
prof. Ing. Róbert Lórencz, CSc.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 5, 2020

ASSIGNMENT OF MASTER’S THESIS
 Title: Multivariate cryptography

 Student: Bc. Jan Rahm

 Supervisor: Ing. Jiří Buček, Ph.D.

 Study Programme: Informatics

 Study Branch: Computer Security

 Department: Department of Information Security

 Validity: Until the end of summer semester 2020/21

Instructions

Study the topic of multivariate cryptography as one of the approaches to post-quantum cryptography.
Select a specific algorithm based on multivariate cryptography such as Unbalanced Oil and Vinegar (UOV).
Create an educational implementation of the selected algorithm in Wolfram Mathematica.
Examine the reference implementation of the selected algorithm. Evaluate its time and memory complexity
on a PC. Implement the algorithm on a chosen microcontroller such as ARM or ESP32 and evaluate its
usability in an embedded environment.
Compare the time and memory complexity of the selected algorithm with a conventional algorithm such as
RSA or ECDSA.

References

Will be provided by the supervisor.

Master’s thesis

Multivariate cryptography

Bc. Jan Rahm

Department of Information Security
Supervisor: Ing. Jǐŕı Buček, Ph.D.

May 27, 2020

Acknowledgements

I would like to thank Ing. Jǐŕı Buček, Ph.D. for the willingness, consultation
and valuable advice he gave me. Also, I would like to thank my family for
their support during my studies and in writing of this work.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 27, 2020

Czech Technical University in Prague
Faculty of Information Technology
c© 2020 Jan Rahm. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Rahm, Jan. Multivariate cryptography. Master’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2020. Also available
from: 〈https://github.com/rahmjan/Masters_Thesis〉.

https://github.com/rahmjan/Masters_Thesis

Abstrakt

Diplomová práce se zabývá vybranými algoritmy multivariačńı kryptografie,
zejména Unbalanced Oil & Vinegar a Rainbow. Ćılem práce je implementace
algoritmů ve Wolfram Mathematica, prozkoumáńı již existuj́ıćıch řešeńıch a
jejich implementace na mikrokontroleru ESP32. Algoritmy jsou otestovány a
změřeny v̊uči algoritmům RSA a ECDSA.

Kĺıčová slova Multivariačńı kryptografie, Unbalanced Oil & Vinegar, Ra-
inbow, Wolfram Mathematica, ESP32

Abstract

This Master’s thesis deals with the selected algorithms of multivariate cryp-
tography, especially Unbalanced Oil & Vinegar and Rainbow. The aim of this
work is the implementation of the algorithms in Wolfram Mathematica, the
investigation of existing solutions and their implementation on the ESP32 mi-
crocontroller. The algorithms are tested and measured against the RSA and
ECDSA algorithms.

Keywords Multivariate cryptography, Unbalanced Oil & Vinegar, Rain-
bow, Wolfram Mathematica, ESP32

vii

Contents

Introduction 1

1 Basic terms and definitions 3
1.1 Basic terms . 3

1.1.1 Polynomial . 3
1.1.2 Degree of a polynomial 3
1.1.3 Quantum computer . 3
1.1.4 Post-quantum cryptography 3
1.1.5 Finite field . 4
1.1.6 Translation . 4
1.1.7 Linear map . 4
1.1.8 Affine map . 4
1.1.9 Wolfram Mathematica 4
1.1.10 Internet of things . 4
1.1.11 Valgrind . 5
1.1.12 PRNG . 5
1.1.13 ESP32 . 5
1.1.14 RSA . 5
1.1.15 ECDSA . 6

1.2 Multivariate cryptography . 7
1.2.1 MQ problem . 7
1.2.2 Public key . 7
1.2.3 Encryption . 8
1.2.4 Signature . 8

1.3 Unbalanced Oil & Vinegar . 9
1.3.1 Definition . 9
1.3.2 Security . 9

1.4 Rainbow . 10
1.4.1 Definition . 10

ix

2 Implementation 11
2.1 Wolfram Mathematica . 11

2.1.1 Unbalanced Oil & Vinegar 11
2.1.1.1 Generation of instance 14

2.1.2 Rainbow . 14
2.1.2.1 Generation of instance 17

2.2 Reference implementation . 18
2.2.1 Unbalanced Oil & Vinegar 18

2.2.1.1 Adjustments 19
2.2.2 Rainbow . 19

2.2.2.1 Adjustments 20
2.2.3 Test file . 20

2.3 ESP32 implementation . 22
2.3.1 Setup of environment 23

2.3.1.1 Build & Load 24
2.3.1.2 Memory . 24

2.3.2 Project description . 25
2.3.3 Lifted Unbalanced Oil & Vinegar 25

2.3.3.1 Optimization 26
2.3.3.2 Memory . 26

2.3.4 Rainbow . 27
2.3.4.1 Optimization 27
2.3.4.2 Memory . 28

2.4 Conventional algorithms . 29
2.4.1 RSA . 29
2.4.2 ECDSA . 30

3 Testing and discussion 31
3.1 PC . 31

3.1.1 Signature variants . 32
3.1.2 Time complexity . 33
3.1.3 Memory complexity . 35
3.1.4 Conclusion note . 37

3.2 ESP32 . 38
3.2.1 Signature variants . 38
3.2.2 Time complexity . 39
3.2.3 Memory complexity . 41
3.2.4 Keys & signature . 45
3.2.5 Conclusion note . 48

3.3 Conventional algorithms . 49

Conclusion 53

Bibliography 55

x

A Acronyms 57

B Tables of measured values 59

C Contents of enclosed CD 63

xi

List of Figures

1.1 Workflow of multivariate public key cryptosystems 8

2.1 ESP32-LyraT . 22

3.1 Comparison of LUOV on PC . 33
3.2 Comparison of RB on PC . 34
3.3 Comparison of PC implementations 34
3.4 Memory requirement of LUOV on PC 35
3.5 Memory requirement of RB on PC 36
3.6 Comparison of PC implementations 36
3.7 Comparison of LUOV on ESP32 39
3.8 Comparison of RB on ESP32 . 40
3.9 Comparison of ESP32 implementations 41
3.10 Memory requirement of LUOV on ESP32 42
3.11 Memory requirement of LUOV on ESP32 42
3.12 Memory requirement of RB on ESP32 43
3.13 Memory requirement of implementations on ESP32 44
3.14 Memory requirement of my ESP32 malloc 44
3.15 Size of signature of LUOV on ESP32 45
3.16 Size of signature of RB on ESP32 46
3.17 Comparison of LUOV with short public key and RB 47
3.18 Comparison of LUOV with short signature and RB 47
3.19 Comparison with conventional algorithms 49
3.20 Time requirement comparison with conventional algorithms by cat-

egories . 50
3.21 Memory requirement comparison with conventional algorithms . . 51
3.22 Memory requirement comparison with conventional algorithms by

categories . 51

xiii

List of Tables

3.1 NIST security categories . 32
3.2 NIST security categories of conventional algorithms 49

B.1 Time measurement in seconds on PC 59
B.2 Memory measurement in bytes on PC 60
B.3 Time measurement in seconds on ESP32 60
B.4 Memory measurement in bytes on ESP32 61
B.5 Memory measurement of my ESP malloc in bytes on ESP32 61
B.6 Size of keys and signature in bytes 62

xv

Introduction

Cryptography is one of the most needed parts of modern informatics, be-
cause almost everyone has something they wish to stay private. But today
we can see the uprise of quantum computers capable of deciphering conven-
tional algorithms for cryptology. That is why a new category of post-quantum
cryptography was created, one of its representatives being multivariate cryp-
tography.

