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Abstract

This thesis presents a detailed examination of application backdoors hidden
in Portable Executable files and proposes novel anomaly-based methods for
their heuristic detection. Four application backdoors used in large-scale
supply chain attacks were reverse-engineered and shown to exhibit anomalous
properties that could be utilized in the search for similar backdoors. These
anomalous properties serve as the basis for three heuristic detections that were
implemented and had their performance evaluated on a dataset composed of
both benign and backdoored applications.

Keywords backdoor, malware, static analysis, anomaly detection, reverse
engineering
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Abstrakt

Tato prace prezentuje detailni pruzkum aplikacnich backdoort ukrytych
v souborech formatu Portable Executable a navrhuje nové metody jejich
heuristické detekce. étyfi aplika¢ni backdoory pouzité v rozsahlych utocich
na softwarové dodavatele byly zanalyzovany za pouziti reverzniho inzenyrstvi
a bylo ukazdno, ze vykazuji anomdlni vlastnosti, kterych lze vyuzit pri
hledani podobnych backdoori. Tyto anomélni vlastnosti slouzi jako zaklad
tri heuristickych detekci, které byly naimplementovany a jejichz vykon
byl vyhodnocen na datasetu obsahujicim jak neskodné, tak backdoorované
aplikace.

Klicova slova backdoor, skodlivy software, statickd analyza, detekce
anomalii, reverzni inzenyrstvi
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Introduction

Supply chain attacks conducted using application backdoors pose a serious
threat to the cybersecurity of countless organizations. In such attacks,
malicious actors attempt to compromise a software vendor with the intention
of secretly implanting a backdoor into some widely distributed software. Even
though the software vendor gets attacked first, it is not the primary target
of these attacks. Instead, the attackers are commonly targeting a carefully
selected subset of the backdoored software’s users. When the backdoored
software gets executed by one of those users, the backdoor activates itself and
provides remote control of the infected machine to the attackers.

Defenders employed by software vendors are generally aware of the risks
associated with supply chain attacks. However, the attackers’ incentives to
perform such attacks are extremely high, which attracted advanced malicious
actors who managed to pull off large-scale attacks, such as ShadowPad [23]
and ShadowHammer [25]. One of the main incentives is the enormous
spread potential: backdooring a product with a large install base can give
the attackers access to millions of machines just by compromising a single
target. Supply chain attacks might also make it easier for attackers to hack
organizations that implement effective security measures. They can choose a
supplier with poor defensive capabilities and get into the target organization
indirectly through this supplier.

Supply chain attacks are hard to defend against, both for the software
vendors and for the targeted users. For instance, the backdoor could be
inserted by a maliciously modified compiler, which would mean that the
attacked software vendor would not be able to find traces of the backdoor
in its source code. The vendor could then unwittingly push the backdoored
software via an automatic update to its users’ machines where the backdoor
would operate silently in the background. Since the backdoor would not
interfere with the legitimate functionality of the backdoored software, it would
be virtually impossible for a regular user to notice that something is wrong.
Security is often based on trust. This attack scenario shows that it might not
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be enough to trust the suppliers’ good intentions. One also has to be confident
of the suppliers’ ability to defend themselves in order to lower the chances of
attacks like this.

Most backdoors used in supply chain attacks were discovered by defenders
who investigated a malware incident and managed to trace it back to its
initial infection vector, the backdoored application [23, 16]. Unfortunately,
the discovery often took place months after the backdoor first became active
in-the-wild. This naturally begs the question of whether there is a way to
detect these backdoors sooner, before they inflict too much damage. There
could also be other, undiscovered backdoors currently active in-the-wild, which
is why it would be beneficial to have some tools ready to help in the hunt for
such backdoors.

Designing such tools is precisely the goal of this thesis. As is shown
in Chapter 3, backdoored applications often exhibit various anomalous
properties. These anomalous properties tend to be caused by the invasive
manner in which the backdoor gets implanted inside a benign application. The
main idea behind this thesis is to design static heuristic detections that point
out applications exhibiting such anomalous properties, since those applications
might be hiding yet undiscovered backdoors.

The structure of this thesis is as follows. Chapter 1 introduces the
Portable Executable file format and describes techniques applicable for static
analysis of files in this format. Chapter 2 focuses on backdoors and details
various methods that can be used to backdoor an executable file. Chapter 3
highlights several backdoors used in high-profile supply chain attacks and
discusses anomalous properties observed in those backdoors. Chapter 4
describes the design and implementation of a tool that processes Portable
Executable files and outputs a multitude of features extracted from those
files. Finally, Chapter 5 proposes several heuristic detections that could help
detect undiscovered backdoors. This final chapter also contains an evaluation
of these heuristic detections, based on a dataset containing both benign and
backdoored software.



CHAPTER 1

Static Analysis of PE Files

The two main approaches to software reverse engineering are static analysis
and dynamic analysis [49]. Dynamic analysis involves executing the analyzed
program in a controlled environment, such as a sandbox or an emulator. This
environment usually makes it possible to inspect the behavior of the analyzed
program in order to learn about its functionality. The other approach, static
analysis, is the process of examining a program without actually executing
it [52]. When static analysis is applied to Portable Executable (PE) files with
no available source code, it often involves reading disassembled or decompiled
code in order to obtain more information about the analyzed file.

Unfortunately, dynamic analysis can only explore the code paths that
actually got executed [28]. This could pose a problem, especially if the
analyzed program attempts to detect if it is running in an analysis environment
and deliberately avoids executing some of its code if it concluded that it is [27].
In contrast, static analysis can be much more comprehensive, but it is usually
also more time-consuming and complex. Static analysis can also be made even
more difficult by various obfuscation techniques, such as string encryption or
control flow flattening [12]. Since both approaches to reverse engineering have
their advantages and disadvantages, selecting the right approach for the given
task is crucial. Both approaches also complement each other well, so it is
often beneficial to combine them. For example, static analysis can be used to
make assumptions about program behavior which can then be verified using
dynamic analysis.

Static analysis is also commonly applied in areas other than reverse
engineering. Most notably, it is often used by compilers to generate more
efficient code [43] or for quality assurance to investigate software for potential
bugs and vulnerabilities [35]. For such purposes, static analysis can be
performed on the source code level, object code level, or even on an
intermediate representation. For reverse engineering, however, source code
is usually not available, so static analysis generally has to be performed
on the object code level. In such cases, static analysis often consists of

3
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disassembling/decompiling code or parsing executable files in order to extract
information from their headers and various other data structures.

This chapter contains a brief introduction into the structure of the PE file
format, which is used throughout Microsoft Windows for storing executable
code. Some of the tools useful for static analysis of PE files are also
presented. The two most important types of such tools are a disassembler
and a decompiler. While a disassembler’s job is to translate machine code
back into human-readable assembly, a decompiler attempts to reconstruct the
original source code in a higher-level programming language.

1.1 The PE File Format

The Portable Executable is an executable file format that is widely used on
Microsoft Windows. It is meant to encapsulate machine code with multiple
headers and data structures that help the operating system load and execute
the embedded code. Its structure is based on the Common Object File
Format (COFF), which is nowadays still used on Microsoft Windows for
object files [41]. The PE file format is designed to be as generic as possible,
and it therefore supports multiple instruction set architectures and multiple
subsystems. A subsystem essentially defines the environment that the PE
file can be executed in. Depending on the subsystem, a PE file can be used
as a Win32 application, a device driver, an Extensible Firmware Interface
(EFI) application, and more. A PE file can also be used as an executable
file or as a software library, such as a Dynamic-link Library (DLL). Since
PE files can be used in so many contexts, many extensions are commonly
associated with them. The most common ones are .exe, .d1l1l, and .sys.
Note that even though the format was initially designed to contain primarily
executable machine code, there are nowadays even PE files that do not contain
any meaningful custom native code. Examples of this are .NET executables
and resource-only PE files.

The basic structure of the main headers in a PE file can be seen in
Figure 1.1. The very first 64 bytes of a PE file are occupied by the MS-
DOS header [39] (formally IMAGE_DOS_HEADER, but it is also often referred to
as the MZ header, based on the magic number that identifies it). This header
exists mostly for backwards compatibility, and it is often accompanied by a
simple program for MS-DOS that prints a warning that the PE file cannot be
executed under MS-DOS. The most important part of the MS-DOS header is
called e_lfanew, and it contains a 32-bit file offset to where the actual PE
header is located.

The PE header is made up of the COFF Header and the Optional Header!.
It starts with a 32-bit signature that spells out ASCII letters PE followed

!The name Optional Header might be a bit misleading, since a PE file is required to
have it, otherwise it will not be loaded by the operating system.

4
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0x0000
0x0008
0x0010
0x0018
0x0020
0x0028
0x0030
0x0038
0x0040
0x0048
0x0050
0x0058
0x0060
0x0068
0x0070

64 bit

Signature 0x50450000 Machine #NumberOfSections
i PointerToSymbolTable COFF
BEETREOHETED (dopracated) Header
# 1Table s 1Head ti
(deprecated)
e LSirrceds
SizeOfInitializedData SizeOfUninitializedData COFF
Fields
AddressOfEntryPoint BaseOfCode
(RvA) ava)
BaseOfData SrrErEren
(RVA)
SectionAlignment FileAlignment
MajorImage | MinorImage
Version Version
Win32VersionValue
Version Version (zeros fillad)
SizeOfImage SizeOfHeaders Specific
Fields
CheckSum D1 ti
(4mages not checked)
SizeOfStackReserve SizeOfStackCommit
SizeOfHeapReserve SizeOfHeapCommit
LoaderFlags # NumberOfRvaAndSizes
(zeros filled)
“P°;EAT)“°1° SizeOfExportTable
IWP"f:m‘)"bl' SizeOfImportTable
“'““‘;;':T’hle SizeOfResourceTable
l’C‘Pﬁi:?T'bl‘ SizeOfExceptionTable
C’ﬂmﬁ:::"“bh SizeOfCertificateTable
BlleRolocu:‘t‘;ionTahle SizeOfBaseRelocationTable
Sty SizeOfDebug
(Rva)
Axchit’::rtobltl SizeOfArchitectureData
Data
Globa( mﬁPtz 00 00 00 00 Directories
TLSTable SizeOfTLSTable
[
LR D SizeOfLoadConfigTable
=5 SizeOfBoundImport
mmx)'"“bh SizeOfImportAddressTable
DelayImportDescriptor SizeOfDelay:
(RvA) -
CLRRuntimeHeader SizeOfCLRRuntimeHeader
00 00 00 00 00 00 00 00
Name
VirtualSize Viztul(:.nlfid:-ll ?:;Itlon
SizeOfRawData PointerToRawData
PointerToRelocations PointerToLinenumbers
Characteristics

Optional
Header

Figure 1.1: A visualization of the headers in a PE file. Retrieved from [11].
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by two null bytes. The PE header contains many essential items that are
necessary for the program’s functionality. The fields Machine and Subsystem
identify the instruction set architecture and subsystem required for the PE
file’s execution. ImageBase contains the preferred base address where the PE
file should be mapped when it gets loaded?. AddressOfEntryPoint points to
the first instruction in the PE file that gets executed.

The Optional Header ends with an array that contains the locations and
sizes of data directories. Each data directory is optional and can contain
data structures that further describe some additional characteristics of the
PE file. For example, IMAGE_DIRECTORY_ENTRY_EXPORT can point to the
IMAGE_EXPORT_DIRECTORY header, which enumerates all functions exported
by the particular PE file. These exported functions can then be imported
into and called from another PE file, which allows interaction between
pieces of code that are situated in different PE files. Another example is
IMAGE_DIRECTORY_ENTRY_SECURITY, which might point to the Authenticode
digital signature that can be used to verify the PE file’s integrity.

Another important header that can be found in a PE file is the Section
Table. It is located directly after the Optional Header, and it is an array of
Section Headers, each of which describes an individual section in the PE file.
A section is essentially a contiguous chunk of memory that gets loaded into
the virtual address space of a program before a PE file can be executed. Each
Section Header contains the fields PointerToRawData and SizeOfRawData,
which describe where can the section be found in the raw PE file and how
big it is. It also contains the fields VirtualAddress and VirtualSize,
which describe where the section should be loaded in the virtual address
space and how much space should it occupy there. Note that VirtualSize
does not always have to equal SizeOfRawData. If SizeOfRawData is less
than VirtualSize, the remainder of the virtual address space will be zero-
filled by the loader [39]. Each section can also be given a name that has
to fit into eight bytes. While the section name can be arbitrary and does
not carry much significance, certain conventions are often followed, such as
naming sections that contain machine code .text or .code and naming
sections that contain constant data .rdata. Each Section Header also contains
section Characteristics, which hold multiple flags that further describe
the section. Out of those flags, the most important ones for this thesis are
IMAGE_SCN_MEM_READ, IMAGE_SCN_MEM_WRITE, and IMAGE_SCN_MEM_EXECUTE.
They express respectively whether the section can be read from, written to,
or executed as code. Attempting to perform an illegal operation on data from
some section would result in a memory access violation exception.

2External factors such as Address Space Layout Randomization might cause the PE file
to be mapped to another address, but this field is still necessary for the loader to apply
relocation fixups.
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1.1. The PE File Format

The PE file format is utilized extensively in the rest of this thesis. In
order to provide the reader with the necessary background, some additional
concepts related to PE files have to be explained.

¢« Relative virtual address

Items in a PE file are usually referenced either by their file offset or by
their relative virtual address (RVA). A file offset is simply the position of
the item within the raw PE file as it is stored on the filesystem, whereas
RVA is the address of the item once it gets loaded in the virtual address
space, relative to the base address of the image. Therefore, an item’s
RVA can be simply computed by subtracting the module’s base address
from the virtual address where the item got loaded. RVAs are used
extensively in the PE header, since they are efficient to compute and
can refer even to addresses that are not backed by the PE file (and that
therefore cannot be referred to by the file offset).

e Overlay

Arbitrary data can be appended to the end of a PE file. If this data
does not belong to any section, it is called the overlay. The overlay is
sometimes used to bundle additional data inside a single PE file. Since
it does not belong to any section, it does not get loaded into the virtual
address space. Therefore, accessing the appended data entails reading
the image’s raw PE file at runtime and finding the overlay’s file offset.

e PE resources

Another way to bundle arbitrary data in a PE file is to use PE resources.
Unlike the overlay, PE resources are a part of the PE file format and
can be found by following the IMAGE_DIRECTORY_ENTRY_RESOURCE data
directory. The content of PE resources can commonly be found in
a section called .rsrc and can be accessed using functions such as
FindResource and LoadResource. Resources are organized in a tree
structure, where each resource has an associated type and a language
identifier. The same resource can be defined in multiple languages in
order to localize content for the end users.

e Relocations

Machine code is often position-dependent, which means that it will
only execute correctly when it is loaded at its preferred address. This
is caused by the fact that it can contain absolute addresses to other
pieces of code or data, which unfortunately change when a PE file
gets loaded at an unexpected address. If it should be possible to
load a PE file at an arbitrary base address (which is definitely a
desirable property because of possible virtual address space collisions
and Address Space Layout Randomization (ASLR)), the PE file should

7
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provide the IMAGE_DIRECTORY_ENTRY_BASERELOC data directory. This
data directory contains a list of relocation entries (sometimes also called
fizups) that hold a list of RVAs that have to be fixed when a PE file gets
loaded at an unexpected address. Fach relocation entry also specifies
the type of the fixup that should be applied. The most common type
consists of just adding the 32-bit difference between the actual and the
preferred base address.

e Rich header

The Rich header is an undocumented structure containing information
about the tools used to build a PE file [14]. It can be found in PE files
created using modern versions of the Microsoft Visual C++ (MSVC)
linker, where it logs the number of times a particular version of a certain
build tool has been used to build the final executable [59].

1.2 Static Analysis Tools

There are many different tools that make static analysis of PE files easier.
Some of them are briefly introduced in this section in order to illustrate how
they can be used during the reverse engineering process.

1.2.1 IDA Pro

IDA Pro® is a proprietary disassembler that runs on Microsoft Windows,
Linux, and Mac OS X. It supports a wide range of instruction sets and
executable file formats. It can show disassembly in two views that a user
can switch between. The first one is called text view, which is essentially a
linear disassembly listing. The other one is called graph view. It displays
functions in customizable graphs where basic blocks are represented as graph
nodes. IDA Pro allows its users to interact with the disassembly in various
ways. Users can rename items, add comments, (un)define instructions and
functions, create custom data structures, and more.

In order to speed up reverse engineering efforts, users can also purchase
and use the Hex-Rays decompiler, which is tightly integrated into IDA Pro.
At the time of writing, it is capable of decompiling machine code from five
different instruction set architectures into C-style pseudocode. The decompiler
uses a custom intermediate language internally, which should make it easier
to add support for decompilation of additional instruction set architectures in
the future.

Many executable files contain statically linked library functions. IDA Pro
attempts to automatically identify such functions and assign them descriptive
names so that its users do not have to delve deep into library functions

3https://www.hex-rays.com /products/ida,/
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that are not relevant for the analyzed program’s functionality. IDA ships
with a custom technology called F.L.I.LR.T. (Fast Library Identification and
Recognition Technology) that uses a list of function signatures and attempts
to match them to all unrecognized functions.

Dynamic analysis can also be conducted with IDA Pro, since it contains an
integrated debugger. The debugger supports the usual features, such as single-
stepping, memory patching, and placing breakpoints, as well as some more
advanced features, such as remote debugging, tracing, and taking memory
snapshots.

IDA Pro also supports scripting in either IDC (a custom scripting language
designed just for IDA) or in IDAPython, which is a Python interpreter that is
available from within IDA. Scripts executed in it can interact with IDA’s API
in order to automate various reverse engineering tasks. IDA is also extensible
through plugins written in C+4. These plugins may interact closely with
IDA’s static analysis engine and can therefore be used to provide additional
functionality, such as parsing otherwise unsupported executable file formats.

1.2.2 PE-Bear

PE-Bear? is a freeware tool that parses PE headers and presents their decoded
content in a well-arranged graphical user interface (GUI). It displays, among
others, the COFF Header, the Optional Header, the Rich Header, the Section
Table, and the Import Directory. It features a built-in disassembler and a hex
editor so that its users can take a more detailed view at the analyzed PE file.
PE-Bear can also be used to perform basic modifications of a PE file, such
as editing the PE header, adding new sections and imports, and nopping out
instructions.

