
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Automated planning of tourist trips with a
desired length

Bc. Jan Pancíř

Supervisor: Doc. Ing. Michal Jakob, Ph.D.
Field of study: Open informatics
Subfield: Artificial intelligence
May 2020

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

457925Personal ID number:Pancíř JanStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Science

Open InformaticsStudy program:

Artificial IntelligenceSpecialisation:

II. Master’s thesis details

Master’s thesis title in English:

Automated planning of tourist trips with a desired length

Master’s thesis title in Czech:

Automatické plánování výletů požadované délky

Guidelines:
Automated trip planning is an algorithmically challenging and application-
relevant open problem. The goal of planning tourist trips is to generate routes
which pass through attractive locations and route segments while respecting user
preferences on the ideal length of the trip. When solving the problem, please
proceed as follows:
1. Familiarize yourself with existing approaches to tourist trip planning
2. Formalize the tourist trip planning as an optimization problem.
3. Design and implement an algorithm for solving the tourist trip planning
problem.
4. Use the algorithm to build a prototype of a working tourist trip planning
system.
5. Evaluate the performance of the developed system on real-world data
and discuss the results.

Bibliography / sources:
[1] Gionis, Aristides, et al. "Customized tour recommendations in urban
areas." Proceedings of the 7th ACM international conference on Web search
and data mining. ACM, 2014.
[2] Gavalas, Damianos, et al. "Heuristics for the time dependent team
orienteering problem: Application to tourist route planning." Computers &
Operations Research 62 (2015): 36-50.
Souffriau, Wouter, and Pieter Vansteenwegen. "Tourist trip planning
functionalities: State–of–the–art and future." International Conference on Web
Engineering. Springer, Berlin, Heidelberg, 2010.

Name and workplace of master’s thesis supervisor:

doc. Ing. Michal Jakob, Ph.D., Artificial Intelligence Center, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: __________Date of master’s thesis assignment: 04.02.2020

Assignment valid until: 30.09.2021

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
Head of department’s signaturedoc. Ing. Michal Jakob, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Acknowledgements

I would like to thank doc. Ing. Michal
Jakob, Ph.D. for supervising my thesis
and providing me with helpful ideas and
valuable comments on this topic which
is very close to me. I would also like to
thank my family and my closest friends
with whom I have experienced exciting
tours to many incredibly beautiful places.

Declaration

Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

Praha/Prague, 20. May 2020

v

Abstract

In this thesis, approaches for the auto-
mated tourist trip planning with a desired
length are studied, especially solutions for
the orienteering problem (OP) and its ex-
tensions. I define my own planning task
resulting in tours on maps which visit the
most interesting places and lead along the
most interesting paths. I design an algo-
rithm solving this task based on a com-
bination of the evolution approach and
the metaheuristic Variable Neighborhood
Search algorithm (VNS). I design the Au-
tomated Trip Planning System (ATPS)
based on this algorithm. I also design
an optimal algorithm based on linear pro-
gramming. I test results on a custom test
benchmark set and also on a real-map
data from several locations in the Czech
Republic. The achieved results proof the
usability and effectivity of many tour rec-
ommendations within a few seconds.

Keywords: automated trip planner,
orienteering problem, multi-trip planning,
fast trip planning

Supervisor: Doc. Ing. Michal Jakob,
Ph.D.

Abstrakt

V této práci jsou studovány přístupy k au-
tomatizovanému plánování turistických
výletů s požadovanou délkou, zejména ře-
šení problémů orientace (OP) a jejich roz-
šířeními. Definuji vlastní plánovací úlohu
jejíž výsledkem jsou trasy v mapě, které
navštěvují ta nejzajímavější místa a vedou
po těch nejzajímavějších cestách. Navrhuji
algoritmus řešící tuto úlohu založený na
kombinaci evolučního přístupu a metaheu-
ristického algoritmu Variable Neighbor-
hood Search (VNS). Navrhuji automati-
zovaný systém pro plánování turistických
výletů (ATPS) založený na tomto algo-
ritmu. Navrhuji také optimální algoritmus
založený na lineárním programování. Vý-
sledky testuji na umělé testovací sadě a
poté na reálných mapových podkladech
z několika lokalit z České Republiky. Do-
sažené výsledky dokazují použitelnost a
efektivitu systému v doporučování mnoha
turistických tras během několika sekund.

Klíčová slova: automatizovaný
plánovač výletů, problematika orientace,
plánování více tras, rychlé plánování tras

Překlad názvu: Automatizované
plánování turistických výletů požadované
délky

vi

Contents

1 Introduction 1

2 Related work 3

2.1 Trip planners 3

2.1.1 Optimization based approaches 4

2.1.2 Interactive based approaches . 5

2.1.3 Expert system based approaches 5

2.1.4 Data mining based approaches 6

2.2 Map domains 6

2.3 Orienteering Problem 7

2.4 Summary of used approaches 9

3 Problem specification 11

3.1 Map model 12

3.2 Trip planning task 14

4 System design 17

4.1 Solution overview 18

4.2 Map preprocessing 19

4.2.1 Extraction of segment division
points . 20

4.2.2 Map reduction process 21

4.2.3 Calculation of the profit
matrix . 22

4.3 Tour calculation 23

4.3.1 Data structures extension . . . 24

4.3.2 Tour Searching algorithm . . . 25

4.3.3 Individual 26

4.3.4 Creation of the initial
individual . 27

4.3.5 Population 28

4.3.6 Operations 30

4.4 Recalculation 32

5 Optimal algorithm 35

5.1 ILP formulation 35

6 System implementation 37

6.1 Data gathering 37

6.1.1 Open Street Maps. 38

vii

6.1.2 Map file preprocessing 38

6.2 Implementation 39

6.2.1 Architecture 39

6.2.2 User interface 41

6.2.3 C++ Addon. 42

7 Testing and results 45

7.1 Algorithm evaluation 45

7.1.1 Custom test benchmark 46

7.1.2 Experiments and results on the
test benchmark 47

7.2 Real map testing 49

7.2.1 Map input 49

7.2.2 Experiments with parameters 50

7.2.3 Experiments with improvements
per time . 52

7.2.4 Experiments with
determinization 54

7.2.5 Real use case scenarios 57

8 Conclusion 59

Bibliography 61

A Gallery of found tours 65

B Abbreviations 73

C Contents of the enclosed CD 75

viii

Figures

3.1 Visualization of an example
instance of the trip planning task
with POI and SOI 15

4.1 The general overview of the
ATPS. 18

4.2 The workflow of the map
preprocessing. 19

4.3 The workflow of the Tour
calculation and the Tour Searching
algorithm. 23

4.4 The general use case workflow of
the recalculation process. 32

6.1 The high level architecture of the
implemented ATPS. 40

6.2 The user interface preview of the
implemented ATPS 42

7.1 The 52-VisitPoints problem
visualization 47

7.2 Profit improvements per time,
Bohemian Forest map 52

7.3 Profit improvements per time,
Bohemian Paradise map 53

7.4 Profit improvements per time,
Giant Mountains map 54

7.5 An exmaple round trip 57

7.6 An example long hiking trip 58

A.1 Tours with the similarity constant
option 1 . 66

A.2 Tours with the similarity constant
option 2 . 67

A.3 Round trip examples 1 68

A.4 Round trip examples 2 69

A.5 Long hiking trip examples 1 . . . 70

A.6 Long hiking trip examples 2 . . . 71

ix

Tables

4.1 Operations performed during the
local search procedure. 31

7.1 Results of the basic ILP and the
TS algorithms on the 52-VisitPoints
problem. 48

7.2 The description of maps used for
the real data testing. 50

7.3 Average profits for a sample tour
request on the Bohemian Paradise
map depending on the population
limit. 51

7.4 Results obtained from 10
executions of a sample tour request
on the Jesenik map. 55

7.5 Results obtained from 10
executions of a sample tour request
on the Bohemian Forest map. 55

7.6 Results obtained from 10
executions of a sample tour request
on the Giant Mountains map. 56

x

Chapter 1

Introduction

The automated trip planning is an algorithmically challenging and application-
relevant open problem. Every day, many people in the world plan their
vacations and leisure trips to many diverse places on the Earth. But looking
at the map and inventing the best route might not be an easy task, especially
in a location unknown to the tourist. With a huge amount of data gathered
so far and well-described maps which we have nowadays, the automated trip
planning can not only save a lot of time for many tourists, but it can also
create trips which can compete or possibly surpass trips created by hand of
an experienced human trip creator.

The main goal of the trip planning is to find pleasant routes. It is an objec-
tive that is hard to model and very hard to measure precisely. This objective
description is the main difference from the majority of other optimization
tasks where usually the goal is to minimize a well-described objective func-
tion. In case of the trip planning, designing of an objective function is not
so obvious and it can deviate significantly from the actual purpose of the
planning task in real-life problems. The proper way to say that one route is
better than the other is the key to success for a good trip planning solver.

Solving the trip planning task consists of two main steps. First we need to
find a set of interesting locations to visit. These locations might correspond
to viewpoints, alpine huts, cultural sites and many more different attractions.
However, we also want to include some interesting paths, e.g. trail through
a rocky canyon is definitely more interesting than a path along a straight
highway. A good selection of these locations and segments on the map is an
important starting point for the next step. In the second step, we need to

1

1. Introduction
find a path between the user-defined start and goal locations, not longer than
the user-provided time budget, and visiting as many interesting locations and
segments as possible at the same time. Since usually not all locations and
segments can be visited at once due to the time budget, not only the path
is needed, but also the determination of a subset of these places has to be
made, and thus this problem belongs to the class of NP-hard problems.

In this thesis, I design and propose a system for the automated trip planning.
Firstly I focus on the analysis of possible ways to achieve the automated trip
planning. I provide an overview of several solutions and concepts used in this
area. Then I define my trip planning task with points and segments of interest
the solver is created for. In the chapter 4, I design the Tour Searching (TS)
heuristic algorithm and the Automated Trip Planning System called ATPS
which is based on this algorithm. The system provides fast top K distinct trip
recommendations based on user requirements. In addition, it enables the user
to adjust the resulting trips by simple location preferences updates. In the
chapter 5, I design an Integer Linear Programming (ILP) algorithm which
finds an optimal solution for the defined task. In the chapter 6, I describe
data gathering and implementation approaches. In the chapter 7, I describe
experiments and testing performed with this system using the heuristic and
the optimal algorithm, and discuss the achievements which prove the system
to be usable for several real-life trip planning problems.

2

Chapter 2

Related work

A huge amount of research has been done in tasks related to trip planning
or trip recommendation. The proposed approaches are usually specialized
for specific real-life problems and differ in functionality. An overview of
current functionalities was well mapped by Wouter Souffriau and Pieter
Vansteenwegen [1]. In this chapter, I analyze and describe different existing
approaches and solutions for the trip planning tasks, especially approaches
related to the automated tours generation. I use some concepts of these
approaches for my automated trip planning system designed in the following
chapters.

2.1 Trip planners

Several trip planning solvers have been developed to solve some variations or
specifications of a general trip planning task. These solutions variate from
the data used, the method used and the actual purpose in real-life problems.

The first step of solving the trip planning task - data gathering - might
affect significantly the chosen method of the following path finding step.
The approach Photo2Trip [2] uses geo-tagged photos to extract interesting
places on the map with an appropriate profit estimation for the target user.
Results of this approach show that it is successful in several popular areas.
On the other hand, the interesting segments (paths of interest) are not so well
identified from photos. Another approach [3] uses a rich database of driving,

3

2. Related work.....................................
cycling or hiking trajectories to find the most popular route. The emphasis is
on the creation of the network with transfer probabilities between nodes. To
a great extent, this approach also depends on the quality of data from which
the network is derived. Moreover, user interactions and possibilites of some
specific, additional requirements and constraints are limited.

Apart from these approaches, other successful methods exist and according
to their common features can be divided into these groups:.Optimization based approaches. Interactive based approaches. Expert system based approaches. Data mining based approaches

2.1.1 Optimization based approaches

One of the most common approaches is looking at the trip planning task
as at an optimization task solving the Orienteering Problem (OP) [4].
Many exact and heuristic algorithms have been developed to solve some
specific versions of the orienteering problem applied to the trip planning.
The main idea is to transform the real map data input to a simplified model
corresponding to an instance of the orieteering problem and then use an
algorithmical approach to solve this instance. I have also used this approach
and designed an algorithm for the modified version of the basic orienteering
problem defined in the following chapter.