The objective of this work is to describe principles of multivariate cryptog-
raphy for educational purposes with the creation of a simple example in Wol-
fram Mathematica. The focus is on Unbalanced Oil & Vinegar and Rainbow
algorithms with examination of reference implementation and their possible
implementation on ESP32 and possible use in IoT.

The final part deals with the comparison with the chosen conventional
algorithms, namely RSA and ECDSA.

1

Chapter 1
Basic terms and definitions

This chapter describes the concepts and algorithms used in this thesis.

1.1 Basic terms

1.1.1 Polynomial

Polynomial p is a function of the form:

p(x) =
n∑

i=0
αix

i = α0 + α1x+ α2x
2 + ...+ αnx

n,

where n ∈ N0 and α0, α1, ..., αn ∈ R. Values α0, α1, ..., αn are called polyno-
mial coefficients of p.

1.1.2 Degree of a polynomial

The degree of a polynomial is the highest index i ∈ N0 with the coefficient
αi 6= 0. If all coefficients are equal to zero, then the degree of the polynomial
is -1.

1.1.3 Quantum computer

A quantum computer is a device for performing computations, which directly
uses the phenomena known from quantum mechanics as superposition or in-
terference. In a typical computer, data are represented by bits, where each
bit is either zero or one, while in a quantum computer, qubits (quantum bits)
are used, which can either be zero, one, or a combination of both.

1.1.4 Post-quantum cryptography

Post-quantum cryptography refers to algorithms thought to be secure against
an attack by a quantum computer.

3

1. Basic terms and definitions

But today this is not the case for the most used cryptographic algorithms,
which are based on mathematical problems of integer factorization, discrete
logarithm or elliptic-curve discrete logarithm. These problems can be solved
by Shor’s algorithm on a quantum computer in polynomial time.

1.1.5 Finite field

A finite field is a field with a finite set of elements. This means that multi-
plication, addition, subtraction and division (excluding division by zero) are
defined and satisfy the rules of arithmetic known as the field axioms.

The simplest examples of finite fields are the fields of prime order: Fp may
be constructed as the integers modulo p.

1.1.6 Translation

In Euclidean geometry, a translation is a geometric transformation that moves
every point of a figure or a space by the same distance in a given direction.

1.1.7 Linear map

In mathematics, a linear map is a mapping V → W between two modules
(for example, two vector spaces) that preserves the operations of addition and
scalar multiplication.

1.1.8 Affine map

An affine map is the composition of two functions: a translation and a linear
map. Ordinary vector algebra uses matrix multiplication to represent linear
maps, and vector addition to represent translations. Formally, in the finite-
dimensional case, if the linear map is represented as a multiplication by a
matrix A and the translation as the addition of a vector ~b, an affine map f
acting on a vector ~x can be represented as:

~y = f(~x) = A~x+~b

1.1.9 Wolfram Mathematica

Wolfram Mathematica is a computer program widely used in scientific, techni-
cal and mathematical circles. The program was created by Stephen Wolfram
and further developed by a team of mathematicians and programmers. It is
sold by Wolfram Research headquartered in Champaign, Illinois.

1.1.10 Internet of things

Internet of Things (IoT) is a term in computer science for a network of physical
devices, vehicles, household appliances, or other devices that are equipped

4

1.1. Basic terms

with electronics, software, sensors, moving parts, or network connectivity that
allows these devices to connect and exchange data.

1.1.11 Valgrind

Valgrind is a computer program for Unix systems that helps in debugging and
profiling programs. For example, it can be used to search for memory leaks,
concurrencies, or to monitor cache usage. Valgrind is an open-source software
distributed under the GPL license.

1.1.12 PRNG

The pseudo-random number generator (PRNG) is a deterministic program
that generates a sequence of numbers. When using statistical tests, the se-
quence should be indistinguishable from a random one as much as possible.

1.1.13 ESP32

The ESP32 is a low-cost, low-power microcontroller with integrated Wi-Fi
and Bluetooth. It is created and developed by Espressif Systems, a Chinese
company based in Shanghai, and is manufactured by TSMC using a 40 nm
process.

Its basic technical parameters are:

• CPU: Xtensa dual-core

• Memory: 520 KiB SRAM

• Wi-Fi: 802.11 b/g/n

• Bluetooth: v4.2 BR/EDR and BLE

• IEEE 802.11 standard

• Hardware acceleration: AES, SHA-2, RSA, ECC, RNG

1.1.14 RSA

RSA is an algorithm for cryptographic and signature schemes. Its name comes
from the initials of its authors Rivest, Shamir and Adleman.

RSA security is based on the problem of factorization, an assumption that
breaking a large composite number into a product of its prime numbers is a
difficult task. From the number n = pq it should be almost impossible to
determine the factors p and q in a reasonable time, because there is no known

5

1. Basic terms and definitions

factorization algorithm working in polynomial time to the size of the binary
notation of n. On the other hand, multiplying two large numbers is very easy.

The details of RSA implementation and inner workings are not subjects of
this Master’s thesis and will not be mentioned.

1.1.15 ECDSA

Elliptic curve digital signature protocol (ECDSA) is a variant of the DSA
protocol that uses elliptic curves for digital signatures.

The security of the elliptic curve is based on the problem of discrete logarithm
comprising an assumption that finding k of Y ≡ gk(mod p) is a difficult task.
On the other hand, it is quite simple to compute Y .

The details of ECDSA implementation and inner workings are not subjects of
this Master’s thesis and will not be mentioned.

6

1.2. Multivariate cryptography

1.2 Multivariate cryptography

”Multivariate cryptography (MC) is the generic term for asymmetric crypto-
graphic primitives based on multivariate polynomials over a finite field F.”[7]

This means it is a system of nonlinear polynomial equations with coeffi-
cients over a finite field: F = Fq with q elements:

p(1)(x1, . . . , xn) =
n∑

i=1

n∑
j=1

p
(1)
ij · xixj +

n∑
i=1

p
(1)
i · xi + p

(1)
0

p(2)(x1, . . . , xn) =
n∑

i=1

n∑
j=1

p
(2)
ij · xixj +

n∑
i=1

p
(2)
i · xi + p

(2)
0

...

p(m)(x1, . . . , xn) =
n∑

i=1

n∑
j=1

p
(m)
ij · xixj +

n∑
i=1

p
(m)
i · xi + p

(m)
0

If the polynomials have a degree of two, they are called multivariate
quadratics (MQ). Solving systems of multivariate polynomial equations is
proven to be NP-hard, so-called MQ problem. This is the reason why MC
is often considered to be a good candidate for post-quantum cryptography.

