
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Fitness Predictors in Genetic Programming

Jan Mayer

Supervisor: Ing. Petr Pošík, Ph.D.
May 2020

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

474529Personal ID number:Mayer JanStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Open InformaticsStudy program:

Computer and Information ScienceBranch of study:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Fitness Predictors in Genetic Programming

Bachelor’s thesis title in Czech:

Prediktory fitness v genetickém programování

Guidelines:
Genetic programming is an evolutionary method for searching for algorithms that solve certain problem, or for searching
a structured description of certain system, e.g. in the form of a mathematical expression. Evaluation of a candidate solution
is usually done with respect to a big set of test cases which is time consuming. That's why the so-called fitness predictors
were proposed. A fitness predictor is a small subset of the set of test cases which provides the evolution with similar
information as the whole testing set. The goal of this project is the exploration, design and evaluation of methods for
constructing the fitness predictors.
Elaboration guidelines:
1) Learn the principles of GP, fitness predictors and methods for their construction.
2) Design your own method of fitness predictor construction.
3) Compare the known and proposed fitness predictor methods.
4) Evaluate the methods with respect to the time requirements and test case efficiency.

Bibliography / sources:
[1] Schmidt, M.D., Lipson, H. Coevolution of Fitness Predictors. IEEE Trans. On Evolutionary Computation, Vol. 12, No.
6, 2008
[2] Drahošová, M., Sekanina, L., Wiglasz, M. Adaptive Fitness Predictors in Coevolutionary Cartesian Genetic Programming.
Evolutionary Computation, Vol. 27, Issue 3, Fall 2019

Name and workplace of bachelor’s thesis supervisor:

Ing. Petr Pošík, Ph.D., Analysis and Interpretation of Biomedical Data, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 22.05.2020Date of bachelor’s thesis assignment: 10.01.2020

Assignment valid until: 30.09.2021

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
doc. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Petr Pošík, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Acknowledgements
I would like to express my gratitude to my
supervisor Ing. Petr Pošík, Ph.D for pro-
viding guidance and feedback throughout
this project.

Declaration
I declare that the presented work was

developed independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, May 20, 2020

v

Abstract
In genetic programming, computer pro-
grams have to be evaluated on many test
cases in order to measure their perfor-
mance. To accelerate this process, smaller
subsets of the training dataset called fit-
ness predictors can be used. The known
methods construct the fitness predictors
using coevolution of fitness predictors and
computer programs. In this thesis, we
proposed a method of fitness predictor
construction, which does not rely on co-
evolution. We compared the known and
proposed methods using six symbolic re-
gression problems. On two simple prob-
lems, the proposed method accelerated
the evolution the most from all compared
methods, but on the rest of the problems,
it performed noticeably worse than the
coevolved predictors.

Keywords: genetic programming,
fitness predictors, coevolution

Supervisor: Ing. Petr Pošík, Ph.D.
FEE, Department of Cybernetics

Abstrakt
Počítačové programy v genetickém pro-
gramování je třeba ohodnotit na velkém
množství testů, aby mohla být změřena je-
jich kvalita. Tento proces může být urych-
len, pokud jsou k ohodnocení použity
pouze malé podmnožiny testovacího data-
setu zvané fitness prediktory. Používané
metody konstruují fitness prediktory po-
mocí koevoluce fitness prediktorů a po-
čítačových programů. V této práci jsme
navrhli metodu konstruující prediktory
bez použití koevoluce. Porovnali jsme na-
vrhnutou metodu a používané metody na
šesti problémech symbolické regrese. Na
dvou jednoduchých problémech urychlila
navrhnutá metoda evoluci zdaleka nejvíce
ze všech porovnávaných metod, ale na
zbytku problémů byly její výsledky zna-
telně horší než výsledky prediktorů vytvo-
řených koevolucí.

Klíčová slova: genetické programování,
fitness prediktory, koevoluce

Překlad názvu: Prediktory fitness v
genetickém programování

vi

Contents
1 Introduction 1
2 Genetic Programming 3
2.1 Creating an Initial Population . . . 3
2.2 Selection . 4
2.3 Genetic operations 5
2.4 Symbolic Regression 7
2.4.1 Solving Symbolic Regression
Using GP. 7

3 Fitness Predictors 9
3.1 Coevolution of Fitness Predictors 9
3.1.1 Approach by Michal D. Schmidt
and Hod Lipson 10

3.1.2 Approach by Michaela Šikulová,
Lukáš Sekanina and Michal
Wiglasz . 13

3.2 Adaptive-size deterministic
predictors . 14
3.2.1 Score of a test case 14
3.2.2 Size of the predictors 15
3.2.3 Periodic update 15

3.3 Random predictors 15
4 Experiments 17
4.1 Implementation 17
4.2 Setup . 17
4.3 Used data 18
4.4 Measuring potential speed benefits
from using fewer point evaluations 19

4.5 Comparison of Time Spent
Constructing the Predictors 21

4.6 Comparison of Performance During
the Evolution 22

4.7 Comparison of Expected Cost to
Converge . 28
4.7.1 Expected Cost 28
4.7.2 Results 28
4.7.3 Behaviour of Predictors 29

5 Summary and Conclusion 33
A Bibliography 35
B CD contents 37

vii

Figures
2.1 Example of trees generated by full
and grow method with height limit 2 4

2.2 Example of crossover 6
2.3 Example of mutation by replacing
subtree with a randomly generated
tree . 6

2.4 Example of mutation by changing
one node . 7

2.5 Example of expression
log x
2x + (−1− x) + 1 being represented
by a binary tree 8

4.1 Sampled functions 20
4.2 Time needed to reach 1000
generations . 21

4.3 Time needed to perform 107 point
evaluations . 22

4.4 Increase of time needed to reach
1000 generations compared to GPstd 23

4.5 Mean test set fitness during the
evolution . 24

4.6 Mean test set fitness during the
evolution ignoring 10% worst values 25

4.7 Median test set fitness during the
evolution . 26

4.8 Histograms of achieved fitnesses 27
4.9 Mean and median normalized
expected times to converge 30

4.10 Mean and median normalized
expected numbers of point
evaluations to converge 30

4.11 Histograms of used test cases by
DP (left) and ASP (right) 32

Tables
4.1 Used GP parameters 18
4.2 Rules to update the size 18
4.3 Convergence thresholds for each
dataset . 28

4.4 Results of 50 independent runs . 31

viii

Chapter 1
Introduction

This thesis focuses on the problem of construction of fitness predictors in
genetic programming (GP). The main goal of fitness predictors is to reduce
the computational cost needed by GP to solve certain problems. More
specifically, their purpose is to reduce the computational cost needed to
evaluate the candidate programs without slowing down the evolutionary
process. Evaluating the candidate programs can be very computationally
demanding because the fitness of the programs is often computed using their
performance on a large number of test cases. Fitness predictors help to speed
this process up by allowing the GP run to evaluate the programs using a
significantly smaller subset of the test cases called a fitness predictor.