Approaches solving the OP can be divided into two groups depending
on whether they guarantee an optimal solution. Solvers which find the
optimal solution are usually based on the linear programming (e.g. [5]), the
dynamic programming (e.g. [6]) or branch and cut techniques (e.g. [7], [8]).
The disadvantage of these solvers is the execution time which grows almost
exponentially with the number of input locations, and these solvers are not
able to process hundreds of locations within a few seconds.

The paper [6] focuses on customized tour recommendations in urban areas
described as the TourRec problem, which is a variation of the OP with
additional constraints. Two algorithms were designed to solve two types of
this problem. The first algorithm - AdditiveTour - maximizes the sum of
profits from the visited locations, therefore it maximizes the overall quality
of the tour. On the other hand, the second algorithm - CoveringTour - finds

4

.................................... 2.1. Trip planners

diverse routes that offer a wide range of associated attractions and activities.
Both algorithms use dynamic programming approaches which find optimal
solutions but their execution time hardly depends on the number of input
locations and number of input constraints (e.g. that one location must preceed
another). According to the evaluation of these algorithms in [6], solutions
(tours) are computed in real time for tour sizes up to 10 locations.

The other group of solvers contains approaches which do not guarantee
finding the optimal solution and are usually based on some heuristics or
approximation techniques. These solvers achieve better results for real-life
problems related to the trip plannig since execution times are much shorter
and the quality of results is still satisfactory. See detailed analysis of these
approaches in the Orienteering Problem section below.

2.1.2 Interactive based approaches

These types of planners (e.g. Trip@dvice [9], Negotiation with a Software
Travel Agent [10], INteractive TouRist Information GUidE (INTRIGUE)
[11]) are based on gradual improvements of the initial solution according
to user-added additional goals and constraints. Typically, the user defines
some initial preferences and goals of the trip planning, after that the system
generates an initial feasible solution and provides the user with this solution.
Then the user can accept this solution or add/modify some constraints or
goals and request the recalculation. The system generates another feasible
solution respecting all constraints. These systems are partly dependent on
the user’s experience with the trip planning and it is more time-consuming to
produce a trip itinerary which the user is satisfied with. The system designed
in this thesis provides efficient recalculations which allow to use this system
as an interactive based trip planner.

2.1.3 Expert system based approaches

Since the trip planning is a sort of a recommendation system for trips, several
expert systems have been developed to solve the trip planning task. These
systems often provide a variety of requirements defined by users. The approach
evaluated in [12] searches trips according to the user’s interest in specific
activities (e.g. historic sites, outdoor activities, nature). These systems are
usually mainly focused on some specific map domains, e.g. an expert system
described in [13] has been developed specifically to solve the problem for 5

5

2. Related work.....................................
cities in Belgium. This thesis focuses on developing a general trip planning
system for any map input, therefore an expert system is not preferred solution
because of data demands.

2.1.4 Data mining based approaches

These planners use algorithms based on data mining which relies on well-
described and rich map databases with scored locations and paths. These
methods such as the Trip-Mine [14] or mining from trajectories [15] provide
very good results, but the demand for a good data source does not allow to
use this approach on the whole Earth map input, since some unpopular (but
still interesting) parts of the Earth are very sparsely documented to be usable
for this approach.

2.2 Map domains

Many complex systems have been created to solve or at least simplify trip
planning tasks. Nevertheless, the majority of these systems is specialized
for a specific map domain or works only under some hard constraints, not
suitable for all real-life problems.

The general trip planning task for an arbitrary map input, each travel
method and each optional constraint is very hard to define. Therefore, the
trip planning is often divided into some groups of planning tasks where each
group is somehow specialized for a specific domain of usage.

One of the most popular trip planning domains is the city trip planning.
For these tasks, the typical element is a very dense map graph with a
huge amount of roads and paths, sometimes in a multilayer perspective (e.g.
navigation in a shopping center). These tasks also have a significant number
of points of interest, typically with some additional constraints. The typical
contraint of these points in the city planning tasks are for example time
windows, meaning that each point of interest can be visited only in a specified
time interval. Paths of interest, in this thesis called segments, do not occur
so often in this planning domain.

6

................................. 2.3. Orienteering Problem

The difference from the city trip planning is the planning of routes
in a landscape. For these tasks, the typical map input is much less dense,
but it is much larger. The number of points of interest is usually smaller than
in the city trip planning but distances between them are much longer. We
put more emphasis on paths we take between these points. We somehow have
to distinguish between "nice" and "ugly" ways from the user’s perspective.
And also the distance between two locations in the landscape can vary a lot
for two different users, much more than in the city planning tasks.

This paper focuses on the design of the general trip planning task solver,
without restrictions on a map domain. But since the trip planning in a land-
scape requires more emphasis on segments, this is the main map domain
I focused on and used for the testing.

2.3 Orienteering Problem

The general tourist trip planning task was described in [16] as the Tourist
Trip Design Problem (TTDP) with some of its variations and extensions.
The Orienteering Problem (OP) is the most basic version of the TTDP. Its
generalization to a multiple-day trip planning is known as the Team OP
(TOP) [17].

Many approaches have been proposed to solve the OP. This thesis combines
several concepts of existing approaches to solve the modified version of the
basic OP defined in the following chapter. Two main requirements for the OP
solver for the planning task defined in this thesis are the modifiability and
the real-time processing. The first requirement serves for the possibility
of adapting the algorithm to the increasing number of constraints, since the
trip planning is a complex task and many different improvements of the
designed system might be added later. The possibility to include a new
feature/constraint without losing the algorithms efficiency is essential. The
second requirement reflects the demand for the real-time request-respond
communication with the user. The system should be able to provide a trip
planning solution within a few seconds to be effective and useful for the user.

The first solution for the OP was proposed by Tsiligirides in 1984 [18], where
he described two heuristics (S-Algorithm and D-Algorithm) and evaluated
their accuracy on several illustrative problems. Since then, these problems
have become a good comparison tool for newer approaches. I have used some
of these illustrative problems to test a part of my algorithm, see chapter 7.

7

2. Related work.....................................
Another approach presents the center-of-gravity heuristic [19]. The initial

solution satisfying all OP constraints is constructed by the insertion heuristic.
Then two steps are repeated: improving the solution by applying the cheapest
insertion with the 2-OPT algorithm and the creation of a new route according
to the sorted ranked locations with respect to the center of gravity. I have
used the insertion heuristic concept for the creation of the initial solution in
my algorithm.

An efficient four-phase heuristic to solve the OP was proposed in [20]. The
four phases are termed vertex insertion, cost improvement, vertex deletion and
maximal insertions. The first phase constructs an initial solution based on the
relaxed travel budget constraint. The next phase improves the solution using
the 2-Opt and 3-Opt algorithms from Lin and Kernighan [21] [22]. The third
phase removes certain vertices from the tour in order to make room in the
budget constraint. These three steps are repeated until a stopping criterion is
met. After that, the final fourth phase improves the solution, attempting to
insert as many of the remaining unvisited vertices in the sequence as possible.
Results show that this heuristic finds near-optimal solutions within a few
seconds. A similar solution proposed in [23] presents an effective heuristic
which is also based on the construction of some feasible intital solution and
then the modification of this solution using two-point exchange and one-point
movement operations. The difference is that these phases are processed on the
set of tours, which provides a richer exploration factor.

Another approach to solve the OP was proposed by Sevkli and Sevilgen [24]
and uses techniques based on the Variable Neighborhood Search (VNS). This
heuristic consists of four operations: point insert, points exchange, sub route
insert, and sub routes exchange. These operations are then repeatedly applied
starting from the initial solution in the form of an advanced local search
procedure. I have used some parts of this concept for my trip planning solver
designed in the following chapters.

Even the basic trip planning task is in practice slightly different from the
OP. Two solutions of a trip planning task modelled as an OP might not be
equally rated, even if their profit is the same. For example, the user might
prefer the shorter solution. This requirement can somehow be included in the
OP heuristic mechanism, but the second option is to use some post processing
algorithms made for the Traveling Salesman Problem (TSP). One of them is
the 2-OPT algorithm described and tested in [25]. Another option is to use
some evolution approaches and use the tour length value as a criterion for
the selection of better tours. I have used this approach in my system.

The approach by Gavalas [26] proposes the cluster-based heuristic for
the Time Dependent Team Orienteering Problem with Time Windows (TD-

8

............................. 2.4. Summary of used approaches

TOPTW) which can be used to model several real-life problems, especially
useful for the public transport planning. The heuristic also uses the combi-
nation of operations such as shake, shift, replace and provides high quality
results for up to 0,5 seconds considering topologies of 113 POIs.

2.4 Summary of used approaches

A basic trip planning task can be easily modelled as the Orienteering Problem
(OP) [4] for which many solvers have been designed. The trip planning task
with points and segments of interest defined in the following chapter can be
modelled as an extended OP. The Tour Searching algorithm for the Automated
Trip Planning System (ATPS) designed in this thesis, and solving this task,
is based on famous optimization based heuristic solutions for the OP, the
Variable Neighborhood Search (VNS) [24] algorithm, the insertion heuristic
[19] and additional evolution approaches [27]. For the final evaluation of the
system, an optimal algorithm is designed for the ATPS as an Integer Linear
Programming (ILP) program based on the OP ILP solutions [5] and [28]. The
ATPS is designed with focus on the Tour Searching algorithm which provides
many additional features for the purpose of trip planning tasks in exchange
for optimality. However, the optimal ILP algorithm can be incorporated into
the system to produce optimal solutions of the defined task.

9

10

Chapter 3

Problem specification

In this chapter, I deduce simplifications of the real world planning mechanisms
and then produce the definition of my trip planning task. This specification
should work as an input for the automated trip planning system designed
in the following chapter.

To find the required model of a trip planning process, let’s ask a simple
question: How do we plan a trip if we look at a map? Firstly, we propably
have some prior knowledge about the surroundings, so we know where some
interesting places are. In addition to this prior knowledge, we can extract
some information from the map itself. Then we are designing a tour, trying
not to break any of these basic rules:..1. We want to start and end at desired locations...2. We want to finish the tour within an expected time span...3. We want to visit the most interesting places...4. We want to go along the most interesting paths.

The 1st and 2nd rule are simple not to violate if we know how to estimate
the time demand. On the other hand, the 3rd and 4th rule are not so easy
to guarantee, since we have to check every possible combination of visited
places and paths in order not to forget anything. These are the steps which
the automated trip planning system could help with. Any solution of the task

11

3. Problem specification
defined below will guarantee that rules 1 and 2 hold. The optimal solution
will guarantee that rules 3 and 4 hold as well.

3.1 Map model

The main input for the planning task are map data. Many approaches have
been developed for map representations. Since the trip planning is a sort
of a map navigation task with some specific constraints and goals, I use the
classical graph representation with nodes corresponding to GPS locations
and edges representing traversable ways connecting these GPS locations.

Definition 3.1 (Node)
Let v be an arbitrary place on the Earth identified by the latitude(φ) and
the longitude(λ), then v is called a node.

The node is in practice also characterized by a list of optional tags which
describe this location (e.g. viewpoint, mountain challet, hill peak etc.).

Definition 3.2 (Edge)
Let e be a traversable path between some pair of nodes, then e is called an
edge.

Definition 3.3 (Map distance function)
Let e be an edge connecting two nodes with GPS coordinates (φ1, λ1) and
(φ2, λ2), then l is a map distance function and its value is according to the
Spherical Law of Cosines [29] calculated as follows:

l(e) = R · arccos(sin(φ1) · sin(φ2) + cos(φ1) · cos(φ2) · cos(∆λ))

where R ≈ 6371 is the approximation of the Earth radius in km, φ1 and
φ2 are the latitudes and ∆λ = λ2 − λ1 is the difference of longitudes.

Definition 3.4 (Map)
Let mapM = (V,E, l) be a connected multigraph with oriented weighted
edges, where V is a set of nodes, E is a set of oriented edges, l is a map
distance function which assigns a nonnegative value to each edge equal to
the distance between two GPS coordinates.