MC is very fast and only requires moderate computational resources, which
makes it attractive for applications in low-cost devices.

1.2.1 MQ problem

Givenm quadratic polynomials p(1)(x), . . . , p(m)(x) in the n variables x1, . . . , xn,
find a vector x̄ = (x̄1, . . . , x̄n) such that p(1)(x̄) = . . . = p(m)(x̄) = 0.

1.2.2 Public key

The public key of MC is the system of MC polynomials. To build this system
based on the MQ problem, it needs an easily invertible quadratic map F :
Fn → Fm, the so-called central map. Because it is easily invertible, it needs
to be hidden in the public key by invertible affine maps: S : Fm → Fm and
T : Fn → Fn.

The public key of this system is a composed map:

P = S ◦ F ◦ T : Fn → Fm

and the private key consists of three maps S, F and T , also known as a
trapdoor.

The public key should be hard to invert without the knowledge of the
trapdoor.

7

1. Basic terms and definitions

z ∈ Fn P−−−−→ w ∈ Fm

T
y S

x
y ∈ Fn F−−−−→ x ∈ Fm

Figure 1.1: Workflow of multivariate public key cryptosystems

1.2.3 Encryption

To get a ciphertext w, a message z ∈ Fn can be easily encrypted by evaluation
of the public key P:

w = P(z) ∈ Fm

For the decryption of the ciphertext, it needs to be evaluated by the private
key in three steps:

x = S−1(w) ∈ Fm, y = F−1(x) ∈ Fn, z = T −1(y) ∈ Fn

There is a required condition m ≥ n, this way the public key P will be injective
and the decryption will output a unique plaintext.

1.2.4 Signature

To generate a signature for a message m, it needs to use a hash function:

H : {0, 1}∗ → Fm

to compute the hash value:

w = H(m) ∈ Fm

After this step, it can be evaluated by:

x = S−1(w) ∈ Fm, y = F−1(x) ∈ Fn, z = T −1(y) ∈ Fn

where z is the signature of the message m. As can be seen, it is similar to the
decryption of a ciphertext.

The verification of the signature z is done by computing the hash value:

w = H(m) ∈ Fm

and by evaluation of the public key P:

w′ = P(z) ∈ Fm

If w′ = w is true, the signature is valid, otherwise not.
There is also a condition that m ≤ n, this way the public key P will be

surjective and the private key can sign any message.

8

1.3. Unbalanced Oil & Vinegar

1.3 Unbalanced Oil & Vinegar

The Unbalanced Oil & Vinegar’s (UOV) name comes from the fact that the
variables of the polynomials are grouped into two groups: the vinegar and
the oil. These two groups are mixed in the polynomials and the unbalanced
attribute refers to the ratio of the variables because there is always more
vinegar than oil variables. The signature scheme was proposed by Kipnis and
Patarin in 1999.

The UOV scheme is very simple, has small signatures and is fast. The main
disadvantage being its public keys, which are quite large.

1.3.1 Definition

Let F be a finite field, v, o ∈ N and n = v + o, V = {1, . . . , v}, O = {v +
1, . . . , n}. The variables x1, . . . , xv are Vinegar variables and xv+1, . . . , xn are
Oil variables. If v = o, the scheme is called balanced Oil & Vinegar (OV), for
v > o it is UOV.

The central map F : Fn → Fo consists of o quadratic polynomials f (1), . . . , f (o):

f (k) =
∑

i,j∈V

α
(k)
ij · xixj +

∑
i∈V,j∈O

β
(k)
ij · xixj +

∑
i∈V ∪O

γ
(k)
i · xi + δ(k)

where α(k)
ij , β(k)

ij , γ(k)
i , δ(k) ∈ F and 1 ≤ k ≤ o.

To hide F in the public key, it is combined with one invertible affine map
T : Fn → Fn. The public key of the scheme is in the following form:

P = F ◦ T : Fn → Fo

and the private key consists of F and T . The second affine map S is not
needed for the security of UOV.

Note that in the F only the vinegar variables could have quadratic form and
the coefficients of the polynomials could be randomly selected.

1.3.2 Security

For the UOV to be secure, it is required that v ≥ 2o because of the attack of
Kipnis and Shamir on balanced OV.[8] Besides that, the UOV scheme resisted
(for suitable parameter sets) cryptanalysis for over 20 years. Now it is one
of the oldest and best-studied cryptosystems and is therefore believed to be
highly secure.

9

1. Basic terms and definitions

1.4 Rainbow

The Rainbow (RB) is a multi-layer version of UOV. The layers are not inde-
pendent from each other but there is a hierarchy which uses the results from
the layer above to compute additional variables. The name comes from the
link to the layers of a rainbow and the scheme was introduced by Ding and
Schmid in 2005.

The main advantage when compared to UOV should be better performance,
smaller key sizes and smaller signatures.

1.4.1 Definition

Let F be a finite field, 0 < v1 < v2 < . . . < vu+1 = n be a sequence of integers
and Vi = {1, . . . , vi}, Oi = {vi + 1, . . . , vi+1} and oi = vi+1 − vi (i = 1, . . . , u)
where oi is a number of oil variables and vi is a number of vinegar variables in
the i layer, u is a number of UOV layers. The variables x1, . . . , xvi are Vinegar
variables and xvi+1, . . . , xvi+1 are Oil variables.

The central map F : Fn → Fm consists of m = n − v1 quadratic polynomials
f (v1+1), . . . , f (n):

f (k) =
∑

i,j∈Vl

α
(k)
ij · xixj +

∑
i∈Vl,j∈Ol

β
(k)
ij · xixj +

∑
i∈Vl∪Ol

γ
(k)
i · xi + δ(k)

where l ∈ {1, . . . , u} is the only integer such that k ∈ Ol and α
(k)
ij , β(k)

ij , γ(k)
i ,

δ(k) ∈ F.

To hide F in the public key, it is combined with two invertible affine maps
T : Fn → Fn and S : Fm → Fm. The public key of the scheme is in the
following form:

P = S ◦ F ◦ T : Fn → Fm

and the private key consists of S, F and T .

Note that in the F only the vinegar variables could have quadratic form and
the coefficients of the polynomials could be randomly selected.

10

Chapter 2
Implementation

This chapter describes the implementation of the algorithms on the selected
platforms, namely Wolfram Mathematica, PC and microcontroller ESP32. For
the last two specified, the implementation is in C++.

2.1 Wolfram Mathematica

This section describes examples in Wolfram Mathematica and step by step
description of the algorithms. All of the hard-coded values (numbers) are
randomly selected, they only have to respect the definition and parameters of
the algorithm.

2.1.1 Unbalanced Oil & Vinegar

Here is a description of the signature scheme of UOV. This example of UOV
is, in fact, the example of balanced OV but there is no difference to UOV.

