
doc. Ing. Hana Kubátová, CSc.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 5, 2020

ASSIGNMENT OF MASTER’S THESIS
 Title: Fast data-acquisition tools for side-channel analysis in FPGA

 Student: Bc. Ondřej Semrád

 Supervisor: Ing. Vojtěch Miškovský

 Study Programme: Informatics

 Study Branch: Design and Programming of Embedded Systems

 Department: Department of Digital Design

 Validity: Until the end of summer semester 2020/21

Instructions

Design and implement the following tools for side-channel analysis in Sakura-G board:

- configuration of control FPGA implementing communication between main FPGA and PC
- wrapper for main FPGA implementing communication with control FPGA and encryption management
- plug-in(s) for Side-Channel Analysis toolKit (SICAK) controlling the measurement process

The toolkit should:

- minimize communication with PC using data generation in control FPGA
- maximize communication speed with PC - proper FTDI mode needs to be chosen with the ability to switch
between proprietary drivers and VCP
- realize PRNG suitable for random input data generation replicable in PC
- be suitable for running various ciphers using various encryption modes and using various side-channel
attack countermeasures
- be suitable for running various measurement scenarios using optional randomization of each input

Implementation should be realized using VHDL (FPGA) and C/C++ (SICAK plug-in)

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Digital Design

Master’s thesis

Fast Data-acquisition Tools for
Side-channel Analysis in FPGA

Bc. Ondřej Semrád

Supervisor: Ing. Vojtěch Miškovský, Ph.D.

28th May 2020

Acknowledgements

First, I would like to thank my girlfriend for her infinite love, caring and
patience with my sometimes intolerable self. Then, I want to thank my super-
visor for his tips, positive approach and a will to help when I was running out
of time. Lastly, I would like to thank my family and my girlfriend’s family for
their love, caring, and their endless effort to remind me not to take this life
too seriously.

This thesis was also supported by the SGS20/211/OHK3/3T/18 student
grant.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive author-
ization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In In Prague on 28th May 2020 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2020 Ondřej Semrád. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Semrád, Ondřej. Fast Data-acquisition Tools for Side-channel Analysis in
FPGA. Master’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2020.

Abstrakt

K provedení útoku odběrovou analýzou na kryptografické zařízení je třeba
naměřit až miliony průběhů spotřeby tohoto zařízení. Cílem této práce je vyt-
vořit sadu nástrojů, která urychlí a usnadní proces získávání průběhů spotřeby
a zároveň bude podporovat co nejvíce různých šifrovacích algoritmů. Sada
nástrojů bude zaměřená na implementace šifrovacích algoritmů v hardware,
konkrétně v FPGA.

Klíčová slova Odběrová analýza, bezpečnost, FPGA, Sakura-G

ix

Abstract

To mount a power analysis attack on a cryptographic device, one has to acquire
up to millions of power traces of the attacked device. The goal of this thesis is
to create a toolkit which will make the power traces acquisition faster whilst
supporting as many different cryptographic schemes as possible. The toolkit
will focus on hardware implentations of cryptographic schemes in FPGA.

Keywords Power analysis, security, FPGA, Sakura-G

x

Contents

Citation of this thesis . viii

1 Introduction 1
1.1 Power Analysis Attack . 1

1.1.1 Statistical Evaluation 3
1.1.2 Countermeasures . 3

2 System Analysis 5
2.1 Sakura-G . 5
2.2 System overview . 6

2.2.1 Control . 8
2.2.2 Main . 9
2.2.3 Computer . 9
2.2.4 Pseudo-random number generator 9

2.3 FPGA Design Specification . 9
2.4 Software Specification . 11

3 FPGA Design and Verification 13
3.1 Design Implementation . 13

3.1.1 Common Design Elements 14
3.1.2 Control . 21

3.1.2.1 Control’s Datapath 23
3.1.2.2 Control’s Controller 32

3.1.3 Main . 43
3.1.3.1 Main’s Datapath 44
3.1.3.2 Main’s Controller 46

3.2 Verification . 48

4 SICAK Plugin 51

5 System Integration and Testing 57

xi

5.1 System Integration . 57
5.2 Testing . 57

6 Conclusion 61

Bibliography 63

A List of Acronyms 65

B Attached DVD description 67

xii

List of Figures

1.1 An example of a power measurement setup. 2

2.1 Top view of the Sakura-G board [8]. 6
2.2 Block diagram of the complete system. The probe of the oscillo-

scope measures voltage drop across the resistor connected in series
with the Main FPGA. 7

3.1 Global overview of the design. 13
3.2 Handshake protocol. Arrows describe the necessary order of the

changes of the handshake signals. 14
3.3 Block diagram of an example instance of the REG entity. In this

example, the OUTPUT_SIZE is two times the INPUT_SIZE and
WIDTH is six times the INPUT_SIZE. 16

3.4 Block diagram of the INTER_FPGA_COMM datapath. 19
3.5 INTER_FPGA_COMM controller FSM diagram. 20
3.6 Block diagram of Control’s datapath. Clock, reset and most of the

control signals are skipped for better readibility. 23
3.7 Block diagram of the UART_WRAPPER datapath. 26
3.8 UART_WRAPPER controller RXD FSM diagram. 26
3.9 UART_WRAPPER controller TXD FSM diagram. 27
3.10 Block diagram of REG_CONCAT’s datapath. 28
3.11 Block diagram of MEM’s datapath. 30
3.12 Block diagram of MASKER’s datapath. 31
3.13 Main FSM of Control’s controller diagram. 33
3.14 Receive init data FSM diagram. 35
3.15 Initialize memory FSM diagram. 36
3.16 Receive input data FSM diagram. 37
3.17 Randomize input data FSM diagram. 38
3.18 Remask input FSM diagram. 39
3.19 Send to main FSM diagram. 40

xiii

3.20 Receive from main FSM diagram. 41
3.21 Send output FSM diagram. 42
3.22 Block diagram of Main’s datapath. Only one share per input/out-

put is considered for better readibility. 45
3.23 Main controller’s FSM state diagram. 47
3.24 Testbench inter-FPGA communication synchronization. Signals

prepositioned with T_O_are RTL’s output. Signals prepositioned
with T_M_O_ are model’s output. Other signals are the RTL’s
and model’s common input driven by the main process of TB.
Arrows describe order of the changes of the signals. 48

xiv

List of Tables

2.1 Input operation code structure. 11
2.2 Input operation code mode code table. 11
2.3 Output operation code structure. 11

3.1 List of constants in DEFINITIONS package to be modified by hand. 15
3.2 REG entity interface. 15
3.3 MULTIPLEXER entity interface. 16
3.4 SYNCHRONIZER entity interface. 17
3.5 COUNTER entity interface. 17
3.6 INTER_FPGA_COMM entity interface. 18
3.7 LFSR32 entity interface. 19
3.8 PRNG entity interface. 21
3.9 TOP_CTRL entity interface. 22
3.10 UART_WRAPPER entity interface. 25
3.11 REG_CONCAT entity interface. 28
3.12 MEM entity interface. 29
3.13 MASKER entity interface. 30
3.14 TOP_MAIN entity interface. 43
3.15 verify.py script options. 50

4.1 Accepted key=value pairs in the string passed as the param para-
meter of the SICAK’s meas utility. 55

5.1 test.py script options. 59
5.2 Examples of slice registers and Look-up tables usage of the syn-

thesized Control FPGA design. The left Configuration is input
width 0, .., input width I/output width 0, .., output width J/input
shares count 0, .., input shares count I/output shares count 0, ..,
output shares count J. The dash symbol means that the configur-
ation could not be mapped into the FPGA. The Control FPGA of
Sakura-G has 11440 slice registers and 5720 LUTs. 60

xv

Chapter 1
Introduction

Embedded devices with an integrated cryptographic algorithm are all around
us. The prime example of such a device is a debit card or generally any other
kind of a smart card. Since the publication of Introduction to differential power
analysis in 1998 [5], numerous bright minds among engineers, mathematicians,
and computer-security enthusiasists have been trying to come up with new
sophisticated coutermeasures to secure the device against such an exploitation.
Since no protection is ever perfect, the goal of the countermeasures is to make
such an attack impractical — either because of the price of the tools required,
or because of the unbearably long duration of the attack.

The members of the Embedded Security Lab at Faculty of Information
Technology, CTU Prague, are pursuing new ways of attacking such devices,
and at the same time developing new countermeasures. The goal of my thesis
is to create a toolkit, which will make their effort less time consuming and
thus perhaps easier.

1.1 Power Analysis Attack
Power analysis attacks belong to a more general group of attacks called the
Side-Channel Attacks. These types of attack exploit the leakage of informa-
tion from the cryptographic device which is not caused by a weakness in the
mathematical description of the implemented cipher itself, but rather in its
imperfect implementation, or in the physical properties of the device. In the
case of the power analysis attack, this property is the power consumption of
the device. The core idea of the Power Analysis Attact is that the imme-
diate power consumption of the device depends on the data currently being
processed.

If we have a physical access to the device, we can measure its power con-
sumption in a way depicted in Figure 1.1. The oscilloscope measures the
voltage drop across the resistor connected in series with the device. The cur-
rent flowing through both the resistor and the device is proportional to the

1

1. Introduction

voltage as described in the Ohm’s Law, and the power consumption is the
product of the voltage and the current. In some cases, like in the Simple
Power Analysis [6], several or even only one power trace is sufficient to per-
form an attack. In other cases, like in the Differential Power Analysis [6], the
input or the output data of the encryption device are also required.

Figure 1.1: An example of a power measurement setup.

• Differential Power Analysis with Difference of Means distin-
guisher — We choose an intermediate value – a bit – in the device
that depends both on the input key (unknown) and the data (known)
in a non-linear way. We choose a small part of the key (e.g. a byte)
and precompute the intermediate value for every possible key value and
input/output data combination. Then, we separate the measured traces
into two groups depending on the intermediate bit value and compare
the groups. We calculate the mean vectors of the two groups and sub-
stract them — when the correct key hypothesis is made, a significant
peak value shall occur in the calculated difference vector, given that we
have sufficient number of power traces.

• Differential Power Analysis with Correlation Cofficient distin-
guisherem, also known as Correlation Power Analysis (CPA)—
We choose a power consumption model — Hamming weight is commonly
used; Hamming distance is more precise but it requires two intermediate
values. We choose an intermediate value(s) – a byte(s) – in the device
that depends both on the input key (unknown) and the data (known)

2

1.1. Power Analysis Attack

in a non-linear way. We choose a small part of the key (e.g. a byte)
and precompute the intermediate value(s) for every possible key value
and input/output data combination. We compute power predictions by
applying the chosen model on the intermediate value(s). The power
consumption predictions are then correlated with the measured power
consumption traces, and if the key hypothesis was correct, there shall
be a significant peak value in the correlation vector, given that we have
sufficient number of power traces. CPA was first introduced in [1].

1.1.1 Statistical Evaluation

To get a degree of certainty that the DPA attack was successful, and not to
have to rely on the plain "visibility" of the peak value in the difference vector,
Welch’s unequal variances T-Test [14] can be used to test the null hypothesis
that the means of the two groups of the power traces are equal. The T-
Test is conducted at each sample point separately, resulting in a vector of
p-values. This type of the statistical evaluation of the information leakage of
the device is called Specific T-Test and it is described in more detail in Leakage
Assessment Methodology [10]. It is called Specific T-Test, because it relies on
a specific intermediate value in the design of the cryptographic device. There
might be numerous such values, and performing the attack using every one
of them would be very impractical and time consuming. Hence, the Leakage
Assessment Methodology proposes another method of testing the information
leakage — Non-Specific T-Test, also called Fixed vs. random test. In this test
scenario, two groups of power traces are measured — one using constant data
and one using random data. These two groups are then again evaluated using
the unpaired T-Test, and shall any leakage occur in the design, the resulting
p-value vector shall contain a peak value. The fixed and random data shall
be also measured in a random order to ensure that the device is in a random
state prior to random measurement, otherwise the Non-Specific T-Test could
report a non-existing leakage.