To model the real world using a map model as realistic as possible, but with
enough simplicity to be usable in the planning task, the following requirements
hold for the map:.M is oriented: I allow existence of ways which can be traversed only

in one direction, even when walking (e.g. one way cable car, secured

12

..................................... 3.1. Map model

mountain paths, via feratas etc.). Two way paths are modeled as two
one way paths..M is multigraph: I allow multiple way existence between two GPS
coordinates (e.g. one corresponds to road, the second for a sidewalk, but
both start and end at the same GPS coordinates)..M is connected: There is no reason to allow selection of two mutually
unreachable nodes, therefore I assume that the map is a connected graph.

For practical reasons of the trip planning task I introduce an enhanced
map model where for each edge, a time travel duration value is assigned.

Definition 3.5 (Map with travel duration function)
Let M be a map, then Md is a map with the travel duration function
d : E → R+

0 which assigns a nonnegative value to each edge on the map. This
duration represents the time of travel along this edge with respect to this
travel duration function.

In practice, each travel duration function is identified by a travel method
(e.g. hiking, cycling, ...) or a user group (e.g. athlete, senior, ...) which allows
to adapt time traversals for the specific purpose of the planning task.

Definition 3.6 (Point of interest = Poi)
Let’s say that a node v in theMd is Poi, if it has a profit score profit(v) ∈ R+

0
and a time duration duration(v) ∈ R+

0 . I denote by POI the set of all Poi
nodes in the map.

The profit score expresses the attractiveness of this place (node). In other
words, how much the user wants to visit this place.

The time duration expresses how long it takes to visit this place (node). In
other words, how long it takes for the user to fully obtain the profit score
value.

Definition 3.7 (Segment of interest = Soi)
Let Soi denote a path s = (v0, e1, v1, e2, ..., ek, vk), where vi, ei are nodes
and edges in the Md, respectively, which has a profit score profit(s) ∈ R+

0 .
I denote by SOI the set of all Soi paths (segments) on the map.

The profit score of a Soi expresses the attractiveness of the path. In other
words, how much the user wants to go along this path.

The length of a Soi is calculated as the sum of lengths of edges in the path
length(s) =

∑k
i=1 l(ei).

The travel duration of traversing a Soi is calculated as the sum of travel
durations of edges in the Soi, duration(s) =

∑k
i=1 d(ei), according to the

13

3. Problem specification
chosen travel duration function d. The travel duration of traversing some
part (subpath) of the Soi is calculated similarly, by omitting unvisited
edges in the sum.

3.2 Trip planning task

The basic trip planning task with points of interest (POI) and a time budget
can be modeled as the Orienteering Problem [4]. I propose an extended trip
planning task including segments of interest (SOI) which can better describe
several real-life problems related to the tourist trip planning.

Definition 3.8 (Trip planning task with POI and SOI)
Let U = (Md, vs, vg, POI, SOI,B) be a trip planning task with points and
segments of interest, where.Md is a map with a travel duration function d,. vs ∈ V (Md) is a start node of the trip,. vg ∈ V (Md) is a goal node of the trip,. POI ⊆ V (Md) is a set of points of interest,. SOI is a set of segments of interest (paths on the map Md),. B ∈ R+

0 is a time budget of the trip.

Definition 3.9 (Tour)
A tour T = (vs, e0, v1, e2, v2, ..., vk, ek, vg) is a path on the map Md from vs to
vg. I denote by V (T) and E(T) all nodes and edges in the tour T , respectively.

Definition 3.10 (Feasible tour)
The tour T is feasible if∑

e∈E(T)
d(e) +

∑
v∈P OI∩V (T)

duration(v) ≤ B

Definition 3.11 (Optimal tour)
The optimal tour T ∗ is a feasible tour for which

T ∗ = argmax
T

∑
s∈SOI∧s⊆T

profit(s) +
∑

v∈P OI∩V (T)
profit(v)

The s ⊆ T relation between a segment s and a tour T is a hard constraint,
which allows to gain profit only if the segment s is a subgraph of the tour T .

14

.................................. 3.2. Trip planning task

In other words, it is completely included in the tour T . But for the purpose
of better modelling real-life problems, I have modified this constraint in the
following chapter to gain profit according to the size of the segment included
in the tour.

Definition 3.12 (Task solution)
A solution of the task U is any feasible tour T . The optimal solution of the
task U is the optimal tour T ∗.

vg

vs

SOI

POI

Figure 3.1: Visualization of an example instance of the trip planning task with
POI and SOI. Nodes and edges in this graph represent Md. A possible tour for
this task is highlighted in yellow.

15

16

Chapter 4

System design

In this chapter, I design the Automated Trip Planning System (ATPS) and
the Tour Searching (TS) algorithm which is the key part of the system.
I combine several concepts described in the related work chapter and present
a new approach which allows to process points of interest (POI) and segments
of interest (SOI) together. The designed ATPS solves the task defined in
the previous chapter and it can be used as an effective trip recommendation
system.

I introduce several main requirements for the ATPS which also characterize
the functionality of the system...1. The input for the ATPS is the trip planning task with POI and SOI...2. The output of the ATPS is a set of the best distinct feasible tours...3. The ATPS provides results for a given tour request in a few seconds...4. The ATPS provides fast recalculations for simple profit or time budget

updates.

The first requirement ensures that the ATPS is usable for any general trip
planning task with POI and SOI with the format described in the problem
specification chapter. The second requirement defines the main goal of the
trip planning task which is to generate a feasible tour (= trip which satisfies
the user’s demands). As an addition, the ATPS provides not only a single
tour for one tour request, but it provides a set of the best distinct feasible

17

4. System design
tours found. It means that the user has a pool of tours to choose from. The
third requirement ensures that the ATPS is usable for practical trip planning
applications when the user wants to get results for given trip requirements
almost in a real time. The fourth requirement ensures that the user has
the possibility to modify the profit of any point or segment of interest, or
change the time budget, and request an even faster tour recalculation. The
purpose of the ATPS is to provide an effective and interactive platform which
recommends a variety of trips according to the user’s preferences. The ATPS
assumes that the user expresses their preferences with an input tour request
and additional profit updates for specific Poi or Soi.

4.1 Solution overview

Part 1
Map preprocessing

Part 2
Tour calculation

Map

Points of interest
POI

Segments of interest
SOI

Resulting tours

Reduced Map

Duration Matrix
DM

Profit Matrix
PM

Input tour requirements:
start location
goal location
time budget

Tour Searching
algorithm

Figure 4.1: The general overview of the ATPS.

The general overview of the ATPS is described by the figure 4.1. The
trip planning process of the ATPS consists of two main parts. The Map
preprocessing part provides conversion of general map data with obtained
sets POI and SOI into a simplified reduced map additionaly described by two
matrices: the duration matrix and the profit matrix. The Tour calculation
part is based on the Tour Searching algorithm which is executed on this
reduced map to find the best feasible tours for specific input requirements.
The main reason to split the trip planning process into these two parts is
in efficiency savings. Each part is designed with respect to the expected
frequency of executions. I assume that the map preprocessing is executed
rarely, only when a new map data are needed. On the other hand, the tour
calculation is executed frequently with every tour request from the user. This
mechanism allows to pre-compute some data structures which are efficiently
used by the Tour Searching algorithm.

18

.................................. 4.2. Map preprocessing

4.2 Map preprocessing

This part of the ATPS provides transformation of general map data into
simplified data structures used as an input for the tour calculation processes.
The figure 4.2 shows the general workflow performed in this part.

Map

Extraction of segment
division points

Map reduction
process

Points of interest
POI

Segments of interest
SOI

Segment Division
Points = SDP

Visit Points = VP

Duration Matrix
DM

Profit Matrix
PM

Calculation of the
profit matrix

POI ∪ SDP

Reduced Map

Figure 4.2: The workflow of the map preprocessing.

The main input for the map preprocessing is any map with the format of
Md defined in the problem specification chapter. Another inputs are the set
of points of interest POI and the set of segments of interest SOI also with
the format defined in the chapter 3. The output are three data structures:
a simplified map model (called the reduced map) and two matrices which
additionally describe some relations in this map. Now follows the detailed
description of all processes needed to accomplish this transformation.

19

4. System design
4.2.1 Extraction of segment division points

This process takes as an input all individual segments from the SOI and
extracts specific nodes which are relevant for the Tour Searching algorithm.
These nodes from segments correspond to turning points on the map. In other
words, these nodes are important from the perspective of a planning task
since a traveler might change the direction in this location.

Definition 4.1 (Segment Division Points = SDP)
Let SDP be a set of nodes from segments s ∈ SOI which were selected by
an extraction strategy.

Three different strategies can be used to solve this extraction problem
based on input conditions:..1. If the whole segment has to be traversed to obtain its profit value, then

only two segment division points are extracted: the start and the end
node of the segment path...2. If we allow a traveler to join and leave a segment at any location and
obtain some part of the segment profit, then segment division points are
all nodes on the segment which are crossroads. Meaning that more than
two edges are incident with this node in the graph...3. If we allow a traveler to join, leave and turn back at any location on the
segment and obtain some part of the segment profit, then segment
division points are all nodes on the segment.

The first strategy is very strict and does not desrcibe real-world situations
very well. I do not use this strategy despite the fact that it simplifies the
tour calculation process because of a smaller number of points considered.

The third strategy models perfectly the real world but the number of points
considered hardly depends on lengths of segments. With long segment paths,
the tour calculation becomes easily untractable because of the large search
space.

The second strategy is somewhere between these two variants. For an aver-
age map input, the size of SDP is much smaller than using the third option,
but it allows to find much more realistic tours on the map because of the
possibility to join/leave the segment.

20

.................................. 4.2. Map preprocessing

4.2.2 Map reduction process

This process creates a simplified map model by ommitting all nodes which
are irrelevant from the trip planning perspective. This simple model is
an abstraction of the original map and it is called the reduced map.

Definition 4.2 (Visit Points = V P)
V P = POI ∪ SDP

Definition 4.3 (Reduced Map)
The reduced map of Md is a complete graph with oriented weighted edges for
which the following holds:. Nodes are visit points (V P) of Md.. An oriented edge from a node i to a node j on the reduced map cor-

responds to the shortest path between these two nodes on the original
map Md with respect to the map duration function d. The length of this
edge is equal to the length of this path in the original map Md.. For any path on the reduced map a corresponding shortest path on the
original map exists.

The construction of the reduced map is done by computing shortest paths
for every pair of nodes in the V P . The shortest path from a node i to
a node j is computed using the A* algorithm. The admissible heuristic is
chosen as the expected travel duration bewteen two GPS coordinates using
the map duration function d. The time complexity is in the worst case
|V P |2 · O(|E| + |V |log|V |). Since the size of V P is much smaller than the
number of nodes |V | on the map, other approaches such as the Floyd Warshall
algorithm are not feasible because of the time complexity O(|V |3).

The creation of the reduced map may be affected by additional trip require-
ments, such as ignoring some nodes or edges with specific tag (e.g. ignore all
edges which are not bike paths). A specific reduced map is created for each
special trip condidition. The shortest paths are used because I assume that
from two different paths with same profits the user prefers the shorter one.

Definition 4.4 (Duration Matrix = DM)
Let Md be a map and V P be a set of visit points in this map. Let DM =
|V P | × |V P | be a matrix, where element DMi,j is the duration of traversing
the shortest path from a node i to a node j on the map Md with respect to
the map duration function d. Elements DMi,i are set to zero. DM is called
the duration matrix.

The duration matrix (DM) can be efficiently computed within the con-
struction of the reduced map. We just sum up all edge duration values along
the shortest paths found for each pair of nodes.

21

4. System design
4.2.3 Calculation of the profit matrix

The profit value obtained by traversing some segment on the map has to
be captured on the reduced map. A data structure called the profit matrix
is designed to define the profit value obtained by traversing an edge on the
reduced map.

Definition 4.5 (Profit Matrix = PM)
Let Md be a map and V P be a set of visit points on this map. Let PM =
|V P | × |V P | be a matrix, where element PMi,j is the profit obtained by
traversing the shortest path from a node i to a node j on the map Md with
respect to the map duration function d without visiting any other node from
V P . Elements PMi,i are set to zero. PM is called the profit matrix.