First set up the parameters of the example: Let F = GF (7), o = v = 3. The
central map F = (f (1), f (2), f (3)) is given by:

In[3]:=
mod=7;
F1[x1_,x2_,x3_,x4_,x5_,x6_]:=
4x1ˆ2+4x1*x3+5x1*x4+6x1*x5+x1*x6+6x1+4x2ˆ2+x2*x3+6x2*x4
+6x2*x5+5x2*x6+5x2+5x3ˆ2+3x3*x4+5x3*x5+2x3*x6+5x3+6x4+3x5;
F2[x1_,x2_,x3_,x4_,x5_,x6_]:=
3x1*x3+4x1*x4+3x1*x5+4x1*x6+3x1+6x2ˆ2+x2*x3+4x2*x4+4x2*x5
+5x2*x6+6x2+6x3ˆ2+4x3*x4+2x3*x5+x3*x6+3x3+x4+x6+1;
F3[x1_,x2_,x3_,x4_,x5_,x6_]:=
6x1ˆ2+6x1*x3+4x1*x5+2x1*x6+2x2ˆ2+5x2*x3+6x2*x4+5x2*x5+
5x2*x6+6x2+3x3ˆ2+5x3*x4+6x3*x5+x3*x6+3x3+4x4+6x5+5;

11

2. Implementation

It will set up the value of mod to 7 and initialize functions of the central map.
Next comes setting up the affine map T with the matrix A and the vector b.
These two parts will later be used separately in the example.

In[7]:=
A=(6 5 5 5 5 4
6 6 4 5 0 6
2 5 2 1 5 0
1 1 6 2 2 3
3 6 2 2 3 0
0 5 4 6 1 5);

In[8]:=
b=(1
2
4
1
3
2);

In[9]:=
T=A.(x1
x2
x3
x4
x5
x6)+b;

The following block computes public key P by putting values of T inside of
F , it also simplifies the expression of p1, p2, p3 and finally applies modulo on
the whole polynomial:

In[10]:=
p1 = F1 @@ T[[All]];
p2 = F2 @@ T[[All]];
p3 = F3 @@ T[[All]];
P1[x1_,x2_,x3_,x4_,x5_,x6_] = PolynomialMod[Simplify[p1],mod]
P2[x1_,x2_,x3_,x4_,x5_,x6_] = PolynomialMod[Simplify[p2],mod]
P3[x1_,x2_,x3_,x4_,x5_,x6_] = PolynomialMod[Simplify[p3],mod]

The results of P = F ◦ T are:

Out[13]=
{6+x1+5x2+4x1x2+2x22+3x3+x1x3+x2x3+x32+6x4+2x1x4+5x2x4+2x3x4
+3x42+5x5+3x1x5+6x2x5+4x3x5+3x4x5+4x52+4x6+x2x6+3x3x6+2x4x6}

Out[14]=
{5+6x12+5x2+4x1x2+5x22+4x3+5x1x3+3x2x3+2x32+2x4+2x1x4+4x2x4
+2x3x4+5x42+3x5+5x1x5+5x2x5+2x3x5+6x52+5x2x6+6x4x6+2x5x6+6x62}

Out[15]=
{5+5x1+4x12+5x2+3x1x2+5x22+2x3+2x1x3+x2x3+2x32+6x4+3x2x4+2x42+x5
+3x1x5+6x2x5+4x3x5+2x52+2x6+x1x6+3x2x6+4x3x6+6x4x6+5x5x6+4x62}

From this place on, it will only focus on the computation of the signature z
for the hash w. Be aware that hash function and the message m are not used
in this example because they are not needed for the example’s purpose.

In[16]:=
w = {{3},{6},{4}};
y1 = 1;
y2 = 0;
y3 = 6;

12

2.1. Wolfram Mathematica

It sets the hash to value w = (3, 6, 4) and also sets the values for y =
(y1, y2, y3). These values for y are chosen randomly.

In[20]:=
f1 = PolynomialMod[F1[y1,y2,y3,y4,y5,y6],mod]
f2 = PolynomialMod[F2[y1,y2,y3,y4,y5,y6],mod]
f3 = PolynomialMod[F3[y1,y2,y3,y4,y5,y6],mod]

Here is the F after substitution, minimalizing and use of modulo:

Out[20]=
f1 = 6+y4+4y5+6y6
f2 = 4+y4+y5+4y6
f3 = 5+6y4+4y5+y6

In this result is shown the loss of quadratic variables (vinegar) by the substi-
tution which will give linear equations.

Next two steps solve the linear system of f (1) = w1 = 3, f (2) = w2 = 6, f (3) =
w3 = 4. Gaussian elimination can be also used for the solution:

In[21]:=
res=Solve[{f1==w[[1]],f2==w[[2]],f3==w[[3]]},Modulus→→→mod];

In[22]:=
y = {y1,y2,y3,y4,y5,y6} /. res

Out[22]=
{{1,0,6,6,3,0}}

It will obtain results for (y4, y5, y6) = (6, 3, 0). After combination it is y =
(1, 0, 6, 6, 3, 0), the so-called pre-image of w: y = F−1(w). If the solution for
the linear system does not exist, choose different values for (y1, y2, y3) and
repeat steps before.

Finally use T −1 to compute the signature z. This requires the inversion of
the matrix A.

In[23]:=
A-1 = Inverse[A, Modulus→→→mod] A−1 =

2 4 6 2 0 5
1 3 3 1 6 2
4 6 6 4 5 4
2 0 3 4 2 3
6 0 3 0 0 5
2 2 2 5 3 3

13

2. Implementation

In[24]:=
z = Mod[A-1.(Transpose[y]-b),mod]

Out[24]=
{{4},{1},{5},{6},{3},{5}}

The value of the signature z = (4, 1, 5, 6, 3, 5).

The last part is a check if the two hashes w and w2 are the same.

In[25]:=
w2=w;
w2={P1 @@ z[[All,1]],P2 @@ z[[All,1]],P3 @@ z[[All,1]]};
(* True? *)
Mod[w2,mod]==w

Out[27]=
True

The file with implementation can be found under the name UOV.nb.

2.1.1.1 Generation of instance

I also created a version with a generation of a random instance of UOV for
selected parameters. It can be found in the UOV-gen.nb file. The parameters
are the number of vinegar and oil variables and the value of modulus.

2.1.2 Rainbow

The description of the signature scheme of Rainbow is very similar to the
description of UOV.