Methods of constructing such fitness predictors were introduced in [10] and
[3]. Both of these methods use coevolution to solve this problem. In this
thesis, we want to find out if using coevolution is necessary or if a simpler
method can construct predictors, which are comparably effective.

In chapter 2, we explain the main principles of GP and describe some of
the basic techniques and algorithms used within a GP run. In chapter 3, we
first define the fitness predictors and their goal, then we describe two known
methods, which use coevolution, and propose a new method to construct the
fitness predictors. In chapter 4, we present the experiments we conducted
to compare the methods from chapter 3 and discuss their results. Chapter 5
summarizes the results of this thesis.

1

2

Chapter 2
Genetic Programming

Genetic programming is a collection of evolutionary computation techniques
that allow computers to solve problems automatically [9]. It is a technique
inspired by biological evolution. The evolving individuals in GP are computer
programs represented by trees. These trees consist of functions (e.g. sin,
XOR) and terminals (e.g. numeric constants, program inputs). An example
of such tree can be seen in figure 2.5. The main idea is to start with a usually
random population of individuals, select individuals based on their ability to
solve the problem, apply genetic operations to them and repeat this process
generation by generation until an individual with the ability to solve the
problem sufficiently well is found. The idea can be seen in the following
pseudocode:

1 Randomly create an initial population
2 repeat
3 Select individuals that will take part in the next generation based

on their fitness
4 Create new individuals by applying genetic operations
5 until an acceptable solution is found, or some other stopping

condition is met (e.g., a maximum number of generations is reached)
Algorithm 1: Run of a GP algorithm

Now let us take a look at the individual steps.

2.1 Creating an Initial Population

The two simplest methods are full and grow. Both generate trees that do not
exceed a user defined maximum depth depthmax:..1. Full - generate the tree from the root. When adding a node, select a

random function until depthmax is reached, then add a random terminal
here. This way every path from the root to a leaf is depthmax long.
(figure 2.1a)..2. Grow - generate the tree from the root. When adding a node select

3

2. Genetic Programming
random a function or a terminal. This way every path from the root to
a leaf is at most depthmax long. (figure 2.1b)

To ensure variety of shapes and sizes a combination called ramped half-and-
half was introduced by Koza in [7]. Half of the population is generated by
grow method and half by full method.

(a) : full (b) : grow

Figure 2.1: Example of trees generated by full and grow method with height
limit 2

2.2 Selection

During selection, we choose individuals from the current generation, which
will be used as parents for the next generation. There are many ways to
do this, such as tournament selection or deterministic crowding selection[8].
When using these methods, better performing individuals (with respect to
their fitness) have a higher chance of being selected.

To measure the performance of an individual, we need to define the so-called
fitness function. More formally, we need

fitness: S→ R,

where S is a set of all possible individuals (solutions), which can be created
during the evolutionary process. Since individuals are computer programs,
their fitness is usually obtained by running them and measuring how good
their results are. Here, by good, we mean how close they are to the results of
an ideal solution.

To select the individuals, we need to evaluate either the whole or a significant
part of the current population, which can often be very computationally
demanding.

To illustrate the process of selection, we will describe the two mentioned
selection methods:

4

.................................. 2.3. Genetic operations..1. Tournament selection - choose k random individuals from the current
population and select the one with the best fitness value. k is called a
tournament size. Repeat this process to create a new population...2. Deterministic crowding selection - for this method, a distance function
between two individuals must be defined. The selection method is
described by the following pseudocode:

Input: two individuals from the current population: p1 and p2, two
children created from p1 and p2: c1, c2

1 if dist(p1, c1) + dist(p2, c2) ≤ dist(p1, c2) + dist(p2, c1) then
2 if fitness(c1) > fitness(p1) then
3 p1 ← c1
4 else if fitness(c2) > fitness(p2) then
5 p2 ← c2
6 end
7 else
8 if fitness(c2) > fitness(p1) then
9 p1 ← c2

10 else if fitness(c1) > fitness(p2) then
11 p2 ← c1
12 end
13 end
14 return p1, p2

Function Deterministic crowding selection

2.3 Genetic operations

In GP, two main genetic operations are used:..1. Crossover - This operation takes two individuals (parents) and combines
them together to create two new individuals (children). This is done by
randomly selecting a crossover node in both parents and creating the
children by replacing the subtrees rooted in the crossover nodes. An
example of crossover can be seen in figure 2.2...2. Mutation - This operation takes one individual and makes small changes
to it. There are two main ways to achieve this:..a. Randomly select a mutation node and replace the corresponding

subtree by a randomly generated one. An example can be seen in
figure 2.3...b. Randomly select a mutation node and replace the stored primitive
by a randomly selecting a primitive from the primitive set with the
same arity, as seen in the figure 2.4.

It is common to use these operations with specified probabilities.

5

2. Genetic Programming

Figure 2.2: Example of crossover

Figure 2.3: Example of mutation by replacing subtree with a randomly generated
tree

6

................................. 2.4. Symbolic Regression

Figure 2.4: Example of mutation by changing one node

2.4 Symbolic Regression

Symbolic regression is the problem of identifying the analytical mathematical
description of a hidden system from experimental data [1], [5]. In other words,
given a set of inputs and corresponding expected outputs, the problem is to
find an expression that only consists of symbols from given primitive set and
for given inputs yields values that are as close as possible to the expected
outputs.

Unlike polynomial regression or related machine learning data fitting meth-
ods, it does not need any prior knowledge about the distribution of the
data.

2.4.1 Solving Symbolic Regression Using GP

The problem of symbolic regression described above can be solved using GP.
The implementation is quite straightforward since mathematical expressions
are very easily represented by tree structures (again, the example in figure
2.5). We define the training dataset as

T = {(xi, yi) | xi ∈ Rn, yi ∈ R, i = 1, . . . , N},

where xi is i-th input, yi is i-th output, n is the dimension of the input space
and N is the number of test cases in the training dataset.

The only thing that needs to be chosen is the fitness function. The most
common ones are mean square error, mean absolute error, or hit rate. In our
experiments, mean absolute error was used:

fitness(s) = 1
N

N∑
i=1
|s(xi)− yi|

7

2. Genetic Programming

Figure 2.5: Example of expression log x
2x + (−1− x) + 1 being represented by a

binary tree

where s(xi) is the value of candidate on i-th input in training data. Even
though the implicit goal of the evolution is to find the solution with the
maximum fitness, here the goal is naturally to minimize the fitness.