1.1.2 Countermeasures

Countermeasures against the described types of attacks are generally split into
two main groups — hiding and masking. Hiding tries to hide the information
either in time, e.g., by inserting random delays, or hide the power consumption
by using a device design whose power consumption is independent of the data
being processed. Masking applies one or multiple random bit-vectors to the
sensitive data to randomize the power consumption. The cipher itself has to be
modified to handle the modified data and to calculate the correct encrypted
values. Non-Specific T-Test can be also applied to the power traces of a
device which uses the masking techniques, but the power traces have to be
preprocessed first [10].

3

1. Introduction

The common feature of the described attacks is that many power traces
have to be measured, especially for a device with countermeasures. Such a
measurement can be a lengthy process, and the goal of my thesis is to create a
set of tools which will make the data acquisition during such an attack faster
and also more convenient.

4

Chapter 2
System Analysis

In this chapter, the FPGA board to be used is introduced, the analysis of the
system requirements is done and based on the analysis a specification of the
final system is created.

2.1 Sakura-G

Sakura-G board is a device designed in Japan’s Morita Tech Company spe-
cifically for the Side-Channel Attacks [8]. The key attributes, which make the
board excellent for power analysis attacks, are:

• Two Xilinx Spartan-6 FPGAs with separate voltage regulators. The
larger FPGA – Main FPGA, Xilinx XC6SLX75-2CSG484C – is meant
for the cipher implementation and its power consumption measurement.
The smaller FPGA – Control FPGA, Xilinx XC6SLX9-2CSG225C –
is meant as a data preprocessor for the Main FPGA. The FPGAs are
interconnected by a 51 bits wide bus.

• Pre-installed 1Ω resistor connected in series with the Main FPGA power
line in a similar manner as in Figure 1.1. Custom resistor can be inserted
in parallel with the pre-installed one to get the desired resistance using
the jumper JP2.

• Pre-installed measurement points — SMA connectors J1, J2 and J3.
The signal measured on connector J3 is already pre-amplified by 20dB
using the built-in AD8000 amplifier.

• Two 48 MHz oscillators, one for each FPGA. The clock source can be
easily replaced with a custom one using the J4, J5, J6 and J7 SMA
connectors.

• USB communication interface chip FT2232H [3].

5

2. System Analysis

The top view of the board is in Figure 2.1.

Figure 2.1: Top view of the Sakura-G board [8].

2.2 System Overview

As specified in the thesis assignment, the final system should use the Control
FPGA of the Sakura board to minimize the communication with the computer.
This is the core idea of my thesis and it was originally presented in Leakage
Assessment Methodology [10] — setup described in the article uses "Control"
to generate input values for the "Target". Since these entities fit exactly into
the purpose of the Control and the Main FPGA of the Sakura-G, I call them
Control and Main throughout the thesis. The global overview of the system
is in Figure 2.2.

6

2.2. System Overview

Figure 2.2: Block diagram of the complete system. The probe of the oscillo-
scope measures voltage drop across the resistor connected in series with the
Main FPGA.

The following requirements are in the thesis assignment:

• Minimize the communication with the computer using data
generation. — As described in [10], the computer shall only send the
number of measurements and a seed, and the Control will generate all
the data required by the cipher automatically. A good practice is to im-
plement a way to check that no error occured during the data generation
— a checksum of the computations, that is sent back to the computer at
the very end of the operation. The input/output data sending (usually
realized using UART) is the main performance bottleneck of the cur-
rent power measurement setup used by the members of the Embedded
Security Lab of FIT CTU.

• Maximize the communication speed with the computer by us-
ing the proper mode of FT2232H. — FT2232H [3] supports UART
mode, where the data received from the computer over USB are conver-
ted into RXD signals and the data received from the device over TXD
are sent back to the computer using the USB protocol. This mode uses
Virtual Com Port (VCP) drivers and the software in the PC can there-
fore use the device as a standard COM port. The second option is the
synchronous FIFO mode — the proprietary D2XX drivers of FTDI are
required and a custom application has to be created to use this driver
properly.

• Support various ciphers using various encryption modes and
using various side channel attacks countermeasures. — Since the

7

2. System Analysis

cipher is seen as a black box by the device, the only part of interest of the
cipher is its interface. Various ciphers have different input and output
data widths; ciphers using the masking countermeasure techniques might
accept the data in the shared form. Hence, the device shall be able to
generate input data using various widths and various numbers of shares,
and it shall be able to handle the output data with the same variable
properties.

• Realize PRNG suitable for input data generation replicable in
PC. — The PRNG should support various data widths as described
in the last item, and it shall be deterministic, so its behaviour can be
replicated in the computer.

• Be suitable for running various measurements scenarios using
optional randomization of each input. — The attacks mentioned
in Chapter 1 require three different measurement scenarios:

– Random — The cipher’s input changes after every encryption
(DPA).

– Constant — The cipher’s input does not change (SPA; Signal-to-
noise ratio measuring).

– Fixed vs. random — The cipher’s input is either constant or ran-
dom in a random order (Non-Specific T-Test)

Given the requirements, the following functionalities will be needed in the
elements of the final system.

2.2.1 Control

Control should function as a middle point between the computer and Main.
It should implement a memory to store the initialization data and the imme-
diate input and output values. Multiple operation modes shall be supported
for every input. In order for the device to support as many different encryp-
tion scenarios as possible, an operation code should be received among the
initialization data for every input separately. The Control should implement
a PRNG scheme to optionally randomize the data. To ensure that the data at
the cipher’s input are random before every encrytion, and to ensure that the
cipher gets fresh masks before every encryption, the Control should implement
a scheme to remask the data. It shall implement module to communicate with
the computer. Different modules will be required for the UART and for the
Synchronous FIFO mode of FT2232H. Lastly, it must implement a module
for data sending to/data receiving from Main. All of the functionalities shall
be supported for any width and any number of shares of the input.

8

2.3. FPGA Design Specification

2.2.2 Main

Main should function as a wrapper of a cipher which receives the data from
Control. It should implement a module for communication with Control and
a memory to save the received input data. It shall implement an encryption
management — it should start the cipher when the inputs are ready and wait
for its runtime to end. It shall also implement the trigger signal generation
for the oscilloscope.

2.2.3 Computer

The computer application should send the initialization data to Control and
be able to replicate the exact cipher’s inputs depending on the initialization
data sent. The output data should be received from Control, or they can be
calcualted in the application. It should also manage the oscilloscope. At the
end of the operation, the application should save the measurement data.

2.2.4 Pseudo-random number generator

To generate a random bit-vector of a variable length, multiple instances of
the same PRNGs running in parallel can be used. Although not ideal, it shall
suffice the requirement to generate random cipher inputs or to generate new
masks for the inputs in the shared form. Millions of power traces might be
required for attacking a masked cipher [10], therefore a 32 bit wide PRNG
with 232 − 1 unique values should be more than sufficient. Multiple PRNG
options exist, but the linear-feedback shift register is the best option for a
hardware design for its low area requirements.

2.3 FPGA Design Specification
Given the design of the Sakura-G board, the Control FPGA design shall im-
plement most of the device’s functionalities and the Main FPGA design shall
only serve as a small sub-wrapper of the cipher itself. Design requirements
resulting from the analysis that we agreed on with the thesis supervisor follow:

• Arbitrary number of cipher’s inputs and outputs shall be supported.

• Arbitrary widths of cipher’s inputs and outputs shall be supported.

• Following modes of operation shall be supported for every input inde-
pendently:

– Fixed mode – the input never changes.
– Random mode – the input is randomized before every cipher run.
– Fixed vs. random – either random input or a fixed one is put at

cipher’s input in a random order.

9

2. System Analysis

– Received from PC – the input is sent from the computer before
every cipher run.

• Inputs’ initial values shall be generated using pseudo-random number
generator or received from the computer.

• Inputs in shared form shall be supported. The number of shares is
arbitrary. When the shared form is used, unmasked data shall never
occur in the design — the data shall be received from PC in the shared
form and passed to the cipher in the shared form.

• The design shall be able to generate new masks pseudo-randomly and
re-mask the input using the new masks.

• The device shall be able to send cipher’s outputs back to the computer.

• The device shall optionally generate cipher’s random input. This input
shall provide fresh randomness every clock cycle.

• The device shall generate a trigger signal for the oscilloscope. There shall
be a delay of an adjustable length between trigger-on and cipher-start.
There shall also be a delay of an adjustable length between cipher-done
and the continuation of operation. The trigger shall be on either for one
clock cycle, or for the whole duration of delays and the cipher runtime.

Turning described options on/off or changing their parameters can be the-
oretically done from the computer at runtime, but given the use-case of the
final device, we agreed on the following requirements:

• Widths of the inputs and the outputs and their share count shall be
known prior to the synthesis.

• Mode of operation shall be settable at runtime.

• Remasking feature shall be settable at runtime.

• Cipher’s random input presence and seed shall be set before the syn-
thesis.

• The trigger mode and the optional delays before and after the cipher
runtime shall be set prior to the synthesis.

Functionalities adjustable at runtime shall be set using operation codes.
The device will receive operation codes in the initial phase of every run. Every
input and every output of the cipher shall have its own operation code. Input
operation code’s structure is in Table 2.1.

10

2.4. Software Specification

Bit nr. Description
0 - 3 Mode of operation.
4 Remask off/on bit (0/1).
5 Initialize input randomly/from computer

bit (0/1).
6 - 7 Unused.

Table 2.1: Input operation code structure.

The mode coding is in the Table 2.2.

Bit value Description
0000 Fixed mode.
0001 Random mode.
0010 Fixed vs. random mode.
0011 Sent from PC mode.
Others unused

Table 2.2: Input operation code mode code table.

Output operation code’s structure is in Table 2.3.

Bit nr. Description
0 Do nothing/sent to computer bit (0/1).
1 - 7 Unused.

Table 2.3: Output operation code structure.

The last requirement is that the run of the device shall be deterministic and
thus everything shall be replicable in the computer with the only exception
being the cipher’s random input.

2.4 Software Specification

As mentioned in the assignment, Side Channel Analysis Toolkit (SICAK) [11]
should be used to implement the software part of the system. SICAK is writ-
ten in C++ programming language and it uses Qt5 framework [12]. SICAK is
modular, and the utility used for side-channel measurement is called meas. A
measurement-scenario plugin must be created to support the proposed meas-
urement setup. The plugin shall support the same set of functionalities as

11

2. System Analysis

specified in Section 2.3, but from the opposite side — where the FPGA design
receives data from the computer, the plugin has to send them and vice-versa.
Every input of the cipher must be calculated in the plugin to be later saved
into a file. The plugin shall be prepared for the insertion of a software cipher
implementation to calculate the outputs and not to depend solely on their
receiving from the device.

SICAK already supports communication over a serial port using the Seri-
alPort plugin. It also supports two types of oscilloscopes. For the D2XX
proprietary drivers of FTDI, an additional communication plugin has to be
created. We have agreed with the thesis supervisor that the support for this
mode of FT2232H operation will not be implemented, since the purpose of
the device to be implemented is to remove the necessity for most of the com-
munication, and the communication speed will then not present a significant
problem.

12

Chapter 3
FPGA Design and Verification

In this chapter, the design specification and verification are described.

3.1 Design Implementation

The design consists of two entities - Control and Main - interconnected by
four handshake signals and two simplex buses. Global overview of the design
is in Figure 3.1.

Figure 3.1: Global overview of the design.

Sakura-G uses different clock sources for its FPGAs, therefore a hand-
shake communication protocol was chosen for data passing between Main and
Control. The protocol is described in Figure 3.2.

PT_PART and CT_PART buses data validity during sampling is ensured
by the handshake protocol. The handshake signals are synchronized at entit-
ies’ inputs using a synchronizer, so that no metastability problems can occur
[2].

13

3. FPGA Design and Verification

PT_REQ

PT_ACK

PT_DATA data valid

CT_REQ

CT_ACK

CT_DATA data valid

b e

c f

a d

v y

w z

t x

Figure 3.2: Handshake protocol. Arrows describe the necessary order of the
changes of the handshake signals.

3.1.1 Common Design Elements

In this section, the design elements used by both Control and Main are presen-
ted.