First set up the parameters of the example: Let F = GF (7), v1 = o1 = o2 = 2.
The central map F = (f (3), f (4), f (5), f (6)) is given by:

In[30]:=
mod=7;
F3[x1_,x2_,x3_,x4_,x5_,x6_]:=
x1ˆ2+3x1*x2+5x1*x3+6x1*x4+2x2ˆ2+6x2*x3+4x2*x4+2x2+6x3+2x4+5;
F4[x1_,x2_,x3_,x4_,x5_,x6_]:=
2x1ˆ2+x1*x2+x1*x3+3x1*x4+4x1+x2ˆ2+x2*x3+4x2*x4+6x2+x4;
F5[x1_,x2_,x3_,x4_,x5_,x6_]:=
2x1ˆ2+3x1*x2+3x1*x3+3x1*x4+x1*x5+3x1*x6+6x1+4x2ˆ2+x2*x3+
4x2*x4+x2*x5+3x2*x6+3x2+3x3*x4+x3*x5+2x3*x6+2x3+3x4*x5+x5+6x6;
F6[x1_,x2_,x3_,x4_,x5_,x6_]:=
2x1ˆ2+5x1*x2+x1*x3+5x1*x4+5x1*x6+6x1+5x2ˆ2+3x2*x3+5x2*x5+4x2*x6+
x2+3x3ˆ2+5x3*x4+4x3*x5+2x3*x6+4x3+x4ˆ2+6x4*x5+3x4*x6+4x4+4x5+x6+2;

14

2.1. Wolfram Mathematica

Next comes setting up the affine map T with the matrix A and the vector b
which are the same as in the OV example. But with the addition of the affine
map S with the matrix A2 and the vector b2.

In[34]:=
A2=(6 5 5 5
6 6 4 5
2 5 2 1
1 1 6 2);

In[35]:=
b2=(1
2
4
1);

In[36]:=
S=A2.(x1
x2
x3
x4)+b2;

This block computes the public key P = S ◦F ◦ T by putting the values of T
inside of F and then it creates functions from the matrix S, which are used
for the final step of computation of P. It also simplifies the expression of
pp3, pp4, pp5, pp6 and finally applies the modulo on the whole polynomial:

In[37]:=
p3 = F3 @@ T[[All]];
p4 = F4 @@ T[[All]];
p5 = F5 @@ T[[All]];
p6 = F6 @@ T[[All]];
S3[x1_,x2_,x3_,x4_] = S[[1]];
S4[x1_,x2_,x3_,x4_] = S[[2]];
S5[x1_,x2_,x3_,x4_] = S[[3]];
S6[x1_,x2_,x3_,x4_] = S[[4]];
pp3 = S3[p3,p4,p5,p6][[1]];
pp4 = S4[p3,p4,p5,p6][[1]];
pp5 = S5[p3,p4,p5,p6][[1]];
pp6 = S6[p3,p4,p5,p6][[1]];
P3[x1_,x2_,x3_,x4_,x5_,x6_]=PolynomialMod[Simplify[pp3],mod];
P4[x1_,x2_,x3_,x4_,x5_,x6_]=PolynomialMod[Simplify[pp4],mod];
P5[x1_,x2_,x3_,x4_,x5_,x6_]=PolynomialMod[Simplify[pp5],mod];
P6[x1_,x2_,x3_,x4_,x5_,x6_]=PolynomialMod[Simplify[pp6],mod];

Computation of x from the hash w: x = T −1(w) :

In[38]:=
w = {{2},{2},{3},{4}};
A2-1 = Inverse[A2, Modulus→→→mod]
x = Mod[A2-1.(w - b2),mod]

Out[38]=
{{6},{0},{1},{6}}

The result is x = (6, 0, 1, 6).

Next comes computation of the pre-image for x and also the place where
the biggest difference from the UOV scheme is (the rainbow layers). Let’s

15

2. Implementation

start with the first step where is setup of random values for y1, y2 and their
substitution in the polynomials is performed:

In[39]:=
y1 = 0;
y2 = 1;
f3 = PolynomialMod[F3[y1,y2,x3,x4,x5,x6],mod];
f4 = PolynomialMod[F4[y1,y2,x3,x4,x5,x6],mod];
f5 = PolynomialMod[F5[y1,y2,x3,x4,x5,x6],mod];
f6 = PolynomialMod[F6[y1,y2,x3,x4,x5,x6],mod];

Out[39]=
f3 = 2+5x3+6x4
f4 = x3+5x4
f5 = 3x3+4x4+3x3x4+2x5+x3x5+3x4x5+2x6+2x3x6
f6 = 1+3x3ˆ2+4x4+5x3x4+x4ˆ2+2x5+4x3x5+6x4x5+5x6+2x3x6+3x4x6

For the second step, it can be seen from the result that f (3) and f (4) are two
linear equations (first rainbow layer) with two unknown values.

In[40]:=
res1 = Solve[{f3==x[[1]],f4==x[[2]]},Modulus →→→ mod];

It solves and with these two (new vinegar) values (x3, x4), it is possible to con-
tinue the substitution and to compute the final linear system (second rainbow
layer):

In[41]:=
f5 = PolynomialMod[F5[y1,y2,x3,x4,x5,x6]/.res1,mod];
f6 = PolynomialMod[F6[y1,y2,x3,x4,x5,x6]/.res1,mod];

Out[41]=
f5 = 2+5x5+3x6
f6 = 3+2x5+5x6

In[42]:=
res2 = Solve[{f5==x[[3]],f6==x[[4]]},Modulus →→→ mod];

The pre-image of x is y = (0, 1, 4, 2, 0, 2): y = F−1(x).

In[43]:=
y = {y1,y2,x3,x4,x5,x6}/.res1/.res2;

Out[43]=
{{0,1,4,2,0,2}}

16

2.1. Wolfram Mathematica

For the final step of the computation of z, it needs to be applied T : z =
T −1(y):

In[44]:=
A-1 = Inverse[A, Modulus→→→mod]
z = Mod[A-1.(y - b),mod]

Out[44]=
{{3},{0},{0},{3},{1},{6}}

The value of the signature z = (3, 0, 0, 3, 1, 6).

Last part of the Mathematica sheet is a check if two hashes w and w2 are the
same.

In[45]:=
w2=w;
w2={P3 @@ z[[All,1]],P4 @@ z[[All,1]],
P5 @@ z[[All,1]],P6 @@ z[[All,1]]};
(* True? *)
Mod[w2,mod]==w

Out[47]=
True

By the definition of RB, section 1.4.1, in this example is used u = 2, v1 =
2, v2 = 4, v3 = 6 = n. Because u = 2, it is an example of RB with two layers.
The file with implementation can be found under the name RB.nb.

2.1.2.1 Generation of instance

I also created a version with a generation of a random instance of RB for
selected parameters. It can be found in the RB-gen.nb file. The parameters
are the value of modulus, the number of vinegar variables and the list of
numbers of oil variables where each of them represents one of the layers.

17

2. Implementation

2.2 Reference implementation

This section describes the reference implementation of the algorithms which
are taken from the second round of submissions from NIST Post-Quantum
Cryptography Standardization Process.[9] These implementations are possi-
ble candidates for the new Cryptography standard, were announced on 30th
January 2019, and are written in C++ language.

The reference implementations contain several optimized solutions. But for
the purpose of this Master’s thesis, the only relevant solution is under the
Reference Implementation folder because the others are not compatible with
the ESP32 microcontroller.