The construction of the profit matrix (PM) is done by following the shortest
path for each pair of nodes in the V P and evaluating the profit obtained
from traversing segments from the SOI.

I assume that if a tourist visits a part of a segment, the profit obtained
from this segment should not be zero just because he missed another part of
this segment. From this assumption, I approximate the profit obtained from
traversing a subsegment s′ of a full segment s with the following formula:

profit(s′) = length(s′)
length(s) · profit(s)

This equation satisfies the condition that if a tourist visits the whole
segment, they get the full profit value from this segment.

A special case can occur if the shortest path connecting two adjacent
segment division points is not a part of this segment. In this case, a new
segment division point is added in the middle of the segment path. It repeats
until the shortest paths between all adjacent segment division points are also
the paths on the segment.

22

................................... 4.3. Tour calculation

4.3 Tour calculation

This part of the ATPS performs major calculations which find the most
profitable tour satisfying user-input requirements. It is designed to provide
good quality results for any tour request within a few seconds. The Tour
Searching algorithm is the key component of this process. As an extension,
the algorithm is designed to produce also additional top K distinct tours so
that it easily provides a pool of different best trips for the user. The figure 4.3
describes the whole workflow.

Reduced Map Duration Matrix
DM

Profit Matrix
PM

start location
goal location
time budget

Creation of the initial
individual

Population

Selection

Local search

Candidate

New individual

Evaluation

Preservation rule
check

Best feasible tour

Set of best distinct
feasible tours

Data structures extension

Map

Tour Searching
algorithm

Preserve the
new individual

Figure 4.3: The workflow of the Tour calculation and the Tour Searching
algorithm.

The main input for this process are three data structures created in the
previous part (a reduced map, DM , PM) and user tour requirements (a start
and a goal GPS location, a time budget). Before the Tour Searching algorithm
is executed, these data structures are extended by two special visit points
representing the start and the goal GPS location. For this extension, the
original map is also needed as an input to place these points correctly. After

23

4. System design
that, an initial feasible solution is created and the Tour Searching algorithm
cycle starts. When the end condition is met, the searching process is stopped
and a set of the best distinct feasible tours is obtained containing the best
feasible tour found so far.

4.3.1 Data structures extension

To find a tour from a specified start and a goal location, a simple extension
has to be made to the data structures from the map preprocessing part of
the ATPS. These extended data structures work as an input for the Tour
Searching algorithm. Two new visit points are created for the start and
the goal GPS coordinates provided by the user. These two nodes are then
incorporated to the reduced map and to both matrices.

The following operations are made to create the extended data structures:. Two new visit points are created for the start and the goal GPS coordi-
nates provided by the user.. All shortest paths in the Md are computed from the start visit point to
all other visit points in the reduced map.. All shortest paths in the Md are computed to the goal visit point from
all other visit points in the reduced map.. The start and the goal visit points are added to the reduced map con-
nected with all other visit points.. The DM is extended by two rows and two columns for the start and
the goal visit point with durations equal to the duration of computed
shortest paths.. The PM is extended by two rows and two columns for the start and
the goal visit point with zero values since no segments are defined from
these nodes.

A special case where the start location is the same as the goal location
is modelled as two nodes with the same GPS coordinates. From now on,
I assume that the reduced map, DM and PM are extended by the start and
the goal node.

24

................................... 4.3. Tour calculation

4.3.2 Tour Searching algorithm

The Tour Searching algorithm (TS) uses evolutionary concepts combined
with basic ideas of the VNS algorithm [24]. It provides a mechanism to search
efficiently the whole state space of possible feasible tours to find the most
profitable tours. In the evolutionary naming conventions, this process of
searching is also called the breeding of individuals. I design an individual
which describes an arbitrary feasible tour. A set of these individuals is
called a population. The whole process of the TS algorithm is described
by the algorithm 1. The following sections describe all elements and procedures
used in this algorithm.

Algorithm 1: Tour Searching
Input: E - ext. data structures, B - time budget, calculation time
Output: T - set of tours
u ← construct the initial individual
P ← 〈u〉 // the initial population
while calculation time not exceeded do

c ← select a candidate from P
s ← select a random shake operation (1, 2 or 3)
l← 1
lmax ← 3 // maximum number of shake operations
while l ≤ lmax do

c′ ← shake the c using the operation s
c′′ ← modify the c′ by local search operations
if the candidate c′′ should be preserved then

P ← insert the candidate c′′ to the P
l← 1

else
s ← select an unused shake operation
l← l + 1

end
end

end
T ← extract tours from P
return T

The TS algorithm starts with the creation of the initial individual (see
algorithm 2). Then the evolution loop is performed as follows: A candidate
individual is selected from the current population according to the selection
rule. This candidate is modified using shaking and local search operations
based on the VNS algorithm [24]. After these modifications are done a
new individual is obtained. This individual is evaluated to find the profit
value of the tour it represents. After that it is discarded or added to the

25

4. System design
population according to the preservation rules. This process is repeated until
the calculation time is not exceeded. When this is completed, the current
population contains the best individuals found so far, therefore it represent
the set of the best tours found so far.

4.3.3 Individual

Each individual represents a unique tour on the reduced map for which
a feasible tour on the map exists. Therefore each individual encodes a solution
of the trip planning task with POI and SOI defined in the chapter 3.

Definition 4.6 (Individual)
An individual I = 〈i1, i2, ..., iw〉 is a vector of w indices of visit points from
the reduced map, where 0 ≤ w ≤ |V P | − 2. I denote by is, ig indices of the
start and the goal node, respectively. These two nodes are never in the vector
I.

Let Tk be the vector of the first k indices of visit points from the individual
I, completed with the index of the start node is and the goal node ig as
follows

Tk = 〈is, i1, i2, ..., ik, ig〉

then the vector Tk represents a tour on the reduced map starting at the
node is, visiting nodes i1, i2, ..., ik in this order and ending at the node ig.

The duration of the tour Tk is calculated as the sum of durations between
each adjoining pair of nodes plus the sum of durations of each visit point
(zero for no Poi).

duration(Tk) = DMis,i1 +
k−1∑
j=1

DMij ,ij+1 +
k∑

j=1
duration(V Pij) +DMik,ig

The profit of the tour Tk is calculated as the sum of profits between each
adjoining pair of nodes plus the sum of profits of each visit point (zero for no
Poi).

profit(Tk) =
k−1∑
j=1

PMij ,ij+1 +
k∑

j=1
profit(V Pij)

26

................................... 4.3. Tour calculation

Let B be an input time budget and Tk, Tk+1 be two tours so that these
two conditions hold together

duration(Tk) ≤ B and duration(Tk+1) > B

then the tour Tk is called the most profitable feasible tour represented by
the individual I. Since for each feasible tour on the reduced map a feasible
tour on the map exists, there exists a feasible tour T ′k on the map which is
represented by the individual I. For a special case where duration(T|V P |−2) ≤
B, the most profitable feasible tour is T|V P |−2.

For an individual I I denote by profit(I) and duration(I) the profit and
the duration of the maximal profitable feasible tour it represents.

4.3.4 Creation of the initial individual

The creation of the initial individual is based on the construction of an initial
feasible tour using the greedy strategy, or in some papers called the insertion
algorithm ([20], [19], [18]). Indices of visit points in this initial tour are added
to the start of the individual vector I without the special indices is and ig.
All other indices of unvisited nodes are added to the end of this vector.

The creation of the initial feasible tour using the greedy strategy starts
with the most basic tour which immediately connects the start and the goal
node with the shortest path. This initial tour can be represented by an empty
individual I = 〈〉. A simple check confirms that the duration of this tour is
not greater than the time budget B, otherwise no feasible tour exists. After
that, a set A of all other available nodes is made. This set is a subset of all
nodes in the reduced map containing all reachable nodes. A node with an
index j is reachable if DMis,j +DMj,ig ≤ B.

After that we repeatedly select a candidate node from the set A and
insert its index to the individual vector I. This cycle ends if the set A
is empty or if we exceed the time budget. A candidate node is selected
by the proportion of the increased duration and the increased profit. Let
I = 〈i1, i2, ..., ik〉 be a current initial individual with k indices, c be an index
of a node from the set A and p, 1 ≤ p ≤ k be a position in the I. Then
I ′ = 〈i1, i2, ..., ip−1, c, ip, ip+1, ..., ik〉 is an individual created by insertion of

27

4. System design
the node index c to the position p. We find the node index c and the position
p for which

argmin
c,p

= duration(I ′)− duration(I)
profit(I ′)− profit(I)

Then we check whether the tour represented by the whole extended in-
dividual vector does not exceed the time budget. If not, we update the
initial individual I and continue with the loop, otherwise we stop the loop.
After that, indices of all unused available nodes are added to the end of the
constructed individual I. The algorithm 2 describes the whole process.

Algorithm 2: Construct the initial individual
Input: E - ext. data structures, B - time budget
Output: I - initial individual
if DMis,ig > B then

return no individual exists
end
I ← 〈〉
A ← set of reachable nodes
while A not empty do

c, p ← select a greedy candidate from A
I ′ ← individual I with inserted node c at position p
if duration(I ′) > B then

break
else

I ← I ′

end
end
append remaining available nodes from A to I
return I

4.3.5 Population

Instead of evolving a single individual only, a set of several distinct individuals
is evolved. This set of individuals is called the population. Using this approach,
I reduce the possibility of being stuck in a local optimum and I increase the
diversity of state space search. An additional benefit of this approach is that
the algorithm is breeding several distinct individuals (tours) at the same
time. The result of this calculation is not a single tour but a set of the best
distinct tours. Two rules have to be designed to use this evolution approach.
The selection rule defines how candidates are selected for local search

28

................................... 4.3. Tour calculation

improvements and the preservation rule defines which evolved individuals
are added and kept in the population.

Definition 4.7 (Population)
Let P be an ordered sequence of |P | individuals for which profit(Pi) ≥
profit(Pi+1), 1 ≤ i < |P | holds, then P is called the population. I denote by
the population limit the maximum number of individuals which can be in the
population.

Selection rule

The Roulette-wheel selection [30] is used to select an individual from the
population. Using this method, I favor individuals with a greater profit value
but I keep nonzero probability of selecting a less profitable individual to
extend the state space exploration.

Let P be a population of |P | individuals. The probability of selecting
an individual i is calculated as follows:

pi = profit(Pi)∑|P |
j=1 profit(Pj)

Preservation rule

The preservation rule defines which candidates are kept in the population.
Since my starting population is just a single individual (found by the algo-
rithm 2), this rule mainly defines the process of adding a new individual to
the population. For the purpose of avoiding being stuck in a local optimum
I keep only distinct individuals in the population. By distinct I mean that
they are not similar to each other.

Definition 4.8 (Similarity of individuals)
Let I1, I2 be two individuals and Tk1 , Tk2 tours which they represent. Let
S be the set difference of indices of nodes in these tours and R ∈ 〈0, 1〉 be
the similarity constant. Then if |S| < R · max(k1, k2) I denote these two
individuals as similar.

29

4. System design
The process of adding a new individual I to the population proceeds as

follows:..1. Determine if a similar individual Is already exists in the current popula-
tion.. If Is exists and profit(I) > profit(Is), then replace Is by I in the

population.. If Is exists and profit(I) = profit(Is) and length(I) < length(Is),
then replace Is by I in the population.. If Is does not exist, then insert I to the appropriate position in the
population according to the profit value. The best individual is
always kept on the top position...2. If the population size is over the limit, remove the least profitable

individual.