DEFINITIONS package contains declarations of all the constants re-
quired by the design. It also contains declarations and definitions of some
types, functions and procedures. The list of important constants of the pack-
age is in the table 3.1.

Although possible, other constants in the package are not meant to be
modified by hand. There are hidden dependencies between various constants
and hand modifications are prone to error. These ought to be generated auto-
matically using the generate_definitions.py script. The source of information
for this script is the config.txt file – see the file for details, it contains explan-
atory commentaries. Input and output count, individual input and output
widths, number of shares, etc., shall be filled into config.txt file. Testbench
related constants are also generated automatically using the verify.py script.
More info about verify.py follows in the Section 3.2.

REG entity is used everywhere, where a block of data has to be stored. The
entity interface is in Table 3.2.

14

3.1. Design Implementation

Name Description
CLK_F Clock frequency assigned to

Control’s CLK_ORIG input
port.

BAUD_RATE UART baud rate.
INTER_FPGA_BUS_SIZE Width of one of the two inter-

FPGA buses.
LFSR_WIDTH Width of the Linear-Feedback

Shift Register used as PRNG’s
basic element.

N_COUNTER_WIDTH Width of the counter counting
number of cipher repetitions re-
maining.

OP_REG_SIZE Width of the input and output
operation code.

TIMER_THRESHOLD Minimum number of clock
cycles between individual
cipher’s runs.

*_MPX_SEL_WIDTH Widths of various multiplexers’
select signals in the design.

Table 3.1: List of constants in DEFINITIONS package to be modified by
hand.

Generics
SIZE width of the register
INPUT_SIZE width of the input port
OUTPUT_SIZE width of the output port

Ports
CLK in clock input
RESET in reset input
INPUT in data input, connected to INPUT_SIZE

bottom bits
LOAD in shift left by INPUT_SIZE and load IN-

PUT bits to bottom
SHIFT in shift left by OUTPUT_SIZE and fill bot-

tom bits with zeroes
OUTPUT out data output, connected to OUT-

PUT_SIZE top bits

Table 3.2: REG entity interface.

15

3. FPGA Design and Verification

An example is also depicted in Figure 3.3. REG is a shift register with two
shift lengths, input connected to the bottom bits and output connected to the
upper bits. An extreme case would be an instance of this entity with all three
generic parameters equal; then the full register length would be connected to
the whole INPUT and OUTPUT signals, LOAD signal would fill the register
with data, whereas SHIFT signal would fill the register with zeroes.

Figure 3.3: Block diagram of an example instance of the REG entity. In this
example, the OUTPUT_SIZE is two times the INPUT_SIZE and WIDTH is
six times the INPUT_SIZE.

MULTIPLEXER is a pure combinational circuit that implements 8 to 1
multiplexing. Interface is in Table 3.3.

Generics
WIDTH width of inputs and output

Ports
INPUT{0..7} in inputs
SEL in select signal
OUTPUT out output

Table 3.3: MULTIPLEXER entity interface.

This entity is used where data multiplexing occurs. When the number of
required input ports is smaller than eight, remaining input ports and unused
select signal bits are connected to logical zero and will get optimized away
during the synthesization process.

16

3.1. Design Implementation

SYNCHRONIZER synchronizes signals comming from a different clock
domain, so that no metastability can occur [2]. It is implemented as two D
flip-flops in series. Its interface is in Table 3.4.

Ports
CLK in clock input
RESET in reset input
INPUT in input
OUTPUT out output

Table 3.4: SYNCHRONIZER entity interface.

This entity is used for synchronization of the request/acknowledge signals
on the inter-FPGA bus.

COUNTER counts from the initially set value down to zero. Its interface
is in Table 3.5.

Generics
WIDTH width of the internal counter signal

Ports
CLK in clock input
RESET in reset input
SET_VALUE in value to be set to the internal counter sig-

nal
SET in when ’1’, set SET_VALUE to the internal

counter signal
ENABLE in when ’1’, the internal counter value is

decremented by one
VAL out value of the internal counter signal
CNT_DONE out ’1’ when the internal counter signal value

is zero

Table 3.5: COUNTER entity interface.

All counting and timing instances in the design are instances of COUNTER
— most notably N_CNT, counting the number of encryption repetitions;
REG_CNT, counting over all inputs or outputs and SHARES_CNT, counting
over individual input’s or output’s shares.

INTER_FPGA_COMM implements low-level data handling during
sending to/receiving from the other FPGA. Its interface is in Table 3.6.

17

3. FPGA Design and Verification

Generics
INPUT_DATA_SIZE maximum width of the data to be

received
OUTPUT_DATA_SIZE maximum width of the data to be

sent
INTER_FPGA_BUS_SIZE width of the one-way data buses

between Main and Control
CNT_WIDTH width of the internal data counter
CNT_SKIP_WIDTH width of the internal skip counter

Ports
CLK in clock input
RESET in reset input
CNT_SET_VALUE in value to be assigned to the internal

data counter (counting the data to
be sent/received)

CNT_SKIP_SET_VALUE in value to be assigned to the internal
data counter (counting the data to
be skipped before send)

SEND in signal telling the module to start
sending

RECEIVE in signal telling the module to start re-
ceiving

SENT out signal indicating that sending is over
RECEIVED out signal indicating that receiving is

over
INCOMING_DATA out received data
OUTGOING_DATA in data to be send
SEND_REQ out send request
SEND_ACK in send acknowledge
SEND_DATA out one-way send data bus
REC_REQ in receive request
REC_ACK out receive acknowledge
REC_DATA in one-way receive data bus

Table 3.6: INTER_FPGA_COMM entity interface.

Datapath of the entity consists of two REG instances and is shown in
Figure 3.4.

18

3.1. Design Implementation

Figure 3.4: Block diagram of the INTER_FPGA_COMM datapath.

The controller of the entity is in Figure 3.5. The receive and send cycles
of the automaton are actually independent, but simultaneous receiving and
sending shall never occur in the design, therefore they are realized in one FSM.
During sending, data skipping occurs beforehand — not all of the data to be
sent necessarilly have the full OUTPUT_DATA_SIZE width, therefore given
the design of REG entity, extra bits at the top have to be shifted-out first.
The rest of the automaton implements the handshake protocol as described
in Figure 3.2.

LFSR32 is a combinational circuit implementing the [32, 22, 2, 1] linear-
feedback shift register as described in [4]. Its interface is in Table 3.7.

Ports
INPUT in input
OUTPUT out output (input shifted one time)

Table 3.7: LFSR32 entity interface.

LFSR32 is used in PRNG entity, which serves as its wrapper.

19

3. FPGA Design and Verification

INIT
CNT_SET

CNT_SKIP_SET
SEND = '0' and RECEIVE = '0'

SEND_LOAD
OUTPUT_REG_LOAD

SEND = '1'

RECEIVE1

SEND = '0' and RECEIVE = '1'

CONTINUE
CNT_SKIP_ENABLE

SKIP_EMPTY
OUTPUT_REG_SHIFT

CNT_SKIP_DONE = '0'

SEND1
SEND_REQ

CNT_SKIP_DONE = '1'

SEND_ACK = '0'

SEND2

SEND_ACK = '1'

SEND_ACK = '1'

SEND3
CNT_ENABLE

OUTPUT_REG_SHIFT

SEND_ACK = '0'

SEND4

CNT_DONE = '0'

SEND_DONE
SENT

CNT_DONE = '1'

REC_REQ = '0'

RECEIVE2
REC_ACK

INPUT_REG_LOAD
CNT_ENABLE

REC_REQ = '1'

RECEIVE3
REC_ACK REC_REQ = '1'

RECEIVE4

REC_REQ = '0'

CNT_DONE = '1'

RECEIVE_DONE
RECEIVED

CNT_DONE = '0'

Figure 3.5: INTER_FPGA_COMM controller FSM diagram.

PRNG entity uses LFSR32 instances running independently in parallel to
create pseudo-random values of the given length. Its interface is in Table 3.8.

20

3.1. Design Implementation

Generics
SIZE width of the generated number;

shall be 32 × k, where k is natural
Ports

CLK in clock input
RESET in reset input
PRNG_SET in when ’1’, set INPUT to the internal

data signal
PRNG_ENABLE in when ’1’, the internal data signal is

shifted one time
INPUT in value to be set to the internal data

signal = seed
OUTPUT out value of the internal data signal shif-

ted one time

Table 3.8: PRNG entity interface.

There are three instances of the generator. The first is the DATA_PRNG
in Control — it uses LFSR32 instances running in parallel to match the
INPUT_WIDTH. Some bits of DATA_PRNG might be extra — these are
ignored in assignments. Another instance is the CONTROL_REG in the
Control’s controller. This one uses just one instance of LFSR32 and its bit
nr. zero is used for the decision of which input shall be sent to Main in Fixed
vs. random mode. The last instance is in Main — this one uses shift registers
in parallel again to create the random input of the cipher for its potential
inner remasking needs. It is seeded in the first state of the Main’s controller
FSM by a constant and then it shifts every clock cycle (its PRNG_ENABLE
input is always logical one).

3.1.2 Control

The Control is used to communicate with PC, to prepare the cipher input
data and to handle the cipher output data. The summary of functionalities
implemented in Control is:

• Receive initialization data— input operands, output operands, num-
ber of encryptions, data seed, and controller seed.

• Receive input data from PC— data can be received at the beginning
of the operation to initialize both fixed and random inputs or before
every encryption to initialize the random input.

21

3. FPGA Design and Verification

• Generate input data — data are generated using the data PRNG;
both random and fixed data can be generated at the beginning of the
operation.

• Randomize random input data — data are randomized using the
data PRNG.

• Remask input data — new masks are generated by data PRNG; ran-
dom or fixed data are remasked based on the mode of operation.

• Send input data to Main — send random or fixed data depending
on the operation mode.

• Receive output data from Main.

• Send output data to PC.

These functions combined in the right order realize the following modes of
operation for every cipher’s input:

• Fixed mode— the input remains constant during the whole operation.

• Random mode — the input is randomized before every encryption.

• Fixed vs. random mode — the input is random or fixed in the
pseudo-random order. The decision is made using the control PRNG.

• FTDI mode — the input is sent from the computer before each and
every encryption.

Control’s interface is in Table 3.9.

Ports
CLK_ORIG in clock input; it is assigned directly to CLK

signal, which is used as the clock source for
sub-entities; optional clock divisor can be
inserted between CLK_ORIG and CLK

RESET in reset input
RXD in UART RXD signal input
PT_ACK in data send to Main acknowledge
CT_REQ in data receive from Main request
CT_PART in data bus from Main
TXD out UART TXD signal output
PT_REQ out data send to Main request
CT_ACK out data receive from Main acknowledge
PT_PART out data bus to Main

Table 3.9: TOP_CTRL entity interface.

22

3.1. Design Implementation

The design itself is split into two parts – the datapath and the controller.

3.1.2.1 Control’s Datapath

Global overview of the Control’s datapath is in Figure 3.6.

Figure 3.6: Block diagram of Control’s datapath. Clock, reset and most of
the control signals are skipped for better readibility.

23

3. FPGA Design and Verification

UART_WRAPPER_INST handles the lower layers of the communica-
tion with the computer. INPUT_OP and OUTPUT_OP store 8-bit op-
eration codes for every input/output separately. INPUT_MEM stores the
cipher input data which are to be changed variously during operation. IN-
PUT_MEM_CONST stores the fixed input data which are created before
entering the main encryption loop of controller’s Main FSM and never change
upon entering the loop. OUTPUT_MEM stores the output data received
from Main. These data can be either sent to the computer or ignored — their
presence might be useful shall the design be ever modified to contain, e.g.,
a fault-free run check. DATA_PRNG generates pseudo-random bit vectors
for random memory fills or remasking purposes. MASKER_INST contains
the space to load the complete input from one of the input memories and
the logic required to remask it without the unmasked value actually appear-
ing anywhere. INTER_FPGA_COMM_INST implements the low-level com-
munication with Main. INTER_FPGA_INPUT_MPX_SEL signal decides,
whether the INTER_FPGA_COMM_INST shall send the random data from
INPUT_MEM (logical zero) or the fixed data from INPUT_MEM_CONST
(logical one). Its value is assigned to:

• Logical one, when in the Fixed mode.