8

Chapter 3
Fitness Predictors

As we mentioned earlier, evaluating all individuals on all training dataset
points can be very computationally demanding because thousands of indi-
viduals have to be evaluated on many test cases during the evolution. That
is why it would be beneficial to get similar results using just a subset of the
training dataset. The used subsets are called fitness predictors. Using the
predictors results in a slight change in the evolution goal. Instead of a mean
absolute error on all training data shown in the previous chapter (objective
fitness), we compute the values of the expressions in points of the current
predictor (predicted fitness). The optimization task is:

s∗ = arg min
s∈S

p(s)

where p is the fitness predictor used in current generation and p(s) is predicted
fitness of an individual s using predictor p. The problem is that maximizing
the predicted fitness does not guarantee to find the solution with the best
objective fitness. For this reason, it is required to find predictors, that predict
the fitness close to the objective fitness.

We will often measure the effort made by the GP by the number of point
evaluations. It represents a number of times some individual was tested
on a test case. For example if we perform 10 generations, in each one we
evaluate 128 individuals using a predictor of size 32, we used a total of
10× 128× 32 = 40960 point evaluations. Measuring the effort by the number
of generations would not be fair because generations using a predictor of
smaller size use fewer point evaluations and thus take less time.

In the following sections, we describe two known methods that solve this
problem using coevolution and introduce our method.

3.1 Coevolution of Fitness Predictors

In a coevolutionary algorithm, the fitness metric for one individual becomes
a function of other individuals, possibly including itself. More precisely, one
individual can affect the relative fitness ranking between two other individuals
in the same or a separate population[6].

9

3. Fitness Predictors...................................
In case of fitness predictors coevolution, predictors from predictor popula-

tion affect fitness ranking in the solution population and the other way round.
The aim of coevolving fitness predictors is to allow both solutions and fitness
predictors to enhance each other automatically until an optimal problem
solution is found [10]. More specifically, the predictors help the solutions
to evolve more quickly, and the solutions help the predictors to get more
accurate. The exact methods will be described in the following subsections.

3.1.1 Approach by Michal D. Schmidt and Hod Lipson

In this subsection, we talk about the method introduced in [10] by Michal
D. Schmidt and Hod Lipson. This method constructs and selects the fitness
predictors using the coevolution of solutions and fitness predictors. During
evolution, there are three populations present in the algorithm:..1. Solutions - The main population of candidate solutions, the best individ-

ual is the one with the best predicted fitness

s∗ = arg min
s∈S

pbest(s),

where S is the set of all solutions, pbest is the highest-ranked predictor
in the current generation, and pbest(s) is the predicted fitness of solution
s using predictor pbest...2. Trainers1 - Selected solutions used for training the fitness predictors,
the best trainer is the one with the highest variance of predicted fitness
among the current generation of predictors.

t∗ = arg max
s∈Scur

1
|Pcur|

∑
p∈Pcur

(p(s)− p(s))2,

where Scur is the current solution population, Pcur is the current predictor
population and p(s) is the average predicted fitness of solution s among
the predictors from Pcur...3. Predictors - Population of the fitness predictors, each generation of
the main population, the best predictor from this population is chosen
and used to evaluate the solutions. The predictors are represented by
constant-size arrays of pointers to test cases in the training dataset. The
best predictor is the one that can predict the fitness of the individuals
in the current trainer population the most accurately:

p∗ = arg min
p∈P

1
|Tcur|

∑
t∈Tcur

|fitness(t)− p(t)|,

where P is a set of all possible fitness predictors, and Tcur is the current
population of trainers.

1Trainers are an archive or a set, rather than a population because the particular trainers
do not evolve, while solutions and predictors do. The reason why we listed them as a
population is because authors of the paper did so.

10

............................3.1. Coevolution of Fitness Predictors

The solutions are evolved using standard GP, and the predictors are evolved
using standard GA (as they are not represented by trees). At the beginning
of the algorithm, all populations are randomized. It is important that the
evolution of predictors does not take too much effort (where effort is measured
in point evaluations); otherwise, there would not be any advantage of using
them. In [10] the threshold is set to 5% all computation effort measured in
point evaluations. Every 100 predictor generations, a new trainer is chosen
from the solution population using the above criteria and replaces the oldest
trainer. Furthermore, the solution evolution and the predictor evolution are
run in separate threads. Pseudocode 2 ilustrates the connection between
solutions and predictors during the coevolution.

We will refer to this method as CSP (constant-size predictors).

11

3. Fitness Predictors...................................

1 Begin Solutions Thread
2 Randomize solution population
3 loop
4 Apply genetic operations on solutions with specified

probabilities
5 pred ← top-ranked fitness predictor
6 Evaluate the population using pred
7 Perform selection
8 if convergence criterion is met then
9 return top-ranked solution

10 end
11 end
12 end
13
14
15 Begin Predictors Thread
16 Randomize predictor population
17 Randomize trainer population
18 loop
19 if computational effort > 5% then
20 wait
21 end
22 Apply genetic operations on predictors with specified

probabilities
23 Evaluate predictors using trainers
24 Perform selection
25 if Time to add a new trainer then
26 Compute variances in fitness predictions for all solutions in

the current population
27 Replace the oldest trainer with a copy of solution with the

highest variance
28 Calculate the exact fitness of the new trainer
29 end
30 end
31 end

Algorithm 2: Pseudocode of coevolution of solutions and fitness
predictors

12

............................3.1. Coevolution of Fitness Predictors

3.1.2 Approach by Michaela Šikulová, Lukáš Sekanina and
Michal Wiglasz

The disadvantage of the approach introduced in [10] is that the predictors are
of fixed size. Many experiments have to be therefore conducted to find the
optimal size to use in each task. [3] introduces adaptive-size fitness predictors.
These predictors change their size depending on the phase of evolution.

The phase of evolution is determined using the evolution speed v, which is
computed as

v = ∆f
∆G,

where ∆f is the difference of objective fitnesses of the current best solution
and best solution last time the size was updated. ∆G is the number of
generations since the last size update.

To determine if over-fitting is an issue in the evolution run, inaccuracy I
is computed as a ratio of subjective and objective fitness of the current best
solution:

I = fsub

fobj
,

where fsub is fitness computed on test cases from the current best predictor,
and fobj is fitness on all training dataset cases.

Using the following rules, the size of the predictors is updated to ensure
accurate fitness prediction and progress of the evolution:. Increase the predictor size (multiply the size by a constant C > 1) if:..1. Current predictions tend to over-fit (I > Ithr) or..2. Objective fitness of the best individual in the population is increasing

(v > 0). Decrease the predictor size if (multiply the size by a constant C < 1):..1. Objective fitness of the best individual in the population is stagnat-
ing or decreasing (v ≈ 0 or v < 0)

Constants Ithr and C (for each rule) must be found. Even though the
predictors are adaptive-size, they are implemented as constant-size arrays
with the length of the training set. When reading the test cases of the
predictor, only the first unique read_length test cases are read; the remaining
test cases are ignored. This way, the size can simply be increased or decreased
by increasing or decreasing the read_length variable.