4.3.6 Operations

Modifications made to the candidate individual are of two kinds: shake and
local search operations. Two shake operations are: move subsection and
swap two subsections. Since these operations perform wider changes to the
individual, I consider a special third shake operation which does no change
to the individual and allows to explore the nearest neighbors. Local search
operations are divided into two group. Uninformed operations: move one
node, swap two nodes, and informed operations: smart move of one node,
smart move of a successor. These operations slightly modify an individual to
perform uninformed or informed exploration of the nearest neighbors. Here
are the details of how each operation is performed:

. Shake operations..1. Move subsection
A randomly chosen subsection is moved to a new position in the
individual. Using three random indices 1 ≤ j1 < j2 < j3 ≤ |I|,
a modification is made by moving the sequence of nodes at positions
l, j1 ≤ l ≤ j2 after the position j3. Alternatively, with the same
probability, the sequence of nodes at positions l, j2 ≤ l ≤ j3 is
moved before the position j1...2. Swap two subsections
Two randomly chosen subsections are swaped in the individual.
Using four random indices 1 ≤ j1 < j2 < j3 < j4 ≤ |I|, a modifi-
cation is made by exchanging the sequence of nodes at positions
l, j1 ≤ l ≤ j2 with the sequence h, j3 ≤ h ≤ j4.

30

................................... 4.3. Tour calculation..3. No shake
Shake is not performed. No change to the individual.. Local Search operations..1. Move one node (uninformed)
A randomly chosen node is moved to a new position in the indi-
vidual. Using two random indices 1 ≤ j1, j2 ≤ |I|, j1 6= j2, a single
modification is made by moving a node at the position j1 after
a node at the position j2...2. Swap two nodes (uninformed)
Two randomly chosen nodes are swapped in the individual. Using
two random indices 1 ≤ j1, j2 ≤ |I|, j1 6= j2, a single modification is
made by exchanging a node at the position j1 with a node at the
position j2...3. Smart move of one node (informed)
A randomly chosen node is moved to the position where the exten-
sion in the duration between the neighboring nodes is the minimal.
A random index 1 ≤ j1 ≤ |I| chooses the node to move, after that
the position j2 is found for which the insertion of this node would
lead to the minimal increase of the tour duration...4. Smart move of a successor (informed)
For a randomly chosen segment node a missing successor is ap-
pended. A segment node with the highest index less than a ran-
domly generated index 1 ≤ j1 ≤ |I| is found. If it exists, the most
profitable segment successor is inserted after this node in the vector.
Alternatively, the most profitable predecessor is inserted before this
node.

The initial shake operation is selected at random and changed whenever the
modified individual is not added to the population. This means that it is not
better than any existing individual or it is similar to some individual in the
population. The local search operations are performed in groups as described
in the table 4.1. This approach with the selected probabilities is based on the
VNS from [24] and the effective heuristic designed in [23]. I have combined
and extended these approaches with the smart (informed) variations of the
operations which proved to be very efficient for this type of trip planning
task.

Group Operations Probability

uninformed move one node
swap two nodes 0,5

informed smart move of one node
smart move of a successor 0,5

Table 4.1: Operations performed during the local search procedure.

31

4. System design
4.4 Recalculation

The evolution approach used in my algorithm provides the possibility of the
calculation continuation. If another tour request is obtained and this request
has the same start and goal positions as the previous tour request, the new
calculation can be based on the previous results, therefore, it can produce
good quality results even in a shorter calculation time. This mechanism
allows to use the ATPS as an interactive platform for the user to adjust some
additional trip preferences. The diagram 4.4 shows the general workflow of
the recalculation process.

Part 2
Tour calculation

Resulting tours

Final tour
= found trip

The user finds
a suitable tour

Reduced Map

Duration Matrix
DM

Profit Matrix
PM

The user is not satisfied
with tours

Tour Searching
algorithm

Input tour requirements:
start location
goal location
time budget

Updated preferences:
POI profit value
SOI profit value

time budget

1st Update
data structures

Population

2nd Keep the population from the previous
calculation and re-evaluate all individuals

Figure 4.4: The general use case workflow of the recalculation process.

The calculation continuation can be used if the time budget has changed
or profit values of some Poi or Soi have changed. It also can be used if no
update has been made and we just want to increase the execution time of
the previous calculation. The recalculation based on these updated values is
performed in two steps.

Firstly, the data structures are updated based on new profit values. If the
profit value of a Poi has changed, the appropriate profit value is updated in
the reduced map for this Poi. This modification is performed in a constant
time. If the profit value of a Soi has changed, corresponding edge profits in

32

.................................... 4.4. Recalculation

the PM are updated according to this new profit value. This modification
takes at most O(n2) time with respect to the number of SDP in the updated
segment.

Secondly, the population from the previous calculation is used as a baseline
for the new tour calculation process. Since profits of individuals in this
population might changed, all these individuals are re-evaluated and sorted
according to their new profit value. Also, if the time budget has changed,
all tours of individuals in the population are extended or truncated (based
on the extension or shortening of the time budget), and all individuals are
re-evaluated and sorted according to their new profit value again.

After these steps are finished, the Tour Searching algorithm is executed
starting with this created population. The initial individual is constructed
and inserted to the population according to the preservation rules and the
evolution loop is started.

This mechanism assumes that the resulting tours for the updated task do
not very differ from the original task results. Therefore, we use previous
results as a baseline to efficiently spend the recalculation time on even deeper
exploration of possible better solutions.

33

34

Chapter 5

Optimal algorithm

In this chapter, I design the Basic ILP optimal algorithm to solve the trip
planning task with POI and SOI, mainly due to the evaluation of results
produced by the Tour Searching algorithm.

The TS algorithm designed in the previous chapter is a heuristic approach
which does not guarantee finding the optimal solution, but it provides many
additional benefits. Especially, it produces K distinct tours within a single
tour request, it guarantees a feasible solution at any point of time and it
processes huge input maps in a short amount of time. These are the benefits
which could not be achieved using current optimal approaches. On the other
hand, this optimal algorithm may work as a complement for the ATPS to
guarantee solving some small task instances optimally.

5.1 ILP formulation

I propose an Integer Linear Programming (ILP) formulation for the trip
planning task with POI and SOI. Formulations were created based on the ILP
solutions for the OP [5] and the Miller–Tucker–Zemlin Subtour Elimination
Constraints [28]. This solution assumes that the general task is transformed
into data structures according to the map preprocessing process of the ATPS
and that these data structures are extended by a start and a goal node.

35

5. Optimal algorithm
The following program assumes that the reduced map, the duration matrix

(DM) and the profit matrix (PM) were constructed containing N visit points.
The start visit point has the index 1 and the goal visit point has the index N .

max
N−1∑
i=1

N∑
j=2

xij(profit(V Pi) + PMij) (1)

N∑
i=2

x1i =
N−1∑
j=1

xjN = 1 (2)

N−1∑
i=1

xik =
N∑

j=2
xkj ≤ 1; ∀k = 2, ..., N − 1 (3)

N−1∑
i=1

N∑
j=2

xij(duration(V Pi) +DMij) ≤ B (4)

ui − uj + 1 ≤ (N − 1)(1− xij); ∀i, j = 2, ..., N (5)

2 ≤ ui ≤ N ; ∀i = 2, ..., N (6)

xij ∈ 0, 1; ∀i, j = 1, ..., N (7)

A binary variable xij is created for each edge in the reduced map, the
equation (7), N2 variables in total. The value xij equal to 1 means that
an edge from a node i to a node j is used in the tour, the value is equal to
0 otherwise. The constraint (2) ensures that exactly one edge incident with
the start and the goal node is used, respectively. The constraint (3) provides
the flow controll, meaning that for each node the number of incoming and
outcoming edges must be equal, and not greater than 1. The flow controll is
not considered for the start and the goal node. The constraint (4) ensures that
the duration of the tour is not greater than the time budget B. Constraints
(5) and (6) are the Miller–Tucker–Zemlin Subtour Elimination Constraints
[28] to remove potential inner loops. The objective (1) maximizes the overall
profit value of the tour which is the sum of profits of individual Poi and the
sum of profits from the profit matrix (PM) representing profits of individual
Soi.

The final optimal tour is decoded from variables xij = 1, representing used
edges on the reduced map for which corresponding shortest paths on the
original map exist.

36

Chapter 6

System implementation

In this chapter, I provide a brief description of all tools and techniques which
were used to implement and test the ATPS designed in the previous chapters.
Mainly I focus on two main parts of the whole realization process. Firstly,
the data gathering including the data preprocessing techniques. Secondly,
the implementation of the whole ATPS.

6.1 Data gathering

A reliable data source is one of the most important elements which affects
the trip planning results. Good maps are the main database of every trip
planning system. For ideal general trip planner, it should be as detailed
as possible, often updated, and it should provide data for as many places
on the Earth as possible. Many science groups and companies have created
a massive number of different maps where each map is usually designed
with emphasis on a specific purpose. The trip planning requires maps which
capture especially reliable road systems and locations related to the tourism.
Several commercial or open source solutions exist providing these maps. The
technology called Open Street Map (OSM) [31] is an open database project
which covers all these requirements, and additional tools are provided to work
with these data easily for the purpose of the ATPS.

37

6. System implementation
6.1.1 Open Street Maps

TheOSM [31] is an open database (accessible here www.openstreetmap.org) of
maps which cover the whole world with a detailed description of all locations
which are frequently visited by tourists. It is frequently updated by the
community of contributors from the public where each change is reviewed
with respect to the impact on systems currently using this database.

This technology provides an export in the osm file format which is an xml
file encoding the map graph with additional information about interesting
locations. For a specific bounding box described by two latitudes and two
longitudes, the Overpass API [32] generates the appropriate map file which
is a cutout of the global map. This API has been used to generate all map
files used for the testing of the ATPS.

6.1.2 Map file preprocessing

Since osm map files are provided in a rich form with all details, they are usually
unnecessarily large. The Java tool Osmosis [33] provides several commands
which manipulate the osm files so that these files can be easily merged and
resized, and it also provides the filtration mechanism of unnecessary data.

The script reduceOSMmap.bat (available in the attachment) was created
to automate the process of modification of raw osm files into reduced osm
files containing only data which are required for the ATPS. In average, this
filtration reduces the map graph size to 10 % of its original size.

A configuration file was designed to define sets POI and SOI in the osm
map file. It is a text file with the cfg extension with the content of the
followng format. Lines starting with POI define which nodes in the osm map
file are points of interest according to their tag information. The profit values
and the expected durations in minutes are set for these nodes. Lines starting
with SOI define segments in the osm map file which are the shortest paths
between two GPS coordinates. The profit values are set for these segments.

A template for the configuration file format:

POI <OSMTag> <OSMValue> <Profit> <DurationInMin>
SOI <SrcLng> <SrcLat> <DstLng> <DstLat> <Profit>

38

................................... 6.2. Implementation

6.2 Implementation

In this section, I briefly describe the architecture and all technologies used
for the implementation of the ATPS prototype. The final implementation
contains all key components of the whole system which can be easily extended
for a further deployment to solve specific real-life problems.

6.2.1 Architecture

My implementation of the ATPS is divided into three main layers: the client
web application, the server and the C++ Addon with a map database. See
the visualization of this architecture in the figure 6.1.

The topmost layer is the client web application written in the javascript
representing the user interface for the ATPS. It provides basic map visual-
ization using the MapBox API [34] and it enables to send trip requests and
display obtained results.

The middle layer is the server web application written in the javascript
using the NodeJS [35] technology. This layer controls the initialization of
the ATPS, handles currently loaded maps, stores pre-calculated data and it
provides communication between client side web applications and low level
C++ Addon.

The third layer is the C++ Addon which contains algorithms for the
main trip planning logic designed in the previous chapters. According to
designed ATPS parts the implementation of this addon is divided into two
main components: the map preprocessor and the trip planner.

During the implementation, I have mainly focused on the correct and
efficient functionality of the C++ Addon which can be further incorporated
into other systems using different technologies for server and frontend im-
plementations. The first and the second layer of this system were created
to test this addon properly and provide the idea of possible applications in
real-world scenarios.

39

6. System implementation

C++ Addon

Client

Web Application

Provides map visualizations with POI and SOI on the specified map.

Allows the user to define and send tour requests.

Displays found tours with additional details.

Server

NodeJS Application

Controls the ATPS initialization.

Stores pre-calculated data.

Provides communication between clients and the C++ Addon.

Map database = the set of .osm map data files and .cfg configuration files

Map Preprocessor

Implements the OSM
map file parsing and
preprocessing.

Trip Planner

Implements the Tour
Searching algorithm,
sends results for tour
requests.

Figure 6.1: The high level architecture of the implemented ATPS.