• Logical zero, when in the Random mode or in the FTDI mode.

• Bit nr. zero of CONTROL_PRNG, when in the Fixed vs. random
mode.

CONTROL_PRNG is enabled once before every encryption, thus inputs with
Fixed vs. random mode will all have the random or the fixed input at the
same time. The instantiated components are noted under instances’ names
and more information about them is in the following paragraphs.

UART_WRAPPER implements low-level data handling during sending
to/receiving from the computer using the UART mode of the FT2232H. Its
interface is in Table 3.10.

24

3.1. Design Implementation

Generics
INPUT_DATA_REGS_SIZE maximum width of the data to be

received
OUTPUT_DATA_REGS_SIZE maximum width of the data to be

sent
EXP_CNT_WIDTH width of the internal data counter

and skip counter
UART_SIZE width of data transmitted in one

UART transaction, i.e. 8
Ports

CLK in clock input
RESET in reset input
TXD out UART TXD line
RXD in UART RXD line
READY out signal indicating that the TXD line

is ready for sending
SEND in when ’1’, start sending of data on

OUTPUT_DATA port
RECEIVED out signal indicating that receiving is

over
EXPECTED_CNT in number of bytes to be sent/received
SKIP_CNT in number of bytes to be skipped be-

fore sending
INPUT_DATA out received data
OUTPUT_DATA in data to be send

Table 3.10: UART_WRAPPER entity interface.

The datapath of the entity consists of two REG instances and the UART
entity instance. The UART entity was created by Dr.-Ing. Martin Novotny at
FIT CTU and I modified it to use the standard IEEE std_numeric package
instead of the proprietary std_logic_arith package. The datapath is shown in
Figure 3.7.

25

3. FPGA Design and Verification

Figure 3.7: Block diagram of the UART_WRAPPER datapath.

The controller of the entity consists of two parts - RXD and TXD
FSMs. The diagram of the RXD FSM is in Figure 3.8. It waits for the
RXD_STROBE of the UART entity and when the signal goes high, EXPEC-
TED_CNT bytes are received. End is indicated on the RECEIVED output
port.

INIT
RXD_CNT_SET RXD_STROBE = '0'

SAVE_RXD_DATA
INPUT_REG_LOAD
RXD_CNT_ENABLE

RXD_STROBE = '1'

CONTINUE

DONE
RECEIVED

RXD_CNT_DONE = '1'

NOT_DONE

RXD_CNT_DONE = '0'

RXD_STROBE = '1'

RXD_STROBE = '0'

Figure 3.8: UART_WRAPPER controller RXD FSM diagram.

The diagram of the TXD FSM is in Figure 3.9. It waits for the SEND
signal and when it goes high, SKIP_CNT bytes are skipped, because of the

26

3.1. Design Implementation

REG entity design. After that, EXPECTED_CNT bytes are sent to the TXD
output port.

INIT
TXD_CNT_SET

TXD_CNT_SKIP_SET
OUTPUT_REG_LOAD

READY

SEND = '0'

CONTINUE1
TXD_CNT_SKIP_ENABLE

SEND = '1'

SKIP_EMPTY
OUTPUT_REG_SHIFT

TXD_CNT_SKIP_DONE = '0'

WAIT_FOR_RS232

TXD_CNT_SKIP_DONE = '1'

START_TXD
OUTPUT_REG_SHIFT

TXD_STROBE
TXD_CNT_ENABLE

CONTINUE2

TXD_CNT_DONE = '1'

TXD_CNT_DONE = '0'

TXD_READY = '1'

TXD_READY = '0'

Figure 3.9: UART_WRAPPER controller TXD FSM diagram.

REG_CONCAT implements addresable 1D array of REG instances.
LOAD port of REG component is used to load new data; SHIFT is assigned
to logical zero. Its interface is in Table 3.11.

The entity is also depicted in Figure 3.10.
INPUT port is connected to every register instantiated inside. To control

the loading of registers, a load signal of array type (LOAD_AR) is used.
LOAD_DMPX block in Figure 3.10 is implemented as a process in VHDL
to support an arbitrary number of instantiated registers. OUTPUT_MPX is
implemented as an array-type element access for the same reason.

REG_CONCAT is instantiated as INPUT_OP and OUTPUT_OP en-
tities. It is also used in MEM entity as a 1D sub-array instance.

MEM implements an addressable 2D memory array created as a 1D array
of REG_CONCAT instances. Its interface is in Table 3.12.

The entity is also depicted in Figure 3.11.
INPUT port is connected to every REG_CONCAT instance. To control

the loading of registers, a load signal of array type (LOAD_AR) is used.
LOAD_DMPX block in the Figure 3.11 is actually implemented as a process
in VHDL to support an arbitrary number of instantiated REG_CONCAT

27

3. FPGA Design and Verification

Generics
REG_CNT number of registers in the array
REG_WIDTH width of every register in the array
ADDR_WIDTH width of the address signal

Ports
CLK in clock input
RESET in reset input
INPUT in data to be saved to the addressed register
LOAD in when ’1’, save INPUT to the addressed

register
ADDR in address signal
OUTPUT out value of the currently addressed register

Table 3.11: REG_CONCAT entity interface.

Figure 3.10: Block diagram of REG_CONCAT’s datapath.

entities. OUTPUT_MPX is implemented as an array-type element access for
the same reason.

MEM is instantiated as INPUT_MEM, INPUT_MEM_CONST and
OUTPUT_MEM. ADDR_HIGH addresses individual REG_CONCAT in-
stances inside the memory, and it is always connected to controller’s
REG_CNT_VAL, counting over all inputs or outputs. ADDR_LOW ad-
dresses REG instances inside REG_CONCAT instances, and it is connected
to controller’s SHARES_CNT_VAL, counting over all shares of an input or
an output.

28

3.1. Design Implementation

Generics
REG_CNT number of inputs/outputs to be stored in the

memory
REG_SHARES_CNT array of naturals; number of shares of each in-

put/output
REG_WIDTHS array of naturals; number of bits of each in-

put/output
REG_MAX_WIDTH maximum of REG_WIDTHS
ADDR_HIGH_WIDTH width of ADDR_HIGH signal
ADDR_LOW_WIDTH width of ADDR_LOW signal

Ports
CLK in clock input
RESET in reset input
INPUT in data to be saved to addressed register
LOAD in when ’1’, save INPUT to addressed re-

gister
ADDR_HIGH in address signal; input/output choosing
ADDR_LOW out address signal; share choosing

Table 3.12: MEM entity interface.

The advantage of using this hierarchical memory descrip-
tion instead of a 2D array of bit-vectors (with, e.g., IN-
PUT_MEM(REG_CNT_VAL)(SHARES_CNT_VAL) element access
in VHDL) is an easier optimalization during synthesization process. For
example, the OUTPUT_AR[0] signal (violet in Figure 3.11) is connected to
REG_WIDTHS[0] bottom bits of REG_CONCAT_INST_0’s OUTPUT
port, and the rest is assigned to logical zero, which helps the synthesizer to
remove unnecessary bits from the final FPGA design. The synthesizer cannot
foresee which bits will be useless at runtime when the array construct is used.

29

3. FPGA Design and Verification

Figure 3.11: Block diagram of MEM’s datapath.

MASKER implements the data-remasking logic. Its interface is in Table
3.13.

Generics
SHARES_CNT maximum number of shares to be expected
REG_WIDTH maximum input width to be expected
ADDR_WIDTH width of the address signal

Ports
CLK in clock input
RESET in reset input
INPUT in data/mask input
LOAD_DATA in when ’1’, save INPUT to the addressed

data register
LOAD_MASK in when ’1’, save INPUT to the addressed

mask register
REMASK in when ’1’, create new remasked data from

the internal register values
ADDR in address signal
OUTPUT out addressed data register output

Table 3.13: MASKER entity interface.

The entity is also depicted in Figure 3.12.

30

3.1. Design Implementation

Figure 3.12: Block diagram of MASKER’s datapath.

Shared data are expected to be in the following form:
(masked_data, m0, m1, ..., mn) = (orig_data ⊕ m0 ⊕ m1 ⊕ ... ⊕
mn, m0, m1, ..., mn). The multiplexing and demultiplexing blocks in
Figure 3.12 are created as processes in VHDL. LOAD_DATA_DMPX
works as a demultiplexer when REMASK value is logical zero, otherwise all
LOAD_DATA_AR elements are logical one. The number of mask registers
is one less than the number of data registers, since the first data register
contains the masked data. Remasking occurs in the following way:

• All of the mask register’s outputs are exclusive-ored (XORed) together
and the resulting value is XORed to the first data register’s value and
saved back into the register.

• Mask register 0..(N−1) outputs (new masks) are XORed to data register
1..N value, respectively. The resulting value is saved into the respective
data register.

This way the unmasked value never appears anywhere in the design.

31

3. FPGA Design and Verification

3.1.2.2 Control’s Controller

The Control’s FPGA controller is realized as a large Moore FSM decomposed
into sub-automaton for better readability and maintainability. It also contains
four COUNTER instances and one PRNG instance:

• N_COUNTER - counts down the number of encryptions remaining.

• REG_COUNTER - used to loop over all inputs/outputs. Looping
over all inputs/outputs is denoted in the FSM diagrams in red color.

• SHARES_COUNTER - used to loop over all shares of a particular
input/output. Looping over all shares of an input/output is denoted in
the FSM diagrams in blue color.

• TIMER - this timer ensures that the duration between encryptions is
at least the specified number of clock cycles. For example, the Picoscope
oscilloscope requires 1 µs re-arm time between individual trigger signals
[9].

• PRNG_INST - PRNG used to decide between constant and random
input in Fixed vs. random operation mode.

The description of individual automaton follows.

32

3.1. Design Implementation

MAIN_FSM is the top-level entity of automaton decom-
posion hierarchy. It starts individual sub-automaton using
[sub_automaton_name]_START signal and waits for its runtime end
confirmed by the [sub_automaton_name]_END signal. It also imple-
ments the main loop of Control’s operation — each loop realizes one data
preparation–encryption–output data handling sequence. The main loop is
denoted in green color in figure 3.13.

INIT

RECEIVE_INIT_DATA
RECEIVE_INIT_DATA_FSM_START RECEIVE_INIT_DATA_FSM_END = '0'

INITIALIZE_MEM
MEM_INIT_FSM_START

RECEIVE_INIT_DATA_FSM_END = '1'

MEM_INIT_FSM_END = '0'

DECREMENT_N
N_CNT_ENABLE

PICOSCOPE_TIMER_SET

MEM_INIT_FSM_END = '1'

RECEIVE_INPUT
RECEIVE_INPUT_FSM_START RECEIVE_INPUT_FSM_END = '0'

RANDOMIZE_INPUT
RANDOMIZE_INPUT_FSM_START

RECEIVE_INPUT_FSM_END = '1'

RANDOMIZE_INPUT_FSM_END = '0'

REMASK_INPUT
REMASK_INPUT_FSM_START

RANDOMIZE_INPUT_FSM_END = '1'

REMASK_INPUT_FSM_END = '0'

SEND_TO_MAIN
SEND_TO_MAIN_FSM_START

REMASK_INPUT_FSM_END = '1'

SEND_TO_MAIN_FSM_END = '0'

RECEIVE_FROM_MAIN
RECEIVE_FROM_MAIN_FSM_START

SEND_TO_MAIN_FSM_END = '1'

RECEIVE_FROM_MAIN_FSM_END = '0'

SEND_OUTPUT
SEND_OUTPUT_FSM_START

RECEIVE_FROM_MAIN_FSM_END = '1'

SEND_OUTPUT_FSM_END = '0'

CONTINUE

SEND_OUTPUT_FSM_END = '1'

PICOSCOPE_TIMER_DONE = '1'
and N_CNT_DONE = '0'

PICOSCOPE_TIMER_DONE = '0'

SEND_FINAL_OUTPUT
SEND_FINAL_OUTPUT_FSM_START

PICOSCOPE_TIMER_DONE = '1'
and N_CNT_DONE = '1'

SEND_FINAL_OUTPUT_FSM_END = '1'

SEND_FINAL_OUTPUT_FSM_END = '0'

Figure 3.13: Main FSM of Control’s controller diagram.