Notice that these rules assume that the fitness should be maximized. If
the goal is to find a solution with minimal fitness (which is our case), these
rules have to be modified. To be specific, over-fitting is signaled by I < Ithr

and improvement is signaled by v < 0.
Another difference from the method introduced in the previous section is

how new trainers are selected. Here a solution replaces the oldest trainer if

13

3. Fitness Predictors...................................
its subjective fitness is better than the subjective fitness of the top-ranked
trainer.

We will refer to this method as ASP (adaptive-size predictors).

3.2 Adaptive-size deterministic predictors

In this section, we propose our method of constructing the predictors. It does
not use coevolution. Instead, it works with only one predictor, whose test cases
and size are deterministically changed during the evolution. Deterministically
in a sense, that given the same population and state of the predictor, the
next state of the predictor will always be the same. This is the opposite of
coevolved predictors, that use the randomness in the genetic operations and
selection. In the following subsections, we will thoroughly explain how the
method works. We will refer to this method as DP (deterministic predictors).

3.2.1 Score of a test case

Our method works with a quantity called a score of a test case. Suppose we
have a training set T and a test case t ∈ T . Let x and y be the input(s) and
the output of the test case t respectively. Then the score of the test case t is

score(t) =
∑

s∈Sc
(|s(x)− y| · fitness(s)−1)∑

s∈Sc
fitness(s)−1 ,

where Sc is current population of solutions and fitness(s) is objective fitness
of solution s. In other words, it is a weighted arithmetic mean of absolute
errors of the current population on test case t with weights set to inverted
values of objective fitnesses of the population.

To decide which case should be chosen to predict the fitness more accurately,
we can compare score of all the test cases.

We decided to use the mean of absolute errors to compute the score because
using fitness predictors often runs into the problem of overfitting. This way if
a solution’s predicted fitness is better than its objective fitness, a test case on
which this solution performs poorly, has a higher chance to be included in the
next predictor. There is no particular reason not to use some other function
than the absolute errors. The only constraint is that the value of the function
must quantify how badly the particular solution solves the particular test
case. This means that this method, just like the methods described earlier,
is not at all limited to be used to solve the symbolic regression. Alternative
functions that could be used are for example squared errors or the number of
times the robot hits a wall in a simulated maze.

The reason for weights to be set to inverted values of objective fitnesses
is that this way, the absolute errors of better solutions are considered more
important. Therefore solutions that already perform well can be tuned to
perform even better, while solutions that perform poorly have less impact on
the test case’s score.

14

.................................. 3.3. Random predictors

It is important to note, that this formula assumes that the objective is to
minimize the fitness and that the fitness is always positive. If fitness should
be maximized, for weights, we would use the values of the fitness, not the
inverted values. If a solution with fitness equal to zero is found, it is an ideal
solution, and the run is terminated before this formula is evaluated.

Every further use of the term score in the context of test cases refers to
the score computed by the above formula.

3.2.2 Size of the predictors

As was already mentioned, our method changes the size of the predictor
during evolution and tries to find the most suitable one. The procedure of
determining the size described in 3.1.2 was used without any modifications,
as this method proved to be performing well.

After updating the size of the predictor, two scenarios can occur:..1. Size has to be decreased - if the size has to be decreased by n test cases,
we simply remove the last n test cases in the predictor. It would seem
natural to remove n test cases with the lowest score instead. To do it,
however, the score of all test cases would have to be computed. Moreover,
the reason to decrease the size of the predictor is to help the evolution
leave the local optimum, in which case accuracy of the predictor is not
important...2. Size has to be increased - if the size has to be increased by n test cases, we
compute the scores (introduced in 3.2.1) of all test cases in the training
set and add n test cases with highest score, that are not already present
in the predictor.

3.2.3 Periodic update

The predictor is updated periodically. Every T solution generations, we
compute the scores of all test cases. Then we replace the test case from the
predictor with the lowest score by the test case with the highest score, which
is not already present in the predictor. In our experiments we set T = 100
generations.

3.3 Random predictors

To justify using sophisticated methods for constructing the fitness predictors,
it is important to compare their performance with the most simple ones as
well. For this purpose, we use two types of random predictors:..1. Random static - random test cases are selected at the beginning of the

run and used for evaluations for the rest of the run. We will refer to
them as RPstatic.

15

3. Fitness Predictors.....................................2. Random dynamic - random test cases are selected at the beginning of
each generation and only used for the evaluation in that generation. We
will refer to them as RPdynamic

Both static and dynamic random predictors have a constant size.

16

Chapter 4
Experiments

In this chapter we compare performance of GP using all test case data
(GPstd), constant-size coevolving predictors (CSP), adaptive-size coevolving
predictors (ASP), random predictors (RPstatic, RPdynamic) and the proposed
method (DP). The methods will be evaluated using symbolic regression.

4.1 Implementation

To implement GP solving symbolic regression, we used DEAP (Distributed
Evolutionary Algorithms in Python) framework [2] with tools necessary
to make GP work, such as tree structures and genetic operations. We
implemented the fitness predictors themselves as 1-D numpy arrays of int
type. They contain indexes of test cases that have to be used. Since our data
is also stored as a numpy array, to use only the cases from a given predictor,
we can conveniently use it as an index: training_set[predictor].

To take care of inner mechanisms of fitness predictor construction,
FitnessPredictorManager class is used. Every method of predictor con-
struction is implemented in a separate class derived from this class. The
get_best_predictor method is called by the GP run every generation, and
it returns the predictor that will be used to evaluate the population of that
generation. The next_generation method is also called every generation,
and its purpose is to allow the predictor manager to update its inner state
if needed. It does not return anything, and its keyword arguments contain
potentially useful information about the state of the evolution of the solutions,
such as the current generation, current population, etc. The whole program
runs in one thread. This means that the main evolution has to wait for this
method to return.

4.2 Setup

There are many parameters to set that influence the behaviour of GP. In
table 4.1 we sum up all the parameters and settings with the corresponding
values we used in our experiments.

Table 4.2 contains rules we used to find the constant C to update the size

17

4. Experiments
population size 128
mutation probability 0.1
crossover probability 1.0
function set {+, -, *, /, sin, cos, exp, log}
terminal set {inputs, 0, ±1, π}
selection deterministic crowding
initial population ramped half-and-half
mutation uniform mutation (Fig 2.4)
tree height limit 8

Table 4.1: Used GP parameters

condition C

I < 0.57 1.2
|v| ≤ 0.001 0.9
v > 0 0.96
−0.1 ≤ v < 0 1.07
v < −0.1 1

Table 4.2: Rules to update the size

of the predictors (for 3.1.2 and 3.2) in the order they were applied. They
are the rules used in [3] adjusted to work with our fitness function. The
initial size for adaptive-size predictors was set to 5. The size of constant-size
predictors was set to 32.