2.2.1 Unbalanced Oil & Vinegar

This implementation of UOV is actually an implementation of LUOV (Lifted
UOV) which is an improvement of the UOV scheme that greatly reduces the
size of the public keys. There are three basic modifications:

• First modification changes the key generation algorithm. By using a
seed and pseudo-random number generator, its output can correspond
with the part of the public key. This way one can replace a large part
of the public key with a short seed for PRNG.
This algorithm still produces the same distribution of key pairs. This
means the security of the scheme is not affected, assuming that the
output of the PRNG is indistinguishable from true randomness. Imple-
mentation uses SHAKE128 or Chacha8.
Private key is also generated from seed.

• Second modification (”Lifting”) is that the scheme uses P : Fn
2 → Fm

2
over F2 as a public key over an extension field F2r . That means the
public key P : Fn

2 → Fm
2 is lifted/extended to P : Fn

2r → Fm
2r . This

modification is where the name comes from and is the most important
because the public key remains small, while solving the system P(x) = y
for some y in Fm

2r becomes more difficult compared to instances when y
is in Fm

2 .[11]

• Third modification is having a linear map P in the form:(
1v T
0 1m

)

where T is a v-by-m matrix. This solution makes the key generation
and the signing much faster[1] while not affect the security.[10]

Source codes of version 2.1 were obtained from GitHub repository.

18

2.2. Reference implementation

2.2.1.1 Adjustments

For the testing purpose, I made a few adjustments to the LUOV source files.
One was to simplify Makefile for easy generation of testing applications and
setting up the path to the external library. Some unnecessary files were re-
moved (PQCgenKAT sign.c) and README.md with building information
was created. The last change was the grouping of all the different LOUV
settings into one folder with the building flags:

• FIELD SIZE - Size/degree of finite field.

• OIL VARS - Number of oil variables.

• VINEGAR VARS - Number of vinegar variables.

• SHAKENUM - Version of the shake XOF used.

• FIRST PART TARGET - Number of bytes used in recovery mode.

• PRNG CHACHA/PRNG KECCAK - Whether Chacha8 or SHAKE128
is used.

• MESSAGE RECOVERY - Enable message recovery.

For a successful build on Ubuntu operating system, the library Keccak Code
Package needs to be in the home folder:
git clone https :// github .com/XKCP/XKCP.git XKCP
cd XKCP
make generic64 / libkeccak .a

Or use the one in src/esp and change the Makefile accordingly. Additionally
the tool xsltproc:
sudo apt -get install xsltproc

Implementation can be found in the src/pc/luov folder.

2.2.2 Rainbow

This implementation of Rainbow is an implementation with two layers and
contains three variants:

• Classic - Typical/Classic implementation of Rainbow.

• Cyclic - This variant is motivated by Petzoldt’s cyclic Rainbow scheme[12]
who developed the technique of inserting a matrix into a public key and
to compute a corresponding private key. It allows the creation of major
parts of the public key from a seed using a PRNG. However, this variant
also includes a bug causing the verification of signature to fail.

19

2. Implementation

• Compressed - This variant is similar to the Cyclic variant but the private
key is stored in the form of a bit seed.

2.2.2.1 Adjustments

The adjustments are very similar to the LUOV adjustments. I simplified
Makefile for easy generation of testing applications and removed redundant
files. I added the README.md file with building information. This imple-
mentation can now be built with the following flags:

• RAINBOW16 32 32 32

• RAINBOW256 68 36 36

• RAINBOW256 92 48 48

These flags can not be used together, only one can be valid at a time. It
specifies which setting will be used: finite field F16 or F256 with 32/68/92
vinegar variables and two layers of 32/36/48 oil variables.

• RAINBOW CLASSIC

• RAINBOW CYCLIC

• RAINBOW CYCLIC COMPRESSED

Same as the flags above, only one can be used at a time. It specifies which
variant of Rainbow is to be used.

Last change was the addition of the test.c file from the LOUV implementation
for consistent testing purposes.

Implementation can be found in the src/pc/rb folder.

2.2.3 Test file

For the testing purposes, there is the test.c file which also serves as the main
entry point of the final application. Both of the implementations have the
same structure which can be described as followed:

First step is the generation of the public and private keys:
crypto_sign_keypair (pk ,sk);

Second step is the generation of the signature sm (the signature also contains
the message) of the message m:

20

2.2. Reference implementation

crypto_sign (sm ,& smlen ,m, message_size ,sk);

Third step is the verification of the signature sm and it puts the message from
it to the variable m2:
crypto_sign_open (m2 ,& smlen ,sm smlen ,pk);

The final step is the verification, if the message m is equal to the variable m2.

21

2. Implementation

2.3 ESP32 implementation

For the implementation of the algorithms on a microcontroller, I selected the
ESP32-LyraT microcontroller, version 4.3, made by Espressif Systems.

Figure 2.1: ESP32-LyraT

It is an audio development board built around ESP32 with additional
hardware:

• ESP32-WROVER Module

• Audio Codec Chip

• Dual Microphones on board

• Headphone input

• 2x 3-watt Speaker output

• Dual Microphones on board

• Dual Auxiliary Input

• MicroSD Card slot

• Buttons

• JTAG

• Integrated USB-UART Bridge Chip

• Li-ion Battery-Charge Management

The main reason for selecting this platform is its inbuilt external memory
with the capacity of 8MB. With this memory size, the implementation of
the selected algorithms should be without any issues. However, only 4MB
are able to be effectively used in the implementation (more information can

22

2.3. ESP32 implementation

be found in section 2.3.1.2). Together with the excellent documentation at
”docs.espressif.com” it was relatively easy to choose this platform for devel-
opment.

The implementations are the same as the reference implementations with my
adjustments, I only ported them to the ESP32 platform.

2.3.1 Setup of environment

First step of development on ESP32 is to set up the environment. In order to
set up the environment in the same way as I did (I used Ubuntu 19.4 operating
system), one needs to follow these steps:

Download and install the required tools:
sudo apt -get install git wget libncurses -dev flex bison gperf \
python python -pip python - setuptools python - serial python -click \
python - cryptography python - future python - pyparsing \
python - pyelftools cmake ninja -build ccache libffi -dev libssl -dev

Add current logged user to the group dialout because the user needs to get
read and write access to the serial port over USB and restart the PC.
sudo usermod -a -G dialout $USER

Download software libraries provided by Espressif, Espressif IoT Development
Framework (esp-idf), to folder ”esp”. I used a release version 4.1:
cd $PATH_TO_ESP /esp
git clone -b release /v4.1 --recursive \
https :// github .com/ espressif /esp -idf.git

Or you can copy the whole folder ”src/esp” form this Master’s thesis to your
”$PATH TO ESP/esp”.

Install tools used by esp-idf to default directory ”$HOME/.espressif”:
cd $PATH_TO_ESP /esp/esp -idf
./ install .sh

Last step is to set up environment variables in the terminal where is going to
be used esp-idf :
. $PATH_TO_ESP /esp/esp -idf/ export .sh

But I added it to the .bashrc file:
echo ". $PATH_TO_ESP /esp/esp -idf/ export .sh \
&> /dev/null" >> $HOME /. bashrc

This way it will be added to every new shell session.