It is possible to compare two PE files in PE-Bear as well. The built-in
comparison tool highlights any differences between the compared files so that
its users can quickly figure out which items from which headers have changed.

1.2.3 Resource Hacker

Resource Hacker® is a freeware utility for viewing and editing PE resources.
It is capable of parsing the Resource Table of both 32-bit and 64-bit PE files
and listing all the individual resources contained within. Each resource is
displayed in an appropriate way based on its resource type. Icons and cursors
are displayed as images, dialog boxes are shown in a preview, string resources
are displayed as text, and so forth. Each resource can also be analyzed in
its raw binary form in an embedded hex viewer. Existing resources can be
exported, deleted, or replaced, and new resources can be added. It is possible

“https://hshrzd.wordpress.com/pe-bear/
Shttp://www.angusj.com /resourcehacker /
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to edit many types of resources directly in Resource Hacker with a custom
editor based on the type of the edited resource.

Resource Hacker also features a compiler for resource script files, and it
can open compiled resource files (often associated with the .res extension). It
is commonly used as a GUI application, but it also provides a command-line
interface that exposes most of the functionality that is available from the GUI.

1.2.4 Detect It Easy

Detect It Easy® is a cross-platform and portable packer identifier. It is
especially helpful during the initial static analysis when it can quickly
determine the category of an unknown PE file. To do so, it contains an
extensive database of signatures for various packers, protectors, compilers,
linkers, installers, and self-extracting archives. A signature match provides
valuable information to analysts, who can decide their next analysis steps
based on the name and type of the matched signature.

The signatures are essentially algorithmic detections written in a scripting
language similar to JavaScript. This distinguishes Detect It Easy from other
packer identifiers such as PeID7, whose signatures are composed of plain data
which usually just describes the bytes that should be present at the entry
point for a signature to match. Signatures for Detect It Easy are not difficult
to comprehend, and users can contribute by creating new ones or improving
existing ones.

There are also signatures for other executable file formats such as the
Executable and Linkable Format (ELF) and Mach-O. There are signatures for
generic file formats as well, which allows Detect It Easy to be used similarly as
the Unix file command. Detect It Easy also contains many other features,
such as graphing the Shannon entropy of different parts of the analyzed file,
extracting Uniform Resource Locators (URLs), and identifying the usage of
cryptographic algorithms. As is the case with PE-Bear, it is capable of parsing
PE headers and displaying them in a human-readable format.

Shttps://github.com/horsicq/Detect-It-Easy
"https://www.aldeid.com /wiki/PEiD
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CHAPTER 2

Backdoored PE Files

In computer security, backdoors can be defined as deliberately crafted
means of bypassing authentication or other security controls [60]. They
can be implanted into systems for legitimate reasons or with malicious
intent. While the mere existence of a backdoor is frequently criticized [7],
especially troublesome are backdoors whose very existence is hidden from the
public [17, 6]. By creating such covert backdoors, users’ trust is being abused,
regardless of the backdoor’s purpose.

There are both hardware and software backdoors. Hardware backdoors are
usually created by including some secret logic, software backdoors by including
hidden code. Software backdoors can be further divided into system backdoors
and application backdoors [60]. While system backdoors allow attackers
continued access to an already compromised system, application backdoors are
legitimate pieces of software that were compromised and modified to perform
malicious actions. Only application backdoors are discussed further, with
a particular focus on backdoors that are hidden inside otherwise legitimate
PE files. Since the above-given definition of a backdoor is very broad, there
are numerous forms that an application backdoor can take. In the following
section, an overview of several different classes of backdoors is given.

2.1 Backdoor Classes

The first class of PE backdoors is a trojanized executable. Such backdoors are
created by implanting malicious code into another application. The execution
flow of the original program is typically modified so that the inserted malicious
code gets executed. This kind of backdoor is often created in such a way
that the functionality of the benign application is preserved as much as
possible and that the execution of the malicious code is hidden. This way,
the user of the backdoored application might not notice any signs of malicious
behavior. The functionality of the malicious code does vary from case to case.
Sometimes, a full-blown remote administration tool is implanted [56]. In many

11
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cases [33, 25|, however, the backdoor authors try to implant as little malicious
code as possible, so they only include a small stub that is able to download the
malware’s next stage from the Internet or give the attackers a remote shell.
An advantage of this approach is that if the backdoor gets discovered, they
can shut down the control server, and that there is less malicious code in the
trojanized executable, which makes detection and attribution of the attack
harder.

The second class are backdoors that take the form of a security
vulnerability. For instance, an attacker might introduce a remote code
execution vulnerability to a server application. Another example would be
a cryptographic vulnerability that enables the attackers to perform actions
for which they lack authorization. These kinds of backdoors are usually
very dangerous because anybody who knows about them might be able to
exploit them. Parties who introduce them often believe that nobody but
them [10] knows about the backdoor, so they are the only ones capable
of abusing them. In some cases, however, not everyone who knows about
these vulnerabilities will be able to exploit them. An example of this is a
cryptographical backdoor that only the parties who have access to certain
predetermined values can exploit [6]. Vulnerability backdoors can also emerge
as a security bug unwittingly created by the application’s developers. These
vulnerabilities become backdoors at the moment an attacker learns about
them and chooses not to disclose them. This leads to an interesting property
of many such backdoors: plausible deniability [51]. Even if somebody learns
about a backdoor vulnerability and knows who is responsible, it would be
hard for them to tell if the vulnerability is a result of malice or if it was
unintentionally created as a software bug.

A backdoor might also be created by modifying pieces of data in a
target benign application. For example, the URL from which application
updates are downloaded could be changed to an attacker-controlled server. A
cryptocurrency miner could have its “donate address” changed to an address
of the attacker. An additional set of credentials could be added to an
authentication program, and so forth. Similarly, some piece of code could
be altered to modify the application’s functionality for the attacker’s benefit.
For instance, a cryptocurrency wallet could be altered to divert selected
transactions to the attacker. A network traffic analysis tool could be modified
to hide certain packets. An online game client could be sabotaged to put some
of its users at an unfair disadvantage. Clearly, these are just a few examples,
and there are many more possibilities depending on the target application and
the attacker’s motives.

While not strictly an application backdoor, it should also be mentioned
that legitimate application updates can also be abused in order to turn an
application into a backdoor. In this case, the attacker infiltrates an update
server of the application and starts to serve malicious updates. The attacker
can either target a chosen subset of users or infect all of them indiscriminately.
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In 2017, malware dubbed NotPetya [32] was spread through the update
process of an otherwise benign tax software. If the updated software does
not sufficiently check the integrity of the update, the attacker could also
abuse a Man-in-the-Middle (MitM) position to hijack the update process. For
instance, the notorious Flame [5] malware abused a vulnerability in Windows
Update in order to spread itself. Depending on the exact update validation
performed, the attacker could also steal the private keys used to sign the
update and forge a fraudulent signature for a malicious update. This might
enable the attacker to abuse the update process from a MitM position even
without having a foothold on the update server.

Backdoors can also be characterized by the stage of the software build
process during which they are inserted into the application. If the application
to be backdoored is being compiled, the backdoor can be included either before
compilation (typically as a piece of source code), after compilation (typically
as a piece of object code), or even during compilation if the compiler itself
is backdoored [58, 22]. In open-source applications, backdoors may be easier
to spot, since anyone who reviews the code might notice them. Analyzing
object code of closed-source applications often requires reverse engineering,
so such backdoors are much harder for the public to find. To illustrate this
point, a backdoor existed in Borland Interbase for at least seven years until
it was discovered shortly after the software became open source [60]. On the
other hand, it is harder to introduce backdoors to the source code of a closed-
source application, since access to it is often heavily guarded, and only selected
engineers can work on it. In the open-source world, anyone can contribute code
(and thus attempt to introduce backdoors), so security depends on the amount
of scrutiny with which is any proposed code analyzed. Since open-source
applications are also in some cases vulnerable to backdoors introduced during
or after the build process, efforts have been made to introduce reproducible
builds [31]. These attempt to guarantee that object code corresponds to known
source code and is without any additional modifications. Backdoors in source
code can be discovered by looking at either the object code or the source code,
while backdoors in object code can only be found in object code. However,
when one analyzes object code, a backdoor that was created in source code
usually blends much more in and so is harder to spot.

While almost all backdoors can be found by inspecting source code or
reverse engineering binaries, this manual approach does not scale well. It
seems impossible to design an approach that would detect all possible kinds
of backdoors, so existing backdoor detection strategies [60] focus only on
specific types of backdoors. Therefore, to limit the scope of this research, only
backdoors that are created by trojanizing a PE file during or after compilation
are discussed in the rest of this thesis. This focus is not arbitrary, since this
type of backdoor is arguably one of the most prevalent and harmful ones [24, 9].
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2.2 Trojanized PE Files

Trojanized PE files are created by taking a legitimate executable and
modifying it in order to make it covertly execute extra malicious code. The
trojanized PE file often behaves very similarly to the original legitimate
executable, which makes it very hard for victims to notice the difference.
There are several reasons why a malicious actor might want to trojanize a PE
file. A non-exhaustive listing of the most common motives follows.

14

e Software supply chain attack

In a software supply chain attack [61], the attacker typically
compromises a software vendor in order to attack the users of its
software. One of the most straightforward ways to do so is to trojanize
some code that the software vendor distributes — it can be either an
application or a software library. One of the biggest targets for the
attackers are developers of operating systems. Successful execution of a
supply chain attack against them could potentially enable the attackers
to gain access to an enormous number of systems. In practice, attackers
often prioritize software vendors whose software is likely to be used by
the real targets and smaller software vendors whose software ends up on
a large number of systems. Unless the attackers make an operational
security error, it might be impossible to fully attribute such attacks to
them.

File-infecting virus

Many malware families propagate by infecting accessible PE files. For
example, this might enable them to spread to other systems by infecting
PE files on a shared network drive or when an infected executable gets
copied to another system and gets executed there. The infection is
performed by trojanizing legitimate files and including the malware’s
own code as the implanted malicious payload. Sometimes, file-infecting
viruses also mutate the malicious payload for each trojanized file in order
to make detection harder [18]. Since file-infecting viruses often trojanize
applications that offer necessary functionality, removing them can often
be much harder than just deleting the infected files. Often, a dedicated
removal tool that cleans the infected files has to be developed.

MitM code injection

When a PE file gets downloaded, an attacker who is able to tamper with
the network traffic might be able to trojanize the downloaded executable
on-the-fly [46]. For example, an attacker who compromised a vulnerable
router can make the router trojanize all PE files that get downloaded
over an insecure HT'TP connection. While downloading executable files
through HTTP is by itself not dangerous, sufficient integrity checks
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have to be made before actually executing the downloaded files. Some
websites that offer downloads over insecure HT'TP provide cryptographic
hashes of the downloaded files. If the hashes are also served through
insecure HT'TP, they do not sufficiently guarantee the integrity of the
downloaded files, even though they might fool the vast majority of
automatic injectors.

e Trojan horse download

Users do not always install applications by downloading them directly
through the official distribution channel [8]. They might, for example, go
to third-party websites that offer software downloads or get it through a
peer-to-peer network. A third-party that redistributes the software can
act maliciously and trojanize it. Since the trojanized application might
behave exactly the same as the original benign application, users are
not likely to even notice anything suspicious. An attacker could also use
social engineering to get a victim to execute a trojanized application.
To avoid downloading trojanized executables, it is widely recommended
that users only download and install software from trusted sources [8].

e Hiding malware

When a PE file gets trojanized, the actually trojanized part of the PE
file is often fairly small. Especially when choosing a big host PE file
to embed the malicious payload in, the vast majority of the trojanized
PE file will still correspond to the original benign PE file. This might
make it harder for defenders to find such malware, especially since most
static features of the PE file (such as the contents of the PE header)
will stay the same. Therefore, attackers sometimes hide their malware
by wrapping it inside an arbitrary benign PE file in an attempt to evade
detection [15]. Attackers might also use this trojanizing approach for
stealthier persistence. Instead of writing their persistent payload to a
standalone file, they might trojanize a PE file that they know will get
executed at some point.

2.3 Defense Against Trojanization

There is a mechanism designed by Microsoft to combat PE trojanization:
Authenticode Signatures [42]. In a nutshell, this allows software vendors to
sign their PE files and users to verify the origin of signed files. A valid signature
can be used to determine the origin of the file and prove its integrity. An
attacker’s attempt to trojanize an already signed PE file would invalidate
the signature. However, Authenticode signatures are usually not enforced,
meaning the attacker can just strip the invalidated signature from the PE
file. While the lack of a signature might raise some suspicion for certain
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applications, there are still plenty of legitimate unsigned PE files in-the-
wild, so the lack of a signature alone often cannot be used to draw any
conclusions about the file’s origin and integrity. However, in some cases,
the lack of a signature can stop a PE file from running. With the so-called
driver signature enforcement feature, enabled by default on 64-bit versions
of Microsoft Windows, only drivers with a valid signature will be loaded by
the operating system. Naturally, Authenticode can only be used to detect
modifications performed after code signing. If an attacker inserts the malicious
payload before signing takes place, the PE file might be signed with the
backdoor included. Similarly, an attacker with access to the signing keys
is able to backdoor and re-sign the trojanized PE file.

The PE header contains a checksum of the PE file, which would get
invalidated by most trojanization attempts. However, it is just a simple 32-bit
additive checksum, so nothing prevents an attacker from simply recalculating
this checksum after trojanizing a PE file. Since the Windows loader does
not check the validity of this checksum for common executables, many PE
files contain an invalid checksum full of zero bytes. File-infecting viruses
often recalculate the checksum, zero it out, or even use it as an infection
marker to prevent multiple infections of the same file [57]. In summary,
both Authenticode Signatures and PE checksums can be used as indicators of
trojanization, but unfortunately, they are not always applicable.

Some application developers also implement their own custom protection
against trojanization. The custom protection most often consists of computing
checksums of some parts of the PE file and comparing them against
predetermined values on startup. If the checksums do not match, the
executable was likely patched. While this will detect most automatic
trojanization attempts, a sufficiently skilled attacker who trojanizes an
executable manually can bypass such protection (for example, by patching
the checksum comparison itself). Custom protection against trojanization is
also provided by many runtime packers and protectors [44].

2.4 Techniques for Trojanizing PE Files

As discussed, the objective of PE trojanization is to make a benign PE file
execute extra malicious payloads. There are two main approaches that can
achieve this goal: packing and patching.

Packing works just like a runtime packer, but with added malicious code.
The executable to be infected is packed (or stored as data) inside of a
completely new malicious executable (see Figure 2.1). When the new malicious
executable is run, it first performs some malicious actions (such as infecting
other files) and then unpacks the original executable, loads it, and runs it. If
the time spent on performing malicious actions and unpacking is reasonably
short, a victim might not notice the startup delay or any change in application
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Original executable Backdoored executable
Original PE header “‘\‘\“ New PE header
Original code Backdoor code
Original data Unpacking stub
Packed original executable

Figure 2.1: A PE file trojanized through packing. The original executable
(on the left) is stored in a packed form in the backdoored executable. The
backdoored executable first runs its malicious code, then unpacks, loads, and
runs the original executable.

behavior. Some file-infecting viruses also run the malicious code in a separate
thread in order to decrease the startup delay.

The packed executable is usually not stored in plaintext — it is often
encrypted or compressed. It can be stored almost anywhere in the infected
executable, but it is often located in PE resources, in the overlay, or in a brand
new PE section. Storing it in the overlay is especially popular among malware
authors because automatic file infection is then very easy to implement.
In order to infect a PE file, malware authors can just simply prepend the
executable to be infected with the malicious packer [21]. For example, a file-
infecting virus called Neshta [3] uses the packing approach and stores the
encrypted original executable in the overlay. The packed executable is usually
executed from memory using a custom PE loader. However, some malware
avoids having to implement a PE loader and just unpacks the executable,
drops it to disk, and spawns a new process to execute it [46].

The packing approach completely changes what the infected file looks like,
which makes it easy to notice the infection using static analysis. Simple
packing also changes the icon of the PE file (because it is stored in the original
executable’s resources), which makes the backdoor more noticeable for the
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potential victims®. The other approach, patching, leaves most parts of the

backdoored executable intact and can thus be much more subtle and harder
to detect.

Patching consists of hiding malicious code inside of the trojanized
executable and subverting execution flow of the executable so that the
malicious code gets executed. There are many places where the malicious
code can be hidden and many techniques to subvert execution flow. The
techniques used to hide malicious code and hijack execution flow are mostly
independent of each other, which means that almost any combination of them
can be used to backdoor an executable.

To make the backdoor harder to detect, backdoor authors attempt to make
the malicious code small and hide it in a large legitimate PE file. Due to
Data Execution Prevention (DEP) implementation on Microsoft Windows,
the malicious code has to be placed in executable pages of memory, which
can put constraints on the size of the malicious code. To get around these
problems, backdoor authors often use a multistage approach. The malicious
code that gets executed first is just a small stub which loads the next stage
into executable memory and passes control to it. The next stage can then be
hidden as data inside of the executable or even downloaded from the Internet.

Because of ASLR, backdoor authors might not have control over the
location of the backdoor’s first stage in memory [1]. Therefore, the first stage
often consists of position-independent code (referred to as shellcode in the rest
of this thesis). It can be hidden in the backdoored executable in one of the
following ways:

e Adding an extra PE section

In this scenario, backdoor authors add a new executable section to the
backdoored PE file and hide the backdoor code in it. To avoid having
to fix many absolute and relative references, the new section is usually
inserted as the last one. While this is easy to implement, it is also
not particularly stealthy because the extra section is bound to raise
suspicion, especially since it is executable [4].

e Abusing code caves

The size of the raw data of each section in a PE file has to be aligned [39).
The alignment factor is given by the FileAlignment field in the PE
header. Its minimum, default, and most frequently used value is 512
bytes. This leads to a padding of up to 511 bytes at the end of each
section. When this padding is inside of an executable section, it is
commonly referred to as a code cave. This padding is not needed for the
functionality of the program, so backdoor authors can freely overwrite it

80f course, backdoor authors can avoid this problem by copying the original icon and
using it in the trojanized executable.
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with their malicious code. However, the backdoor’s first-stage shellcode
may not fit in any code cave. In that case, backdoor authors could also
choose a non-executable section with a sufficiently large padding and
make it executable (or split the shellcode across multiple code caves).