The distance function between two individuals used in deterministic crowd-
ing selection was defined as euclidean distance between their error vectors on
the testing data:

distance(s1, s2) =

√√√√ N∑
i=1

((s1(xi)− yi)− (s2(xi)− yi))2 =

√√√√ N∑
i=1

(s1(xi)− s2(xi))2,

where xi and yi are inputs and outputs used to evaluate the individuals -
either the entire training set or some subset of it.

4.3 Used data

In the following experiments, we compare methods for finding fitness predictors
on several datasets. First five datasets are created using functions from [10]
and [3]. The sixth dataset is obtained from UCI Machine Learning Repository
[4]. The data contains 6 parameters of the yachts hull and the value to be
predicted is yachts residuary resistance. These are the 5 functions we sampled
to get our datasets:

18

............4.4. Measuring potential speed benefits from using fewer point evaluations

f1(x) = 1.5x2 − x3 x ∈ [−5, 5]
f2(x) = e|x| sin(2πx) x ∈ [−3, 3]

f3(x) = x2esin(x) + x+ sin(π4 − x
3) x ∈ [−10, 10]

f4(x) = e−xx3 sin(x) cos(x)(sin2(x) cos(x)− 1) x ∈ [0, 10]

f5(x) = 10
(x− 3)2 + 5 x ∈ [−2, 8]

The first three functions were used in [10]. It is important to note that
the function f2 is not exactly the same as the one described in the article.
However, because our modified version1 corresponded to the plots in the
article whereas the original one did not, we think that the authors simply
made a mistake. Functions f4 and f5 were used in [3]. Plots of the used
functions can be seen in the figure 4.1.

Our training datasets consist of 200 equally distributed points in presented
intervals. The testing datasets contain all these points and 200 additional
points randomly selected from the same intervals. This is the way the datasets
were created in [10]. The sixth dataset was randomly divided into training
and testing data in the ratio of 7:3.

4.4 Measuring potential speed benefits from
using fewer point evaluations

The main advantage of using fitness predictors is that every generation
of solutions uses fewer point evaluations. Speedup with respect to point
evaluations can be thus computed very easily as a ratio between training set
size and the predictor size2. Speedup with respect to real-time depends on the
particular implementation because different tasks may be faster in different
implementations, often written in different programming languages. To see
the relationship between point evaluations and time in our implementation,
we conducted the following experiment:

We ran 1000 generations of evolution and measured how much time they
took. Each generation we used 1, 50, 100, 150 and finally 200 test cases to
evaluate the solutions. Average values and best fitting linear function can be
seen in the figure 4.2. From the figure, it can be seen that the relationship
between point evaluations and time is linear, which was expected. Therefore,
to compute how much time performing N generations, each using X points
of training set will take, we can use the parameters of the linear function:

T (N,X) = N

1000(26.4 + 0.64X)sec.

1We changed e|x| sin(x) to e|x| sin(2πx).
2for fixed-size predictors

19

4. Experiments

4 2 0 2 4
100

50

0

50

100

150

f1

3 2 1 0 1 2 3
15

10

5

0

5

10

15
f2

10 5 0 5 10
0

50

100

150

f3

0 2 4 6 8 10

0.5

0.0

0.5

f4

2 0 2 4 6 8

0.5

1.0

1.5

2.0
f5

Figure 4.1: Sampled functions

assuming that every generation takes approximately the same amount of
time.

An ideal fitness prediction would predict the fitness exactly and use no
time to construct the predictor. This method would need the same number
of generations as GP that uses all training data and achieve the speedup
computed using the above formula. GP using a fitness prediction method
that is not this precise should, in theory, achieve smaller speedup, since it
will probably need to run for more generations to solve the problem. On the
other hand, using the predictor might help the GP in some other ways, for
example leaving local optima by allowing objectively worse solutions in the
population. In practice, we observed both variants.

Note that speedup with respect to point evaluations does not necessarily
imply real-time speedup. That is because a method that uses fewer point
evaluations in each generation will naturally manage to perform more genera-
tions using the same number of point evaluations. Because of that, it will
spend more time doing the tasks linked to the generational process. Figure
4.3 shows how much time it takes to perform 107 point evaluations using a
various number of test cases each generation. Just like in figure 4.2, these
values depend on particular implementation.

20

.................. 4.5. Comparison of Time Spent Constructing the Predictors

0 25 50 75 100 125 150 175 200
Number of test cases used

20

40

60

80

100

120

140

160

Ti
m

e
(s

)

best fitting line w.r.t. LS
mean of measured values

Figure 4.2: Time needed to reach 1000 generations

4.5 Comparison of Time Spent Constructing the
Predictors

Even though fitness predictors can potentially speed up the evolution of
solutions, constructing the predictors takes some time. In some cases (such as
construction using coevolution) this problem can be solved by parallelization.
Because our implementation only uses a single thread, it is useful to measure
how much time the methods spend constructing the predictors. We ran 1000
generations of evolution and measured the time of GPstd, ASP , CSP and
DP . In these modified runs, predictors were constructed, but the entire
training set was used. Because CSP performs predictor generations based on
total effort, we counted the point evaluations as if the predictors were used.
This ensured, that the predictors behaved exactly as they would behave if
they were used. Figure 4.4 shows how much additional time was needed while
using ASP , CSP and DP to reach 1000 solutions generations. We can see,
that coevolved predictors require around 6-7% and DP requires around 4%
more time. The reason, why DP takes less time constructing the predictors is,
that it does not use coevolution. Difference of times between CSP and ASP
is most probably caused by their different approaches to solutions-predictors
synchronization. (CSP performs a new generation of predictors based on
total effort, ASP every T generations of solutions.)

21

4. Experiments

0 25 50 75 100 125 150 175 200
Number of test cases used

100

200

300

400
Ti

m
e

(s
)

best fitting hyperbola w.r.t. LS
mean of measured values

Figure 4.3: Time needed to perform 107 point evaluations

4.6 Comparison of Performance During the
Evolution

As mentioned earlier, the main advantage of using fitness predictors is to
get better results while making less computational effort. We compare how
well different methods of finding fitness predictors perform all given the same
effort. The effort made is measured in point evaluations as they were defined
in chapter 3.

In this experiment, we are interested not only in the final results of the
evolution but also in the quality of the solutions in the population during
the evolution. We set an effort limit to 107 point evaluations and during the
evolution logged fitness of the best individual on the test set.