40

................................... 6.2. Implementation

6.2.2 User interface

The user interface implemented for the ATPS and represented by the client
side web application contains several key functionalities. It provides the map
visualization using the MapBox API [34] and it enables the user to send a
tour request and display obtained results. Any tour request contains a start
location of the trip, a goal location of the trip and a time budget (an expected
trip duration) in hours.

As an addition for the testing purposes the user interface enables to adjust
the calculation time of the Tour Searching algorithm so that the user can
increase the basic calculation time for possibly better results. After the
submission, the request data are propagated by the server application to the
C++ Addon.

The typical use case is as follows:..1. The user selects an appropriate map from the map database. After the
map is loaded it is displayed on the screen with all points and segments
of interest. The user can view the detailed description of any Poi...2. The user sets the start and the goal location of the trip using the drag
and drop markers or buttons on the left panel...3. The user changes the expected trip duration in hours...4. The user can adjust the calculation time of the Tour Searching algorithm.
The default value is 2 seconds...5. The user clicks the Find Trip button to submit the tour request...6. After the calculation finishes, all found trips are displayed on the left
pannel sorted by the profit value. For each trip, the length and the
duration of the tour is displayed. The user can hover the mouse over
these trips and view the tour on the map...7. If the user is not satisfied with the results, he can additionally adjust
the profit value for any Poi using the star rating and the system will
automatically provide updated results for this change.

41

6. System implementation

Figure 6.2: The user interface preview of the implemented ATPS. The map
visualization contains visited Poi (blue markers), unvisited Poi (orange markers),
Soi (light blue path) and the found tour (yellow path). The start and the goal
positions are highlighted with green and red markers. Each Poi can be viewed
in detail and a custom profit value can be set for it using the star rating.

6.2.3 C++ Addon

The third layer is an addon for the NodeJS [35] server which contains the
key logic of the ATPS. It is written in C++ especially to effectively use
the available computational power for time demanding operations. The
functionality of this addon can be divided into two main components. The map
preprocessor and the trip planner.

42

................................... 6.2. Implementation

Map preprocessor

The map preprocessor provides the functionality to load and parse the osm
map data file with its configuration file and create a graph representation of
the map. The largest connected component is found in this graph using the
DFS algorithm to eliminate unreachable subgraphs. After that it performs
the whole map preprocessing part of the ATPS and creates data structures
for the tour calculation process: the reduced map, the duration matrix and
the profit matrix. These data structures are implemented as three 2D arrays.

Trip planner

The trip planner performs the whole tour calculation part of the ATPS. It
implements the data structure extension and an algorithm which finds tours
in these data structures. The ATPS is based on the Tour Searching heuristic
algorithm, but the optimal ILP algorithm can be incorporated to the system
to obtain optimal tours with loss of advantages of the heuristic algorithm.

The Tour Searching algorithm is implemented in the OPSolver class of
the system. Each individual is endoded as an integer vector and the population
is a vector of these individuals which can be replaced by a priority queue if
a significant number of individuals is used. Multithreaded implementation
allows to execute several runs of the Tour Searching algorithm at once and
gather the best result from these runs. This solution eliminates majority of
possible suboptimal results returned to the user because of the algorithm
being stuck in a local optimum.

The Basic ILP optimal algorithm was implemented using the Gurobi
optimizer [36] and is attached as a separate project which can be incorporated
into the ATPS.

43

44

Chapter 7

Testing and results

The testing of the ATPS is performed using two different approaches. The first
approach called the algorithm evaluation uses specially designed artificial input
instances inspired by the traditional orienteering problem test benchmark.
The goal of this testing is to compare results of the Tour Searching algorithm
with optimal solutions from the Basic ILP algorithm. The second approach
performs an overall testing of the ATPS on real map data with focus on
real-life problems. In this chapter, both approaches are described and results
obtained are presented.

All experiments were executed using the AMD Ryzen 5 3600X 6-Core
Processor. The Gurobi optimizer for the Basic ILP algorithm was executed
on 12 threads and the Tour Searching algorithm was executed on 8 threads
for these experiments.

7.1 Algorithm evaluation

This testing approach is specially designed to test the main unit of the
ATPS, the Tour Searching algorithm, compared with the optimal Basic ILP
algorithm. This evaluation performs testing to confirm that the TS algorithm
provides valid results of sufficient quality, the results are getting better with
the increasing calculation time and also to measure how close results are to
the optimum.

45

7. Testing and results
7.1.1 Custom test benchmark

For the purpose of this testing, a custom test benchmark set was created.
Since my trip planning task with POI and SOI defined in the chapter 3 is
an extension of the classic OP task [4], I have created sample test instances
based on the OP benchmark instances for 32-locations problem created by
Tsiligirides [18]. This original benchmark set corresponds to my task if no
segments were considered. I have extended this 32-locations problem by 6
segments with different lengths and profits, so it contains 52 visit points in
total. I refer to this test benchmark as 52-VisitPoints problem. The placement
of points and segments of interest in this problem is shown in the figure 7.1.
This new benchmark set should work as a comparison tool to verify that TS
algoritm provides near optimal results in a very short calculation time. It also
verifies that both my algorithms (TS, ILP) provide at least as good results
as algorithms used to solve the original OP benchmark by Tsiligirides [18].

To perform this testing, the benchmark runner component was implemented
for the ATPS. Using this runner, the Tour Searching algorithm or the Basic
ILP algorithm can be easily executed to solve any problem described by the
following file format:

POI SOI Benchmark test file definition
<TimeBudget>
POI
<X> <Y> <PoiProfit>
...
SOI
<SoiNodesCount> <SoiProfit>
<X1> <Y1>
<X2> <Y2>
...

An euclidean distances are considered in this problem and the travel
duration function d is equal to the map distance function l. For these test
instances, no duration time is considered for points of interest. The test
benchmark set for the 52-VisitPoints problem in this file format is available
in the attachment.

46

................................. 7.1. Algorithm evaluation

Profit
15
10
5

10
15

SOI

POI

Profit

tour

start goal

0

Figure 7.1: The visualization of the 52-VisitPoints problem. The left figure
shows POI and SOI with their profits which correspond to the data structures
format. The right figure shows a possible tour found by the Tour Searching or
the Basic ILP algorithm for obtained start and goal nodes and a certain time
budget.

7.1.2 Experiments and results on the test benchmark

The Basic ILP and the Tour Searching (TS) algorithms were executed to solve
the 52-VisitPoints problem for several time budgets. The TS algorithm was
set up with the population size 10, and the similarity constant R = 1/3, so it
provides up to 10 distinct tours within a single execution, if distinct tours
exist. The calculation time limit of TS algorithm was set to 30 seconds and
each execution was repeated 10 times to obtain average results. The table 7.1
shows the results. For each time budget (B) the profit value (Popt) and the
length of the optimal tour (Lopt) was found by the basic ILP algorithm in
the execution time T (in seconds). The Topt is the average time (in seconds)
when the TS algorithm found the optimal solution. Some values are missing
since the TS algorithm got stuck in some cases, so no optimal solution is
guaranteed. P2sec and P30sec are average profit values of best tours found
by the TS algorithm in 2 and 30 seconds. Details to all tours found in this
experiment are available in the attachment.

47

7. Testing and results
Basic ILP Tour Searching

B Popt Lopt T (sec) Topt(sec) P2sec P30sec

5 10,00 4,14 0,03 0,1 10 10
10 15,00 7,95 4,22 0,1 15 15
15 45,00 14,26 9,89 0,1 45 45
20 65,00 19,60 115,95 0,1 65 65
25 90,00 24,82 175,80 1,5 90 90
30 110,00 29,88 628,25 0,5 110 110
35 135,00 34,84 163,32 1,4 130 135
40 155,00 39,48 262,48 1,2 155 155
46 180,00 45,86 22,99 2,3 175 180
50 195,00 49,34 22,05 8,4 190 195
55 210,00 53,93 52,88 5,5 200 210
60 225,00 59,76 39,16 5,4 220 225
65 245,00 64,86 20,84 6.5 230 245
70 265,00 69,59 4,11 - 240 250
73 275,00 72,90 7,20 - 250 255
75 285,00 74,72 1,93 - 260 285
80 300,00 79,17 0,77 - 280 290
85 310,49 84,73 0,91 - 300 305

Table 7.1: Results of the basic ILP and the TS algorithms on the 52-VisitPoints
problem.

The search space of possible tours is the largest between time budgets
from 20 to 65. The results show that the basic ILP algorithm finds optimal
solutions for some of these cases in more than hundreds of seconds. The TS
algorithm provides optimal or near optimal results in 2 seconds. The quality
of obtained results from the TS algorithm increases with the calculation time,
but in some cases the algorithm gets stuck in a local optimum and it does
not guarantee finding the optimal solution. With very long time budgets,
the Basic ILP algorithm overcomes the TS on this problem, since the search
space is very sparse in these cases but the length of tours makes this task
harded for the TS algorithm. However, the efficiency of the calculation is
sufficient for the purpose of trip planning. It needs to be mentioned that for
all best tours measured in this experiment, the Tour Searching algorithm
provided up to 10 distinct tours. Thus, the real applicability and usability is
definitely wider for these results with respect to the trip planning task. The
conclusion is that the algorithm provides good quality tours in a few seconds
on the 52-VisitPoints problem.

48

................................... 7.2. Real map testing

7.2 Real map testing

The testing of the designed ATPS was performed on real map data using
four map areas gathered from the OSM database [31]. Several testing tour
requests were performed to adjust parameters of the system, analyze the
profit improvements per calculation time, analyze determinization of the
results, and verify that tours found by the ATPS are usable in real life and
that they are similar to manual tour recommendations created in these map
areas.

7.2.1 Map input

Four areas from the Czech Republic were selected for the real world map data
testing of the ATPS. The selected areas are: the Giant Mountains, the
Jesenik, the Bohemian Forest and the Bohemian Paradise. These
locations are frequently visited tourist places which are well mapped by the
OSM database and they contain many tagged places which can be easily used
as points of interest. Also these locations consist mainly of landscape areas
for which the segments of interest are available. Segments are not so frequent
in cities.

The map files for these areas were exported from the OSM database and
reduced according to the data gathering section described in the previous
chapter. After that, config files describing the POI and the SOI were created
for each map file. The following description of POI was used:

TAG | VALUE | PROFIT | DURATION (MIN)
POI tourism apline_hut 5 60
POI tourism viewpoint 8 10
POI tourism attraction 10 15
POI tourism picnic_site 2 10

Several segments of interest were manually created according to popular and
frequently visited paths is the specific areas, mainly inspired by Mapy.cz [37]
and Trip Advisor [38]. These segments should work as a basic demonstration
of this feature which can be further extended.

49

7. Testing and results
Map Nodes POI SOI VP Description

Giant Mountains 134732 257 10 360
large map size
long SOI
typical for long route trips

Jesenik 135840 158 0 158 large map size
no SOI

Bohemian Forest 31661 78 5 121 medium map size
sparse placement of VP

Bohemian Paradise 44854 71 13 163 medium map size
typical for round trips

Table 7.2: The description of maps used for the real data testing.

Some details of these maps are described in the table 7.2. The largest
map captures the whole Giant Mountains national park with the size around
40x30 km. This map contains the most visit points so the tour calculation
task is the most difficult on this map. It was selected to test mainly the long
route planning, e.g. multiple day hiking trips in a landscape. The protected
landscape area Jesenik is the second map area which is almost the same size
as the previous map. No segments were created for this map to test the
differences between the trip planning on maps with and without segments.
The other two maps, the Bohemian Forest and the Bohemian Paradise were
selected to simulate the most probable use case of the trip planning. These
maps are of a sufficient size and detail to plan multiple one day trips to these
locations. The difference in these maps is that the Bohemian Paradise map
is mainly focused on finding round trips.

The travel duration function d used for these maps was set fixed to approx-
imate the walking speed of 3,4 km/h. This value was selected based on the
measurements taken in [39].

7.2.2 Experiments with parameters

Experiments are performed to tune values of important parameters which
affect results of the ATPS. Optimal values for the population limit and the
similarity constant are found.