While FileAlignment refers to the alignment of each section as it is
stored in the PE image, SectionAlignment refers to the alignment
of each section when it is loaded into memory. This alignment must
be larger than FileAlignment and is set to the page size by default
(usually 4096 bytes). As a result, there are also bigger code caves of
up to 4095 bytes at the end of each section. However, abusing them is
slightly harder, since it requires shifting subsequent sections in the raw
PE image.

Enlarging an existing PE section

Backdoor authors can also create space for the malicious code by
enlarging an existing section. When the backdoor is inserted after
compilation, backdoor authors would probably choose to enlarge (and
make executable) the last section of the PE file because enlarging a
section in the middle would require them to fix all memory references to
all the sections that come after it. If the backdoor is inserted during early
stages of compilation, there is no such problem because the compiler will
make sure that all sections are placed at proper relative addresses.

Overwriting existing content

While in the previous scenarios, the backdoor authors hid the backdoor
code in unused space (or created extra unused space), it is also possible
that the backdoor code would replace existing code or data. For
example, the backdoor code could replace rarely (or never) used code
that is not critical for the program’s functionality. If this is done
incorrectly, it could cause the backdoored program to crash or otherwise
misbehave. Doing this properly, while minimizing the impact on the
backdoored program’s behavior, might require the backdoor authors to
have a strong understanding of the affected software.

There are also many different ways in which backdoor authors can hijack

execution flow in order to execute the backdoor code. Note that if backdoor
authors do not wish to break any existing functionality, effort has to be put into
restoring execution context to the correct state after the backdoor code has
finished execution. This is commonly done by using a pair of instructions such
as pushad and popad?, patching instructions back to their original state, or
copying and executing the overwritten instructions from elsewhere. Common
methods of hijacking execution flow include:

9pushad saves the current content of general-purpose registers on the stack, popad loads
the saved content from the stack back into the registers [20].
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Original executable Backdoored executable
Original PE header Original PE header
Entry point Hijacked entry point
Original code Original code

Y

Backdoor code

Jump to the original entry point

Figure 2.2: An illustration of backdooring through entry point hijacking. The
pointer to the entry point in the backdoored executable is overwritten to
ensure that the backdoor code gets executed first. A jump back to the original
entry point is inserted into the backdoor code in order to preserve the original
functionality.
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o Hijacking the entry point

The header of a PE file contains the AddressOfEntryPoint field, which
points to the first instruction of the PE file that should get executed [39].
Backdoor authors can modify this value to point to the backdoor code
and place an unconditional jump back to the original entry point into
the backdoor code (see Figure 2.2). This way, the code of the backdoor
gets executed first, and after it has finished, the original program starts
executing. If the backdoored executable is a DLL, backdoor authors can
also similarly hijack any exported function by modifying the address
of the hijacked exported function in the export table. This method is
popular among backdoor authors because it is easy to implement both
manually and automatically.

Adding a TLS callback

The entry point is not always the first piece of code that gets executed
when a PE file is loaded. The PE header can optionally contain
the Thread Local Storage (TLS) directory, which contains an array
of TLS callback functions [39]. These functions are meant to contain
initialization for thread local storage and get executed even before the
executable’s entry point. Backdoor authors can add a new callback
function (or hijack an existing one) in order to execute the malicious
code every time the backdoored executable is run.
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e Hijacking a function pointer

Many function pointers can often be found in a PE file. Usually, there is
some piece of code that reads the function pointer and calls the function
that it points to. Backdoor authors can choose to overwrite the function
pointer and point it to the backdoor code. When the piece of code reads
the function pointer and calls it, the backdoor code will start executing
instead of the original function. In order not to break the program, the
backdoor code will probably finish by restoring the execution context
and jumping to the original function that the overwritten pointer used
to point to. For example, the initterm method is included in PE
files created by the MSVC compiler. It is executed during program
initialization, and it processes an array of function pointers and calls
the function pointed to by each one of them [37]. Backdoor authors
can hijack an existing function pointer in this array or even add a new
one [47].

e Overwriting existing code

Backdoor authors can also overwrite some existing code with the
backdoor code. In order to get the backdoor code to execute, the piece of
code that gets overwritten has to be something that would naturally get
executed. The overwriting can, of course, cause the original program to
crash or misbehave, so backdoor authors usually choose to overwrite code
that is not strictly necessary for the original program’s functionality,
such as security checks, resource deallocation, logging, and so forth.
Alternatively, some backdoor authors also store the overwritten code
elsewhere in the PE file and either re-execute it from another address or
patch it back in when the backdoor code finishes executing.

e Instruction patching

Instead of overwriting many instructions, backdoor authors might also
patch just a single instruction. This is typically done by inserting a
control flow altering instruction such as jmp or call in order to redirect
control flow to the backdoor code. For instance, many tutorials [1, 13]
on PE backdoor manufacturing recommend inserting a jump to the
backdoor code directly at the entry point. Backdoor authors also often
hijack an existing call or jmp instruction. If such an instruction has
its target encoded inside itself, backdoor authors can just modify it and
change the instruction’s target to the backdoor code. In some cases,
the original target of the instruction does not even have to be executed,
such as when it is __security_check_cookie or free. Alternatively,
the ret instruction sometimes gets patched into a jmp to the backdoor
code. Even though it takes more bytes to encode a jmp instruction than
a ret instruction on x86, this is not a problem, since the ret instruction
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is often followed by a padding between functions that can be freely
overwritten.

e Object file modification

The methods of hijacking execution flow described above were mostly
concerned with backdoor authors trojanizing an already compiled PE
file. But what if the backdoor gets inserted during linking? In that
case, backdoor authors do not need to hijack the execution flow at the
instruction level (or the PE format level). Instead, backdoor authors
can just modify one or more precompiled object files and recompile
them with some added backdoor code. If that precompiled object file is
statically linked into the final executable, the backdoor gets seamlessly
incorporated in the final PE file. The difference from the previous
methods is that in this case, the backdoor code can be created at
the source code level (yet the victim still cannot find the backdoor in
their source code), and so the backdoor authors do not have to worry
about many low-level issues outlined above (such as finding space for
the shellcode or restoring execution context). An example of this would
be trojanizing CRT’s (C Run-time) .1ib files, which often get statically
linked into PE files produced by the MSVC linker.

2.5 Automatic Trojanization of PE Files

The methods described so far can be implemented both manually and
automatically. Some of them are suitable for automatic backdooring (such
as packing or entry point hijacking) while others are very hard to implement
automatically (such as overwriting existing code). Backdooring an executable
manually gives much more freedom to the backdoor authors, since they can use
techniques tailored to the specific executable that is being trojanized, which
can make the whole process much easier. However, manual backdooring is
not suitable for many of the backdooring motives described in Section 2.2.
Often, backdoor authors want to trojanize executables in real-time or in large
quantities, and that cannot be performed manually.

While many advanced malicious actors will perform trojanization manually
or with custom tools, there are also publicly available tools for trojanizing
PE files. Even advanced malicious actors might use these tools sometimes
because it saves time and makes their attack look less professional (and makes
attribution harder). The main goal of this thesis is to create a framework for
heuristically detecting selected types of backdoors. The detection of backdoors
created with a specific tool is not an objective, since these backdoors can be
easier detected with a detection dedicated just to that specific tool. However,
a brief overview of two of the most widely used backdooring tools is given,
since they are good examples of how backdooring works in practice.
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2.5.1 The Backdoor Factory

The Backdoor Factory [45] is an open-source tool for trojanizing PE, ELF
and Mach-O executable binaries. It can backdoor them either with a custom
user-supplied shellcode or with some standard default shellcode payload
(e.g., configurable reverse shell). The Backdoor Factory uses the patching
trojanization approach discussed in Section 2.4. To hijack execution flow,
it uses the instruction patching technique. Specifically, it patches the
instruction(s) directly at the PE entry point into a jmp instruction pointing
to the embedded shellcode.

The Backdoor Factory hides the shellcode in code caves by default, but it
can also be configured to hide it in an extra PE section. It lists the available
code caves to its user, who can choose which specific code cave should be used.
If the shellcode does not fit into any one code cave, it is also possible to split
it across multiple code caves. When a code cave is chosen, the shellcode is
written into it, and the PE section containing the code cave is made both
writable and executable.

When The Backdoor Factory trojanizes a signed PE file, it strips its digital
signature by default because the trojanization would invalidate it anyway.
Interestingly, it neither recalculates nor wipes the 32-bit checksum in the PE
header, so the backdoored executables contain an invalid checksum.

2.5.2 Shellter

Shellter [29] is a tool for trojanizing 32-bit PE files with shellcode. As is
the case with The Backdoor Factory, the trojanized PE files can be infected
with an arbitrary custom shellcode, but there is also a small library of
standard shellcodes for convenience. Shellter infects PE files using the patching
approach, more specifically by overwriting existing code. Before trojanization,
it first obtains an instruction trace of the PE file that it intends to infect
and uses the collected instruction trace to select pieces of code that can be
overwritten with the shellcode. However, it does not overwrite this code
directly with the user-selected shellcode!®. Instead, it uses a multistage
approach where the sole purpose of the first stage is to decrypt the second
stage, load it into executable memory, and pass control to it. The second
stage then runs the user-selected shellcode in a new thread and patches the
overwritten code in memory back to its original clean state. Finally, it restores
register values using the popf and popa instructions and jumps back to the
restored code in order to preserve the program’s original functionality. The
original code that was overwritten with shellcode is stored in the last section
of the trojanized PE file, which is enlarged in order to accommodate it.

0This is only true if Shellter’s stealth mode is enabled. If it is disabled, the shellcode
injection is much simpler, but the original functionality of the infected PE file will not be
preserved.
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Since Shellter does not wish to add new imports to the trojanized
executable (or use an import-less technique [55] such as iterating over the
InLoadOrderModuleList in order to resolve imports), it abuses functions that
are already imported by the targeted executable. For example, if the targeted
application already imports the VirtualAllocEx function, the first-stage
shellcode can use it to allocate executable memory for the second stage. There
are currently eight methods to allocate executable memory (some of them
require multiple imported functions such as HeapCreate and HeapAlloc). If
the program does not import functions to satisfy any of those eight methods,
it will default to making an existing section writable and executable.

Shellter attempts to make its trojanization hard to detect, so it can
be configured to generate polymorphic code for the first and second stage.
Interestingly, the first stage is not position-independent, and Shellter tackles
this problem by clearing the IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE flag
in the PE header, thus making the whole trojanized PE file not relocatable.
Shellter strips away the digital signature of trojanized executables, and it also
recomputes the PE checksum.
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CHAPTER 3

Backdoor Case Studies

This chapter focuses on the analysis of several real-world backdoors and
examines how the findings from the previous chapter apply to them. The
backdoors that are analyzed here are widespread legitimate applications that
were trojanized by a malicious actor in a supply chain attack. Most of them
went undetected for months, which shows that detecting such backdoors is
extremely hard, and that there is a lot of room for research about how to
detect them sooner and thus mitigate the harm caused by them. It is even
possible that there are more such backdoors currently active out there that
the public still does not know about. One of the main goals of this thesis is
to attempt to find them and make it easier for other researchers to search for
such backdoors in the future.

All of the backdoors analyzed in this chapter are multistage backdoors,
where the later stages are usually either embedded in an encrypted form or
downloaded from the Internet. Since this thesis aims to create heuristics for
finding unknown backdoors statically (i.e., without running the potentially
trojanized application), the later stages are not a focus, since they are usually
either not present in the analyzed PE file or extremely hard to distinguish
from some random data. Instead, a particular focus is given to anomalous
static properties of these backdoors that can be used to build heuristics for
their detection.

3.1 ShadowHammer

ShadowHammer [25] was a supply chain attack against the Taiwan-based
hardware manufacturer ASUS. Researchers from Kaspersky Lab found that
malicious actors trojanized the Asus Live Update Utility, which comes pre-
installed on almost all ASUS computers and is supposed to automatically
update drivers and various other pieces of software [24]. The trojanized
executables were digitally signed by ASUS and downloadable from their official
update servers. While first trojanized versions of the utility started to be
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delivered to their victims back in June 2018, this attack was only discovered
in January 2019, which means that it took about seven months to uncover it.
The backdoor’s command and control (C&C) domain asushotfix.com was
registered at the start of May 2018, which shows that the attack must have
been planned for quite some time in advance.

Even though the backdoor was installed on a large number of computers,
it was never activated on the vast majority of them. The reason for this
was that the backdoor first hashed the potential victims’ MAC addresses and
searched for them in a whitelist that was embedded in the backdoor. Only if at
least one MAC address was whitelisted did the backdoor continue execution
by downloading its next stage from the C&C server'!. It is not clear how
did the backdoor authors obtain their targets’ MAC addresses, but the list of
whitelisted MAC addresses changed over time, and there were only about 600
targets in total [25].

The trojanization was performed by patching an outdated version of the
utility from 2015. The malicious actors trojanized this outdated version with
their malicious payload, re-signed it, and substituted the legitimate binary
with it. This made ASUS unwittingly start distributing the trojanized binary
to its users. Interestingly, even though the trojanized executable was served
to the users as an update and used an up-to-date certificate, it still retained
its original compilation timestamp from 2015 in its PE header.

The backdoor authors used two different techniques to trojanize the
same executable. The older technique consisted of overwriting the WinMain
function. The backdoor authors later switched to a more stealthy technique
where they hijacked an existing call instruction that initially pointed to the
crtCorExitProcess function.

3.1.1 The First Trojanization Technique

In the first trojanization technique, the malicious actors overwrote the
WinMain function with a custom shellcode loader. Since WinMain was the
function responsible for dispatching execution to the rest of the original code,
this naturally completely broke the original functionality of the backdoored
application. As a result, most of the original code in the backdoored
application would never get executed under normal circumstances, and so
the trojanized application did not appear to do anything useful.

The shellcode loader that replaced the WinMain function was extremely
simple. It allocated writable and executable memory using VirtualAlloc,
copied the second-stage shellcode into it, and started executing it from a
certain hardcoded offset. The second-stage shellcode was embedded in the
executable by overwriting an existing PE resource, and it was wrapped in a

"¥or some targets, the whitelist consisted of pairs of MAC addresses, and the victim had
to have both of them for the malware to activate.
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PE file of its own'?. The address of the resource that contained the second
stage was not obtained using the standard functions such as FindResource
and LoadResource. Instead, the backdoor authors just hardcoded an address
to the resource directly in the code of the backdoor’s first stage.

Since the backdoor’s first stage is smaller than the original WinMain
function, it did not overwrite the whole WinMain function. The backdoor
authors decided to fill the rest of the available space with 59 0xCC bytes (which
are commonly used as padding between functions by many compilers'?).
Such an unconventionally large padding can be considered an anomaly, since
padding between functions in the backdoored executable is otherwise only
used to align the start of each function to sixteen bytes. Even though other
executables created with other compilers (or with other compiler settings) can
produce larger paddings, such paddings would generally be used to align the
start of the function with an alignment factor that is a power of two. In
this case, there is a padding of size 0x3B, and the next function starts at an
address whose hexadecimal representation ends with A10, so that is clearly
not the case here.

Comparing the trojanized executable with the original benign executable
shows that the backdoor authors did not tamper with the vast majority of
its content. There are only a handful of patches that were performed in
order to embed the malicious payload. The content of the WinMain function
was replaced with the backdoor’s first stage, and an existing PE resource
was partially replaced with the backdoor’s second stage. These changes also
prompted the backdoor authors to recompute and patch the PE checksum and
to re-sign the executable. Finally, the backdoor authors also replaced three
relocation entries. This was necessary since the executable was relocatable,
and the backdoor’s first stage was not position-independent. The backdoor’s
first stage contained the aforementioned hardcoded address to the second-
stage shellcode and calls to imported functions through addresses in the import
address table (IAT). Since those addresses would change if the executable was
not loaded to its preferred base address, the backdoor authors made them
relocatable by hijacking existing relocation entries™.

As can be seen, this trojanization technique was not particularly stealthy.
First of all, the trojanized executable did not retain its original functionality,
which might have caused someone to start investigating why. Secondly, the
malicious code was located in the WinMain function, which is the function that
most advanced disassemblers such as IDA Pro show at first to its users, which

12This PE file was not loaded or otherwise used, so the second stage can just be considered
shellcode with an extra redundant PE header.

130%CC is an opcode for the int 3 instruction on x86, which is often used as a software
breakpoint.

"“These hijacked entries initially belonged to some benign code. Since this code would
never get executed anyway in the backdoored executable, this modification did not break
any functionality.
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W= =]
; Attributes: library function noreturn bp-based frame|; Attributes: library function noreturn bp-based frame
___crtExitProcess proc near ___crtExitProcess proc near
UExitCode= dword ptr 8 uUExitCode= dword ptr 8

mov edi, edi mov edi, edi

push ebp push ebp

mov ebp, esp mov ebp, esp

push [ebp+uExitCode] push [ebp+uExitCode]

call ___crtCorExitProcess call bd_entry

pop ecx pop ecx

push [ebp+uExitcCode] push [ebp+uExitCode]

call ds:ExitProcess call ds:ExitProcess
__crtExitProcess endp ___crtExitProcess endp

Figure 3.1: The ___crtExitProcess function in a clean version of Asus Live
Update (on the left) and in a trojanized version (on the right). The only
difference is the fifth instruction, which used to call ___crtCorExitProcess but
was patched to call the embedded malicious code.

means that if someone actually reverse engineered the trojanized executable,
there was a high chance they would have immediately noticed the backdoor.
Finally, the backdoor’s second stage was stored unencrypted in PE resources,
which made it possible to detect its code using static heuristic detections.
Amusingly, the backdoor authors even forgot to wipe the PDB path!® of the
second stage: D:\C++\AsusShellCode\Release\AsusShellCode.pdb.

To make the backdoor less noticeable, the backdoor authors later switched
to the second trojanization technique in which they encrypted the second-stage
shellcode, hid the first stage in a code cave, and did not completely destroy
the original application’s functionality.

3.1.2 The Second Trojanization Technique

As was discussed, the first version of the backdoor was not particularly
stealthy. The backdoor authors probably realized this and consequently
implemented an upgraded trojanization technique in which they continued
to backdoor the same legitimate executable with the same malicious payload
but in a less noticeable way. Namely, they redirected control flow by patching
a single call instruction in the ___crtExitProcess function (see Figure 3.1).
That call instruction used to point to the ___crtCorExitProcess function,
but it was patched to point to the backdoor’s first stage instead, which was
located in a code cave at the end of the .text section.