In figure 4.5, we can see the test set fitnesses averaged over 50 runs. These
plots do not show any valuable information because arithmetic mean is not
robust, and one value can change the result arbitrarily. In our case few runs,
mainly from ASP , suffered from over-fitting during evolution. We only show
this plot for the sake of completeness. In figure 4.6, we show the same plot,
but we compute the mean, excluding 10% worst (highest) values. This time
we can see some meaningful results. On f2, f4 and f5 GPstd found noticeably
worse solutions than other methods. On the rest of the datasets, performance
at the end of the runs was comparable, but it can be seen that the fitness was
converging much slower than other methods. For example, on f1, DP found
a solution with similar fitness using more than 10 times less effort (note that
the scale of the x-axis is logarithmic). On f2, f3 and f4, we can see that at
the beginning ASP and DP were performing noticeably worse than other

22

.....................4.6. Comparison of Performance During the Evolution

CSP ASP DP
0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

+7.44%

+5.93%

+3.82%

Figure 4.4: Increase of time needed to reach 1000 generations compared to GPstd

methods and then caught up later. We think that this happens because both
ASP and DP use the same method for finding the predictor size, it took
them some time to find the suitable size, and in the process of finding it,
the test set fitness suffered. After the suitable size was found, ASP and DP
caught up and overtook GPstd.

The figure 4.7 shows medians of the test set fitnesses during the evolution.
The results are very similar to 4.6, therefore we do not discuss them any
further.

Figure 4.8 shows histograms of final test set fitnesses. For the same reason
as in figure 4.5, we ignored 10% worst solutions. Again, we can see, that
GPstd generally produces worse solution than GP using fitness predictors,
except for yachts dataset, where it performs comparably well. As for fitness
predictors, the histograms show, what was expected from figures 4.6 and 4.7:
Generally, ASP and CSP performed similarly well. DP performed slightly
worse and except for f3 better than random predictors. From the histograms
it seems, that RPstatic performs better than RPdynamic.

23

4. Experiments

104 105 106 107

Total effort (point evaluations)

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 se
t f

itn
es

s

1e9 f1

104 105 106 107

Total effort (point evaluations)

0

2

4

6

8

Te
st

 se
t f

itn
es

s

1e11 f2

104 105 106 107

Total effort (point evaluations)

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 se
t f

itn
es

s

1e10 f3

104 105 106 107

Total effort (point evaluations)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Te
st

 se
t f

itn
es

s

1e10 f4

104 105 106 107

Total effort (point evaluations)

0

1

2

3

4

Te
st

 se
t f

itn
es

s

1e9 f5

104 105 106 107

Total effort (point evaluations)

0

200

400

600

800

Te
st

 se
t f

itn
es

s

yachts

CSP
GPstd

ASP
DP

RPdynamic

RPstatic

Figure 4.5: Mean test set fitness during the evolution

24

.....................4.6. Comparison of Performance During the Evolution

104 105 106 107

Total effort (point evaluations)

0

5

10

15

20

25

Te
st

 se
t f

itn
es

s

f1

104 105 106 107

Total effort (point evaluations)

0

1

2

3

4

5

Te
st

 se
t f

itn
es

s

f2

104 105 106 107

Total effort (point evaluations)

0

5

10

15

20

25

30

Te
st

 se
t f

itn
es

s

f3

104 105 106 107

Total effort (point evaluations)

0.05

0.10

0.15

0.20

0.25

0.30

Te
st

 se
t f

itn
es

s

f4

104 105 106 107

Total effort (point evaluations)

0.1

0.2

0.3

0.4

0.5

Te
st

 se
t f

itn
es

s

f5

104 105 106 107

Total effort (point evaluations)

2

4

6

8

10

12

Te
st

 se
t f

itn
es

s

yachts

CSP
GPstd

ASP
DP

RPdynamic

RPstatic

Figure 4.6: Mean test set fitness during the evolution ignoring 10% worst values

25

4. Experiments

104 105 106 107

Total effort (point evaluations)

0

5

10

15

20

25

Te
st

 se
t f

itn
es

s

f1

104 105 106 107

Total effort (point evaluations)

0

1

2

3

4

Te
st

 se
t f

itn
es

s

f2

104 105 106 107

Total effort (point evaluations)

0

5

10

15

20

25

30

35

Te
st

 se
t f

itn
es

s

f3

104 105 106 107

Total effort (point evaluations)

0.05

0.10

0.15

0.20

0.25

Te
st

 se
t f

itn
es

s

f4

104 105 106 107

Total effort (point evaluations)

0.1

0.2

0.3

0.4

0.5

Te
st

 se
t f

itn
es

s

f5

104 105 106 107

Total effort (point evaluations)

2

4

6

8

10

12

Te
st

 se
t f

itn
es

s

yachts

CSP
GPstd

ASP
DP

RPdynamic

RPstatic

Figure 4.7: Median test set fitness during the evolution

26

.....................4.6. Comparison of Performance During the Evolution

0 2
0

20

40
f1

GPstd

0 2

CSP

0 2

ASP

0 2

DP

0 2

RPdynamic

0 2

RPstatic

0 2 4
0

20

40

f2

GPstd

0 2 4

CSP

0 2 4

ASP

0 2 4

DP

0 2 4

RPdynamic

0 2 4

RPstatic

0 5 10
0

10

20
f3

GPstd

0 5 10

CSP

0 5 10

ASP

0 5 10

DP

0 5 10

RPdynamic

0 5 10

RPstatic

0.0 0.1 0.2
0

10

20

f4

GPstd

0.0 0.1 0.2

CSP

0.0 0.1 0.2

ASP

0.0 0.1 0.2

DP

0.0 0.1 0.2

RPdynamic

0.0 0.1 0.2

RPstatic

0.0 0.2 0.4
0

10

20
f5

GPstd

0.0 0.2 0.4

CSP

0.0 0.2 0.4

ASP

0.0 0.2 0.4

DP

0.0 0.2 0.4

RPdynamic

0.0 0.2 0.4

RPstatic

1 2 3
0

5

10
yachts

GPstd

1 2 3

CSP

1 2 3

ASP

1 2 3

DP

1 2 3

RPdynamic

1 2 3

RPstatic

Figure 4.8: Histograms of achieved fitnesses

27

4. Experiments
4.7 Comparison of Expected Cost to Converge

In the previous experiment, we ran the evolution with an effort limit, with
no convergence criterion on the quality of the solutions. In this experiment,
we ran the evolution, until a solution with test set fitness better than F was
found, or until T seconds elapsed. Again, we performed 50 independent runs.
We set T = 300 and F to values shown in table 4.3. The values of F were set
so that the problems are solvable in given time limit, but at the same time
competitive.

dataset F

f1 0.001
f2 0.5
f3 1.5
f4 0.025
f5 0.025
yachts 1.5

Table 4.3: Convergence thresholds for each dataset

While statistics of successful runs are important, they can be misleading
because not all runs converge, and in practice, we need to run multiple runs
to get a successful one. To know what will be the cost to get such successful
run using a particular method, the expected cost must be computed.

4.7.1 Expected Cost

Let us say that our method has a probability p to converge before the time
runs out. Let X be the number of times we run the method until it converges
for the first time. It can be proved, that EX = 1

p . If C is a random variable,
whose value is the total cost needed to get a successful run, ECs is expected
cost of a successful run and ECf is expected cost of a failed run, then the
expected cost to converge is

EC = (EX − 1)ECf + ECs.