50

................................... 7.2. Real map testing

Population limit and K tours

The goal of this experiment is to find the optimal population limit and also
the K tours value. The population size specifies the number of tours which
can be effectively found during one tour request. The K tours value is the
number of tours which are provided to the user. Since in the trip planning
task we are looking for the most profitable tour in the first place, I select the
population limit according to the profit of the best tour found. The additional
found tours are a ’nice to have’ feature of this algorithm to provide the pool
of the best different tours for the user. But this feature should not greatly
affect the profit of the best tour.

A sample tour request with the time budget 6 hours and the calculation time
5 seconds was executed 10 times on the Bohemian Paradise map. The average
profit of the best tours found reached a maximum with the population limit
around 10 individuals. The table 7.3 shows all results. For other experiments,
I have used the population limit 10 and the K tours value 5 which is sufficient.

Population limit 1 2 5 10 20 40 80
Avg. Profit 116 117 121 122 120 120 115

Table 7.3: Average profits for a sample tour request on the Bohemian Paradise
map depending on the population limit.

Similarity constant

The goal of this experiment is to find the optimal similarity constant R. It
defines when we call two selected individuals (tours) similar. This constant
affects how tours differ from each other within a single tour request. The
values 1, 1

2 ,
1
3 and 1

5 were tested so that the obtained tours differ in 100%,
50%, 33% or 20% of visit points.

Several tour requests were executed on different maps. Results show that
the most usable values are 1

2 and 1
3 . These values provide the perfect pool of

tours so that the user can benefit from the other variations of the best tour.
See the differences in these similarity constants in figures A.1 and A.2. For
other experiments the R = 1

3 was used.

For R = 1 tours must be different in all visit points so this value is a very
hard constraint which can lead to not finding the K tours as requested. On the

51

7. Testing and results
other hand R = 1

5 makes the difference in tours so small that it does not
provide enough options of trips for the user. But this value can be useful if
we are looking for very little variations of the best tour.

7.2.3 Experiments with improvements per time

In these experiments, I analyze the progress of profit improvements with
respect to the calculation time. Graphs 7.2, 7.3, 7.4 show profit improvements
of best tours per calculation time for sample tour requests on three different
maps. Each line in these graphs is a single run of the Tour Searching algorithm
for the maximum calculation time of 10 minutes. The logarithmic scale is
used for the calculation time since the majority of improvements occurs within
a first few seconds. Sample tour requests with different time budgets were
repeated 10 times to see how these runs differ.

Figure 7.2: Profit improvements with respect to the calculation time for different
time budgets (B), measured on the Bohemian Forest map.

52

................................... 7.2. Real map testing

The results show that the Tour Searching algorithm achieves the greatest
profit improvements within the first second of the execution (103 ms). For
all maps, the maximum profit was reached within 2 seconds for time budgets
up to 7 hours. With the increasing time budget, a longer calculation time
was needed to converge to the profit maximum and the occurrence of runs
where the Tour Searching algorithm got stuck in a local optimum increases.
These suboptimal runs are eliminated by the multithreaded implementation
of the ATPS which executes the TS algorithm several times and obtains the
best result from these executions. But despite this, for time budgets above 7
hours, the TS algorithm reaches almost maximal profits after 10-20 seconds
of execution on maps up to 360 VP. The further extension of the ATPS can
set the calculation time based on the estimation from the number of VP.

Figure 7.3: Profit improvements with respect to the calculation time for different
time budgets (B), measured on the Bohemian Paradise map.

53

7. Testing and results

Figure 7.4: Profit improvements with respect to the calculation time for different
time budgets (B), measured on the Giant Mountains map.

7.2.4 Experiments with determinization

In these experiments, I measure the average profit, the standard deviation
(σ) and the relative standard deviation (CV) of the profit value for three
sample tour requests on three different maps. The goal of this experiment is
to find out how much the results from the ATPS are deterministic and how
these results deviate with respect to the number of visit points and also with
respect to the input time budget B.

Several sample tour requests were performed on three different maps
(Jesenik, Bohemian Forest, Giant Mountains). The start and the goal positions

54

................................... 7.2. Real map testing

were fixed for each map. Time budget values were 4, 7, 14, 21, 28 hours
which simulates 1 to 4 day trips. Each tour request was performed ten times
to gather average profit values and deviations. This whole testing was done
for two calculation times of the ATPS, 2 and 5 second.

Three tables below show the results obtained from this testing. For each of
the tour requests, the average profit of the best 5 tours found by the ATPS
was calculated and then averaged over ten runs of the system. It means that
the average profit value (Paverage) in these tables illustrates the overall profit
valuability of the best 5 tours found by the ATPS. The standard deviation
(σ) shows how these results differ in the profit value and the relative standard
deviation (CV) shows how these results deviate in relation to the average
profit.

The results proved several hypothesis. All average profits on all three maps
increased with the higher calculation time of the ATPS. The difference is
greater on larger maps with wider search space of possible tours, especially
the Giant Mountains map. The σ and CV are also higher for larger maps
and for the time budget value for which the number of possible tours is the
largest.

Calc. Time: 2 seconds 5 seconds
B (hours) Paverage σ CV Paverage σ CV

4 64,0 0,0 0,0 % 64,0 0,0 0,0 %
7 98,8 3,2 3,2 % 99,8 1,8 1,8 %

14 133,6 4,2 5,6 % 139,2 3,0 4,1 %
21 170,0 5,3 9,0 % 179,2 4,9 8,8 %
28 217,8 8,2 17,9 % 241,0 4,3 10,4 %

Table 7.4: Results obtained from 10 executions of a sample tour request on the
Jesenik map.

Calc. Time: 2 seconds 5 seconds
B (hours) Paverage σ CV Paverage σ CV

4 31,8 2,0 0,6 % 32,0 0,0 0,0 %
7 61,0 2,3 1,4 % 61,2 1,7 1,0 %
14 101,6 8,6 8,7 % 106,0 7,0 7,4 %
21 150,0 13,4 20,1 % 152,2 7,1 10,8 %
28 200,8 5,0 10,1 % 210,8 4,4 9,4 %

Table 7.5: Results obtained from 10 executions of a sample tour request on the
Bohemian Forest map.

55

7. Testing and results
Calc. Time: 2 seconds 5 seconds
B (hours) Paverage σ CV Paverage σ CV

4 67,4 1,4 1,0 % 67,6 1,2 0,8 %
7 151,7 2,5 3,8 % 155,7 2,0 3,1 %

14 212,7 6,5 13,7 % 230,2 4,3 9,9 %
21 264,3 8,6 22,8 % 279,6 9,6 26,8 %
28 325,7 7,4 24,3 % 339,5 10,5 35,8 %

Table 7.6: Results obtained from 10 executions of a sample tour request on the
Giant Mountains map.

For all maps, the CV of average profits with time budgets up to 7 hours
was less than 3,8%. It means that the ATPS provides almost deterministic
results in the sense of obtained profit for one-day trips.

The CV for the Jesenik map without SOI was less than 10 % even for the
21 hour time budget. It means that the repeated calculations of the ATPS
for this request will differ at most by 10 % of the average profit value from 5
best tours found. Almost the same results were obtained for the Bohemian
Forest map with the difference that 5-second calculation time was needed
to get results with difference of 10 % CV. These two results show that the
ATPS provides very similar results in the sense of obtained profit on maps
up to 150 VP, with the time budget up to 21 hours.

The differences between the Jesenik map and the Giant Mountains map
shows how an integration of the SOI affects this task. Segments make the
search space much wider so the longer calculation time is needed to obtain
better results. The results from the Giant Mountains map show that for
the 360 VP the average profit value of the tours obtained differ in less than
14 % for the time budget up to 14 hours. Higher time budgets make the task
complexity on this map much harder and the obtained results differ more.
On the other hand, the probable real use cases are more similar to smaller
map areas, so this map can be divided into smaller locations according to the
current position of the user. Then the results obtained will be similar to the
results for smaller maps.

56

................................... 7.2. Real map testing

7.2.5 Real use case scenarios

In this section, I perform experiments which are as similar as possible to the
real use case scenarios. I have created several tour requests which correspond
to the real trip requirements in well-known locations. The ATPS provided
results for these trips within 2 seconds. I have evaluated the obtained results
with the emphasis on the trip quality in these locations, mainly if the trip
fulfills basic expectations. Some of these results are presented in this thesis.
All results are available in the attachment.

Round trips

The goal of this testing is to find out if the ATPS finds pleasant round trips
in the selected locations. Frequently required tour requests were created for
the Bohemian Paradise location. The preview of an example round trip shows
the figure 7.5. See additional tour results in the figures A.3 and A.4.

Figure 7.5: An example 4-hour round trip in the Bohemian Paradise from
Prachov. Found by the ATPS in 2 seconds.

57

7. Testing and results
Long hiking trips

The goal of this testing is to find out if the ATPS finds pleasant long hiking
trips, e.g. 2-day trips over the mountains. Frequently required tour requests
were created for the Giant Mountains and the Bohemian Forest locations.
The preview of an example hiking trip shows the figure 7.6. See additional
tour results in the figures A.5 and A.6.

Figure 7.6: An example 14-hour (2-day) hiking trip in the Giant Mountains
from Špindlerův Mlýn to Horní Malá Úpa. Found by the ATPS in 2 seconds.

Use case conclusion

The results show that the ATPS finds efficiently trips which are comparable
to the trips created by humans. At first sight, the trips visit as many POI as
possible and lead along as many SOI as possible. Found tours are efficiently
adjusted to Poi profit updates using the recalculation mechanism. There
is a minimum of so called return paths which force travelers to go along
these paths twice. Even though this evaluation element is not captured in
the task, the profit optimization criterion successfully manages to eliminate
these return paths. Reviewed trips proved that the ATPS is able to provide
a variety of pleasant tourist trips in a very short amount of time.

58

Chapter 8

Conclusion

In this thesis, I have covered several topics and concepts related to the
trip planning in order to create a functional, efficient and applicable trip
recommendation system. First of all, I have analyzed existing approaches and
solutions which solve some type of trip planning tasks. I have focused on the
orienteering problem (OP) [4] and its solvers since this problem models well
the basic trip planning task. I have deduced and defined several trip planning
components such as map, map with duration function, points of interest,
segments of interest and then I have defined my trip planning task with POI
and SOI which is an extension of the basic trip planning task modelled as the
classic orienteering problem. I have designed the Tour Searching algorithm
based on an evolution approach and the VNS algorithm [24]. I have designed
the Automated Trip Planning System called ATPS using this algorithm which
solves the defined task. The system was designed to be usable on any general
map data input and to be easily extended for a specific real-life problem. I
have designed the optimal ILP algorithm for the defined task which can be
incorporated into the ATPS. The testing data were gathered using the OSM
database [31] which turned out to be a good data source for the trip planning
problem. The whole system was implemented as the NodeJS server [35] with
the C++ Addon containing the main trip planning logic. The frontend client
webpage was imeplemented in the javascript using the MapBox API [34]. The
created system is a completely functional prototype demonstrating the main
trip planning use cases so it can be incorporated or extended to an extensive
trip planning recommendation system. The system was tested in two phases.
A new test benchmark set was created for this task to evaluate the designed
Tour Searching algorithm compared to the optimal ILP algorithm. In the
second phase, the system was tested thoroughly using the real-world map
data on several locations to adjust all parameters and to present results of
several real use cases.

59

8. Conclusion......................................
The results show that this system creates good-quality multiple trip rec-

ommendations in a few seconds. The system is able to provide a set of 5
distinct tours of a satisfactory quality in 2 seconds for any tour request on a
medium-sized map. It can also be set up to focus on the best tour only if
we require only a single result with the most profit value. Comparison with
the optimal ILP algorithm shown that the Tour Searching algorithm reaches
almost optimal profit values within a few seconds and it hardly overcomes
the optimal algorithm in execution times for large instances of the task.
With an increased calculation time, it can be used on many different real-life
optimization problems not related to the trip planning.

The evolution approach proved to be a very effective technique in the
recalculation process which allows the user to adjust some parameters and
request new results in an even shorter calculation time. Using this technique,
the system can be easily extended with many user interactive elements to
create trips for the actual user’s preferences indeed.