The backdoor’s first stage starts out by calling GetModuleHandle in order
to retrieve the main module’s base address. This is the only position-

5The PDB path is a filesystem path to a file containing debugging information. It is
often removed from executables by malware authors because it can hint at the project name
or even at the malware author’s identity.
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dependent action — all subsequent addresses are obtained relatively by adding
offsets (relative virtual addresses) to this base address. For example, the
second stage of the backdoor is found at RVA 0x16EC78 from the base address,
and VirtualAlloc’s IAT entry is located at RVA 0x11C27C. The backdoor
then proceeds to allocate writable and executable memory, copy the second
stage into it, decrypt it using a custom xor-based cipher, and finally execute
it.

Same as in the first trojanization technique, the trojanization was
performed by in-place patching of a benign executable.  This means
that the size of the executable did not change (disregarding the overlay
which contained the Authenticode signature) and that simply comparing a
trojanized executable with the original benign executable will reveal all of
the modifications performed by the backdoor authors. The most evident
modifications are patching the call instruction in ___crtExitProcess,
overwriting a code cave with the backdoor’s first stage, and partially
overwriting an existing PE resource with the encrypted second stage.
The backdoor authors also patched an existing relocation entry so that
the call to GetModuleHandle would work regardless of where the code
would be based because of ASLR. Interestingly, they also modified an
existing string from ASUS Live Update to ASUS Live Updata. There is
code that deletes a registry value named like that from the registry
key HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run, so it seems
this modification was performed in order for the backdoor to remain
persistent. Finally, the backdoor authors also fixed the PE checksum and
the Authenticode signature.

The most evident anomalies can be found in the ___crtExitProcess

function. While this function should normally call ___crtCorExitProcess
and ExitProcess, an unknown function is called in the trojanized samples
instead. This unknown function is located at the end of the code section
(which can generally indicate that it might have been patched into a code
cave), and the usual target crtCorExitProcess, is located right before
the ___crtExitProcess function in memory. This is not a coincidence,
since both functions come from the same module and are normally executed
together, so it makes sense for the linker to put them close together. The
___crtCorExitProcess is still present in the backdoored executable even
though it is never called, which can also be considered unusual, since
an optimizing compiler tends to remove unused functions from the final
executable.

The backdoor’s entry point is called in exactly the same way as the
___crtCorExitProcess function due to the way that execution flow was
hijacked. It is called with a single argument, an exit status code. However,
this argument is never used inside the backdoor code. This could actually be a
common pattern in executables trojanized by patching of a call instruction.
The code of the backdoor should generally be independent of the rest of

) ———
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the trojanized executable, so it should not use any arguments passed to it.
However, the patched call instruction might use some arguments, which can
result in a mismatch between the number of arguments a function takes and
the number of arguments a function uses. Such a mismatch can also happen
in legitimate code, which makes this observation only useful in combination
with other heuristics.

3.2 Asian Gaming Industry Incidents

In March 2019, researchers from ESET uncovered a supply chain attack [33]
against three separate Asian companies in the gaming industry. This attack
resulted in all three of them distributing signed and trojanized binaries. The
trojanization was performed the same way in all cases, and the embedded
payload was also the same (except for the backdoor configuration, which
was target-specific). First trojanized binaries were distributed to users in
November 2018, so this attack went undetected for approximately four months.

Trojanization was achieved by hijacking execution flow almost directly
at the PE entry point. The entry point of binaries built with MSVC
commonly contains a call to ___security_init_cookie and a jump to
___tmainCRTStartup (see Figure 3.2a). However, there was an extra function
in the trojanized binaries (see Figures 3.2b and 3.2c). This extra function
was executed instead of ___tmainCRTStartup, and it contained a call to the
backdoor’s first stage followed by the expected jump to ___tmainCRTStartup.
This trojanization method effectively injected the backdoor to the CRT
startup and ensured that the backdoor will always get executed before the
rest of the trojanized application.

The backdoor’s first stage is located at the start of the executable
.text section. It consists of 16 functions, making it more complex than
ShadowHammer’s first stage, which contained at most two functions. The first
stage starts out by finding the base address of kernel32.d11 by iterating over
the InTnitializationOrderModuleList. It uses this base address to resolve
addresses of several functions exported by kernel32.d11. The configuration
of the first stage and the encrypted second stage is located right after the first
stage code in memory. The first stage reads an RC4 key from this configuration
and decrypts it with a simple xor cipher [34]. The decrypted key is then used
to decrypt the second stage, which is a PE file that is supposed to be loaded
in memory and executed.

The second stage creates a new thread for the backdoor code to run in,
since it does not want to block the original functionality of the backdoored
application. It does not perform any malicious activities when analysis tools
such as procmon.exe are running or when the system language is Russian
or Chinese [33]. It then collects information about the infected machine
(including the victim’s MAC address) and sends it to its C&C server. The
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il e [

il =

; Attributes: library function

public start
start proc near

; Attributes: library function

public start
start proc near

call ___security_init_cookie| |call ____security_init_cookie
jmp ____tmainCRTStartup jmp subst___tmainCRTStartup
start endp start endp

(a) Standard MSVC entry point.  (b) Backdoored entry point, where

control flow is redirected through an
injected function (shown in Figure 3.2c)

subst__ tmainCRTStartup proc near
call bd_entry
jmp ___tmainCRTStartup
subst___tmainCRTStartup endp

(c¢) Call to the backdoor code followed by
standard CRT initialization.

Figure 3.2: The hijack method used in the Asian gaming industry incidents.

C&C server analyzes the collected information and responds either with the
third stage or with a command to deactivate.

In the ShadowHammer case, it was clear that the backdoor code was
patched in after compilation and that it did not originally belong to the
backdoored executable. The Asian gaming industry incidents backdoors were
different because there was no sign of patching and the backdoor itself was
located at the start of the .text section. It actually turned out that the
backdoor was inserted during linking because the build environment itself
was trojanized [25]. More specifically, a malicious DLL was injected into the
linker process, and it hooked the CreateFile function. During its standard
operation, the linker reads some .lib files that contain compiled library
code and statically links their content into the produced executable. The
hook redirected the linker from reading a legitimate .1ib file into reading a
maliciously modified .1ib file, and this made the linker produce executables
that had the backdoor seamlessly incorporated in them?!©.

On one hand, it does seem that this backdoor would be easy to notice.
The execution flow hijack happens very close to the entry point, and the
backdoor code is located at the very start of the first section of the trojanized
executables. But reverse engineers might not even view the entry point — it
is very common to start analyzing unknown samples from the main function,

16The hook also made sure that the linker included the backdoor only in the targeted
executables. It did not perform any redirection when other executables were being built.
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since the CRT startup code is often not very interesting from the reverse
engineer’s point of view. Advanced disassemblers such as IDA Pro often
attempt to find the main function automatically and present it to its users
at first instead of the entry point. Furthermore, even if the reverse engineer
did view the entry point, it contains the typical call, jmp sequence, so it
looks legitimate at first glance because one might not notice that the jmp
does not point to its usual destination. However, the entry point is definitely
anomalous. When there is a call to ___security_init_cookie directly at
the entry point, one can assume that the rest of the entry point will look
like standard CRT startup. Since there is an extra injected function in the
trojanized samples, their entry point differs significantly from standard CRT
startup, which allows building heuristics for detecting similar anomalies.

As discussed, the second stage of the backdoor is stored in the executable
.text section. Since it is encrypted with RC4, from the perspective of static
analysis, it is just a high-entropy data blob that is indistinguishable from
random data. It is unusual for such large high-entropy data blobs to reside
in executable sections, since they are supposed to be stored in nonexecutable
data sections. However, heuristics that look for suspiciously large high-entropy
data blobs in executable sections would probably have a lot of false positives.
For instance, some of them could be caused by cryptographic libraries that
store constants or lookup tables close to the code that is using them.

The first stage of the backdoor also makes use of techniques that are
typical for malicious loaders. This includes resolving imported functions
by hashing their names, finding base addresses of loaded DLLs by iterating
over structures in the Process Environment Block (PEB), loading PE files
in memory, or obtaining the current instruction pointer by executing a call
instruction followed by a pop instruction. Since the first stage is unencrypted
in the .text section, the usage of these techniques can be detected both
statically and dynamically. While their usage is, of course, no direct evidence
of maliciousness, these techniques are very common among malware and rare
among legitimate executables. Therefore, when the usage of such techniques
is detected in a legitimate-looking executable, it might be worth looking into
the reason why such a technique should be used, especially if its usage was
not observed in previous versions of the same software.

3.3 The CCleaner Incident

Another supply chain attack that is worth discussing here is the CCleaner
incident [16]. In this incident, malicious actors implanted a backdoor into
CCleaner executables that were released on August 15, 2017. The backdoor
was discovered almost a month later, on September 12. Even though the
backdoor was found on a large number of machines, it targeted only a tiny
fraction of them and remained dormant on the rest of them. The targeting
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FIZE

s =

__scrt_get_dyn_tls_init_callback proc near
__scrt_get_dyn_tls_init_callback proc near call bd_entry

mov eax, offset _ dyn_tls_init_callback| |mov eax, offset _ dyn_tls_init_callback
retn retn
_ scrt_get_dyn_tls_init_callback endp _scrt_get_dyn_tls_init_callback endp

(a) The original clean function. (b) Trojanized with an extra call to the

backdoor code.

FEIE

__scrt_get_dyn_tls_init_callback proc near
call bd_entry
push offset bd_entry ; void (__cdecl *)()

call _atexit

pop ecx

mov eax, offset _ dyn_tls_init_callback
retn

__scrt_get_dyn_tls_init_callback endp

(¢c) Trojanized in such a way that the
backdoor code also gets executed when the
program normally terminates.

Figure 3.3: The first hijack method used in the CCleaner incident.

was implemented by collecting information about the infected machines (such
as usernames, MAC addresses, lists of installed programs, and so forth) and
exfiltrating this information to a C&C server. The server processed the
collected information and used it to decide whether a machine is targeted
(more specifically, whether it should receive and execute the next stage). Since
the C&C server was seized and analyzed, we know that this decision was based
solely on the domain name assigned to the potential victim!” and that the
attacker’s ultimate goal was to breach the perimeter of select companies [9].

As was the case in the Asian gaming industry incidents, the backdoor
was seamlessly incorporated in the trojanized executable. The trojanization
did not leave any signs of patching behind, and it affected CRT code, which
suggests that the backdoor was inserted during the build process. The
backdoor code was launched by hijacking execution flow in CRT code even
before the WinMain function. The specific execution flow hijack method
varied in individual backdoored executables. In the main CCleaner binary,
the __scrt_get_dyn_tls_init_callback function was modified. =~ While
this function usually just returns a function pointer (see Figure 3.3a), it
contained an extra call to the backdoor code in the trojanized executables (see

1"This domain name was retrieved using the GetComputerNameEx function with NameType
equal to ComputerNameDnsDomain.
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M= e =
; Attributes: library function ; Attributes: library function
__onexitinit proc near __onexitinit proc near
mov edi, edi mov edi, edi
push esi push esi
push 4 push 4
push 20h ; " ' push 20h ; "'
call _ calloc_crt call _ calloc_crt
pop ecx pop ecx
pop ecx pop ecx
mov esi, eax mov esi, eax
push esi ; Ptr push esi ; Ptr
call __imp__EncodePointer@4 ; EncodePointer(x)| |call __imp__ EncodePointer@4 ; EncodePointer(x)
mov __onexitbegin, eax mov __onexitbegin, eax
mov __onexitend, eax mov ___onexitend, eax
test esi, esi test esi, esi
jnz short loc_5792A8 jnz short loc_58C5F7
[l et 5 ]
loc_5792A8: loc_58C5F7:
if|and dword ptr [esi], © ifland dword ptr [esi], ©
xor eax, eax call bd_entry
pop esi push offset bd_entry
retn call _atexit
___onexitinit endp pop ecx
xor eax, eax
. K pop esi
(a) The original clean function. retn
___onexitinit endp

(b) Trojanized with an extra call to the
backdoor code.

Figure 3.4: The second execution flow hijack method used in the CCleaner
incident. Note that the left branch contains extremely rare error handling, so
the backdoor gets executed virtually every time along with the ___onexitinit
function.

Figure 3.3b). In CCleaner Cloud, the __scrt_get_dyn_tls_init_callback
function was backdoored similarly, but the backdoor code was also registered
to get executed on process exit (see Figure 3.3c). Another execution flow
hijack method targeted the ___onexitinit function. A call to the backdoor

code was added at the end of this function along with a call to _atexit so that
the backdoor would also run when the program terminates (see Figure 3.4).

The first stage of the backdoor is extremely simple. All it does is decrypt
a shellcode located in the .data section, copy it into executable memory, and
execute it. Executable memory is obtained by creating a custom executable
heap using the HeapCreate function with the HEAP_CREATE_ENABLE_EXECUTE
flag and allocating a chunk of memory from it using HeapAlloc. This heap is
used only for this single allocation. It is destroyed after the shellcode returns,
and its content is wiped by overwriting it with zero bytes. The shellcode’s
purpose is to load a PE file that is located right after it in memory. The PE
file to be loaded does not have any IMAGE_DOS_HEADER, and its full PE header
is wiped in memory once it is fully loaded.

34



3.3. The CCleaner Incident

The loaded PE file contains most of the backdoor’s functionality. Its code
is executed in a separate thread so that the main thread can return and does
not block the rest of the backdoored application. The new thread starts out by
attempting to evade sandbox analysis. Then it proceeds to collect information
about the victim and to exfiltrate this information to a hardcoded IP address
via HTTP!®. A response from the C&C server is then decoded and decrypted,
and if it contains shellcode of the next stage, it will get executed.

The backdoor uses several techniques that are typically found in malicious
software. It loads a PE file in memory and wipes its PE header in an attempt
to hide it. It uses string encryption and wipes the decrypted strings in memory
once they are no longer needed. It uses anti-sandbox tricks in an attempt not
to exhibit malicious behavior in an analysis environment. It uses a domain
generation algorithm (DGA) if the primary C&C IP address is unresponsive.
The usage of such techniques in an executable with a trusted Authenticode
signature should raise suspicion and ideally launch an investigation to find out
why they are used.

The fact that the __scrt_get_dyn_tls_init_callback function calls an
unknown function in the backdoored executables can be considered anomalous.
Microsoft even distributes the source code of this function with the MSVC
development environment, and it can be seen in the dyn_tls_init.c source
file that this function is supposed to just return a single function pointer.
However, someone could change the implementation of this function for
legitimate reasons, and that is why the call can only be considered anomalous
(and not definitely malicious) until it is actually reverse-engineered and found
to be anomalous for malicious reasons. In some backdoored executables, the
backdoored __scrt_get_dyn_tls_init_callback function is located with
the rest of the backdoor code at the very start of the .text section. This
function is otherwise usually located along with the rest of the CRT startup
code, close to the function that calls it. This seems to be a result of the
way the backdoor was inserted. The __scrt_get_dyn_tls_init_callback
symbol was likely defined in a different object file than usually, which resulted
in it being placed in an entirely different location in memory.

Another interesting anomaly that indicates the way the backdoor was
inserted can be found in the Rich header. The Rich header of the compromised
version of CCleaner differs from the Rich header in preceding and consecutive
clean versions. Specifically, it logs one new object file built with Visual Studio
2010 (which was otherwise not used at all according to the Rich header)
and one less object file built with Visual Studio 2015. Unfortunately, it is
impossible to say for sure if that one object file is the backdoor itself from
just the executable, but it seems very probable that the backdoor was built
separately using Visual Studio 2010 on an attacker’s machine and it was then

181f the hardcoded IP address does not respond, a fallback domain generation algorithm
(DGA) will be used.
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used to replace the legitimate object file (which was built using Visual Studio
2015) on the build machine.

3.4 ShadowPad

In July 2017, software distributed by NetSarang was compromised in yet
another supply chain attack [23]. NetSarang is a vendor of server management
tools, so this attack was probably targeted at larger businesses that would be
likely to use the affected software. This supply chain attack was first detected
by the cybersecurity company Kaspersky after investigating suspicious DNS
requests used by the backdoor for C&C communication [23]. As is the case
with the previously described attacks, the backdoor did not fully activate
on most of the machines that it found itself on. Conditional targeting was
implemented by exfiltrating information (such as domain names, hostnames,
and so forth) about potential targets to a C&C server. Based on that
information, the C&C server selectively responded with an activation key
only to the systems that were really targeted. If a victim did not receive
the activation key, the backdoor did not perform any additional malicious
actions. Unfortunately, it is not publicly known how many times was the
backdoor activated, but at least one case was confirmed in a company in
Hong Kong [23].

The backdoor itself was hidden in the nssock2.d11 library. This library
exposes a higher-level networking API and is used by multiple NetSarang
tools, which might be the reason why the attackers chose it for trojanization.
Backdooring a single DLL allowed them to compromise all NetSarang
applications that used it, and the network connections initiated by the
backdoor were more likely to blend in, since the library was legitimately
supposed to be used for networking.

The malicious code is started from the _initterm function. This function
is called during CRT initialization even before the D11Main function. It
processes an array of function pointers and calls each one of them. The
attackers managed to insert a pointer to the backdoor’s entry point into this
array, which caused the _initterm function to call it. There are no signs
of patching, which suggests that the backdoor was inserted during the build
process. However, it is also possible that the backdoor was inserted directly
into the source code, since functions can also be registered to be called from
_initterm in source code.

The backdoored version of nssock2.d11 contains only two extra malicious
functions. They are responsible for allocating writable and executable
memory, decrypting a shellcode from the .rdata section into it, and
executing it. This shellcode is obfuscated and uses simple anti-disassembly
techniques [54]. Its purpose is to load the next stage, which is in a format very
similar to the PE format but with a different header layout. The next stage
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obtains a domain name using a DGA with the current month as an input [26].
It then prepends a random-looking subdomain made up of encoded exfiltrated
data to the generated domain name. A DNS query is performed for the TXT
record of this domain name every eight hours. The DNS response can contain
an activation key that would be used to decrypt the backdoor’s final stage.