33

3. FPGA Design and Verification

RECEIVE_INIT_DATA FSM controls the initial data receive sequence.
The lower layers of receiving are implemented in the UART_WRAPPER in-
stantiation in Control. This automaton just tells it how many bytes of data
shall be received in the WAIT_FOR_RS232, WAIT_FOR_RS232_2, RE-
CEIVE_N, RECEIVE_DATA_SEED and RECEIVE_CONTROL_SEED
states. First, the input and output operation codes are received for every input
and output separately. Then, number of encryptions to be done is received,
and the N_CNT counter in Control’s controller is initialized with the received
value. The data seed follows and it is used to initialize DATA_PRNG. Lastly,
the controller seed is received and it used to initialize CONTROL_PRNG in
Control’s controller.

34

3.1. Design Implementation

IDLE RECEIVE_FSM_START = '0'

INIT
REG_CNT_SET_VAL := INPUT_CNT - 1

REG_CNT_SET

RECEIVE_FSM_START = '1'

WAIT_FOR_RS232
EXPECTED_CNT := 1 RECEIVED_RX = '0'

SAVE_IN_OP
INPUT_OP_LOAD

RECEIVED_RX = '1'

CONTINUE1
REG_CNT_ENABLE

REG_CNT_DONE = '0'

RECEIVE_OUT_OP
REG_CNT_SET_VAL := OUTPUT_CNT

REG_CNT_SET

REG_CNT_DONE = '1'

WAIT_FOR_RS232_2
EXPECTED_CNT := 1 RECEIVED_RX = '0'

SAVE_OUT_OP
OUTPUT_OP_LOAD

RECEIVED_RX = '1'

CONTINUE2
REG_CNT_ENABLE

REG_CNT_DONE = '0'

RECEIVE_N
EXPECTED_CNT := N_COUNTER_WIDTH / RS232_OUTPUT_SIZE

REG_CNT_DONE = '1'

RECEIVED_RX = '0'

N_RECEIVED
N_CNT_SET

RECEIVED_RX = '1'

RECEIVE_DATA_SEED
EXPECTED_CNT := INPUT_WIDTH / RS232_OUTPUT_SIZE RECEIVED_RX = '0'

DATA_SEED_RECEIVED
PRNG_SET

RECEIVED_RX = '1'

RECEIVE_CONTROL_SEED
EXPECTED_CNT := CONTROL_CONTROL_SEED_WIDTH / RS232_OUTPUT_SIZE RECEIVED_RX = '0'

CONTROL_SEED_RECEIVED
CONTROL_PRNG_SET

RECEIVED_RX = '1'

FINISH
RECEIVE_FSM_END

Figure 3.14: Receive init data FSM diagram.

35

3. FPGA Design and Verification

MEM_INIT FSM loops over every input and every share of the input to
fill it with either data from the computer (the left blue loop) or DATA_PRNG
output (right blue loop) based on the input operation code value. Both IN-
PUT_MEM and INPUT_MEM_CONST instances are filled with the same
received or generated data. The lower layers of receiving are implemented in
the UART_WRAPPER instantiation in Control. This automaton just tells
it how many bytes of data shall be received in the RECEIVE state.

IDLE MEM_INIT_FSM_START = '0'

INIT
REG_CNT_SET_VAL := INPUT_CNT - 1

REG_CNT_SET

MEM_INIT_FSM_START = '1'

SET_MASKS_CNT
SHARES_CNT_SET_VAL := INPUT_SHARES_CNT(REG_CNT_VAL) - 1,

SHARES_CNT_SET

DECIDE

RECEIVE
EXPECTED_CNT :=

 INPUT_WIDTHS_BYTES(REG_CNT_VAL)

INPUT_OP_OUTPUT(5)
= '1'

STORE_RANDOM
INPUT_MEM_MPX_SEL := "00"

INPUT_MEM_LOAD
INPUT_MEM_CONST_MPX_SEL := "01"

INPUT_MEM_CONST_LOAD

INPUT_OP_OUTPUT(5)
= '0'

RECEIVED_RX = '0'

RECEIVED
INPUT_MEM_MPX_SEL := "11"

INPUT_MEM_LOAD
INPUT_MEM_CONST_MPX_SEL := "00"

INPUT_MEM_CONST_LOAD

RECEIVED_RX = '1'

CONTINUE12
SHARES_CNT_ENABLE

DO_PRNG
PRNG_ENABLE

CONTINUE11
SHARES_CNT_ENABLE

SHARES_CNT_DONE = '0'

CONTINUE2
REG_CNT_ENABLE

SHARES_CNT_DONE = '1'

SHARES_CNT_DONE = '0'

SHARES_CNT_DONE = '1'

REG_CNT_DONE = '0'

FINISH
FSM_END

REG_CNT_DONE = '1'

Figure 3.15: Initialize memory FSM diagram.

RECEIVE_INPUT FSM receives input data from the computer, just like
one branch of the Initialize Memory FSM. The difference is that this auto-
maton fills only the INPUT_MEM, whereas Initialize Memory FSM fills both
INPUT_MEM and INPUT_MEM_CONST, and that this automaton is run
in the main loop — the data are received before every encryption.

DECIDE state starts or skips data receiving based on the input op-
eration code. The lower layers of receiving are implemented in the
UART_WRAPPER instantiation in Control. This automaton just tells it
how many bytes of data shall be received in the RECEIVE state. Shall the

36

3.1. Design Implementation

receiving of a particular input happen, one byte of random data is sent to the
computer for synchronization purposes – otherwise the computer could start
data sending too soon and some data might get lost since there is no buffer
in the UART entity. The input data are then received in the share-by-share
manner.

IDLE RECEIVE_INPUT_FSM_START = '0'

INIT
REG_CNT_SET_VAL := INPUT_CNT - 1

REG_CNT_SET

RECEIVE_INPUT_FSM_START = '1'

DECIDE

SEND1
EXPECTED_CNT := 1

INPUT_OP_OUTPUT(3:0)
= "0011"

CONTINUE2
REG_CNT_ENABLE

INPUT_OP_OUTPUT(3:0)
!= "0011"

TXD_READY = '0'

SEND2
EXPECTED_CNT := 1

TXD_SEND

TXD_READY = '1'

SET_SHARES_CNT
SHARES_CNT_SET_VAL :=

 INPUT_SHARES_CNT(REG_CNT_VAL) - 1
SHARES_CNT_SET

RECEIVE
EXPECTED_CNT :=

 INPUT_WIDTHS_BYTES(REG_CNT_VAL)
RECEIVED_RX = '0'

RECEIVED
INPUT_MEM_MPX_SEL := "11"

INPUT_MEM_LOAD

RECEIVED_RX = '1'

CONTINUE1
SHARES_CNT_ENABLE

SHARES_CNT_DONE = '0'

SHARES_CNT_DONE = '1'

REG_CNT_DONE = '0'

FINISH
RECEIVE_INPUT_FSM_END

REG_CNT_DONE = '1'

Figure 3.16: Receive input data FSM diagram.

RANDOMIZE_INPUT FSM loops over all inputs of INPUT_MEM and
XORs DATA_PRNG output to the first share of the input. Since the other
shares always contain individual masks, no randomization shall occur there.

37

3. FPGA Design and Verification

IDLE RANDOMIZE_INPUT_FSM_START = '0'

INIT
REG_CNT_SET_VAL := INPUT_CNT - 1

REG_CNT_SET

RANDOMIZE_INPUT_FSM_START = '1'

DECIDE

RANDOMIZE
XOR_TOGETHER_MPX_SEL := 0
INPUT_MEM_MPX_SEL := "10"

INPUT_MEM_LOAD
PRNG_ENABLE

INPUT_OP_OUTPUT(3:0)
 = "0010" or "0001"

CONTINUE
REG_CNT_ENABLE

INPUT_OP_OUTPUT(3:0)
 != "0010" nor "0001" REG_CNT_DONE = '0'

FINISH
RANDOMIZE_INPUT_FSM_END

REG_CNT_DONE = '1'

Figure 3.17: Randomize input data FSM diagram.

REMASK_INPUT FSM does remasking of the input data. DECIDE
state starts or skips data remasking based on the input operation code.
MASKER_RESET signal is active during DECIDE state. It is connected
to the reset input of MASKER entity and thus zeroes its register’s values
between individual remasking runs. The remasking is also naturally skipped
when the current input data have only one share. Then, the INPUT_MEM
data (left upper blue loop) or INPUT_MEM_CONST data (right upper blue
loop) are loaded into the MASKER entity. Constant data are remasked in
fixed or Fixed vs. random mode when the next input data shall be fixed.
After that, new masks are loaded into the MASKER from DATA_PRNG en-
tity (cyan loop). Next, the data are actually remasked inside of the MASKER
entity without the unmasked input value appearing anywhere in the design.
Finally, remasked data are moved back into INPUT_MEM (left bottom blue
loop) or INPUT_MEM_CONST (right bottom blue loop) based on the op-
eration mode.

38

3.1. Design Implementation

IDLE REMASK_INPUT_FSM_START = '0'

INIT
REG_CNT_SET_VAL := INPUT_CNT - 1

REG_CNT_SET

REMASK_INPUT_FSM_START = '1'

DECIDE
MASKER_RESET

SET_SHARES_CNT
SHARES_CNT_SET_VAL := INPUT_SHARES_CNT(REG_CNT_VAL) - 1

SHARES_CNT_SET

INPUT_OP_OUTPUT(4) = '1' and
INPUT_SHARES_CNT(REG_CNT_VAL) != 1

CONTINUE4
REG_CNT_ENABLE

INPUT_OP_OUTPUT(4) = '0' or
INPUT_SHARES_CNT(REG_CNT_VAL) = 1

LOAD_SHARE
MASKER_LOAD_DATA

MASKER_INPUT_MPX_SEL := "00"

INPUT_OP_OUTPUT(3:0)= "0001"
or

(INPUT_OP_OUTPUT(3:0) = "0010"
and

PRNG_VALUE(0) = '0')
or

INPUT_OP_OUTPUT(3:0)= "0011"

LOAD_SHARE_CONST
MASKER_LOAD_DATA

MASKER_INPUT_MPX_SEL := "01"

INPUT_OP_OUTPUT(3:0)= "0000"
or

(INPUT_OP_OUTPUT(3:0) = "0010"
and

PRNG_VALUE(0) = '1')

CONTINUE1
SHARES_CNT_ENABLE

SHARES_CNT_DONE = '0'

SET_MASK_CNT
SHARES_CNT_SET_VAL := INPUT_SHARES_CNT(REG_CNT_VAL) - 2

SHARES_CNT_SET

SHARES_CNT_DONE = '1'

CONTINUE1_CONST
SHARES_CNT_ENABLE

SHARES_CNT_DONE = '0'

SHARES_CNT_DONE = '1'

LOAD_MASK
MASKER_LOAD_MASK

MASKER_INPUT_MPX_SEL := "10"

CONTINUE2
SHARES_CNT_ENABLE

PRNG_ENABLE

 SHARES_CNT_DONE = '0'

REMASK
MASKER_SEL

MASKER_LOAD_ALL_REGS

SHARES_CNT_DONE = '1'

SET_SHARES_CNT2
SHARES_CNT_SET_VAL := INPUT_SHARES_CNT(REG_CNT_VAL) - 1

SHARES_CNT_SET

RETURN_SHARE
INPUT_MEM_LOAD

INPUT_MEM_MPX_SEL := "01"

INPUT_OP_OUTPUT(3:0)= "0001"
or

(INPUT_OP_OUTPUT(3:0) = "0010"
and

PRNG_VALUE(0) = '0')
or

INPUT_OP_OUTPUT(3:0)= "0011"

RETURN_SHARE_CONST
INPUT_MEM_CONST_LOAD

INPUT_MEM_CONST_MPX_SEL := "10"

INPUT_OP_OUTPUT(3:0)= "0000"
or

(INPUT_OP_OUTPUT(3:0) = "0010"
and

PRNG_VALUE(0) = '1')

CONTINUE3
SHARES_CNT_ENABLE

 SHARES_CNT_DONE = '0'

SHARES_CNT_DONE = '1'

CONTINUE3_CONST
SHARES_CNT_ENABLE

 SHARES_CNT_DONE = '0'

SHARES_CNT_DONE = '1'

REG_CNT_DONE = '0'

FINISH
REMASK_INPUT_FSM_END

REG_CNT_DONE = '1'

Figure 3.18: Remask input FSM diagram.