This equation holds true because the expected value is a linear operator.
Because the runs are independent, the number of successful runs follows the
binomial distribution, therefore, using maximum likelihood estimate, we can
estimate p as S

N , where S is the number of observed successful and N is the
total number of runs (success rate). Moreover, if we assume that Cs and Cf

are distributed normally, we can estimate their expected values as the means
of observed values.

4.7.2 Results

The results of the experiment are summarized in table 4.4. Best values are in
bold. On each dataset, we measure:

28

........................4.7. Comparison of Expected Cost to Converge..1. success rate - the percentage of successful runs..2. mean time to converge - mean time used by successful runs..3. mean point evaluations to converge - mean point evaluations used by
successful runs..4. expected time to converge - expected time to get a successful run..5. expected point evaluations to converge - expected number of point
evaluations to get a successful run

We also normalized expected time and point evaluations to (0, 1] by dividing
the best value by corresponding value so that the best performing method
has the highest score of 1. The normalized values are in brackets.

Our method DP performed best on functions with simple shape f1 and f5.
On f2 and f3 it performed even worse than GPstd. On f4 it performed better
than GPstd but worse than coevolved predictors (CSP and ASP).

Very interesting are the results from the yachts dataset. Here, the best
solutions by far were produced by GPstd, having 100% success rate, while
fixed size predictors CSP , RPstatic and RPdynamic only having 17%, 20% and
39% respectively. Adaptive-size predictors ASP and DP achieved success
rate of 86% and 57%, which is better than all fixed-size predictors, but still
worse than simple GPstd. It seems that on this dataset, the fitness of an
individual strongly depends on each test case. This may be because the
data comes from the real measurements and is multidimensional, both facts
contributing to higher distances between the input vectors. Because of that,
fixed size predictors performed poorly. Even though adaptive-size predictors
are able to increase their size to tackle this problem, it takes time, and that
may have been the reason they achieved lower success rates.

If we take a look at expected point evaluations to converge, except for f1,
where all methods were dominated by DP , ASP is the most efficient method.

Figures 4.9 and 4.10 show means and medians of normalized expected
times and numbers of point evaluations to converge. We can see that ranking
changes if we compute medians instead of the means. That is because of
the dominating performance of DP on f1 and poor performance of CSP on
yachts dataset.

4.7.3 Behaviour of Predictors

Figure 3.2.1 shows how differently DP and ASP choose which test cases will
be used in the predictors. From the histograms, it is very clear that DP
prefers points near peaks and valleys and endpoints of the fitted interval.
Even though the primary objective of DP is to use the test cases which the
solutions struggle to fit, it seems that these particular points lie close to the
peaks and valleys. ASP ’s choice of points seems more uniform, but we can
still see that some points get selected more often than the others.

Thanks to the results from the previous experiments, we can conclude that
even though exclusively choosing points from peaks and valleys may seem like

29

4. Experiments

GPstd CSP ASP DP RPdynamic RPstatic
0.0

0.2

0.4

0.6

0.8

1.0

0.44

0.61
0.65

0.61

0.35 0.32

(a) : mean

GPstd CSP ASP DP RPdynamic RPstatic
0.0

0.2

0.4

0.6

0.8

1.0

0.37

0.8
0.75

0.59

0.3
0.36

(b) : median

Figure 4.9: Mean and median normalized expected times to converge

GPstd CSP ASP DP RPdynamic RPstatic
0.0

0.2

0.4

0.6

0.8

1.0

0.27

0.59

0.86

0.55

0.3
0.36

(a) : mean

GPstd CSP ASP DP RPdynamic RPstatic
0.0

0.2

0.4

0.6

0.8

1.0

0.16

0.74

1.0

0.44
0.36 0.34

(b) : median

Figure 4.10: Mean and median normalized expected numbers of point evaluations
to converge

a reasonable approach, it only works well on very simple-shaped functions
and on more complex functions it performs considerably worse than coevolved
predictors.

30

........................4.7. Comparison of Expected Cost to Converge

f1 f2 f3 f4 f5 yachts

success rate

GPstd 88% 57% 78% 18% 4% 100%
CSP 88% 76% 78% 46% 20% 17%
ASP 94% 67% 86% 52% 17% 86%
DP 100% 45% 71% 33% 25% 57%

RPstatic 82% 45% 53% 22% 19% 20%
RPdynamic 92% 31% 78% 39% 11% 39%

mean time to
converge
(seconds)

GPstd 22.95 112.52 68.90 198.72 191.84 43.83
CSP 6.68 55.04 54.68 132.01 166.90 50.66
ASP 10.72 24.73 63.54 193.31 144.02 76.80
DP 2.48 60.21 71.33 172.27 164.67 78.03

RPstatic 5.86 52.82 43.61 146.75 134.43 44.36
RPdynamic 8.01 91.43 87.43 191.97 120.23 120.01

mean point
evaluations
to converge

GPstd 5.01 · 106 2.31 · 107 1.28 · 107 3.37 · 107 4.28 · 107 0.86 · 107

CSP 0.82 · 106 0.50 · 107 0.45 · 107 1.04 · 107 1.56 · 107 0.18 · 107

ASP 0.88 · 106 0.18 · 107 0.39 · 107 1.25 · 107 0.85 · 107 0.51 · 107

DP 0.26 · 106 0.59 · 107 0.58 · 107 1.59 · 107 2.13 · 107 0.47 · 107

RPstatic 0.72 · 106 0.45 · 107 0.38 · 107 1.10 · 107 1.28 · 107 0.13 · 107
RPdynamic 1.23 · 106 1.34 · 107 0.88 · 107 1.99 · 107 1.52 · 107 0.46 · 107

expected time
to converge
(seconds)

GPstd
63.86
(0.04)

340.11
(0.43)

155.74
(0.72)

1565.39
(0.30)

7391.84
(0.14)

3.83
(1.0)

CSP
47.59
(0.05)

147.35
(1.00)

137.18
(0.82)

484.18
(0.97)

1366.90
(0.78)

1483.99
(0.03)

ASP
29.87
(0.08)

174.73
(0.84)

113.54
(1.00)

470.24
(1.0)

1644.02
(0.64)

124.53
(0.35)

DP
2.48

(1.00)
428.40
(0.34)

191.33
(0.59)

791.02
(0.59)

1064.67
(1.0)

303.03
(0.14)

RPstatic
71.71
(0.03)

418.04
(0.36)

308.99
(0.36)

1183.11
(0.39)

1401.10
(0.76)

1244.36
(0.04)

RPdynamic
34.09
(0.07)

747.68
(0.65)

174.28
(0.65)

665.65
(0.70)

2640.23
(0.40)

593.70
(0.07)

expected
point

evaluations
to converge

GPstd
1.05 · 107

(0.02)
5.91 · 107

(0.19)
2.50 · 107

(0.27)
23.14 · 107

(0.12)
154.52 · 107

(0.06)
0.86 · 107

(0.91)