The final stage is essentially a modular remote administration tool (RAT)
that gives its operators full control over the infected machines. It is interesting
that this RAT is hidden under several layers of encryption in the backdoored
nssock2.d11 file, especially since the other analyzed backdoors tended to
download the later stages only for the targeted victims. On one hand, it
seems that this allows anyone to analyze the later stages in order to tell the
backdoor’s real purpose and to attempt to attribute the attack. However,
the final stage is encrypted with an activation key that only the C&C
server can provide, and decrypting it without this key is not trivial. There
might also have been a technical reason for this, since the DNS-based C&C
communication protocol is not suitable for transporting a large amount of
data, so the final stage would either have to be transported over multiple
DNS queries (which would be even more likely to trigger some alert) or over
another C&C communication channel.

The legitimate version of nssock2.dll is relatively small at around
110 KB. The backdoored version contains a lot of malicious code in addition
to everything the legitimate version contained, so it is not surprising that
it is larger at around 180 KB. This shows that tracking changes in size of
PE files can also help detect potential backdoors: it is suspicious if there is
a substantial increase in size that is not accompanied by significant changes
in the source code or in the compiler settings. Indeed, when the trojanized
DLL file is compared to the last legitimate version preceding it, there are
no significant changes in functionality. Upon further investigation, it can be
seen that the added 70 KB mostly correspond to random-looking high-entropy
data, which is another red flag that points to potential trojanization.

As is the case with the previously described backdoors, ShadowPad utilizes
several techniques commonly associated with malicious software. There is
obfuscation, anti-disassembly tricks, string encryption, custom executable
formats, DGA, and more. Since the vast majority of the backdoor code is
encrypted and is only decrypted at runtime, it is almost impossible to detect
the usage of these techniques by purely static heuristics. However, dynamic
analysis can be very effective at finding such backdoors. In fact, what led to
ShadowPad’s discovery was its anomalous abuse of the DNS protocol for C&C
communication.

Trojanization artifacts can also be found in the Rich header, similarly
to the CCleaner incident. Legitimate nssock2.d11l binaries released years
before or years after the supply chain attack all have the very same Rich
header. However, Rich headers of trojanized nssock2.d11l binaries differ
because they contain one extra field corresponding to C++ code compiled
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with Visual Studio 2012. While it cannot be confirmed beyond any doubt, it
is almost certain that this extra field corresponds to the backdoor.

3.5 Summary

Four of the most impactful recently discovered application backdoors were
analyzed in this chapter. While each of them contained some unique features,
they all followed a similar formula. It sounds reasonable to expect the same
to hold for potential future backdoors as well. They will all probably contain
some unique features because their authors want them to evade detection
mechanisms based on previously discovered backdoors. However, they will
probably also share similarities at a higher level because some techniques have
proven to be effective for achieving the attackers’ ultimate goal: infecting select
users of some software in a stealthy way. This section focuses on those high-
level similarities, since they can be useful for building heuristic detections for
unknown backdoors.

All of the discussed backdoors implemented some way to target only a
subset of the users of the trojanized application. This was probably done in
order to make the backdoor harder to find because each time the backdoor is
activated, there is a certain chance that it will get discovered. Additionally,
since a typical malware sandbox will likely not be targeted, this also lowers the
amount of suspicious behavior that would be exhibited when the trojanized
application gets executed in a sandbox. In most cases, the targeting was
performed by sending a profile of the potential victim to a C&C server and
letting the server decide whether the specific victim is to be targeted or
ignored. The only exception is the ShadowHammer backdoor, which contained
the targeting logic hardcoded in the trojanized executable and would only
infect victims with specific whitelisted MAC addresses.

In most cases, the backdoor was likely inserted during the build process.
This also meant that the attackers did not have to worry about signing and
delivery of the trojanized executables, since it would get done automatically
during the release engineering process. The only exception to this is again the
ShadowHammer backdoor, which was trojanized by patching an old legitimate
build.

All of the backdoors also implement techniques that are often used by other
malware. Backdoor authors use these techniques to make the backdoors harder
to detect and analyze, but fortunately, this is a double-edged sword, since the
usage of such techniques can also lead to discovery, especially by security
software protecting one of the targeted victims. However, most security
companies suppress detections that detect PE files with trusted Authenticode
signatures in order to prevent disastrous false positives. These backdoors
underline the need to always analyze the root cause of suppressed detections,

38



3.5. Summary

as the suppressed detection might have actually been caused by an executable
trojanized in a supply chain attack.

The discussed backdoors also all featured a similar multistage design. They
started with an execution flow hijack from CRT code. This hijack would
trigger execution of the backdoor’s first stage, which was often extremely
simple, and its only purpose was to decrypt the next stage in memory and pass
execution to it. Consequently, the first stage was the only malicious code that
could be analyzed automatically statically, since all of the following stages were
only decrypted in memory. Due to the way the application was trojanized,
the first stage was sometimes located at the very start or at the very end of
the executable .text section. The first stage was also often independent of
the execution context from the rest of the trojanized application, which means
that the backdoor would execute the same regardless of the way the execution
flow had been hijacked.

The second stage was either shellcode or a PE-like payload with a
custom in-memory loader. Its primary purpose was to identify whether
the infected machine was targeted and if so, deliver the third stage of the
backdoor. In order to do that, it communicated with its C&C server and was
sometimes executed in a separate thread so that the network latency of C&C
communication would not slow down the trojanized application.

While the first two stages were often relatively small and did not contain
many distinguishing characteristics (likely in an attempt to make attribution
and detection harder), the third stage was a much more complicated piece of
malware. It was usually only delivered to the targeted victims from the C&C
server, so it was relatively protected, since the C&C server could be shut down
after discovery. Unfortunately, this means that actually finding the third stage
is a hard task that might not be possible anymore after the C&C server stops
responding.
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CHAPTER 4

Call Graph Extractor

Several heuristic detections for anomalous PE files are implemented in the
practical part of this thesis. Since these detections are meant to operate on
hundreds of thousands of files, it would not be feasible to run them directly
on the input PE files. Therefore, the practical part of this thesis is split into
two parts: preprocessing and heuristic detections. During preprocessing, each
sample is analyzed statically, and certain properties are extracted from it.
These properties are saved in a database that serves as an input for the actual
heuristic detections.

The main advantage of this approach is that each sample has to be
processed only once. On the other hand, plenty of information about the
samples is lost during preprocessing. Therefore, it is crucial to discuss what
properties of the analyzed samples are extracted so that the desired anomalies
are still visible in the extracted data.

This chapter details the preprocessing stage. First, there is a discussion
about the selection of properties to be extracted. Then, the actual
implementation of the preprocessing stage is described.

4.1 Design of the Extractor

The main properties that are extracted from the analyzed PE files are
functions and control flow relations between them. Essentially, the extractor
attempts to reconstruct the static call graph of the analyzed samples. A
static call graph is a directed multigraph in which subroutines of a program
are modeled as vertices, and there is an edge if and only if the subroutine
corresponding to the source vertex may call the subroutine corresponding
to the destination vertex [30]. Note that while call graphs are usually
constructed from source code, the extractor described here attempts to
construct them from PE files. Unfortunately, this means that it is not always
possible to construct an accurate call graph. Some information is lost during
compilation, and statically deducing the possible destinations of indirect call
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and jmp instructions is difficult, so the extracted call graph is at best only an
approximation of the real call graph of the analyzed program.

The reconstructed call graph should serve as a basis for detecting
anomalous CRT functions. As was shown in the previous chapter, many
backdoors trojanized legitimate CRT functions by either injecting a call to
the backdoor code or by hijacking an existing call in order to redirect it to the
backdoor code. From the call graphs of many legitimate samples, it should be
possible to deduce the usual targets called from the analyzed CRT function
and report samples in which an unusual target function is observed.

4.1.1 Selection of Extracted Properties

To obtain a call graph, the extractor has to first identify functions and their
boundaries, which is a challenging task that can be approached from many
different angles [36]. Implementing function extraction properly requires a
good understanding of compilers and the used instruction set architecture. It
is an error-prone task, since there are many challenges, such as data intermixed
with instructions (e.g., jump tables), non-returning functions, code blocks
shared among multiple functions, and tail calls [36]. The original names of
the identified functions are also lost during compilation unless the function
is exported or annotated in some other way. Since some heuristics would
benefit from having the original function names of library functions, it would
be beneficial to attempt to recover them. This is also a hard and error-prone
problem that has been tackled multiple times [50, 53]. Since solving either
of these problems is beyond the scope of this thesis, the extractor has to rely
on third-party solutions. As is shown later, IDA Pro’s static analysis engine
is used for extracting function information, and F.L.I.R.T. [19] is used for
recovering library function names.

For each identified function, the extractor retrieves its RVA, size, and
function name (if any was recovered). Since some heuristics could benefit
from having a more fine-grained way to compare functions, a hash of the
function body is also extracted. In order to be able to measure similarity
between functions, multiple additional properties of each function could be
extracted, such as the number of function arguments, the number of local
variables, the stack frame size, and the number of function chunks'®. Note
that the extraction of some of those properties is also a difficult task that will
not always be performed correctly. For example, the number of local variables
is often inferred by analyzing offsets and sizes of accesses to the function’s
stack frame. Unfortunately, the compiler might use the same memory on the
stack for multiple variables (assuming it can prove that they will not be needed

19A function chunk is the largest contiguous piece of code that belongs to the same
function. Optimizing compilers sometimes split functions into multiple chunks to separate
rarely executed code from frequently executed code. This might allow them to improve
instruction cache performance.
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xor ecx, ecx

mov esi, fs:[ecx+36h]

mov esi, [esi+@Ch]

mov esi, [esi+1Ch]
loc_401824:

mov eax, [esi+8]

mov edi, [esi+26h]

mov esi, [esi]

cmp [edi+18h], cx

jnz short loc_401024

cmp byte ptr [edi], "k’

jz short loc_481083C

cmp byte ptr [edi], "K'

jnz short loc_401024
loc_48183C:

pop esi

mov esi, eax

Figure 4.1: An example of a suspicious code fragment found in the trojanized
executables from the previous chapter. This fragment represents a position-
independent method of obtaining the base address of kernel32.dll.

simultaneously), and there is no way to always correctly figure out how many
variables are mapped to the same memory. Since advanced function analysis
is outside the scope of this thesis, the extraction of such function properties
also has to rely on an external static analysis engine. It might not always
extract these properties correctly, but some errors are acceptable, as long as
they are consistent. After all, the main point of extracting these properties
is for function comparison, so if the extractor exhibits consistent errors, the
comparison will not suffer that much.

All of the backdoors described in the previous chapter contained suspicious
code fragments. These are pieces of code that are not necessarily malicious
but that are much more frequently found in malicious executables than in
legitimate ones. An example of such a suspicious code fragment could be
accessing the InLoadOrderModulelist (see Figure 4.1) or using a geteip
method to obtain the address where the currently executed code is located.
The body of each extracted function is scanned for some indicators of these
fragments. These indicators can then be used when comparing functions.
For example, extracted CRT functions with the same recovered name can be
compared. If only one of them exhibits an indicator for the use of the geteip
method, while the rest of them do not, there may be malicious code injected
into that one function.
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To link the individual extracted functions together, relations between
functions are also retrieved. The most important type of a relation is one
function calling another, but all types of control flow transitions between
functions should be extracted. For each control flow transition, its exact
position within the source and destination function is also helpful. For
example, if one function calls another function, the byte offset of the call
instruction within the calling function is extracted. Note that not all control
flow transitions target the entry point of the called function, so the transition’s
byte offset within the called function is also a useful piece of information.

Control flow transitions to functions imported from other DLLs are also
extracted. These transitions are very similar to relations between functions.
The difference is that the target cannot be found in the analyzed PE file.
It is instead identified by the combination of a DLL name and a function
name/ordinal. A significant advantage of these transitions is that they do
not have to rely on information about the destination function. The name
recovered for an ordinary function might not be accurate, but the identifier of
an imported function will always be extracted correctly.

As was shown in the discussion of the ShadowPad backdoor, execution flow
can also be hijacked by modifying a function pointer. In order to be able to
detect this execution flow hijack method, the analyzed PE file is also scanned
for function pointers. Any pointer to a start of a function is extracted. The
idea behind this is that there might be some rules that often hold for legitimate
PE files. For instance, a sequence of pointers to functions A, B, and C might
often be found in legitimate PE files. If only a small number of PE files contain
a sequence of pointers to functions A, D, C, the pointer to function B may
have been hijacked with a pointer to function D.

Finally, some information about the analyzed samples should also be
retrieved. Each sample is identified by its cryptographical hash. To get
an idea of what the sample is supposed to be, the VERSIONINFO resource
is parsed. This resource is often provided by software developers, and it
contains basic information about a PE file, such as the name of the company
that develops the software, a description of the PE file, and the version of
the software [40]. This information can be used for analysis of consecutive
versions of the same software to identify potentially suspicious modifications.
The validity of the PE checksum is also verified, since a malicious actor could
have patched an executable without recomputing its checksum. As was shown
in the previous chapter, trojanization artifacts can sometimes be found in the
Rich header. Therefore, the extractor also parses and retrieves information
from Rich headers of the analyzed samples.

4.1.2 Extractor Design Decisions

Since many malicious PE files are packed, static analysis is often
complemented by an unpacking engine. Static analysis of packed samples
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would otherwise extract only static properties of the packer. This raises the
question of whether the extractor should perform unpacking or not. To answer
this question, the percentage of packed samples in the dataset to be analyzed
should be taken into account. The heuristic detections developed in this thesis
are meant to be executed on supposedly legitimate executables to identify
potential backdoors hidden in them. After manually examining some of the
PE files that are supposed to be analyzed by the extractor, the percentage
of packed files was found to be small enough that unpacking was not deemed
necessary. It should also be noted that the potential backdoor can be hidden
in the packer itself. Unpacking samples packed with a trojanized packer can
be counterproductive because unpacking would completely destroy evidence
of trojanization in such cases.

The extractor is designed to process PE files, but it was not yet specified
which types of PE files are supposed to be supported. The PE file format
can handle multiple instruction set architectures (even though x86 and x86-64
are by far the most common ones) and multiple subsystems. Putting all
of them into the same dataset might introduce some unwanted anomalies,
since each architecture and subsystem has its own rules that might not
be followed in other architectures and subsystems. There are also some
functions with the same name that have different implementations based on
the architecture or subsystem, which could also make some anomaly detection
algorithms worse. Therefore, the extractor only supports 32-bit x86 PE files
for the IMAGE_SUBSYSTEM WINDOWS GUI and IMAGE SUBSYSTEM WINDOWS CUI
subsystems (this most notably excludes drivers). Both EXE and DLL files
are supported. This subset of PE files was chosen because it was the
most prevalent one in the available dataset, and the differences between
EXE/DLL and GUI/CUI are not significant enough to rationalize further
division.  Supporting only one instruction set architecture also allows
extracting architecture-specific properties. However, note that the majority
of the extractor is independent of the architecture and the subsystem, which
means that it can be used with minor modifications on other types of PE files
as well. For other architectures, different architecture-specific properties could
be extracted. For instance, x86-64 PE files commonly contain the .pdata
section with exception handling information. Function boundaries could be
extracted from the data in this section and used to detect patching-based
anomalies.

Static analysis of PE files is a CPU-intensive task that can take weeks or
even months for a large dataset. Since the analysis of a single sample is an
independent task, multiple samples can be analyzed in parallel. Therefore,
to speed up the preprocessing stage, there should be a way to configure the
extractor to use multiple threads. To avoid losing progress due to unexpected
shutdowns and similar issues, the extractor should save analysis results as
soon as possible so that it is possible to resume the extraction from where it
left off. Finally, since it should be possible to analyze a large dataset of PE
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files, the extractor should not require the whole dataset to be available on
a local drive. Instead, it should support downloading the analyzed samples
dynamically and deleting them locally once they are no longer needed.

4.2 Implementation of the Extractor

The extractor is implemented as a Python script that processes PE files and
inserts properties extracted from them into an SQL database. Internally, it
uses the pefile?® Python module for parsing PE files and IDA Pro for more
advanced static analysis that requires a disassembler. For each analyzed file,
the extractor runs IDA in a so-called batch mode (which allows starting IDA
in the background without opening its GUI). When IDA finishes its standard
autoanalysis, a custom IDAPython script is executed in order to collect the
analysis results and to perform extraction of additional custom properties.

There are several reasons why IDA Pro was chosen for performing static
analysis. First of all, IDA is very good at the analysis of functions and relations
between them (also called cross references or shortly zrefs in IDA). In many
cases, it is even able to deduce that there is a cross reference between two
functions through indirect calls. FExtracting some of the desired function
properties discussed in the last section is as easy as calling a single IDAPython
APT function. Compared with other disassemblers, IDA is also very good at
recognizing functions that were split into multiple chunks and at recovering
library function names using the built-in F.L.I.LR.T. technology. Out of all
the considered options (where the most viable alternatives were Ghidra?! and
Radare??), IDA also seemed to be the most mature static analysis engine,
exhibiting fewer analysis errors than the alternatives. On the other hand, a
significant disadvantage of IDA Pro is that it is a commercial piece of software,
unlike Ghidra and Radare, which are open source. While there is a freeware
version of IDA, it lacks support for IDAPython scripting, so the extractor
cannot be used with it. IDAPython API is also neither backward nor forward
compatible. The extractor was written for IDA 7.4 (which is the current
version at the time of writing), but since the API was changed recently, it
does not support versions older than 7.0.

One of the requirements for the extractor was that it should be able to
handle a large number of samples. Storing all of the input samples on a local
drive might require too much storage, so the extractor only downloads samples
to a temporary directory shortly before they are needed and deletes them once
they are processed. It attempts to always have a certain number of samples
ready in the temporary directory in order to mitigate the possible negative
performance impact of waiting for the download of the next sample. The

2Ohttps://github.com/erocarrera/pefile
2https://ghidra-sre.org/
https:/ /rada.re/
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download time should not be a performance bottleneck, since static analysis
is expected to take much longer than file download, and since each sample is
supposed to be downloaded while another one is being analyzed. The way that
samples are downloaded is expected to be provided by the user of the extractor,
but for convenience, two download methods are already implemented. The
first one downloads samples from the malware-scanning service VirusTotal?3
(a VirusTotal API key with sufficient permissions is required), the other one
just fetches samples from a custom directory (this method can be used with
shared folders or with local folders for smaller datasets).

