513 265 671 258 146 253 898 246 079

Table 5.15 lists results of configurations in which agents have six neighbours.
Each of the individual variants performs in average better than its equivalent
with 4 neighbours used.

8 neighbours

Table 5.16: Process 2 – comparison of results for 8 neighbours.

Nodes 10 10 10 10 10
Neighbours 8 8 8 8 8
Cooperation ignore best n average w avg w med
Measure MSE MSE MSE MSE MSE
Shared observation True True True True True
Average agent
performance (MSE) 334 314 244 228 246 828 244 854 243 414

Best agent
performance (MSE) 240 630 237 628 243 461 241 125 241 776

Worst agent
performance (MSE) 1 011 786 251 916 250 198 248 448 244 801

Finally, Table 5.16 presents the results of configurations with 8 neighbours.
The best configuration predicting the process 2 is the variant weighted median,
with the average MSE equal to 243 414 (fifth column of the table).

48

5.6. Summary

0 25 50 75 100 125 150 175 200
time

7000

8000

9000

10000

11000

12000

13000

pr
oc

es
s v

al
ue

Process and predictions of agent 1(AR)
predicted
real

Figure 5.17: Predictions of the worst agent in the best configuration.

Figure 5.17 shows predictions of agent 1 (AR), which is the worst predict-
ing agent in the best configuration in average. Its MSE is 244 801.

5.6 Summary

The lines below sum up the results obtained, compare them, evaluate the
methods used, and some possible improvements and further steps are pro-
posed.

5.6.1 Process 1

Many different configurations of agents were tried to predict the value of pro-
cess 1.

In general, more neighbours means better average prediction capabilities.
However, some of the best individual agents emerged from configurations with
only 4 neighbours, so based on the experiments made, it should not be uni-
versally stated that the higher the node degree the better predictions – it is
highly dependent on whether the performance of the best model or of the
whole network is preferred.

On comparing the variants used:

• ignore – this cornerstone variant performed consistently ignoring the
number of neighbours (only neighbours’ observed values of the process
were used)

49

5. Experiments and evaluation

• best neighbour – this variant performed better with more neighbours’
predictions used, as expected

• average – this variant using arithemtic mean of the neighbours’ predic-
tions (agent itself included) performed surprisingly well, getting better
with higher node degree of agents

• weighted average – this variant performed the best in most cases

• weighted median – this variant performed the second best in most
cases

Regarding the other attributes with which some experiments were done:

• certainty mask – in many cases, not using certainty or using lower
values lead to better results; nevertheless, that is hugely dependent on
the quality of the individual models estimates

• inner metric – MSE and MAE performed similarly, but few experi-
ments were made with MAE to any conclusion

• sharing the observed value of the process – only two configurations
were run without sharing the observed value of the process, the results
were similar or slightly better

• network size – only two configurations were run with larger network,
both made slight improvement in one of the studied categories (average
MSE and best MSE)

5.6.2 Process 2

Predicting the process 2 was somewhat trickier because of its much more
random behaviour. Because of less tests made for this process (any potential
results would be highly questionable), it can only be said a few things. First,
analogous to process 1, more neighbours means better average prediction.
Second, the weighted median variant outperformed all other variants including
weighted average with regard to the average MSE of agents in the network.
It seems that this variant is a bit more capable of handling more demanding
and random data, or rather the lower quality models.

5.6.3 Overall evaluation

To formally answer the questions posed in Chapter 3 – the local predictions
can be made better using various techniques of combinations of neighbour-
ing nodes’ predictions. This was shown in Chapter 5. Some of the easier
methods can, surprisingly, have very good results in several configurations.
However, the incorporation of the information from neighbouring nodes using

50

5.7. Adjustments proposed

the more sophisticated weighted variants performs well more consistently and
universally.

It must be specifically stated that the variants tested and compared heavily
depend on the specific processes they model, besides with the amount of noise
associated with the process. More tests would have to be made in order to
induce more reliable inferences.

5.7 Adjustments proposed

In further work, following adjustments could be done to study the variants
more thoroughly:

• training the models using sliding window

• using the certainty not only for shifting the current prediction, but also
for further ”(no-)confidence” in the neighbours

• each agent would employ different and biased certainty mask given
their assumed quality (that means that models would be a priori taken
by their neighbours more or less seriously based on the mask)

In the variants weighted average and weighted median, the weights are initial-
ized equally for all the agents in the closed neighbourhood. Nevertheless, if
assumptions are made about the quality of the agents’ models, the weights
could be initialized so that the similar models get lower weights in order to
prevent their privileging – similarly as described in [27].