CSP
0.36 · 107

(0.07)
1.16 · 107

(0.97)
1.00 · 107

(0.69)
3.47 · 107

(0.82)
12.38 · 107

(0.79)
4.39 · 107

(0.17)

ASP
0.19 · 107

(0.13)
1.13 · 107
(1.00)

0.69 · 107
(1.00)

2.87 · 107
(1.00)

9.85 · 107
(1.00)

0.78 · 107
(1.00)

DP
0.03 · 107
(1.00)

4.02 · 107

(0.28)
1.54 · 107

(0.44)
7.31 · 107

(0.39)
13.18 · 107

(0.74)
1.83 · 107

(0.42)

RPstatic
0.49 · 107

(0.05)
2.87 · 107

(0.39)
2.12 · 107

(0.32)
8.15 · 107

(0.35)
12.39 · 107

(0.79)
3.51 · 107

(0.22)

RPdynamic
0.30 · 107

(0.08)
9.62 · 107

(0.12)
1.61 · 107

(0.43)
6.36 · 107

(0.45)
29.28 · 107

(0.34)
2.08 · 107

(0.37)

Table 4.4: Results of 50 independent runs

31

4. Experiments

4 2 0 2 4
0

500

1000

1500

2000

2500

po
in

t u
sa

ge

usage

4 2 0 2 4
0

2000

4000

6000

po
in

t u
sa

ge

usage

3 2 1 0 1 2 3
0

20000

40000

60000

80000

100000

120000

po
in

t u
sa

ge

usage

3 2 1 0 1 2 3
0

5000

10000

15000

20000

po
in

t u
sa

ge

usage

10 5 0 5 10
0

20000

40000

60000

80000

po
in

t u
sa

ge

usage

10 5 0 5 10
0

2500

5000

7500

10000

12500

15000

po
in

t u
sa

ge

usage

0 2 4 6 8 10
0

25000

50000

75000

100000

125000

150000

po
in

t u
sa

ge

usage

0 2 4 6 8 10
0

10000

20000

30000

po
in

t u
sa

ge

usage

2 0 2 4 6 8
0

25000
50000
75000

100000
125000
150000

po
in

t u
sa

ge

usage

2 0 2 4 6 8
0

10000

20000

30000

40000

po
in

t u
sa

ge

usage

100

50

0

50

100

150f(x)

100

50

0

50

100

150f(x)

15
10
5

0
5
10
15f(x)

15
10
5

0
5
10
15f(x)

0

50

100

150
f(x)

0

50

100

150
f(x)

0.5

0.0

0.5
f(x)

0.5

0.0

0.5
f(x)

0.5

1.0

1.5

2.0f(x)

0.5

1.0

1.5

2.0f(x)

Figure 4.11: Histograms of used test cases by DP (left) and ASP (right)

32

Chapter 5
Summary and Conclusion

In this thesis, we first briefly summed up the main principles of the genetic
programming and defined the problem of fitness predictor construction. Then
we described two known methods, that construct the fitness predictors using
coevolution. After that, we proposed a new method, that does not use
coevolution and constructs the predictors using errors of the individuals in
the current population on the training data. We compared the performance
of these methods along with the standard GP and random predictors on six
symbolic regression problems.

From the two experiments we conducted we can confidently say, that
adaptive-size coevolved predictors (3.1.2) use the point evaluations most effi-
ciently from all compared methods. The time requirements did not come out
so definite. This may be due to the relationship between predictor size and
time to perform a certain number of point evaluations shown in 4.4. Despite
this fact, using coevolved predictors, especially ASP , provided a significant
real-time speedup as well. Even though our method DP performed consider-
ably well on average, it was due to the fact that it performed exceptionally
well on simple-shaped datasets. For that reason, DP cannot be recommended
over ASP , apart from some very specific scenarios.

33

34

Appendix A
Bibliography

[1] Douglas A. Augusto and Helio J. C. Barbosa. Symbolic regression via
genetic programming. In Proceedings of the VI Brazilian Symposium on
Neural Networks (SBRN’00), SBRN ’00, page 173, USA, 2000. IEEE
Computer Society.

[2] François-Michel De Rainville, Félix-Antoine Fortin, M Gardner, Marc
Parizeau, and Christian Gagné. Deap: A python framework for evolu-
tionary algorithms. pages 85–92, 07 2012.

[3] Michaela Drahosova, Lukas Sekanina, and Michal Wiglasz. Adaptive
fitness predictors in coevolutionary cartesian genetic programming. Evo-
lutionary Computation, 27:1–27, 06 2018.

[4] Dheeru Dua and Casey Graff. UCI machine learning repository. "http:
//archive.ics.uci.edu/ml", 2017.

[5] John Duffy and Jim Engle-Warnick. Using symbolic regression to infer
strategies from experimental data. In "Evolutionary Computation in
Economics and Finance", pages 61–82. Physica-Verlag HD, Heidelberg,
2002.

[6] W. Daniel Hillis. Co-evolving parasites improve simulated evolution
as an optimization procedure. Physica D Nonlinear Phenomena, 42(1-
3):228–234, June 1990.

[7] John R. Koza. Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[8] Samir W. Mahfoud. Niching methods for genetic algorithms. Technical
report, 1995.

[9] Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. A
field guide to genetic programming. Published via http://lulu.com and
freely available at http://www.gp-field-guide.org.uk, 2008. (With
contributions by J. R. Koza).

[10] Michael D. Schmidt and Hod Lipson. Coevolution of fitness predictors.
IEEE Trans. on Evolutionary Computation, pages 736–749, 2008.

35

"http://archive.ics.uci.edu/ml"
"http://archive.ics.uci.edu/ml"

36

Appendix B
CD contents

/
datasets ... used datasets
documents.............................digital version of this thesis
experiments..............config files of the conducted experiments
fpgpPython 3 source files of the project
notebooks.................................used jupyter notebooks
README.md text file with technical instructions for the project
requirements.txt...............text file with needed dependencies

37

	Introduction
	Genetic Programming
	Creating an Initial Population
	Selection
	Genetic operations
	Symbolic Regression
	Solving Symbolic Regression Using GP

	Fitness Predictors
	Coevolution of Fitness Predictors
	Approach by Michal D. Schmidt and Hod Lipson
	Approach by Michaela Šikulová, Lukáš Sekanina and Michal Wiglasz

	Adaptive-size deterministic predictors
	Score of a test case
	Size of the predictors
	Periodic update

	Random predictors

	Experiments
	Implementation
	Setup
	Used data
	Measuring potential speed benefits from using fewer point evaluations
	Comparison of Time Spent Constructing the Predictors
	Comparison of Performance During the Evolution
	Comparison of Expected Cost to Converge
	Expected Cost
	Results
	Behaviour of Predictors

	Summary and Conclusion
	Bibliography
	CD contents