Since the heuristic detections presented in the following chapter mostly
focus on the analysis of library functions, it is not strictly necessary to
extract properties of all functions. Instead, particular functions of interest are
identified first. These include functions with a recovered library name, entry
point functions, and functions at section boundaries. The set of functions
of interest is then recursively expanded up until a certain depth by adding
functions with a cross reference from one of the functions that is already in
the set. Finally, functions that are not in this set are not extracted in order
to keep the size of the database smaller.

The extractor is capable of using multiple threads in order to analyze
multiple samples in parallel. Any time it finishes the analysis of a sample, it
inserts all extracted information about that analyzed sample into the database
in a single SQL transaction. This makes it possible to use the database to store
progress and stop/resume the extraction at any time. When the extractor
is launched, it simply queries the database in order to get a list of already
analyzed samples so that it can avoid analyzing the same sample multiple
times. Potential errors that happen during extraction are logged, and an
error code is inserted into the database so that it is possible to fix these errors
and reanalyze the affected samples.

Configuration of the extractor is given by a JSON file. It contains
configuration parameters necessary for the extractor’s functionality, such
as the filesystem path to the IDA Pro executable or the hostname of the
output database. The only parameter that is worth mentioning here is
ida_analysis_timeout. It can limit the maximum amount of time spent
on analyzing a single sample. If the analysis time reaches this timeout, the
offending sample is skipped and never analyzed again. The motivation for
this parameter is that for a tiny percentage of samples, the analysis can take
a disproportionately large amount of time. The user of the extractor might
wish to skip analyzing such samples in order to improve overall performance.

Zhttps:/ /www.virustotal.com/
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4.3 Description of the Extracted Properties

This section contains a brief description of properties extracted from the
analyzed PE files. Note that not all of them are used in the heuristic
detections described in the next chapter. The extractor was implemented
before the heuristic detections, so it was not yet clear exactly which properties
will be needed. Therefore, a bigger number of properties was extracted
in order to make it possible to experiment with many different approaches
to backdoor detection. This approach also allows for implementing further
heuristic detections later on without having to modify and rerun the extractor.

4.3.1 Sample Properties

The extractor obtains the following properties of each analyzed PE file:

o sha256
The SHA-256 digest of the whole PE file.

e ep._rva

The relative virtual address of the entry point.

e total number_of funcs
The number of functions identified by IDA Pro. Note that this also
counts functions that were skipped for extraction.

e invalid_chksum
(In)validity of the 32-bit checksum in the PE header. Checksums full of
zero bytes are considered to be valid.

e ver_company_name

The CompanyName string from the VERSIONINFO resource.

o ver_file_description

The FileDescription string from the VERSIONINFO resource.

« ver_file_version

The FileVersion string the VERSIONINFO resource.

o ver_original _filename

The OriginalFilename string from the VERSIONINFO resource.

e ver_product_name

The ProductName string from the VERSIONINFQO resource.
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e ver_product_version

The ProductVersion string from the VERSIONINFO resource.

e pdb_path
The PDB path embedded in the analyzed sample.

4.3.2 Function Properties

For each analyzed function in the PE file, the following properties are
extracted:

o sample_id

The identifier of the PE file that contains this function.

o func_name

The function name extracted by F.L.I.LR.T. If one sample contains
multiple functions that match the same F.L.I.LR.T. signature, IDA
assigns each of them a unique name by appending an underscore and
an incrementing numerical suffix to the function name (e.g., nullsub_1
and nullsub_2). Since having multiple function names for the same
signature would be detrimental to some heuristic detections, this suffix
is removed by the extractor.
e rva

The relative virtual address of the function’s entry point.

e size

The size of the function body in bytes.

e hash
The MD5 digest of the function body. This digest skips over some bytes
(such as call displacement values) in order to achieve higher stability.

e num_chunks

The number of functions chunks that the function is composed of.

e num_unusual_outside_cref
The number of code cross references to other functions that are not
represented by the most common opcodes for call or jmp.

« flag no_ret

The value of the FUNC_NORET function flag assigned by IDA. This flag
represents whether the function is expected not to return.
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flag_bp_frame

The value of the FUNC_FRAME function flag assigned by IDA. It represents
whether the ebp register is used by the function to access its stack frame.
flag_fuzzy _sp

The value of the FUNC_FUZZY_SP function flag assigned by IDA. It is set
if the analyzed function modifies the stack pointer in a way that causes
stack pointer analysis to fail.

flag_thunk

The value of the FUNC_THUNK function flag assigned by IDA. It is set if
the analyzed function is just a jump thunk to another function.
local_var_num

The number of local variables used by the analyzed function.

local_var_size

The sum of sizes of local variables used by the analyzed function.

arg_num

The number of arguments the analyzed function takes.

arg_size

The sum of sizes of arguments that the analyzed function takes.

frame_size

The size of the whole function frame of the analyzed function (extracted
using the idc.get_frame_size function).

is_badstack

Indicates whether stack pointer analysis of this function failed (extracted
from the presence of the PR_BADSTACK problem in IDA).
num_code_xrefs_from_undef_funcs

The number of code cross references to the analyzed function that
originate from code that does not belong to any function.
num_code_xrefs_to_undef_funcs

The number of code cross references from the analyzed function that
point to code that does not belong to any function.
num_jmps_without_xref

The number of call and jmp instructions that do not result in a code
cross reference (i.e., number of call and jmp instructions for which IDA
cannot statically deduce the target).
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« num_code_xrefs_to_unextracted_funcs

The number of code cross references that point to a function that was
not extracted.

e num_push_page rwx_bef_call

The number of times that the constant 0x40 was used as the third or
the fourth argument in an indirect function call (see Figure 4.2a for
an example). If interpreted as a memory protection constant, 0x40
stands for PAGE_EXECUTE_READWRITE, which is used in functions such
as VirtualAlloc or VirtualProtect to obtain memory that is both
writable and executable.

This is the first of four indicators of suspicious code fragments. It
attempts to detect traces of manually resolving one of the above-
mentioned functions and using it to prepare memory for the backdoor’s
next stage. As is the case with the other indicators, a certain number
of false positives is expected because the constant 0x40 can clearly
represent much more than just PAGE_EXECUTE_READWRITE.

[ num,susp,fs,access

The number of times that the fs segment override prefix was used
in the analyzed function. This prefix is commonly used in shellcodes
to obtain the address of the Process Environment Block (PEB) and
consequently find the base address of some loaded DLL (see Figure 4.1
for an example). As is the case with num_push_page_rwx_bef_call,
this is just an indicator, since there are many legitimate reasons for
using this prefix. Some common uses of this prefix (such as setting up
or unwinding Structured Exception Handling frames) were filtered out in
order to lower the number of functions in which this indicator is nonzero.

e« num_xor_loops

The number of xor instructions that are in the middle of a loop that
spans only a single basic block (see Figure 4.2c for an example). xor
instructions that have the same source and destination operand are not
counted, since they are just used to zero out a register. This is an
indicator of the usage of encryption/hashing, since many cryptographic
algorithms contain short loops that perform the xor operation.

e num_get_eip

The number of times that an attempt to obtain the current value of the
instruction pointer was detected. This counts pop instructions found at a
call target (see Figure 4.2b) and the usage of the fstenv and fnstenv
instructions. These two so-called geteip methods can often be found
in position-independent shellcodes that attempt to obtain a pointer to
some data that is located at some offset relative to the shellcode.
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push ebp
push PAGE_EXECUTE_READWRITE ; ©0x40 mov ebp, esp
push MEM_COMMIT ; @xl1leee call $+5
push 2eh ; "' pop eax
push %] pop ebp
call edi ; VirtualAlloc retn

(a) A piece of code that wuses the (b) A piece of code
PAGE_EXECUTE_READWRITE constant that uses a geteip

as an argument in an indirect call. method.
loc_401012:
mov eax, [ebp+arg_ptr]
imul ecx, 47A6547h
mov dl, cl
xor [eax+esi], dl
shr ecx, 8
inc esi
cmp esi, [ebp+arg_size]
jl short loc_401012

(¢) An example of a loop that spans
a single basic block and wuses a zor
instruction for encryption.

Figure 4.2: Examples of indicators of suspicious code fragments that were
found in the backdoored PE files discussed in the previous chapter.

4.3.3 Other Properties

The following properties characterize cross references between extracted

functions:

02

func_from_id

The identifier of the function that the cross reference originates from.

func_from_chunk_num

The number of the function chunk containing the source of the cross
reference. Together with func_from_chunk_offset, it can be used to
infer the exact location of the cross reference within the source function.
func_from_chunk_offset

The offset from the start of the chunk that is identified by
func_from_chunk_num to the source of the cross reference.

func_to_id

The identifier of the function that the cross reference points to.
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¢ func_to_chunk_num
The number of the function chunk containing the destination of the cross
reference.

e func_to_chunk_offset

The offset from the start of the chunk that is identified by
func_to_chunk_num to the destination of the cross reference. Note
that func_to_chunk_num and func_to_chunk_offset are usually both
zero because most cross references target the very entry point of the
referenced function.

o xref_type

The type of the cross reference as identified by IDA Pro. Both code cross
references (such as a call or a jmp instruction to another function) and
data cross references (such when one function contains an address of
another function) are extracted.

Cross references to functions imported from external DLLs are stored in
a similar fashion. The only difference is that the properties prefixed with
func_to are replaced with a new property called import_name, which is a
string that identifies the imported function.

Static pointers that point to the entry point of a function are extracted in
the following way:

e from_rva

The relative virtual address where the pointer is located.

e func_to_id

The identifier of the function that the pointer points to.
Finally, each entry in the Rich header is fully extracted:

o sample_id
The identifier of the PE file that this Rich header entry was extracted
from.

» tool
The identifier of the build tool that was used to produce the executable
(sometimes also referred to as a product identifier or ProdID).

e build_num

The minor version of that tool.

¢ count

The number of items produced by that tool.
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4.4 Issues with the Extractor

As was already discussed, the quality of the data produced by the extractor is
heavily dependent on the quality of IDA Pro’s analysis. Since static analysis
of PE files is an incredibly difficult task, some inaccuracies during the analysis
are expected. This is also one of the reasons why such a seemingly large
number of properties is extracted: if some subset of properties would exhibit
too many inaccuracies, the heuristic detections might switch to using other
properties.

Some of the issues identified during the extraction are worth pointing out.
They are not severe enough to invalidate the extracted data, but they should
be taken into account when heuristic detections are designed in order to avoid
possible problems that could be caused by them.

IDA Pro is used to recover function names of library functions. The
recovered function names can be used in heuristic detections for clustering
similar functions together. Unfortunately, IDA Pro sometimes assigns function
names based on the context that a function is used in, instead of the
actual functionality of the function. For example, entry points of threads
started by the CreateThread function are often assigned the function name
StartAddress. Clustering functions based on such names would result
in clusters of poor quality, since the content of various functions named
StartAddress will vary wildly. Therefore, the extractor contains a blacklist
of similar function names and avoids assigning such problematic names to
analyzed functions.

Some linkers in some configurations merge duplicate functions (for
example, in MSVC this can be controlled by the /0PT: ICF linker switch). This
means that if they encounter two or more functions that have the exact same
function body, they generate only one instance of that function. This could
pose a problem for some heuristic detections because a merged function might
be used in multiple seemingly unrelated contexts, which could be considered
an anomaly by itself. Since F.L.I.R.T. only recovers a single function name for
any function, the extractor might produce some cross references on unusually
named functions if there is a call to a merged function that is named after one
of the other functions.

The compiler might decide to split a function into multiple function chunks.
In addition to that, some function chunks might even be shared across multiple
functions. A straightforward approach to adapting to this fact would be
having a table in the database that would describe individual function chunks
and would have a many-to-many relationship with the table of functions.
Nevertheless, this database design was not used. Instead, there is no table of
function chunks, and all information extracted from shared function chunks
is replicated across all functions that contain that chunk. This design was
chosen in order to improve performance. After all, the number of shared
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function chunks is too low to justify having to pay for the performance impact
of joining an additional table in most database queries.

95






CHAPTER 5

Heuristic Detections

Malicious actors understandably strive to make their backdoors as stealthy
as possible. The analysis of backdoors in this thesis showed that they
often achieve trojanization by modifying statically linked runtime library
functions. These functions are ideal for their purposes, since they are
usually not inspected in detail by reverse engineers who instead often only
make assumptions about these functions based on recovered function names.
Reverse engineers also frequently start the analysis of unknown samples
directly from a function like main and ignore the library functions that get
executed before it. This makes it even more tempting for backdoor authors
to hide their malicious payload in one of those functions.

There are naturally many various ways that a backdoor can be inserted,
but if backdoor authors insert the backdoor during or after compilation, the
act of inserting the backdoor often creates one or more anomalies in the
backdoored executable. The goal of this chapter is to design and implement
heuristic detections that detect such anomalies because finding and analyzing
them might lead to the discovery of yet undetected backdoors.

The detections should not target all kinds of anomalies, since most types
of anomalies are caused by benign reasons. Instead, the detections should
only focus on anomalies for which there is a reason to believe that they
could have been caused by trojanization. All heuristic detections discussed in
this chapter target anomalies that have either been observed by analyzing in-
the-wild backdoors, or that would have been caused by some straightforward
trojanization method. Specifically, the proposed algorithms target anomalies
that would be caused by standard execution flow hijack methods.

It might seem overly complicated to design such anomaly detection
algorithms instead of focusing directly on detecting backdoors. The reason
for this indirection is that it is extremely hard to predict what might an
undiscovered backdoor look like. On the other hand, types of anomalies caused
by backdoors were discussed in this thesis, and there is a reason to believe
that future backdoors will produce similar anomalies. A disadvantage of the
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anomaly detection approach is that it is often necessary to perform reverse
engineering in order to discover the root cause of the detected anomalies. Only
when one understands the root cause can the detection algorithm be improved
so that it better separates anomalies caused by trojanization from anomalies
caused by benign factors.

Verifying whether an anomalous sample is indeed trojanized should also
be done through manual reverse engineering. If a certain heuristic detection
reports too many anomalies, and it is not feasible to analyze all of them,
some triage methods could be used to identify anomalies that should receive
attention first. One such triage method could be modifying the entry point
of a sample to the location of the anomaly and using dynamic analysis to
see if the modified sample will execute self-decrypting code. Since all of the
backdoors discussed in this thesis did not depend on the previous execution
context, changing their PE files’” entry point to the entry point of the backdoor
would still fully execute all of their self-decrypting stages. On the other hand,
just changing the entry point of a benign PE file to the location of some
random anomaly would, in most cases, corrupt the PE file and cause it to
crash soon after it starts executing.

To evaluate the effectiveness of the proposed heuristic detections, a
dataset composed of both benign and trojanized executables was compiled
and processed by the extractor described in the previous chapter. Access to
this dataset was provided by the antivirus company Avast. It contains one
million of the most prevalent legitimate PE files and ten trojanized PE files.
The database containing information extracted from this dataset is relatively
large at over 400 GB. As can be seen, this dataset is extremely skewed, since it
contains vastly more benign executables than trojanized ones. This is because
the number of backdoors discovered in-the-wild is fairly limited, which makes
it not possible to create a large and balanced dataset. The skewness of the
dataset is one of the main reasons why standard machine learning algorithms
were not considered: there are simply not enough backdoored executables
to train a model for their detection. Instead, the large quantity of benign
executables is used to establish a “baseline” of ordinary executables in order
to detect executables that deviate from this baseline. Note that since one of
the goals of this thesis is to attempt to find yet undetected backdoors in the
benign part of the dataset, detected anomalies among the supposedly benign
executables should not be immediately treated as false positive detections.

Performance evaluation of binary classification algorithms is usually
conducted by employing the confusion matrix and measures such as precision,
recall, or F-score [48]. Since there are only ten trojanized binaries in the
dataset, the number of true positives and false negatives exhibited by any
binary classification algorithm is certainly going to be very low. Unfortunately,
this could cause the above-mentioned measures to be extremely volatile and
make it tempting to optimize the heuristic detections for these measures (after
all, all that is needed for a “perfect score” is to find a way to isolate those ten
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backdoors in the dataset). Therefore, the above-mentioned measures are not
computed for the proposed heuristics. Instead, each detection is evaluated
based on a discussion of the types of backdoors that would be detected by
it and its false positive rate (which is one of the few measures that can be
computed reasonably accurately, since it depends only on the number of false
positives and true negatives).

All of the heuristic detections discussed in this chapter are implemented
as Python scripts that make SQL queries to the database extracted from
the analyzed dataset. Omnce a heuristic detection was implemented, it was
executed, and randomly selected anomalies detected by it were manually
analyzed. If some benign class of anomalies was present in large quantities, an
attempt was made to improve the detection and filter out this anomaly class
in order to reduce the detection’s false positive rate.

5.1 Entry Point Hijacking

One of the most straightforward ways to trojanize an executable is by hijacking
its entry point. Executables trojanized by entry point hijacking are forced to
execute an injected malicious payload first and then return to executing code
from the original entry point (detailed discussion of this technique can be
found in Section 2.4). The idea behind this heuristic detection is to compile a
list of functions that are typically only found at the entry point. Samples that
contain one of these “typical entry point functions” at a location different from
the entry point are then reported as anomalous, since they could be affected
by entry point hijacking. Most compilers have a typical function that they
usually emit to the entry point. This function should generally only be found
at the entry point, so if it is located elsewhere, the location of the entry point
itself could have been changed. For instance, most binaries built with recent
versions of MSVC contain the function shown in Figure 3.2a at the entry
point. If that function would still be present in an executable but would not
be located at the very entry point, the entry point of the executable might
have been altered with malicious intent.

The typical entry point functions are identified by their recovered function
names. This was found to work better than identifying them using their
function hashes because the recovered function names are much more generic.
Unfortunately, there is a problem with using function names of entry point
functions, since they are often named not based on their functionality but
based on the fact that they are located at the entry point (IDA commonly
assigns them generic names such as start or D1lEntryPoint). To get
around this problem, this detection does not work directly with the entry
point functions but instead with functions that are targeted with a cross
reference from the entry point function. A prime example of such a function
is ___security_init_cookie. This function is usually called directly from
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function name count
___security_init_cookie | 313641
___tmainCRTStartup 248734
lstrcatW 96501
_fast_error_exit 94776
__amsg_exit 86888
_initterm 72531
lstrcatA 70767
__XcptFilter 65624
_exit 56495
__setargv 56229

Figure 5.1: A list of functions that are most commonly cross-referenced from
the entry point. The count column contains the number of unique samples
in which the corresponding function is cross-referenced from the entry point
function. The first two functions are called from MSVC startup, while Istrcat W
is called from the entry point function of NSIS installers.

the entry point, and since it performs a one-time setup, it does not have to
be called again from other locations.