39

3. FPGA Design and Verification

SEND_TO_MAIN FSM sends input data to Main. The lower layers of
sending are realized inside of the INTER_FPGA_COMM entity instance in
Control. This automaton just tells it how many INTER_FPGA_WORDS to
send and how many to skip in the SEND state.

IDLE SEND_TO_MAIN_FSM_START = '0'

INIT
REG_CNT_SET_VAL := INPUT_CNT - 1

REG_CNT_SET

SEND_TO_MAIN_FSM_START = '1'

SET_SHARES_CNT
SHARES_CNT_SET_VAL :=

 INPUT_SHARES_CNT(REG_CNT_VAL) - 1
SHARES_CNT_SET

SEND
INTER_FPGA_COMM_SEND

INTER_FPGA_CNT_SET_VAL :=
 INPUT_WIDTHS_IFC_WORDS(REG_CNT_VAL)

INTER_FPGA_CNT_SKIP_SET_VAL :=
 INPUT_WIDTHS_IFC_SKIPS(REG_CNT_VAL)

INTER_FPGA_COMM_SENT = '0'

CONTINUE1
SHARES_CNT_ENABLE

INTER_FPGA_COMM_SENT = '1' SHARES_CNT_DONE = '0'

CONTINUE2
REG_CNT_ENABLE

SHARES_CNT_DONE = '1'

REG_CNT_DONE = '0'

FINISH
SEND_TO_MAIN_FSM_END
CONTROL_PRNG_ENABLE

REG_CNT_DONE = '1'

Figure 3.19: Send to main FSM diagram.

40

3.1. Design Implementation

RECEIVE_FROM_MAIN FSM receives input data from Main. The
lower layers of receiving are realized inside of the INTER_FPGA_COMM
entity instance in Control. This automaton just tells it how many
INTER_FPGA_WORDS to receive in the RECEIVE state.

IDLE RECEIVE_FROM_MAIN_FSM_START = '0'

INIT
REG_CNT_SET_VAL := OUTPUT_CNT - 1

REG_CNT_SET

RECEIVE_FROM_MAIN_FSM_START = '1'

SET_SHARES_CNT
SHARES_CNT_SET_VAL :=

 OUTPUT_SHARES_CNT(REG_CNT_VAL) - 1,
SHARES_CNT_SET

RECEIVE
INTER_FPGA_COMM_RECEIVE
INTER_FPGA_CNT_SET_VAL :=

 OUTPUT_WIDTHS_IFC_WORDS(REG_CNT_VAL)
INTER_FPGA_COMM_RECEIVED = '0'

CONTINUE1
SHARES_CNT_ENABLE
OUTPUT_MEM_LOAD

INTER_FPGA_COMM_RECEIVED = '1' SHARES_CNT_DONE = '0'

CONTINUE2
REG_CNT_ENABLE

SHARES_CNT_DONE = '1'

REG_CNT_DONE = '0'

FINISH
RECEIVE_FROM_MAIN_FSM_END

REG_CNT_DONE = '1'

Figure 3.20: Receive from main FSM diagram.

41

3. FPGA Design and Verification

SEND_OUTPUT FSM sends cipher’s output data to the computer.
Whether the current output shall be sent or not is decided in DECIDE state
based on the output operand. The lower layers of sending are implemented
in the UART_WRAPPER instance in Control. This FSM just tells it how
many bytes to send and how many bytes to skip in the SEND2 state.

IDLE SEND_OUTPUT_FSM_START = '0'

INIT
REG_CNT_SET_VAL := OUTPUT_CNT - 1

REG_CNT_SET

SEND_OUTPUT_FSM_START = '1'

DECIDE

SET_SHARES_CNT
SHARES_CNT_SET_VAL :=

 OUTPUT_SHARES_CNT(REG_CNT_VAL) - 1
SHARES_CNT_SET

OUTPUT_OP_OUTPUT(0) = '1'

CONTINUE2
REG_CNT_ENABLE

OUTPUT_OP_OUTPUT(0) = '0'

SEND1 TXD_READY = '0'

SEND2
EXPECTED_CNT :=

 OUTPUT_WIDTHS_BYTES(REG_CNT_VAL)
SKIP_CNT :=

 OUTPUT_WIDTHS_BYTES_SKIP(REG_CNT_VAL)
TXD_SEND

TXD_READY = '1'

CONTINUE1
SHARES_CNT_ENABLE

SHARES_CNT_DONE = '0'

SHARES_CNT_DONE = '1'

REG_CNT_DONE = '0'

FINISH
SEND_OUTPUT_FSM_END

REG_CNT_DONE = '1'

Figure 3.21: Send output FSM diagram.

42

3.1. Design Implementation

3.1.3 Main

The design created for Main FPGA serves as a wrapper for the cipher. The
wrapper’s main functionality is the following procedure:

• Receive data from Control.

• Put the received data on cipher’s input and start the encryption.

• Upon encryption’s end, save the cipher’s output.

• Send the saved data back to Control.

Additionaly, the wrapper has the following functions:

• Trigger - set the trigger signal on in two different ways:

– On for one clock cycle before pre-delay.
– On during the whole pre-delay, encryption and post-delay.

• Pre-delay - Upon receiving the data, wait for specified number of clock
cycles before launching the cipher.

• Post-delay - Upon the end of encryption, wait for specified number of
clock cycles before output data send starts.

• Random cipher input - Create random data for the optional random
cipher input of the specified width.

Main’s interface is in Table 3.14.

Ports
CLK_ORIG in clock input; it is assigned directly to CLK

signal, which is used as the clock source for
sub-entities; optional clock divisor can be
inserted between CLK_ORIG and CLK

RESET in reset input
PT_REQ in data receive from Control request
CT_ACK in data send to Control acknowledge
PT_PART in data bus from Control
PT_ACK out data receive from Control acknowledge
CT_REQ out data send to Control request
CT_PART out data bus to Control

Table 3.14: TOP_MAIN entity interface.

The cipher shall be instantiated in Main. INPUT_DATA_REGISTERED
is an two-dimensional array of std_logic_vector(WIDTH - 1 downto 0), where

43

3. FPGA Design and Verification

WIDTH is the maximal width of all the inputs and all the outputs. The inputs
and its shares are indexed in the same manner as in the config.txt file. If the
input to be connected is smaller than WIDTH, it must be connected to lower
bits, e.g., third share of the second input with the width of 80 bits will be con-
nected to INPUT_DATA_REGISTERED(1)(2)(79 downto 0). The outputs
are connected to the OUTPUT_DATA_CIPHER signal in the same manner.
The signal which starts the encryption by a high pulse for one clock cycle is
the START_ENCRYPTION. The signal indicating that the encryption has
finished by its high value is the ENCRYPTION_DONE.

3.1.3.1 Main’s Datapath

Main’s datapath is depicted in Figure 3.22.

44

3.1. Design Implementation

Figure 3.22: Block diagram of Main’s datapath. Only one share per input/out-
put is considered for better readibility.

NoMEM entity is instantiated here, because all of the received inputs have
to be accessible at once. Similarly, the output registers have to be loaded with
the data from the cipher at once. Therefore, nested VHDL’s for-generate
construct is used to generate as many REG instances as required. Input
registers’ loading is controlled by a load signal of array type, similar to these
used in REG_CONCAT, MEM and MASKER entities. OUTPUT_MPX
is implemented as an array element access in VHDL. PRNG instance has
PRNG_ENABLE signal connected to logical one and thus its output value
changes every clock cycle.

45

3. FPGA Design and Verification

3.1.3.2 Main’s Controller

Main’s controller is realized as one Moore’s FSM. It also contains four
COUNTER instances:

• REG_COUNTER - used for looping over all inputs or outputs. Loop-
ing over all inputs or outputs is denoted in the FSM diagram in red color.

• SHARES_COUNTER - used for looping over all shares of a partic-
ular input or output. Looping over all shares of an input or output is
denoted in the FSM diagram in blue color.

• PRE_COUNTER - used for counting of the pre-delay duration.

• POST_COUNTER - used for counting of the post-delay duration.

A state diagram of the controller’s FSM is in Figure 3.23. First, input data
are received from Main. Lower layers of the communication are implemen-
ted in INTER_FPGA_COMM instance — here the automaton just declares
how many INTER_FPGA_WORDS to receive in RECEIVE state. Trigger
set follows, then the pre-delay and finally the encryption itself. After the
encryption is done, the post-delay and the final output data sending to Con-
trol follows. The number of INTER_FPGA_WORDS to send and to skip is
declared in the SEND state.

46

3.1. Design Implementation

INIT
REG_CNT_SET_VAL := INPUT_CNT - 1

REG_CNT_SET
PRNG_SET

SET_SHARES_CNT
SHARES_CNT_SET_VAL := INPUT_SHARES_CNT(REG_CNT_VAL) - 1

SHARES_CNT_SET

RECEIVE
INTER_FPGA_COMM_RECEIVE
INTER_FPGA_CNT_SET_VAL :=

INPUT_WIDTHS_IFC_WORDS(REG_CNT_VAL)
INTER_FPGA_COMM_RECEIVED = '0'

CONTINUE1
SHARES_CNT_ENABLE

INPUT_REGS_LOAD_ARRAY(REG_CNT_VAL)(SHARES_CNT_VAL)

INTER_FPGA_COMM_RECEIVED = '1' SHARES_CNT_DONE = '0'

CONTINUE2
REG_CNT_ENABLE

SHARES_CNT_DONE = '1'

REG_CNT_DONE = '0'

SET_TRIGGER
TRIGGER1

PRE_CNT_SET_VAL := PRE_COUNTER_VALUE
PRE_CNT_SET

REG_CNT_DONE = '1'

PRE_DELAY
PRE_CNT_ENABLE

TRIGGER2
PRE_CNT_DONE = '0'

CIPHER
OUTPUT_REGS_LOAD
START_ENCRYPTION

TRIGGER2
POST_CNT_SET_VAL := POST_COUNTER_VALUE

POST_CNT_SET

PRE_CNT_DONE = '1'

ENCRYPTION_DONE = '0'

POST_DELAY
POST_CNT_ENABLE

TRIGGER2
REG_CNT_SET_VAL := OUTPUT_CNT

REG_CNT_SET

ENCRYPTION_DONE = '1'

POST_CNT_DONE = '0'

SET_SHARES_CNT2
SHARES_CNT_SET_VAL := OUTPUT_SHARES_CNT(REG_CNT_VAL) - 1

SHARES_CNT_SET

POST_CNT_DONE = '1'

SEND
INTER_FPGA_COMM_SEND

INTER_FPGA_CNT_SET_VAL :=
OUTPUT_WIDTHS_IFC_WORDS(REG_CNT_VAL)

INTER_FPGA_CNT_SKIP_SET_VAL :=
OUTPUT_WIDTHS_IFC_SKIPS(REG_CNT_VAL)

INTER_FPGA_COMM_SENT = '0'

CONTINUE3
SHARES_CNT_ENABLE

INTER_FPGA_COMM_SENT = '1' SHARES_CNT_DONE = '0'

CONTINUE4
REG_CNT_ENABLE

SHARES_CNT_DONE = '1'

REG_CNT_DONE = '1'

REG_CNT_DONE = '0'

Figure 3.23: Main controller’s FSM state diagram.

47

3. FPGA Design and Verification

3.2 Verification

Unsynthesizable models of both Control and Main were created in VHDL for
verification purposes. In this section, I call the unsynthesizable description
the "model" and the synthesizable description the "RTL".