For future work, an extension of the individual to represent time windows
or time dependencies might be added. The individual concept also allows
to implement easily some hard constraints (must visit, not allowed to visit).
For an easy deployment of this system, the map preprocessing and loading
mechanisms might be improved so that it is possible to use the ATPS effectively
on the global map input.

60

Bibliography

[1] W. Souffriau and P. Vansteenwegen, “Tourist trip planning functionalities:
State–of–the–art and future,” in Current Trends in Web Engineering
(F. Daniel and F. M. Facca, eds.), (Berlin, Heidelberg), pp. 474–485,
Springer Berlin Heidelberg, 2010.

[2] X. Lu, C. Wang, J.-M. Yang, Y. Pang, and L. Zhang, “Photo2trip:
Generating travel routes from geo-tagged photos for trip planning,” in
Proceedings of the 18th ACM International Conference on Multimedia,
MM ’10, (New York, NY, USA), p. 143–152, Association for Computing
Machinery, 2010.

[3] Z. Chen, H. T. Shen, and X. Zhou, “Discovering popular routes from
trajectories,” in 2011 IEEE 27th International Conference on Data
Engineering, pp. 900–911, April 2011.

[4] P. Vansteenwegen, W. Souffriau, and D. V. Oudheusden, “The orien-
teering problem: A survey,” European Journal of Operational Research,
vol. 209, no. 1, pp. 1 – 10, 2011.

[5] A. C. Leifer and M. B. Rosenwein, “Strong linear programming relax-
ations for the orienteering problem,” European Journal of Operational
Research, vol. 73, no. 3, pp. 517 – 523, 1994.

[6] A. Gionis, T. Lappas, K. Pelechrinis, and E. Terzi, “Customized tour
recommendations in urban areas,” in Proceedings of the 7th ACM in-
ternational conference on Web search and data mining, pp. 313–322,
2014.

[7] M. Fischetti, J. J. S. González, and P. Toth, “Solving the orienteering

61

8. Conclusion......................................
problem through branch-and-cut,” INFORMS Journal on Computing,
vol. 10, no. 2, pp. 133–148, 1998.

[8] R. Ramesh, Y.-S. Yoon, and M. H. Karwan, “An optimal algorithm for
the orienteering tour problem,” ORSA Journal on Computing, vol. 4,
no. 2, pp. 155–165, 1992.

[9] D. Cavada, N. Mirzadeh, F. Ricci, and A. Venturini, “Interactive
itinerary planning with trip@ dvice,” Human-Computer Interaction
INTERACT’03 M. Rauterberg et al.(Eds.) IFIP, pp. 1105–1106, 2003.

[10] V. Soo and S.-H. Liang, “Recommending a trip plan by negotiation with
a software travel agent,” vol. 2182, pp. 32–37, 09 2001.

[11] L. Ardissono, A. Goy, M. Segnan, and P. Torasso, “Ubiquitous user
assistance in a tourist information server,” pp. 14–23, 05 2002.

[12] K. J. Cha, “Experimental evaluation of an expert system for travel
recommender systems,” International journal of software engineering
and its applications, vol. 8, pp. 115–128, 2014.

[13] P. Vansteenwegen, W. Souffriau, G. V. Berghe, and D. V. Oudheusden,
“The city trip planner: An expert system for tourists,” Expert Systems
with Applications, vol. 38, no. 6, pp. 6540 – 6546, 2011.

[14] E. H. Lu, C. Lin, and V. S. Tseng, “Trip-mine: An efficient trip planning
approach with travel time constraints,” in 2011 IEEE 12th International
Conference on Mobile Data Management, vol. 1, pp. 152–161, June 2011.

[15] Y. Zheng, X. Xie, and W.-Y. Ma, “Mining interesting locations and
travel sequences from gps trajectories,” in Proceedings of International
conference on World Wide Web 2009, April 2009. WWW 2009.

[16] W. Souffriau, P. Vansteenwegen, J. Vertommen, and G. Vanden Berghe,
“A personalized tourist trip design algorithm for mobile tourist guides,”
Applied Artificial Intelligence, vol. 22, pp. 964–985, 10 2008.

[17] W. Souffriau and P. Vansteenwegen, “Tourist trip planning functionalities:
State–of–the–art and future,” in Current Trends in Web Engineering
(F. Daniel and F. M. Facca, eds.), (Berlin, Heidelberg), pp. 474–485,
Springer Berlin Heidelberg, 2010.

[18] T. Tsiligirides, “Heuristic methods applied to orienteering,” Journal of
the Operational Research Society, vol. 35, pp. 797–809, Sep 1984.

[19] B. L. Golden, L. Levy, and R. Vohra, “The orienteering problem,” Naval
Research Logistics (NRL), vol. 34, no. 3, pp. 307–318, 1987.

[20] R. Ramesh and K. M. Brown, “An efficient four-phase heuristic for the
generalized orienteering problem,” Computers and Operations Research,
vol. 18, no. 2, pp. 151 – 165, 1991.

62

...................................... 8. Conclusion

[21] S. Lin, “Computer solutions of the traveling salesman problem,” Bell
System Technical Journal, vol. 44, no. 10, pp. 2245–2269, 1965.

[22] S. Lin and B. W. Kernighan, “An effective heuristic algorithm for the
traveling-salesman problem,” Operations Research, vol. 21, no. 2, pp. 498–
516, 1973.

[23] I.-M. Chao, B. L. Golden, and E. A. Wasil, “A fast and effective heuristic
for the orienteering problem,” European Journal of Operational Research,
vol. 88, no. 3, pp. 475 – 489, 1996.

[24] Z. Sevkli and F. E. Sevilgen, “Variable neighborhood search for the
orienteering problem,” in Computer and Information Sciences – ISCIS
2006 (A. Levi, E. Savaş, H. Yenigün, S. Balcısoy, and Y. Saygın, eds.),
(Berlin, Heidelberg), pp. 134–143, Springer Berlin Heidelberg, 2006.

[25] M. Verhoeven, E. Aarts, and P. Swinkels, “A parallel 2-opt algorithm for
the traveling salesman problem,” Future Generation Computer Systems,
vol. 11, no. 2, pp. 175 – 182, 1995. Massive Parallel Computing.

[26] D. Gavalas, C. Konstantopoulos, K. Mastakas, G. Pantziou, and
N. Vathis, “Heuristics for the time dependent team orienteering prob-
lem: Application to tourist route planning,” Computers and Operations
Research, vol. 62, pp. 36 – 50, 2015.

[27] H. Mühlenbein, M. Gorges-Schleuter, and O. Krämer, “Evolution algo-
rithms in combinatorial optimization,” Parallel Computing, vol. 7, no. 1,
pp. 65 – 85, 1988.

[28] T. Bektaş and L. Gouveia, “Requiem for the miller–tucker–zemlin subtour
elimination constraints?,” European Journal of Operational Research,
vol. 236, no. 3, pp. 820 – 832, 2014. Vehicle Routing and Distribution
Logistics.

[29] W. G. G. H. K. Küstner, The VNR Concise Encyclopedia of Mathematics.
Springer, Dordrecht, 1990.

[30] A. Lipowski and D. Lipowska, “Roulette-wheel selection via stochas-
tic acceptance,” Physica A: Statistical Mechanics and its Applications,
vol. 391, no. 6, pp. 2193 – 2196, 2012.

[31] O. Foundation, “Open street map.” [Online] Available: https://www.
openstreetmap.org. Accessed 2019-11-20.

[32] O. Foundation, “Overpass api.” [Online]. Available: https://wiki.
openstreetmap.org/wiki/Overpass_API. Accessed 2019-11-20.

[33] O. Foundation, “Osmosis java tool.” [Software]. Available: https://
wiki.openstreetmap.org/wiki/Osmosis. Accessed 2019-12-10.

[34] MapBox, “Mapbox api.” [Software]. Available: https://mapbox.com.
Accessed 2019-12-10.

63

https://www.openstreetmap.org
https://www.openstreetmap.org
https://wiki.openstreetmap.org/wiki/Overpass_API
https://wiki.openstreetmap.org/wiki/Overpass_API
https://wiki.openstreetmap.org/wiki/Osmosis
https://wiki.openstreetmap.org/wiki/Osmosis
https://mapbox.com

8. Conclusion......................................
[35] NodeJS, “Nodejs.” [Software]. Available: https://nodejs.org. Accessed

2019-12-10.

[36] L. Gurobi Optimization, “Gurobi optimization.” [Software]. Available:
https://www.gurobi.com. Accessed 2020-02-02.

[37] Seznam.cz, “Mapy.cz.” [Online] Available: https://www.mapy.cz. Ac-
cessed 2019-11-20.

[38] T. LLC, “Tripadvisor.” [Online] Available: https://www.tripadvisor.
cz. Accessed 2019-11-20.

[39] S. Costa, R. Coles, and A. Boltwood, “Landscape experience and the
speed of walking,” 09 2015.

64

https://nodejs.org
https://www.gurobi.com
https://www.mapy.cz
https://www.tripadvisor.cz
https://www.tripadvisor.cz

Appendix A

Gallery of found tours

65

A. Gallery of found tours.................................

Figure A.1: The best 3 tours found for a 7-hour trip in the Giant Mountains
from Špindlerův Mlýn to Harrachov using the similarity constant R = 1/2.

66

................................. A. Gallery of found tours

Figure A.2: The best 3 tours found for a 7-hour trip in the Giant Mountains
from Špindlerův Mlýn to Harrachov using the similarity constant R = 1/3.

67

A. Gallery of found tours.................................

Figure A.3: The best 3 tours found for a 4-hour round trip in the Bohemian
Paradise from Sedmihorky. Found by the ATPS in 2 seconds.

68

................................. A. Gallery of found tours

Figure A.4: The best 3 tours found for a 4-hour round trip in the Bohemian
Paradise from Příhrazy. Found by the ATPS in 2 seconds.

69

A. Gallery of found tours.................................

Figure A.5: The best 4 tours found for a 16-hour tour request, a 2-day hiking
trip, in the Bohemian Forest. Found by the ATPS in 2 seconds.

70

................................. A. Gallery of found tours

Figure A.6: The best 3 tours found for a 16-hour tour request, a 2-day hiking
trip, in the Giant Mountains. Found by the ATPS in 2 seconds.

71

72

Appendix B

Abbreviations

ATPS Automated Trip Planning System

TTDP Tourist Trip Design Problem

OP Orienteering Problem

VNS Variable Neighborhood Search

ILP Integer Linear Programming

POI Point Of Interest

SOI Segment Of Interest

SDP Segment Division Point

VP Visit Point

DM Distance Matrix

PM Profit Matrix

TS Tour Searching

API Application Programming Interface

XML Extensible Markup Language

OSM Open Street Map

GPS Global Positioning System

CV Coefficient of Variation

73

74

Appendix C

Contents of the enclosed CD

ATPSAutomated Trip Planning System implementation
DoxyGen...documentation
maps..map database
test_instances test benchmark instances
TripPlanner..source code
README.txt...setup manual

BasicILPBasic ILP algorithm implementation
results logs and spreadsheets with measured results
thesis diploma thesis source code in LATEX
tours_gallery.................................gallery of found tours
CDcontent.txtdescription of the CD content

75

	Introduction
	Related work
	Trip planners
	Optimization based approaches
	Interactive based approaches
	Expert system based approaches
	Data mining based approaches

	Map domains
	Orienteering Problem
	Summary of used approaches

	Problem specification
	Map model
	Trip planning task

	System design
	Solution overview
	Map preprocessing
	Extraction of segment division points
	Map reduction process
	Calculation of the profit matrix

	Tour calculation
	Data structures extension
	Tour Searching algorithm
	Individual
	Creation of the initial individual
	Population
	Operations

	Recalculation

	Optimal algorithm
	ILP formulation

	System implementation
	Data gathering
	Open Street Maps
	Map file preprocessing

	Implementation
	Architecture
	User interface
	C++ Addon

	Testing and results
	Algorithm evaluation
	Custom test benchmark
	Experiments and results on the test benchmark

	Real map testing
	Map input
	Experiments with parameters
	Experiments with improvements per time
	Experiments with determinization
	Real use case scenarios

	Conclusion
	Bibliography
	Gallery of found tours
	Abbreviations
	Contents of the enclosed CD