5.1.1 Implementation

This heuristic detection starts by compiling a list of functions (grouped by
the recovered function name) that are commonly cross-referenced from the
entry point function (see Figure 5.1 for the top ten functions in this list). For
each function name in this list, two sets of samples are created. The first one
consists of samples where a function with that name is cross-referenced from
the entry point function. The second one consists of samples where it is cross-
referenced from a location other than the entry point function. If the ratio
between the size of the first set and the size of the second set is sufficiently
high (meaning that the function is most of the time only cross-referenced from
the entry point), all samples that are in the second set and at the same time
not in the first set are reported as anomalous. The actual entry point of those
samples is reported as the location of the anomaly because that is where the
suspected backdoor’s entry point could be.

A casual examination of the reported anomalies revealed that in some of
them, the examined functions are cross-referenced indirectly from the entry
point function through a thunk function?®. This is because the reported
binaries are mainly incrementally linked debug builds with support for the

24A thunk function is a function containing nothing but a jmp instruction to another
function.
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Edit and Continue feature. Since these are not anomalies that would be
interesting for the purpose of discovering backdoors, cross references from
thunk functions to the examined functions were filtered out.

5.1.2 Evaluation

The first version of this heuristic detection reported 1374 anomalous samples.
After filtering out cross references from thunk functions, this number was
reduced to 957. Since no new trojanized samples were found among these
anomalies, this represents a false positive rate of 0.000956.

Note that a false positive in this context denotes a reported anomaly that
was not caused by trojanization. Many of the reported anomalous samples
actually had a hijacked entry point, it was just not hijacked with malicious
code. For example, some samples contained a check at the entry point if the
MMX instruction set was supported by the processor. If it was, the code at
the original entry point would be executed. If it was not, an error message
would be displayed, alerting the user that the processor was not supported,
and the sample would exit prematurely.

Samples with slightly modified startup functions were also among
the false positives. For instance, some samples initialized the security
cookie slightly later than usual. Since this detection learned that the

__security_init_cookie function should typically only be called from
the entry point function, such samples were unfortunately also reported as
anomalous.

This detection was designed to detect standard cases of entry point
hijacking. To its credit, it also detected the anomaly from the supply chain
attack described in Section 3.2. Even though that sample was not trojanized
with entry point hijacking, the execution flow hijack happened so close to the
entry point that it also got picked up by this detection, since the function

__tmainCRTStartup was not called directly from the entry point function
(see Figure 3.2).

It has to be acknowledged that not all cases of entry point hijacking would
be detected. First of all, this detection relies on one of the “typical entry point
functions” being at the original entry point of the trojanized executables. If an
executable with a rare entry point function gets trojanized (or with an entry
point function that only cross-references functions that are commonly cross-
referenced from other locations as well), this detection would most likely miss
that. Secondly, it relies on an accurate recovery of library function names.
F.L.I.LR.T. failing to recognize one of the “typical entry point functions” can
also lead to false negatives. Thirdly, it requires IDA to actually create a
function at the original entry point. Since IDA might not even recognize the
control flow transition from the malicious code to the original entry point,
the code at the original entry point might, in the worst case, not even be
disassembled and could be treated as data instead.
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To summarize, this heuristic detection has a reasonably low false positive
rate, which makes it usable, since one can verify all the reported anomalies
even for somewhat larger datasets. However, there are multiple methods to
trojanize a PE file, and this detection is designed to detect only one of them:
entry point hijacking. Furthermore, since it relies on certain assumptions
about the trojanized binaries, it is not guaranteed to detect all cases of entry
point hijacking.

5.2 Anomalous Cross References

Backdoors described in this thesis often hijacked the execution flow by
modifying the content of library functions. In the ShadowHammer backdoor,
the ___crtExitProcess function was patched in order to redirect a call
instruction’s target to the backdoor’s entry point (see Figure 3.1). In
the CCleaner incident, functions __scrt_get_dyn_tls_init_callback and
___onexitinit were tampered with, and an extra call to the backdoor’s entry
point was inserted into them (see Figures 3.3 and 3.4). In both cases, this
malicious modification of a library function resulted in an anomalous cross
reference: the modified library function simply transferred control flow to a
function that it was not originally supposed to.

This heuristic detection is based on the assumption that the expected
functionality of some library functions should stay relatively constant. For
such functions, it should be possible to build a list of target functions that
are typically cross-referenced from them. If one instance of such a function
cross-references an unknown function that is not in this list, the body of that
instance could have been forcibly modified in order to transfer control to some
malicious code.

For example, the ___crtExitProcess function can be found in 198 353
samples in the analyzed dataset. A cross reference to a function whose
recovered function name was not ___crtCorExitProcess, can be found in

only 524 of them?>. It should not come as a surprise that this number
is so low, since the source code of ___crtExitProcess is published by
Microsoft (see Figure 5.2) and it can be seen that it should call only the
___crtCorExitProcess function. Therefore, if there is a sample where
it cross-references some function other than ___crtCorExitProcess, then
either the body of ___crtExitProcess was modified for any reason, or there
was a mistake in IDA’s analysis (such as F.L.I.R.T. failing to recognize the
___crtCorExitProcess function).

25This heuristic detection only takes into account cross references to functions present
in the same executable and disregards cross references to imported functions. The function
___crtExitProcess also regularly cross-references the function ExitProcess imported from
kernel32.d11.
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void __cdecl __crtExitProcess(int status) {
__crtCorExitProcess(status);
ExitProcess(status);

Figure 5.2: The official implementation of the __crtEzitProcess function (from
the crtOdat.c source file). Comments were removed for brevity.

The number of anomalies can be even further reduced if only cross
references from the offset 8 of the ___crtExitProcess function are taken
into account. From this offset, there are 107510 cross references to a function
with the recovered name ___crtCorExitProcess and only four other cross
references. One of those four anomalous cross references targets the entry
point of the ShadowHammer backdoor. In the remaining three cases, the
function crtCorExitProcess was indeed cross-referenced from that offset,

but F.L.I.R.T. unfortunately failed to recognize it.

5.2.1 Implementation

This heuristic detection starts by randomly selecting a subset of the extracted
dataset and using it as a training set. Cross references observed in the training
set are clustered together and used to build a set of rules that hold true for
all samples in the training set. When the set of rules is finalized, the rules are
applied to the rest of the dataset. If any sample violates any of the generated
rules, it is reported as anomalous.

Each rule contains a cross reference source location (rule source) and a
list of targets that were typically observed cross-referenced from that location
(rule destinations). A rule is violated if there is a cross reference whose source
matches the source of some rule but whose destination is not among the rule
destinations. The rule source is identified by the quadruple of a recovered
function name, function size, cross reference source chunk number, and cross
reference source chunk offset?®. A rule destination is identified only by the
recovered function name. Getting back to the ShadowHammer example, a
sample rule could be described followingly: if there is a ___crtExitProcess
function whose size is 23 bytes and which cross-references another function
from its first chunk at byte offset 8, that cross reference should target the
___crtCorExitProcess function. As was mentioned, this exact rule holds
true for 107510 samples and is violated in only four samples. Samples in the
rest of the dataset do not contain a cross reference that would match the rule
source, which means that this rule cannot even be applied to them.

26This detection would of course also work with various other selections of properties that
would identify the rule source, but this one was found to work best in practice.
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To build the set of rules, all cross references in the training set are clustered
according to the quadruple that identifies the rule source. For each cluster, the
cross reference targets from the source are grouped by their recovered function
names, and the number of times each function name was cross-referenced is
counted. If the count of all function names is above (or equal to) a certain
threshold, a new rule is created. Otherwise, if there is a function name with
a count below the threshold, no rule is created, since that rule source is too
volatile and would probably cause too many false positives. The threshold
essentially controls the quantity and the quality of generated rules. If it is set
to a high value, a low number of high-quality rules will be created. If it is set
to a low value, a higher number of rules will be created, but there might be
some rules of questionable quality.

This heuristic detection is a randomized algorithm, since the training set
is randomly sampled from the entire extracted dataset. Therefore, a different
set of anomalies might be reported each time this detection is executed.
This can be considered an advantage, since new anomalies can be discovered
just by simply restarting the algorithm. However, sometimes a certain level
of consistency might be demanded. For this reason, the detection always
prints the randomly selected seed used to initialize the pseudorandom number
generator (PRNG). If the heuristic detection is executed multiple times with
the same seed, it will produce the same results.

The size of the training set is an important parameter of this detection
algorithm. Note that because of the design of this algorithm, no anomalies in
samples that belong to the training set will ever be reported. Furthermore, if
at least one instance of some type of anomaly is present in the training set,
no other instances of said anomaly type will be reported, even when found
in samples that do not belong to the training set. Therefore, if the training
set is too large, the detection might miss many interesting anomalies. On the
other hand, if the training set is too small, the set of generated rules might fit
the training set too closely, and that could result in a large number of false
positives.

As was the case with the heuristic detection for entry point hijacking,
a problem with indirect calls through thunk functions was encountered.
The problem was that thunk functions were often called from the same
rule source as the real destination function but much less frequently. This
prevented the algorithm from building many rules, since the rule destination
represented by the thunk function was often less prevalent than the rule
creation threshold. Fortunately, IDA usually names thunk functions the same
as the real destination function, only prefixed with the string j_. This heuristic
detection solves the problem with thunk functions by removing this prefix and
thus treating the thunk function as if it were the real destination function.
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5.2.2 Evaluation

Since this heuristic detection is randomized, it was executed multiple times
in order to evaluate its performance. Out of ten runs, an average of 312 rules
was generated from the randomly selected training set (minimum was 285,
maximum 337). These rules reported an average of 2120 anomalies in 565
samples (the lowest number of reported samples was 313, the highest one was
895). Considering that the size of the dataset is one million samples, this
represents an average false positive rate of 0.000564. In total, 1615 unique
samples were reported as anomalous in at least one run. The ShadowHammer
backdoor was detected in nine runs. In the run where it was not detected,
the training set contained one of the four anomalous samples discussed at the
beginning of this section, and that prevented the detection from creating a
rule for the ___crtExitProcess function.

This shows a potential limitation of the “training set approach” The
training set should ideally be composed of a substantial number of backdoor-
free executables. However, if this algorithm is used to look for undiscovered
backdoors in a large dataset of supposedly benign (but possibly trojanized)
executables, it gets very hard to create such a training set. If the training set
is chosen at random, there is a certain risk that a backdoored executable could
end up in the training set, which would cause false negatives. This would not
be such a problem if only one instance of a given backdoor was present in
the dataset. The algorithm could simply be restarted multiple times, and the
probability that the backdoor would find itself in the training set in every
run would rapidly decrease. However, if there would be multiple instances of
the same backdoor in the entire extracted dataset, then the probability that
at least one of those instances would be included in the randomly selected
training set could become significantly higher.

The vast majority of the reported anomalies were false positives caused by
F.L.ILR.T. failing to recognize the target function of a cross reference. In these
cases, the reported cross references did indeed target one of the functions that
were expected to be cross-referenced from the given rule source, but since there
was no function name recovered for the target function, it was treated by the
heuristic detection as if an unknown function was called. Other false positives
were caused by slight variations in the recovered function name. Examples
of this include a cross reference to _getptd instead of __getptd or a cross
reference to __SEH_prolog instead of __SEH_prolog4. The number of such
false positives could be reduced by aliasing similar problematic function name
pairs and treating them as the same rule destination.

As was already mentioned, this heuristic detection reported on average
2120 anomalies in 565 samples. This means that the average reported sample
contains almost four anomalies. The samples that contain multiple anomalies
usually seem to be a result of unusual compiler/linker options or low-level
optimizations. Given the relatively low false positive rate, there is a good
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chance that if a backdoored executable was reported as anomalous by this
heuristic detection, it would only contain the one anomaly that points to
the place where the execution flow was hijacked. Therefore, triaging of the
reported anomalies could be implemented by starting with samples where
only a single anomaly was identified?”. This observation could also be used to
improve the quality of the training set. Samples that were previously observed
to contain multiple anomalies could be excluded from the training set (or from
the entire extracted dataset), which should increase the number of generated
rules.

Unfortunately, this heuristic detection will only detect a specific type of
backdoors. A backdoor reported by this detection would have to hijack an
existing cross reference located in a library function. This hijack could be
accomplished by modifying the source code, tampering with an object file,
or just simply patching an instruction after compilation. However, functions
that were backdoored by recompiling them with extra code (such as in the
CCleaner incident) would not be detected.

Some other conditions also have to be met for a backdoor to get detected.
Firstly, the library function where execution flow gets hijacked has to be
common enough so that multiple similar instances of it can be found in the
training set. The hijacked cross reference also has to have only a handful of
valid targets that are successfully identified by F.L.I.LR.T. Otherwise, no rule
would be created for that cross reference. Unfortunately, these conditions
make it seem like this heuristic detection would have a very high false negative
rate. However, it did reasonably consistently detect the ShadowHammer
backdoor, which at least indicates that it would be able to detect some
backdoors that use similar trojanization techniques.

5.3 Import Call Hijacking

The heuristic detection described in the previous section was limited to
detecting hijacked cross references that initially targeted a statically linked
library function. Hijacked cross references that used to target a function
imported from another module would not get detected. The heuristic
detection described in this section is meant to remedy this shortcoming and
focuses on detecting hijacked cross references that originally targeted imported
functions. Even though no backdoor described in this thesis hijacked such a
cross reference, this technique might still be appealing to backdoor authors.
This is because calling some imported functions is not strictly necessary for
the functionality of the backdoored program. For example, function calls

27 Another easy-to-implement way to triage the anomalies would be to analyze the position
of the function that is the target of the anomalous cross reference. As was discussed, the
first stage of the backdoor was often found at section boundaries, so it would make sense to
prioritize anomalies where the new destination function is either at the start or the end of
a section.
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meant to deallocate resources (such as calls to HeapFree or CloseHandle)
might be entirely replaced by calls to the backdoor code. Since not calling the
original imported function might not break the functionality of the backdoored
executable, the backdoor authors have an easier job because they do not have
to worry about making sure that the original destination function still gets
executed.

In order to detect anomalies that might have been caused by import call
hijacking, this heuristic detection compiles a list of locations that commonly
serve as sources of cross references to imported functions. If cross references
from such locations target in the vast majority of cases only one specific
imported function, all samples where any other function is cross-referenced
from that location are reported as anomalous. As was the case with the
previously described heuristic detections, this is based on the premise that
backdoors caused by import call hijacking are very rare. Therefore, it should
be possible to learn which imported functions are typically cross-referenced
from which statically linked library functions and report anomalous samples
where these typical relationships are not preserved, since they might have been
broken because of import call hijacking.

Note that backdoor authors do not have much incentive to hijack a cross
reference to an imported function with a cross reference to another imported
function. If they wanted to hijack execution flow this way, they would have
to put the backdoor code into another PE file, i.e., they would be required to
needlessly make malicious modifications to at least two PE files. Even if they
did choose to make modifications to multiple PE files, there would be easier
ways to accomplish their goal, such as adding a dummy import of a malicious
DLL and putting the backdoor code at the entry point of that DLL. While
malware authors sometimes do not choose the easiest way to accomplish things
in an attempt to evade existing detection and to confuse malware analysts,
a backdoor that would be introduced by hijacking a cross reference to an
imported function with a cross reference to another imported function still
seems extremely unlikely. Therefore, this heuristic detection will not report
anomalies that seem to be caused by such hijacks in order to keep its false
positive rate low.

5.3.1 Implementation

This heuristic detection starts by clustering together similar library functions.
The clustering is based on the recovered function name and function size: if
two functions have the same values of these two properties, they are placed
into the same cluster. The clusters are then analyzed one at a time, starting
with the most prevalent ones. Clustering based on function hashes was also
explored, but it was found to perform worse than this clustering method,
since it resulted in a lower number of larger clusters. However, a different
implementation of function hashing (such as one that would skip over more
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volatile bytes or one that would be based on fuzzy hashing) could possibly
yield better results.

Within each cluster of similar functions, all locations that frequently
serve as sources of cross references to imported functions are analyzed. The
locations are identified by their chunk number and their chunk offset within
the function. For each location, the imported function that is most frequently
cross-referenced from there is obtained, along with the number of times that
it is cross-referenced. If this number is significantly higher than the number
of cross references from that location which target functions that are not
imported, the location is used for reporting anomalies. Specifically, all samples
that contain a cross reference from that location to a function that is not
imported are reported as anomalous, with the location of the anomaly being
the destination of that cross reference. The idea behind this is that if the vast
majority of cross references from a given location target some specific imported
function, but there are also few cross references which target functions that
are not imported from that same location, these few cross references can be
considered anomalous.

To illustrate how this heuristic detection works in practice, consider an
example regarding the ___security_init_cookie function. This function’s
purpose is to initialize the stack cookie to a hard-to-predict value. To do
so, it commonly gathers entropy using imported functions GetTickCount,
GetCurrentProcessId, GetCurrentThreadId, GetSystemTimeAsFileTime,
and QueryPerformanceCounter. One of the more prevalent clusters in the
dataset consists of ___security_init_cookie functions whose size is exactly
150 bytes. Among the 92 719 functions in this cluster, the detection identified
five locations that are commonly a source of a cross reference to an imported
function. One of them can be found at byte offset 83. From this offset,
the imported function GetTickCount was cross-referenced 92662 times, and
there was no other imported function cross-referenced from this offset. The
extractor identified only one cross reference from that offset to a function
that was not imported. Since there are significantly more cross references to
GetTickCount, the sample containing this one cross reference gets reported
as anomalous.