The top testbench (TB.vhd) instantiates both the model and RTL of Con-
trol and Main. The same sequence of the input data is sent to the model and
RTL of Control. The correctness of the run is then checked in the following
manner:

• Inter-FPGA communication of the model and RTL is compared.

• Received output data are saved and, at the very end of the testbench’s
runtime, model’s and RTL’s output data are compared.

Since there are no real-time delays in the model, such as waits for clock’s rising
edge, the model is naturally faster than RTL. Synchronization of model’s and
RTL’s runtime happens at the inter-FPGA communication point. The TB
entity waits for the request signal from both RTL and model, then it compares
the inter-FPGA data bus and only after that the request signal is passed over
to its destination. The TB continues in a similar way with acknowledge signal.
Described process is depicted in Figure 3.24.

T_O_REQ

T_M_O_REQ

T_REQ

T_O_ACK

T_M_O_ACK

T_ACK

a b

c d

e f

g h

i j

k l

Figure 3.24: Testbench inter-FPGA communication synchronization. Sig-
nals prepositioned with T_O_are RTL’s output. Signals prepositioned with
T_M_O_ are model’s output. Other signals are the RTL’s and model’s com-
mon input driven by the main process of TB. Arrows describe order of the
changes of the signals.

Ideas of constrained-random verification are included in the testbench – it
creates a random input based on the SEED1 and SEED2 variables in DEFIN-

48

3.2. Verification

ITIONS package using the Uniform function of IEEE_MATH_REAL pack-
age. The input and output operation codes are created randomly with the
constrain that the resulting code must be a valid one. Random input data are
created without constrains.

At first, the design was simulated using the Modelsim 10.4a PE Student
Edition [7], but the runtime was unsatisfactorily long due to the design’s
size exceeding student’s edition recommended capacity. After that, the open-
source VHDL simulator GHDL [13] was used. Not only did it run faster,
but, unlike Modelsim, GHDL also allows more instances to be run at once,
effectively allowing easy parallelization of the constrained-random verification.

To verify the design with as many configurations as possible, and to make
the verification more convenient, a script called verify.py written in Python
3 language was created. The script’s options are shown in Table 3.15. The
options are also printed to the standard output when the script is launched
without parameters. More options, for example maximum width of an input
in the randomly generated configuration or some of the default values, can
be set at the beginning of the script file in the "editable" section. Simulator’s
output is not shown on the standard output of the script and it is saved to
log.txt file instead.

49

3. FPGA Design and Verification

Switch Default value Description
-m none Mode of operation: random - gener-

ate DEFINITIONS.vhd randomly; fixed
- generate DEFINITIONS.vhd using con-
fig.txt file.

-g none When present, only generate DEFINI-
TIONS.vhd file and do not run simulator.

-r 1 Number of simulator runs to be launched.
-e GHDL Simulator to be used: GHDL or MOD-

ELSIM. GHDL uses source.lst as a list of
files to be analyzed and elaborated. Mod-
elsim uses run_cmd.do.

-t 1800 Simulator runtime timeout in seconds.
-s random Simulator run seed value. When an er-

ror is discovered, the seed is saved to er-
rlog.txt and the same run can be repeated
using this option.

-w none When present, run the simulator’s GUI.
Only works for Modelsim and it uses
run.do as source list file instead.

-p 1 Number of threads to be launched. Every
thread launches its simulator instance.
Shall be less or equal to number of repeti-
tions. For Modelsim it is ignored.

-n 10 Number of encryptions to be simulated.

Table 3.15: verify.py script options.

50

Chapter 4
SICAK Plugin

A measurement scenario plugin for Software Toolkit for Side Channel Attacks
(SICAK) [11] was created. The plugin is called sakurag and it serves as the
software counterpart of the FPGA design described in Section 3.1. The plugin
is run using the meas utility of SICAK. More info about its functionalities and
parameters can be found in [11]. The sakurag specific options are passed to the
plugin using the param option. The string passed after the param option shall
consist of key=value pairs separated by semicolons. The accepted key=value
pairs are in Table 4.1.

The list of sakurag class method follows. The inherited methods described
in [11] were skipped.

parseParams parses the input/output parameters stripped of the in/out
preposition, respectively.

loadConstantInputs loads initialization data from the JSON configuration
file.

lfsr32 implements one shift of uint32_t data using the [32, 22, 2, 1] LFSR
register [4].

doDataPrngStep does one shift of the m_dataPrngValue using parallel
LFSRs just like the DATA_PRNG of the Control does.

doControlPrngStep does one shift of the m_controlPrngValue using the
lfsr32 function just like the CONTROL_PRNG of the Control’s controller
does.

sendInitData sends the initialization data received by the RE-
CEIVE_INIT_DATA FSM of the Control’s controller.

51

4. SICAK Plugin

sendMemInit sends the input initialization data received by the
MEM_INIT automaton of the Control’s controller. When the data are gen-
erated randomly inside of the Control instead, the method generates the same
data and saves them to m_inputMem and m_inputMemConst.

sendInput sends the input data received by the RECEIVE_INPUT FSM
of the Control’s controller. The data are generated randomly.

randomizeInput randomizes the input data saved in the m_inputMem
variable in the same way that the RANDOMIZE_INPUT FSM of the Con-
trol’s controlles does.

remaskInput remasks the input data in the same way that the RE-
MASK_INPUT FSM of the Control’s controlles does.

receiveOutput receives the output data sent by the SEND_OUTPUT
automaton of the Control’s controller.

send serves as the chardevice instance’s send method wrapper. The data
shall be sent MSB to LSB, therefore this method calls the chardevice’s send
byte-by-byte in the correct order.

createInputs unmasks data saved in the m_inputMem or
m_inputMemConst class variable and saves it into the m_inputs vari-
able. The unmasked data are later used for file saving.

createOutputs unmasks data saved in the m_outputMem class variable
and saves it into the m_outputs variable. The unmasked data are later used
for file saving.

stripExtraBits the plugin works internally with byte values, but the device
support any width value. The extra bits, which might not be empty due to
the m_dataPrngValue being XORed onto it (the m_dataPrngValue is always
32*k bits wide), are stripped away in this method.

runCipher serves as a wrapper for the cipher method call. Method im-
plementing the cipher instantiated in Main shall be called in this method.
Depending on the cipher method, masked or unmasked data input will be
required. The masked input data are passed to this method in the cur-
rentMem parameter — it is a pointer to either the m_inputMem or the
m_inputMemConst depending on the mode of the input. The unmasked
data are available in the m_inputs class variable – it is already filled with
the correct data, random or constant, when this method is called.

52

testMode is called when the test param is on. Both the output value pre-
computation and the receiving from the device take place in the test mode.
The data are then compared and the unequalities are reported. To compute
the cipher’s outputs, a software implementation of the cipher instantiated in
the FPGA design is required. The dummyCipher method can be used as the
cipher in software — DUMMY_CIPHER entity shall be then instantiated in
Main. No data saving or communication with the oscilloscope takes place in
the test mode.

compareMems is called by the testMode to compare the received and com-
puted output values.

dummyCipher can accomodate to any number of inputs and outputs and
it always places the first share of the first input onto all outputs. Only the
fitting part of the input is used when the input and output widths are different.
Its hardware implementation is in the DUMMY_CIPHER entity.

allocSpace allocates the required space for the class variables of SakuraG
class. It is called at the beginning of the run method, since the number of
measurements is required for the memory allocation.

deallocSpace de-allocates the space allocated in allocSpace. It is called at
the end of the run method.

Internally, the plugin does the same computations as the FPGA device.
At first, the plugin creates operation codes, random data and control seed
based on the received parameters in the init and parseParams methods and
sends it together with the number of encryptions to the device using the
sendInitData method. Shall any input be initialized from the computer, the
sendMemInit method sends the data loaded from the JSON configuration
file. Otherwise, it generates the same initialization values that the device
does. The main loop (green in Figure 3.13) follows. Shall any input receive
data from the computer before every encryption, the sendInput method sends
randomly generated data. Appropriate inputs in m_inputMem are random-
ized in the randomizeInput method. Remasking occurs in the remaskInput
method. Extra bits are stripped off the inputs in the stripExtraBits method.
Cipher’s input data are unmasked and saved into the m_inputs class variable
in the createInputs method. These data are later used for the file saving.
If the cipher software implementation is available, it is run in the runCipher
method to generate the outputs. The outputs meant to be received after every
encryption are received in the receiveOutput method.

The JSON file with the initialization input values shall contain key : value
pairs, where key shall be inputI (I is the input index) and value shall be a

53

4. SICAK Plugin

hexadecimal string with the appropriate length. The length shall be nibble-
accurate, e.g., an input of a width of ten bits shall be described by a string of
three hexadecimal digits.

The plugin saves the inputs, the outputs and the traces into files. Every
input and every output is saved to a separate input/output file, respectively.
Inputs and outputs are saved in the unshared form. The structure of in-
put/output file name is {in,out}put{I,J}-measurementID.bin, where I is the
index of the input; measurementID can be set using meas’ id param and it
is the current datetime by default. Traces are saved to {random,constant}-
traces-measurementID.bin file. The constant traces file is selected either when
all of the inputs use Fixed mode or when one of the cipher’s inputs uses Fixed
vs. random mode of operation and the cipher’s input was fixed during the
trace’s measurement. When the constant traces file is used, no inputs/out-
puts are saved, thus the input/output inside of the respective files are alligned
to the traces inside of the random traces file.

54

Switch Default value Description
inI=N none Width of the cipher’s input port I is N

bits. I shall start at zero and no index
shall be skipped.

outJ=N none Width of the cipher’s output port J is N
bits. J shall start at zero and no index
shall be skipped.

inshareI=N 1 The cipher’s input port I consists of N
shares.

inshareJ=N 1 The cipher’s output port J consists of N
shares.

inmodeI=S random Mode of the the cipher’s input port I is S,
where S shall be either of:

• fixed

• random

• randomvsfixed (or fixedvsrandom)

• fromPC

See Section 2.3 for the description of the
listed modes.

outmodeJ=S nosend Mode of the the cipher’s output port I is
S, where S shall be either of:

• nosend

• toPC

See Section 2.3 for the description of the
listed modes.

inremaskI=N 1 Remasking of the cipher’s input I is on
(N=1) or off (N=0).

ininitPCI=N 0 Cipher’s input I is initialized from the
computer (N=1) or using inner PRNG
(N=0).

inconstfile=S empty string JSON configuration file containing initial-
ization input values.

test=N 0 Run the test mode (N=1).

Table 4.1: Accepted key=value pairs in the string passed as the param para-
meter of the SICAK’s meas utility.

55

Chapter 5
System Integration and Testing

In this chapter, system integration and the following testing is described.

5.1 System Integration

At first, the Control’s and Main’s design had to be synthesized. Xilinx ISE
[15] was used to create the programming file. After that, Sakura-G’s FPGAs
had to be programmed. Digilent USB-JTAG Programming Cable together
with the Impact software (part of the tools bundled with ISE) was used to
program the FPGAs. Various Control’s controller FSM states were encoded
into binary form and the resulting number was connected to Sakura-G’s built-
in LEDs to see what was happening in the device. Sakura-G provides FTDI
FT2232H [3] chip for communication over USB – the communication with the
device was checked using Bash’s Echo built-in function redirected to the serial
device. When the manual communication using the Bash seemed to work
correctly, it was time to test the SICAK plugin. To make the first steps of the
integration of the FPGA device with the plugin easier, a simple configuration
consisting of one input/one output was loaded into the FPGA. Then, SICAK
plugin was run with the appropriate serial device parameter and param string.
The plugin was also modified to send zero data-seed into the device for easier
navigation through the received outputs. The bugs of the plugin, discovered
by observing the LED outputs of Sakura-G and by a thinking about the inner
working of the design, were removed one-by-one until one full run of the device
was achieved. Finally, different modes of the inputs were tested and eventually
fixed in the same manner.