23

2. Implementation

2.3.1.1 Build & Load

To load application to ESP32-LyraT, one must first build the project. For ex-
ample, navigate to the project ”$PATH TO ESP/esp/esp-idf/examples/get-
started/hello world” and in this folder, it is possible to build it:
idf.py -n build

The switch ”-n” will stop treating the warnings as errors.

After successful build it is possible to load/flash application to ESP32-LyraT:
idf.py -p /dev/ ttyUSB0 flash

The value of the port can differ based on which one is ESP32-LyraT connected
to.

When the loading/flashing starts, it will be waiting for a connection from
ESP32-LyraT. At that moment, hold the boot button and press the restart
button.

To check if the application is indeed running after loading/flashing, use the
monitoring system:
idf.py -p /dev/ ttyUSB0 monitor

For ESP32-LyraT, when the monitoring starts, press the restart button.

It is possible to combine the previous commands together:
idf.py -p /dev/ ttyUSB0 build flash monitor

2.3.1.2 Memory

Microcontroller ESP32-LyraT has 8MB of external memory (SRAM/SPI-
RAM). But the processor only supports up to 4MB of the external RAM,
which can be allocated using standard malloc calls. To use the region above
the 4MB limit, it is possible to use the himem API.

Configuration - For enabling the external RAM, navigate to ”menuconfig→
Component config → ESP32-specific → Support for external, SPI-connected
RAM → SPI RAM config”. To access menuconfig:
idf.py menuconfig

Stack - It is possible to change the size of the stack for the application. The
settings can be found at ”menuconfig→ Component config→ Common ESP-
related → Main task stack size”.

Himem - API which enables access to the remaining memory of external
RAM. However, this is done through a bank switching scheme. Configuration
can be found at the same place as external RAM in menuconfig.

24

2.3. ESP32 implementation

2.3.2 Project description

The basic esp-idf project is composed of the following:

• build - A folder where the output of the build process is stored.

• components - A folder which contains subprojects or external projects
of the application.

• main - A folder which contains source codes of the application. It is also
called the main component.

• CMakeList.txt - A global setting of the project and the starting file for
cmake.

• sdkconfig - A setting of menuconfig.

• sdkconfig.default - A default setting of menuconfig.

For convenience’s sake, I added a file to this structure:

• README.md - A file with basic information about the build.

The project can be built using make or cmake. I decided to use cmake, since
almost every example uses it and it is also recommended in the documentation.

Main entry point of the application running on ESP32 is the app main func-
tion. In provided implementations, it can be found in the main/test.c file.

2.3.3 Lifted Unbalanced Oil & Vinegar

To make a port of LUOV reference implementation to ESP32, I first needed
to create CMakeList.txt in the main folder. This file contains build options
for the main component.

idf_component_register (SRCS INCLUDE_DIRS PRIV_REQUIRES)

This function is for registering a project component to the internal build struc-
ture of idf API.

• SRCS - Files of source codes.

• INCLUDE DIRS - Paths to header files.

• PRIV REQUIRES - Components which have to be built before the main
component and then linked to it.

25

2. Implementation

It is necessary to set up the path to the idf compiler header files. Otherwise
the default (in my case GCC) headers will be used, which are incompatible
with ESP32. Last part of this file is the block which takes care of parsing
build flags of the project in variable B FLAGS.

The implementation requires the XKCP component for PRNG. But, how it
can be seen in the components/XKCP/CMakeList.txt file, it only requests a
few files from the XKCP project. This means it is not necessary to build the
whole project but only the required parts. This way it will reduce the final
size of the application.

One of the important required changes is the change of the default value for
the size of the stack to 20000B. This size is sufficient to support all stack
memory allocations. It also needs to enable the use of external memory. Both
of the settings are set in the sdkconfig.default file.

The reference implementation has the implementation (file rng.c) of a random
number generator (RNG) from the NIST standard. But this RNG requires
the OpenSSL library, which is not a part of esp-idf by default. I found that
there is a component esp-wolfssl which is an embedded SSL library and offers
a simple API with OpenSSL compatibility layer. Unfortunately, calling the
initialization function of OpenSSL, ESP32-LyraT will cause a segmentation
fail. This means that it is impossible to use it.

What can be done (and what I also did), is the change of the RNG to the
ESP32 hardware RNG. Nonetheless, there is a condition in which the Wi-Fi
or the Bluetooth needs to be enabled. Otherwise, it can not be considered a
truly random number generator, but only a pseudo-random number generator.

The implementation can be found in the src/esp/luov folder.

2.3.3.1 Optimization

Because this ported implementation of LOUV is fast and has low memory
consumption (see chapter 3), I did not try to make any optimization attempts.

2.3.3.2 Memory

To be able to measure the memory allocated in ESP32, I implemented memory
measurement with the help of esp-idf API. Implementation can be found in
the memory measurement.c file.

This measurement will create a new independent task which will periodically
ask ESP32 about internal and external memory status. Because ESP32 is
a dual-core processor, the slowdown by this task should be minimal and it

26

2.3. ESP32 implementation

should have a minimal influence on the signing algorithm. But to be sure
there is no slowdown, the speed measurement was taken without this memory
measurement.

To enable this functionality, the following flag needs to be set:

• MEM MEASUREMENT

2.3.4 Rainbow

To make a port of Rainbow reference implementation to ESP32, I proceeded in
the same way as for the LUOV ESP32 implementation. That means I created
CMakeList.txt in the main folder with the same formalities as CMakeList.txt
for LUOV, see section 2.3.3. The most eye-catching difference is the set up of
different kinds of malloc, see section 2.3.4.2 for more information.

The implementation requires the wolfssl component for PRNG. In this case, it
builds the whole esp-wolfssl project which is simply added through the setting
of PRIV REQUIRES in main/CMakeList.txt. It is important to mention
here that the Rainbow reference implementation contains two PRNG (see
utils prng.c). The first one from the NIST standard, it is the same RNG as in
the LUOV reference implementation, and the second PRNG which uses the
hash SHA function. Because the RNG form the NIST standard was impossible
for me to run on ESP32-LyraT, I changed it to the second PRNG and deleted
the implementation of the first one from the source code.

The source codes also require RNG which I changed to the hardware RNG of
ESP32. This is the same change as in the LUOV ESP32 implementation (see
rng.c).

The default value for the size of the stack I set up to 5000B because this
value is sufficient to support all of the Rainbow stack allocation memory. The
setting is set up in sdkconfig.default with enabled external memory to get
access to the external 4MB RAM.

The implementation can be found in the src/esp/rb folder.

2.3.4.1 Optimization

I did two memory optimizations of the Rainbow implementation for ESP32:

• First, I found potentially large memory allocations and switched them
from stack to heap. Candidates to the modification were the temporary
helpful variables of keys (sk t) in the computation of keys from seeds.