5.8 Alternative approaches

In more abstract perspective, a few more approaches are suggested:

• communication in the network divided in two spheres – firstly in a local
cluster, possibly of similar agents, which would agree on the predicted
value – and this value would be communicated globally in the network
with other clusters

• model switching alteration – each agent would have several of the pro-
posed variants as ”strategies” and would change them independently
based on their performance

51

Conclusion

Summary

The breadth and depth of this area is surprisingly eminent. Many ways of
modelling and approaches to making predictions are possible and not single
one can be universally used.

The way to handle the communication and prediction in the interconnected
network of agents was proposed, implemented, and tested. The results made
it possible to do at least some evaluation of the proposed variants using both
generated and real-world data.

It was demonstrated that using neighbours’ predictions can be a good
way to locally improve the prediction. Also, it was shown that agent’s own
certainties of those predictions can lead to some improvements, but at the
current state, better results are usually obtained without using the certainty
information.

Unsophisticated methods, such as arithmetic mean of predictions, can lead
to good results in certain scenarios. However, in most cases, the variants with
incorporating past accuracy of the neighbours perform better.

The conducted experiments are easily reproducible and can be run using
the implementation on the enclosed DVD.

Prospects

Regarding the presented solution, a lot of experiments could be done with
larger networks or with changing parameters of the agents or network. For
example, more diversity in the network topology or individual agent’s certainty
masks can be done right away, with the code as is.

Further work on the implemented solution could be focused on the individ-
ual model capabilities – mainly incorporating more types of models (possibly
even advanced neural networks like LSTM) and mainly enhancing the way
how the models determine the certainty of their predictions.

53

5. Experiments and evaluation

From higher perspective, there is much unexplored space in experimenting
with real-time adaptation of the agent to changes in quality and switching its
cooperation strategy. More agent-oriented approach with emphasis on tuning
the individual agent’s properties and supporting its decision making could
lead to much better results in real life.

54

Bibliography

[1] L. Breiman. Bagging predictors. Machine Learning, volume 24, no. 2,
Aug. 1996: pp. 123–140.

[2] Y. Freund; R. E. Schapire. A short introduction to boosting. In In Pro-
ceedings of the Sixteenth International Joint Conference on Artificial In-
telligence, Morgan Kaufmann, 1999, pp. 1401–1406.

[3] J. A. Hoeting; D. Madigan; et al. Bayesian model averaging: A tutorial.
Statistical Science, volume 14, no. 4, 1999: pp. 382–417.

[4] B. Clarke; B. Yu. Comparing Bayes model averaging and stacking when
model approximation error cannot be ignored. In Journal of Machine
Learning Research, 2003.

[5] K. Dedecius; P. M. Djuric. Sequential estimation and diffusion of infor-
mation over networks: A Bayesian approach with exponential family of
distributions. IEEE Transactions on Signal Processing, volume 65, no. 7,
Apr. 2017: pp. 1795–1809.

[6] K. Dedecius; V. Sečkárová. Factorized estimation of partially shared pa-
rameters in diffusion networks. IEEE Transactions on Signal Processing,
volume 65, no. 19, Oct. 2017: pp. 5153–5163.

[7] A. H. Sayed. Adaptation, Learning, and Optimization over Networks.
Foundations and Trends R© in Machine Learning, volume 7, no. 4-5, 2014:
pp. 311–801.

[8] A. H. Sayed. Adaptive networks. Proceedings of the IEEE, volume 102,
no. 4, Apr. 2014: pp. 460–497.

[9] Y. Yao; A. Vehtari; et al. Using stacking to average Bayesian predictive
distributions. 2017.

55

Bibliography

[10] S. J. Taylor; B. Letham. Forecasting at scale. Sept. 2017.

[11] H. Akaike. A new look at the statistical model identification. IEEE Trans-
actions on Automatic Control, volume 19, no. 6, 1974: pp. 716–723.

[12] M. Szydlowski; A. Krawiec; et al. AIC, BIC, Bayesian evidence against
the interacting dark energy model. 2008.

[13] G. Schwarz. Estimating the dimension of a model. The Annals of Statis-
tics, volume 6, no. 2, Mar. 1978: pp. 461–464.

[14] A. E. Raftery; M. Kárný; et al. Online prediction under model uncer-
tainty via dynamic model averaging: Application to a cold rolling mill.
Technometrics, volume 52, no. 1, Feb. 2010: pp. 52–66.

[15] L. Onorante; A. E. Raftery. Dynamic model averaging in large model
spaces using dynamic Occam’s window. 2014.

[16] T. McCormick; A. E. Raftery; et al. Dynamic logistic regression and
dynamic model averaging for binary classification. Biometrics, volume 68,
08 2011: pp. 23–30.

[17] J. Smith; K. F. Wallis. A simple explanation of the forecast combination
puzzle. Oxford Bulletin of Economics and Statistics, volume 71, no. 3,
June 2009: pp. 331–355.

[18] T. E. Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA,
2006.