5.2 Testing

To test the integrated system with as many different configurations as possible,
a script called test.py written in Python3 language was created. The script

57

5. System Integration and Testing

automates the testing process by using the DEFINITIONS.vhd generator from
verify.py to generate the file randomly/using the config.txt file; by running the
synthesize-translate-map-place&route-generate programming file toolchain of
Xilinx ISE to generate the programming file for both Control and Main; by
downloading the programming file to both FPGAs using Xilinx Impact; and
finally by running the SICAK meas with sakurag plugin in the test mode
repeatedly with all the possible configurations for every cipher’s input. The
dummy-cipher described in Section 4 was used. The script’s options are shown
in Table 5.1. The options are also printed to the standard output when the
script is launched without parameters. Paths to Xilinx tools, to the SICAK
installation directory, the communication port, and the communication port
config file shall be set at the beginning of the script file in the "editable"
section. Default values of the script’s parameters can be adjusted at the
same place. DEFINITIONS.vhd file random generation constraints, like the
maximum number of shares, can be adjusted at the beginning of the verify.py
script.

Since there were no software tests created for the SICAK plugin, its func-
tionality is verified solely by the described process. It shall suffice, because:

• The FPGA design was verified using the testbench environment with
unsynthesizable models as described in Section 3.2.

• The plugin was tested against the FPGA design as described in this
section.

Therefore, three independent descriptions of the device were created and their
functionalities were compared. At least 10000 simulator runs, each with differ-
ent configuration, were executed to thoroughly verify the design. At least 300
different configurations were uploaded into the device and they were tested
using various input/output setups and encryptions counts. Every discovered
error was fixed and the last 100 configurations ran error-free.

The functionalities of the plugin not covered by this test, e.g., file saving
and oscilloscope communication, were tested manually.

58

5.2. Testing

Switch Default value Description
-m none Mode of operation: random - gener-

ate DEFINITIONS.vhd randomly; fixed
- generate DEFINITIONS.vhd using con-
fig.txt file.

-t none Run the synthesize-translate-map-
place&route-generate programming file
toolchain for both FPGAs.

-p none Download the programming file to both
FPGAs. Impact is run in the batch mode
with impact_download_fpga.txt as the file
argument. Ports have to be set in the file
first.

-l none Run SICAK meas’ sakurag plugin in test
mode with all of the possible parameter
values for every input.

-a none Run the whole test sequence — same be-
haviour as with -t -p -l.

-r 1 Number of test sequences to be run. Only
works with -a or -t -p -l, otherwise it is
one.

-s random Seed value. When an error is discovered,
the seed is saved to test_errlog.txt, and
the same run can be repeated using this
option.

-n 100 Number of encryptions to be run (SICAK
meas’ -n parameter).

Table 5.1: test.py script options.

The size of the Control FPGA design depends on the input/output count,
width and number of shares. Example usage of Control FPGA’s slice registers
and Look-up tables (LUTs) is in the table 5.2. The Control FPGA of Sakura-G
has 11440 slice registers and 5720 LUTs.

59

5. System Integration and Testing

Configuration Slice registers LUTs
128/128/7/7 5247 5370
128/128/8/8 - -
128,128,128/128/3,2,1/1 3491 3552
128,128,128/128/4,2,1/1 4132 4831
128,128,128/128/5,2,1/1 4645 5653
256/256/4/4 6412 5114
256/256/5/5 - -
256,256/256/2,2/1 4623 2732
256,256/256/3,3/1 6160 4345
256,256/256/4,3/1 - -
256,256,256/256/3,1,1/1 5655 4053
256,256,256/256/3,2,1/1 6167 4725
256,256,256/256/3,2,2/1 - -

Table 5.2: Examples of slice registers and Look-up tables usage of the syn-
thesized Control FPGA design. The left Configuration is input width 0, ..,
input width I/output width 0, .., output width J/input shares count 0, .., in-
put shares count I/output shares count 0, .., output shares count J. The dash
symbol means that the configuration could not be mapped into the FPGA.
The Control FPGA of Sakura-G has 11440 slice registers and 5720 LUTs.

The duration of a measurement is more than a hundred times reduced.
For example, measurement of 100000 traces using Fixed vs. random test
took 7 seconds instead of 1608 seconds when a cipher wrapper which has to
receive/send every input/output from/to the computer separately was used.
Running the same setup without oscilloscope requires 2 seconds, therefore the
bottleneck is the measurement files saving and/or the communication between
the oscilloscope and the computer.

60

Chapter 6
Conclusion

In this thesis, a toolkit for fast data acquirement during the process of power
analysis was created. Sakura-G board was used and a configuration for both of
its FPGAs was designed in VHDL language. The Main FPGA design receives
the data from the Control FPGA and manages the cipher instantiated inside
of it. The Control FPGA design minimizes communication with the computer
by generating the input data pseudo-randomly. It sends and receives the data
from the Main FPGA. It supports various run modes — Fixed mode, where the
input data remain constant; Random mode, where the data are randomized
before every encryption; Fixed vs. random mode where the input data before
every encryption are either constant or random in a random order; and FTDI
mode, where the data are received from the computer before every encryption.
It can also optionally remask the input data. Output data can be sent to the
computer.

A plugin for the Software Toolkit for Side Channel Attacks (SICAK) was
created in C++ language using the Qt5 framework. The plugin handles the
communication with the Control FPGA. It reproduces every input that was
created inside of the FPGA device independently; it can receive the output
data or the output data can be reproduced without communication when a
software implementation of the cipher instantiated in Main FPGA is provided.

The toolkit supports ciphers with an arbitrary number of input/output
counts and an arbitrary number of shares per input/output. The VHDL
FPGA design is highly generic and a constant package is generated automat-
ically using a simple configuration file with user-filled values. The maximum
total number of input/output shares that can fit into the Control FPGA of
Sakura-G is about 7/7 for 128 bit wide inputs/outputs and 4/4 for a 256 bit
wide inputs/outputs.

Duration of measurement improved more than 100×. For example, a meas-
urement of 100000 power traces took 7 seconds. With a setup that has to
communicate with the computer during the whole operation, the same meas-
urement took 1608 seconds.

61

6. Conclusion

The FPGA design was thoroughly verified using unsynthetizable models
and constrained-random inputs. A random configuration generator was cre-
ated to test the design with as many different configurations as possible.

The whole system was thoroughly tested. A script automatizing the cre-
ation of new configurations for the FPGA and its downloading to the FPGA
was created. The system was tested with many different configurations using
various run modes.

62

Bibliography

[1] Brier, E.; Clavier, C.; Olivier, F. “Correlation Power Analysis with a
Leakage Model”. In: Volume 3156 of the book series Lecture Notes in
Computer Science (LNCS). Springer-Verlag, 2004. doi: 10.1007/978-
3-540-28632-5_2.

[2] Computer Systems Laboratory, Washington University. “The Synchron-
izer "Glitch" Problem”. In: Macromodular Computer Design, Part 1,
Volume 4 (1974).

[3] Future Technology Devices International Ltd. FT2232H Dual High Speed
USB to Multipurpose UART/FIFO IC datasheet [online]. 2019. url:
https://www.ftdichip.com/Support/Documents/DataSheets/ICs/
DS_FT2232H.pdf.

[4] George, M.; Hafke, P. Linear Feedback Shift Registers in Virtex
Devices [online]. 2007. url: https : / / www . xilinx . com / support /
documentation/application_notes/xapp210.pdf.

[5] Kocher, P.; Jaffe, J.; Jun, J. “Introduction to differential power analysis
- Crypto 99 Proceedings, Lecture Notes in Computer Science Vol. 1666”.
In: (1999).

[6] Mangard, S.; Oswald, E.; Popp, T. Power Analysis Attacks: Reveal-
ing the Secrets of Smart Cards. Springer-Verlag, 2007. isbn: 978-0-387-
30857-9.

[7] Mentor, a Siemens Business. Modelsim PE Student Edition. Ver-
sion 10.4a. url: https://www.mentor.com/company/higher_ed/
modelsim-student-edition.

[8] Morita Tech Co. Sakura-G - Side-channel AttacK User Reference Ar-
chitecture [online]. 2013. url: http://satoh.cs.uec.ac.jp/SAKURA/
hardware/SAKURA-G_Spec_Ver1.0_English.pdf.

63

https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-540-28632-5_2
https://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT2232H.pdf
https://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT2232H.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp210.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp210.pdf
https://www.mentor.com/company/higher_ed/modelsim-student-edition
https://www.mentor.com/company/higher_ed/modelsim-student-edition
http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-G_Spec_Ver1.0_English.pdf
http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-G_Spec_Ver1.0_English.pdf

Bibliography

[9] Pico Technology Ltd. Picoscope 6000 Series Datasheet [online].
url: https : / / www . picotech . com / download / datasheets /
PicoScope6000CDSeriesDataSheet.pdf.

[10] Schneider, T.; Moradi, A. “Leakage Assessment Methodology - a clear
roadmap for side channel evaluations”. In: Journal of Cryptographic
Engineering (2016). doi: https://doi.org/10.1007/s13389-016-
0120-y.

[11] Socha, P. Software toolkit for side-channel attacks. Master’s thesis. Tech-
nical University in Prague, Faculty of Information Technology, 2019.

[12] The Qt Company. Qt5 Framework. Version 5.9.5. url: https://www.
qt.io/.

[13] Tristan Gingold. GHDL, the open source VHDL simulator. Ver-
sion v0.37. url: https://github.com/ghdl/ghdl.

[14] Welch, B. L. “The generalization of "Student’s" problem when several
different population variances are involved”. In: (1947). doi: https :
//doi.org/10.1093/biomet/34.1-2.28.

[15] Xilinx, Inc. ISE WebPACK design software. Version 14.7. url: https:
//www.xilinx.com/products/design-tools/ise-design-suite/
ise-webpack.html.

64

https://www.picotech.com/download/datasheets/PicoScope6000CDSeriesDataSheet.pdf
https://www.picotech.com/download/datasheets/PicoScope6000CDSeriesDataSheet.pdf
https://doi.org/https://doi.org/10.1007/s13389-016-0120-y
https://doi.org/https://doi.org/10.1007/s13389-016-0120-y
https://www.qt.io/
https://www.qt.io/
https://github.com/ghdl/ghdl
https://doi.org/https://doi.org/10.1093/biomet/34.1-2.28
https://doi.org/https://doi.org/10.1093/biomet/34.1-2.28
https://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.html
https://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.html
https://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.html

Appendix A
List of Acronyms

AES Advanced Encryption Standard

CPA Correlation Power Analysis

DPA Differential Power Analysis

FPGA Field Programmable Gate Array

FSM Finite State Machine

FTDI Future Technology Devices International Ltd.

LFSR Linear-Feedback Shift Register

LUT Look-Up Table of FPGA

PRNG Pseudo-Random Number Generator

UART Universal Asynchronous Receiver/Transmitter

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

65

Appendix B
Attached DVD description

readme.txtDVD structure description
ISE

CONTROL ISE project for Control
MAIN.. ISE project for Main

sicak-plugin......................................The SICAK plugin
VHDL

CONTROL..Control entities
MAIN ...Main entities
TB ... TB entities
common common design entities
tmpl template for DEFINITIONS generation

misc
dia diagram files for Dia SW
graphviz.................source codes for FSM diagrams generation
wavefrom source codes for Wavedrom SW

run
config.txt...... the configuration file for DEFINITIONS generation
generate_definitions.py..generate DEFINITIONS from config.txt
verify.py..verification script
test.py..testing script
run_cmd.do............................list file for MODELSIM CLI
run.do................................ list file for MODELSIM GUI
source.lst...................................... list file for GHDL
impact_download_fpga.txt.......................Impact batch file

67

	Citation of this thesis
	Introduction
	Power Analysis Attack
	Statistical Evaluation
	Countermeasures

	System Analysis
	Sakura-G
	System overview
	Control
	Main
	Computer
	Pseudo-random number generator

	FPGA Design Specification
	Software Specification

	FPGA Design and Verification
	Design Implementation
	Common Design Elements
	Control
	Control's Datapath
	Control's Controller

	Main
	Main's Datapath
	Main's Controller

	Verification

	SICAK Plugin
	System Integration and Testing
	System Integration
	Testing

	Conclusion
	Bibliography
	List of Acronyms
	Attached DVD description