Unfortunately, IDA is not always consistent with assigning names to
imported functions. For example, the LeaveCriticalSection function
imported from kernel32.d1l might be labeled LeaveCriticalSection,
__imp_LeaveCriticalSection, or __imp__LeaveCriticalSection@4, de-
pending on whether there is a thunk function wrapping calls to it. Having
three different names for the same imported function would be detrimental to
this heuristic detection since it could artificially lower the prevalence of the
most commonly cross-referenced imported function and thus result in fewer
locations being used for reporting anomalies. To resolve this issue, the detec-
tion normalizes names of imported functions by removing various prefixes and
suffixes so that aliases of the same imported function are merged together.
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5.3.2 Evaluation

When this heuristic detection was applied to all function clusters that
contained at least 10000 functions (which was 4857 clusters), it reported 225
anomalies in 102 unique samples. Since none of the identified anomalies were
found to be caused by trojanization, this represented a false positive rate of
0.000102. Note that this is a much lower false positive rate than the one
associated with the heuristic detection described in the previous section. This
might seem surprising at first, since both detections are based on a very similar
concept. However, note that the most significant source of false positives in
the previous heuristic detection was F.L.I.R.T. failing to recognize the names
of functions commonly cross-referenced from some location. In contrast,
this detection focuses on imported functions, and therefore it can obtain the
names of commonly cross-referenced imported functions from the import table.
Parsing the import table is a much more reliable way of recognizing functions,
which means that this source of false positives is almost nonexistent in this
heuristic detection.

The anomalies reported by this heuristic detection were caused by a lot
of various factors, but most of them seemed to be a result of developers
deliberately altering the way the imported functions were called. For example,
one sample had all calls to IsDebuggerPresent hijacked with calls to a
custom function that constantly returned zero. Since the IsDebuggerPresent
function is used to detect if the calling process is being debugged by a user-
mode debugger [38], this resulted in the program always receiving a negative
answer (that there is no user-mode debugger attached).

Some samples contained multiple anomalies, since they implemented
a custom lazy import resolution mechanism, similar in functionality to
Procedure Linkage Table (PLT) stubs. Calls to imported functions were
realized indirectly through function pointers that were initialized to point
to custom stub functions (see Figure 5.3). The stub function’s purpose was
to dynamically resolve the imported function’s address, replace the function
pointer with it, and finally execute the imported function. This effectively
ensured that the imported function got resolved the first time it was called,
and any subsequent calls to it were no longer hijacked, since they bypassed
the stub function and instead executed the imported function directly.

Other anomalies were reported in samples with a corrupted import table.
IDA did not identify any imported functions in these samples, so there were
naturally no cross references to imported functions either. However, many
statically linked library functions in these samples were still implemented in
the usual way, with cross references originating from the usual locations. Cross
references that would typically target imported functions were still present
but with an unresolved destination. The heuristic detection unfortunately
reported such cross references as anomalous, since they did not target the
expected imported function. These anomalies are not very interesting for
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FEE

CreateProcessW_stub proc near

push offset error_handler ; Value

push CreateProcessW_flags ; int

push offset CreateProcessW_ptr ; Target

push offset aCreateprocessw ; "CreateProcessi”
push offset aKernel32Dll @ ; "kernel32.d11"
call resolve_function

jmp CreateProcessi_ptr

CreateProcessW_stub endp

Figure 5.3: A stub function that gets executed the first time CreateProcessW is
called. All function calls to CreateProcessW are performed indirectly through
CreateProcess W_ptr, which is initialized to point to this stub function, and
which is set to point to the real CreateProcessW function in resolve_function.

the purpose of searching for backdoors and could be filtered out by ignoring
samples that contain no cross references to imported functions.

As was the case with the heuristic detections described in the previous two
sections, this detection is designed to detect backdoors that use a particular
execution flow hijack method. Specifically, the hijack method that is the
focus here is called import call hijacking, which is what happens when
backdoor authors replace a cross reference to an imported function with a
cross reference to the backdoor code. Unfortunately, this detection will not
detect all instances of import call hijacking because some conditions have to
be met for a backdoor to get detected. The first condition is that the hijacked
cross reference has to originate from a location that is commonly used as a
source of cross references to imported functions. The second condition is that
there can only be a limited number of samples that contain a cross reference
from that location to a function that is not imported.

In summary, the main limitation of this heuristic detection is that it is only
designed to detect a rather small subset of backdoors, specifically ones that use
a particular execution flow hijack method. Since this method has never been
observed in a backdoor in-the-wild, it was not possible to demonstrate that it
would successfully detect a real trojanized executable. The lack of backdoors
that would use this method also makes it hard to estimate this detection’s false
negative rate. On the other hand, this detection produces only very few false
positives, and it was consequently possible to manually verify all the anomalies
that it reported. All of them did indeed contain anomalous cross references,
and some of them were suspicious enough to warrant further analysis.
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5.4 Other Heuristic Detections

Three heuristic detections designed to discover suspicious anomalies were
proposed in this chapter. However, note that far more detections could be
implemented on top of the extracted data, especially since the set of properties
extracted from each sample was intentionally selected to be very broad. In
fact, various other heuristic detections were also tested during the research for
this thesis. One such detection was based on clustering functions according
to their recovered function names, observing typical properties of functions
within each cluster, and reporting samples that contained functions with
atypical properties?®. Another detection was designed to look for suspicious
changes between Rich headers of consecutive versions of some software in
order to detect trojanization artifacts similar to the ones observed in the
ShadowPad and CCleaner backdoors. There were also detections intended
to search for potential new variants of existing backdoors: it is possible
that the backdoor authors would not implement a completely new backdoor
each time, but would instead reuse some techniques from one of the already
discovered backdoors. These detections attempted to uncover such backdoors
by searching for sequences of API calls and suspicious code fragments similar
to the ones observed in backdoors that were discussed back in Chapter 3.

There were also many ideas for more complex heuristic detections, which
were unfortunately not explored due to the limited scope of this thesis. The
main ideas will be outlined here, since they could inspire further research into
this topic. First of all, it might be a good idea to begin by clustering together
samples built with similar compiler settings and applying the heuristic
detections to each cluster individually. Samples within a cluster should share
a more homogeneous implementation of statically linked library functions, so
this approach could significantly lower the number of false positives. Various
different clustering methods might be used. One promising approach involves
clustering by the contents of the Rich header, but this would, of course, only
work for samples that actually contain one.

Secondly, it would be interesting to consider using one of the existing
graph-based anomaly detection methods [2]. Since the output of the extractor
is essentially a graph where functions are treated as vertices and cross
references as edges, these methods could be applied directly to the extracted
data. However, these methods might detect only generic anomalies, and it

28The motivation for this heuristic detection was the possibility that backdoor authors
would recompile an existing library function with added malicious code. If they did that,
F.L.ILR.T. might still recognize the recompiled function by its original name, but other
properties of this function could differ considerably. The backdoor authors could also
trojanize a library function by inserting an unconditional jmp instruction to the backdoor
code. That could cause the library function to suddenly contain more function chunks than
usual, which would also be an anomaly that is supposed to be reported by this heuristic
detection.
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will be very challenging to guide them towards focusing on the detection of
anomalies that could have been caused by trojanization.

Other data mining techniques used for anomaly detection could also be
employed. However, note that some of these techniques provide only very
little explainability. For instance, they might report a sample as anomalous
without actually pointing to a specific address in the sample where the
anomaly resides and without providing a simple explanation as to what makes
this specific sample anomalous. Since the heuristic detections often rely on
manual verification of the reported anomalies, low explainability could make
this process very time-consuming. In the absence of any explanation, the
whole reported sample would have to be analyzed. Therefore, it would be
best to select techniques that make it easy to verify if the reported anomalies
are benign in nature or if they were caused by trojanization.

Finally, one could also combine multiple heuristic detections into a single
detection algorithm. For instance, the training set of some detections could be
chosen randomly from samples that were not reported as anomalous by any
other heuristic detection. This would ensure that the training set contains a
lower percentage of anomalous samples, which would presumably improve the
detection’s performance, since the anomalous samples would no longer taint
the training set and prevent the detection from learning what most regular
executables look like.

5.5 Evaluation

The false positive rate of the three examined heuristic detections was found to
be below 0.001, which means less than one in a thousand benign samples got
reported as anomalous. While this may seem like a reasonably low number, a
lot of false positives might still be generated for larger datasets. That could be
problematic, since each anomaly should ideally be manually verified by reverse
engineering. Searching for backdoors in a very large dataset would therefore
require a substantial amount of reverse engineering, unless the heuristic
detections are improved to better filter out benign anomalies or unless some
triage method is used to prioritize the most suspicious anomalous samples.
Fortunately, all of the detections also report the locations of anomalies within
the anomalous sample. This makes it much easier to verify the reported
anomalies, since the reverse engineer can focus only on a small part of the
sample instead of having to reverse engineer all of it.

The proposed heuristics were designed to aid in the hunt for undiscovered
backdoors that could potentially be active in-the-wild. For this purpose, a
dataset of supposedly backdoor-free executables has to be collected in order
to scour it for potential backdoors. However, note that since many situations
in which the heuristics would fail to discover a backdoor were discussed, these
detections cannot be relied on if one wants to be absolutely sure that there
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is no backdoor in the analyzed dataset. Even worse, the false negative rates
of the proposed heuristics were not adequately quantified, which means that
it is not yet entirely clear how likely they would be to actually detect an
undiscovered backdoor.

The size of the analyzed dataset is an important consideration. It would
make sense to build a dataset as large as possible in order to maximize the
chance that it would contain an undiscovered backdoor. However, enormous
datasets could be problematic because of their storage demands, the CPU
time required by the extractor, and perhaps most importantly, the number of
reported false positives. When applied to the dataset of one million samples,
the heuristic detections reported hundreds of false positives, so it is easy to
see that the number of false positives could quickly get out of hand for larger
datasets. Note that while one million might seem low compared to the total
number of PE samples in-the-wild, the dataset was assembled from the most
prevalent samples, since backdoors found in them would be among the most
impactful. The size of the dataset could be increased by adding less and less
prevalent samples, but at some point, backdoors found in the freshly added
samples might not be interesting enough because of their low prevalence.

Software vendors could also use these heuristics as an additional safety
measure in order to lower the chance they would release a piece of software with
an implanted backdoor??. They could obtain a dataset of benign samples, add
their software to it, and run the heuristic detections on the resulting dataset.
Since they would be interested only in anomalies found in their software, the
number of false positives should not pose a problem. In theory, they could
even tweak the parameters of some heuristic detections in order to improve
their recall (true positive rate) at the expense of a higher false positive rate.
Also, note that many false positives could still provide valuable information to
them. As was shown in this chapter, most false positives actually pointed out
unusual characteristics of the affected samples. In some cases, these unusual
characteristics seem to be a result of misconfiguration or software bugs that
the vendor might not have been aware of.

A significant percentage of the reported anomalies have also been caused
by imperfections of static analysis, especially by F.L.I.LR.T. failing to recognize
statically linked library functions. This leads to another potential application
of the heuristic detections: they could be used to point out errors exhibited
by a static analysis tool in order to suggest new ways to improve the tool. For
instance, the heuristic detection discussed in Section 5.2 could be modified so
that it would report potential misses of F.L.I.R.T. These misses could be used
to update F.L.I.R.T. signatures, either manually or automatically.

2In a similar fashion, organizations could also use these heuristics to try to detect
trojanized software running in their network. They could create a dataset by collecting PE
files from the machines they control and examine this dataset using the proposed heuristic
detections.
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No new backdoors were found in this thesis. This could be either because
there was no undiscovered backdoor in the analyzed dataset or because the
proposed heuristic detections failed to find one. The detections did at least
discover many samples affected by some execution flow hijack method, but,
apart from the already known backdoors, none of those samples were found
to be malicious.

The heuristic detections were designed to detect techniques used by
backdoor authors to hijack execution flow. As was discussed in Section 2.4,
there are many various techniques that they can implement in order to achieve
that goal. Unfortunately, not all of them were addressed by the heuristic
detections proposed in this thesis. This indicates that the proposed heuristic
detections are very narrowly focused on detecting backdoors similar to the
ones discussed in Chapter 3. Since the number of PE application backdoors
discovered in-the-wild is extremely low, it is hard to predict just how similar
will the next backdoor be and if it would get discovered by one of the
proposed detections. Once the next backdoor gets discovered, it can be used
to further evaluate the proposed heuristic detections and to suggest further
improvements.

Perhaps the biggest challenge encountered in this thesis was lowering the
false positive rate. The proposed heuristic detections were similar in nature to
unsupervised anomaly detection algorithms, which are often associated with
a high false positive rate. The analyzed dataset was found to be extremely
heterogeneous, with a large number of anomalous samples, but the vast
majority of them were benign. The anomalies in the benign samples were often
very similar to the anomalies observed in in-the-wild backdoors despite them
not being caused by trojanization. Instead, these anomalies often originated
from unusual low-level optimizations, unusual compiler settings, and from
software protection systems. These anomalies could perhaps be more easily
filtered out with a labeled dataset approach, which would enable the usage of
heuristic detections more similar to supervised anomaly detection algorithms.
However, creating such a dataset would be very time-consuming, since labeling
a sample as benign would require proving that there is no highly elusive
backdoor hidden in it.
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The beginning of this thesis is devoted to the theory of application backdoors.
First, various kinds of backdoors are described, along with the diverse
motives that malicious actors could have for creating them. Then, the
existing mechanisms designed to prevent backdoors are discussed, and it is
explained that a sufficiently skilled attacker might be able to bypass them.
This is followed by a description of two approaches to backdooring Portable
Executable files. The first approach, packing, is easier to implement but
also less stealthy. The second approach, patching, can be implemented in a
multitude of ways, depending on where the malicious payload gets stored and
how the execution flow gets hijacked.

This theory is then illustrated with the analysis of four application
backdoors that were previously discovered in-the-wild. All the analyzed
backdoors were created by hijacking execution flow in statically linked code
from the C Runtime library. They all also follow a similar multistage design,
and their final stage is typically downloaded from the Internet only for a
specific targeted subset of users. While their authors seemed to put a lot of
effort into making the backdoors hard to find, they still left some artifacts
behind in the backdoored applications. These include additional Rich header
entries, suspicious code fragments, and PDB paths containing malware-related
strings. These artifacts are pointed out in this thesis, in hopes that they
could lead to the discovery of similar backdoors. The analyzed backdoored
applications also contain anomalous cross references which are a side effect
of the used execution flow hijack method, and it is argued that similar cross
references could also be used to find yet undiscovered backdoors.

This thesis then presents a new tool that processes Portable Executable
files and extracts their static features into an SQL database. Its primary
purpose is to make it possible to quickly search for anomalies using the
extracted features of millions of Portable Executable files. It is built on top
of IDA Pro, and it mostly focuses on the extraction of function information.
Each analyzed function is characterized by over twenty features in the output
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database. This tool deliberately extracts more features than are needed for
the purposes of this thesis in order to make it easier to develop and evaluate
further heuristic detections in the future.

Finally, three heuristic detections that use the extracted features were
implemented. They all focus on detecting anomalies that could have been
caused by the use of some execution flow hijack method. The first detection
is designed to find instances of entry point hijacking. It managed to find some
such instances in the evaluation dataset, but none of them were malicious.
Surprisingly, it also managed to detect a backdoor that was not created using
entry point hijacking but instead using a very similar technique. The second
detection is inspired by the ShadowHammer backdoor, and it is supposed
to detect hijacked cross references to statically linked library functions.
Unfortunately, apart from the ShadowHammer backdoor itself, it did not find
anything malicious. The last detection is designed to detect hijacked cross
references to imported functions. It managed to find some interesting hijacks,
but none of them were a part of a backdoor.

As indicated, none of the proposed heuristic detections found any new
backdoors in the evaluation dataset, but this could very well be because
there were no undiscovered backdoors in there. Admittedly, the detections
are very narrowly focused on detecting only backdoors that were created using
specific execution flow hijack methods. While future backdoors could continue
using similar methods, backdoor authors could also invent new ones that
would not be covered by the proposed heuristic detections. Therefore, further
research could focus on identifying additional execution flow hijack methods
and designing new detections that would recognize their usage. Another way
to improve on this research would be to figure out how to further reduce
the number of false positives generated by the proposed heuristic detections.
While the current false positive rates were found to be reasonably low, lowering
them even further would undoubtedly make the heuristic detections easier to
work with.
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APPENDIX A

API Application Programming Interface
ASCII American Standard Code for Information Interchange

ASLR Address Space Layout Randomization

C&C Command and Control
COFF Common Object File Format
CPU Central Processing Unit

CRT C Run-time

CUI Character User Interface

DEP Data Execution Prevention
DGA Domain Generation Algorithm
DLL Dynamic-link Library

DNS Domain Name System

EFI Extensible Firmware Interface

ELF Executable and Linkable Format

Acronyms

F.L.I.R.T. Fast Library Identification and Recognition Technology

GUI Graphical User Interface
TAT Import Address Table
IDA Interactive Disassembler

JSON JavaScript Object Notation
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A. ACRONYMS

MAC Media Access Control

MitM Man in the Middle

MMX MultiMedia eXtension

MS-DOS Microsoft Disk Operating System
MSVC Microsoft Visual C++

NSIS Nullsoft Scriptable Install System
PDF Portable Document Format

PE Portable Executable

PEB Process Environment Block

PIC Position-independent Code

PLT Procedure Linkage Table

PRNG Pseudorandom Number Generator
RAT Remote Administration Tool

RVA Relative Virtual Address

SEH Structured Exception Handling

SQL Structured Query Language

TLS Thread Local Storage

URL Uniform Resource Locator
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APPENDIX B

Contents of the Enclosed CD

README.md . ..covviiiiieeeiinnnnn. the description of the CD contents
| thesis.pdf.........oiiiiiiiiiii the text of this thesis
| _extractor .............. the call graph extractor described in Chapter 4

config.jsom ..., the extractor’s configuration file
eXtractor.py ..., the extractor’s main Python module
LICENSE.......couu.... the free software license used for the extractor
README.md ...........coovun. instructions on how to use the extractor
L _heur ...........ccoeuinnn. the heuristic detections described in Chapter 5
anomalous_xrefs.py..the heuristic detection described in Section 5.2
hijacked_ep.py...... the heuristic detection described in Section 5.1
import_hijack.py....the heuristic detection described in Section 5.3
LICENSE..... the free software license used for the heuristic detections
README.md ........ instructions on how to run the heuristic detections
| theSIS c it e ITEX source code of the thesis
| Z00 ...ttt analyzed backdoors and their IDA Pro database files
asian gaming industry..samples from the gaming industry incidents
bAf o e analyzed Backdoor Factory samples
ccleaner .............. analyzed samples from the CCleaner incident
shadowhammer .................... analyzed ShadowHammer samples
shadowpad ........ccovviiiiiiiiin, analyzed ShadowPad samples
shellter......ooiiiiiiiiiiiiiiiiinnnn, analyzed Shellter samples
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