[19] W. McKinney. Data structures for statistical computing in Python. In
Proceedings of the 9th Python in Science Conference, volume 445, Austin,
TX, 2010, pp. 51–56.

[20] F. Bovo. Robustats documentation. [online], 2020.

[21] F. Pedregosa; G. Varoquaux; et al. Scikit-learn: Machine Learning in
Python. Journal of Machine Learning Research, volume 12, 2011: pp.
2825–2830.

[22] T. E. Oliphant. Python for scientific computing. Computing in Science
& Engineering, volume 9, no. 3, 2007: pp. 10–20.

[23] S. Seabold; J. Perktold. Statsmodels: Econometric and statistical mod-
eling with Python. In 9th Python in Science Conference, 2010.

[24] J. Ellson; E. Gansner; et al. Graphviz — open source graph drawing
tools. In Lecture Notes in Computer Science, Springer-Verlag, 2001, pp.
483–484.

56

Bibliography

[25] J. D. Hunter. Matplotlib: A 2D graphics environment. Computing in
Science & Engineering, volume 9, no. 3, 2007: pp. 90–95.

[26] F. Pérez; B. E. Granger. IPython: A system for interactive scientific
computing. Computing in Science and Engineering, volume 9, no. 3, May
2007: pp. 21–29, ISSN 1521-9615.

[27] P. H. Garthwaite; E. Mubwandarikwa. Selection of prior weights for
weighted model averaging. Australian & New Zealand Journal of Statis-
tics, volume 52, no. 4, Nov. 2010: pp. 363–382.

57

Appendix A
Glossary

The terms listed below are used in the thesis. Their more concrete definitions
are in the particular parts of the text.

A priori In advance, supposed

Agent Independent component of the network, in most cases used inter-
changeably with node

AIC Akaike information criterion

BIC Bayesian information criterion

Closed neighbourhood Node and its neighbours

Collaborative modelling Modelling while exchanging information between
multiple agents in order to create better predictions

Configuration Network and agent properties set before the experiment

Heterogeneous models Models using different inner methods and/or pa-
rameters (which are not to be shared) in order to predict the process

MAE Mean absolute error

Model Abstraction of the process aiming to describe its behaviour and pos-
sibly predict it

Module Standalone Python code, stored in a file with .py suffix

MSE Mean squared error

Neighbour Another node with which the information can be directly shared
by the node

59

A. Glossary

Node Independent component of the network, in most cases used inter-
changeably with agent

Node degree Number of neighbours of the node

Observation Value of the process available to the agent

Open neighbourhood Node’s neighbours (node itself excluded)

Prediction Agent’s estimate of the next value of the process

Weight Importance of (agent’s or one of its neighbours’) predictions consid-
ered by the agent

60

Appendix B
Contents of enclosed DVD

readme.txt the file with DVD contents description
src...source codes dir

data............................dir with a downloaded .csv data file
doc...........................dir with simple HTML documentation
jup......................................dir with all run notebooks
thesis dir of LATEX source codes of the thesis
model fusion.pyimplemented Python module
Process 1.ipynbsample notebook, generated data
Process 2.ipynbsample notebook, real data

text..the thesis text dir
MT Smid Martin thesis.pdf the thesis text in PDF format

61

	State of Art
	Preliminary theory
	Model
	Individual models
	Autoregressive (AR) model
	Moving average (MA) model
	ARIMA model
	SARIMA model
	Prophet model
	Exponential smoothing

	Model selection criteria
	AIC
	BIC

	Combining models
	Standard approach
	Bayesian approach

	Distributed modelling
	Network properties
	Communication
	Strategies of learning in multi-agent networks

	Proposed solution
	Description of the issue
	Methods proposed
	General
	Weights
	Variant 0 – ignore
	Variant 1 – best_neighbour
	Variant 2 – average
	Variant 3 – weighted_average
	Variant 4 – weighted_median
	Certainties in variants 1, 3, 4

	Advantages
	Other possibilities

	Implementation
	Software
	Python
	Jupyter
	Anaconda

	Module implementation – structure
	CProcess
	CModel
	CAgent
	CNetwork
	Models used
	Code documentation

	How to run the implementation
	Environment
	Jupyter notebook overview

	Code discussion and further work on the implementation

	Experiments and evaluation
	General
	Properties examined
	Comparing the configurations
	Network topology
	Models and their configuration used in the network

	Process 1
	Test data

	Results – process 1
	Comparison of variants with differing number of neighbours
	Variating other attributes
	Predictions without using certainty

	Process 2
	Test data
	Changes in the models used in the network

	Results – process 2
	Comparison of variants with differing number of neighbours

	Summary
	Process 1
	Process 2
	Overall evaluation

	Adjustments proposed
	Alternative approaches

	Conclusion
	Bibliography
	Glossary
	Contents of enclosed DVD