27

2. Implementation

• Secondly, I created my ESP malloc and my ESP free functions, see sec-
tion 2.3.4.2. With these, I found that temporary variables (for example
sk t* tempQ) were using a lot of memory, but in reality only needed
a part of the key structure. See commit ”ESP - RB memory reduc-
tion in cyclic generation”, hash ”1609d70c” in this Master’s thesis’ Git
repository for the optimization details.

With these two optimizations, there was already enough memory and I was
able to run the RAINBOW256 92 48 48 implementation in compressed form.
I was also able to run the same implementation in the cyclic form but there
occurs the same kind of bug and it was making the segmentation fault. I
suspect it is the same bug which causes the failure of signature verification.

2.3.4.2 Memory

To be able to better measure the allocated memory in ESP32, there is the
same memory measurement implementation as in LUOV, see section 2.3.3.2,
which can be enabled by flag:

• MEM MEASUREMENT

Because I needed a better technique for memory allocation on the heap, I
created my own allocation information table. It is a simple small array because
I expected a small number of allocations at one point at a time, which holds
the pointer information and its size. It can be enabled by the flag:

• MY ESP MALLOC

When this flag is set, it will switch all aligned alloc to my ESP malloc and
free to my ESP free, and prints its information whenever allocation or deallo-
cation occurs. This information table helped me to identify potential places
in the source code of RB for memory optimization. See the malloc.c file for
implementation details.

The reference implementation uses the aligned alloc function to allocate mem-
ory, but ESP32 with the toolchain 8.2, which I used, had an issue with this
function and it was not possible to use. That is the reason why I changed it
to the classic malloc function.

28

2.4. Conventional algorithms

2.4 Conventional algorithms

These selected conventional algorithms were also implemented on the ESP32-
LyraT microcontroller for the possibility of comparison with LOUV and RB.
These two algorithms are some of the most typical and most used algorithms
in computers for signature schemes. This means very good software imple-
mentations with hardware acceleration on the ESP32 chip exist.

Both of the selected algorithms are implemented using the esp-idf API in
a similar way like previous implementations in this thesis on ESP32. That
means their entry point is in the test.c file which has a similar structure to
other test.c files in the previous description. The main difference is in the
private and public keys which are now in the form of context relative to the
algorithm.

2.4.1 RSA

Test implementation of RSA starts with the initialization of the context:

mbedtls_rsa_context ctx;
mbedtls_rsa_init (&ctx , MBEDTLS_RSA_PKCS_V15 ,0);

Second step is the generation of a keypair:

mbedtls_rsa_gen_key (&ctx , coap_prng_impl ,NULL ,KEY_SIZE , EXPONENT);

Generation of the hash of the message m:

mbedtls_sha256 (m, message_size ,hash ,0);

Sign the hash and put the signature to the sm:

mbedtls_rsa_pkcs1_sign (&ctx , coap_prng_impl ,NULL ,
MBEDTLS_RSA_PRIVATE , MBEDTLS_MD_SHA256 ,
0,hash ,sm);

Verify the signature sm of the hash:

mbedtls_rsa_pkcs1_verify (&ctx , coap_prng_impl ,NULL ,
MBEDTLS_RSA_PUBLIC , MBEDTLS_MD_SHA256 ,
0,hash ,sm);

The implementation can be set with the following flags:

• KEY SIZE - Public key size in bits.

• EXPONENT - Public exponent to use.

• MEM MEASUREMENT - Enable memory measurement.

29

2. Implementation

2.4.2 ECDSA

Test implementation of ECDSA is very similar to RSA. It starts with the
initialization of the context:
mbedtls_ecdsa_context ctx;
mbedtls_ecdsa_init (& ctx);

Second step is the generation of a keypair:
mbedtls_ecdsa_genkey (&ctx ,EC_CURVE , coap_prng_impl ,NULL);

Generation of the hash of the message m:
mbedtls_sha256 (m, message_size ,hash ,0);

Sign the hash and put the signature to the sm:
mbedtls_ecdsa_write_signature (&ctx , MBEDTLS_MD_SHA256 ,hash ,
hash_len ,sm ,& smlen , coap_prng_impl ,NULL);

Verify the signature sm of the hash:
mbedtls_ecdsa_read_signature (&ctx ,hash ,hash_len ,sm ,smlen);

The implementation can be set with the following flags:

• EC CURVE BITS - Number of bits for elliptic curve.

• MEM MEASUREMENT - Enable memory measurement.

30

Chapter 3
Testing and discussion

This chapter contains the algorithms measurements and testing, their com-
parison and discussion about their implementation. It focuses mainly on time
and memory complexity of the selected algorithms and possible usability in
an embedded environment.

3.1 PC

The reference implementations with my adjustments were tested on the com-
puter with the following parameters:

• OS: Ubuntu 19.4

• CPU: Intel Core i5-7300HQ

• Clock Speed: 2.50GHz

• RAM: 8 GB

• Number of cores: 4

• Compiler: GCC 8.3.0

Every measurement was done on a message of size 10000 B and was repeated
10 times. The final results in the figures below are given as average values.

The main goal of these measurements and implementations was to have com-
parable data of reference implementations of LUOV and RB on a PC. Because
they were measured using different processors and only in processor cycles in
the reference materials. I chose to measure time (in seconds) and memory
consumption (in bytes).

The solutions were compiled with the same (default) setting with the -std=c99
flag.

31

3. Testing and discussion

3.1.1 Signature variants

For measurement, I selected the reference signature variants. The first number
indicates the finite field Fn, the second one is the number of vinegar variables,
the third one is the number of oil variables and the fourth one (at RB) is the
number of oil variables in the second layer. Divided by security categories
there are the following:

Category I:

• Luov-47-42-182

• Luov-7-57-197

• Rb-16-32-32-32 - and its variants

Category III:

• Luov-61-60-261

• Luov-7-83-283

• Rb-256-68-36-36 - and its variants

Category V:

• Luov-79-76-341

• Luov-7-110-374

• Rb-256-92-48-48 - and its variants

Each of the categories represents a difficulty through how many hardware
gates need to be used to be able to break the security variant.[15] Overview:

Category Log2 classical gates Log2 quantum gates Ex. of alg.
I 143 130/106/74 AES-128
II 146 SHA3-256
III 207 193/169/137 AES-192
IV 210 SHA3-384
V 272 258/234/202 AES-256
VI 274 SHA3-512

Table 3.1: NIST security categories

For the quantum gates, there is also the MAXDEPTH parameter of 240, 264,
296, which represents fixed running time or circuit depth. The reason for this
parameter is the Grover’s algorithm.

32

3.1. PC

An algorithm meets the requirements of a specific security category, if the best-
known attack uses more resources (gates) than needed to solve the reference
problem.

Concerning the LUOV parameters, a finite field of size 7 is selected because
of the small size of the generated signature, but the public key size is quite
large. The schemes not having the finite field of size 7 are selected because of
the small public key.

3.1.2 Time complexity

The next two figures display the individual stages of the signature scheme and
the time it takes to complete each of the stages. Namely generation, signing
and verifying. For time measurement I used clock t from the standard header
time.h.

Generation Signing Verifying
0.001

0.01

0.1

1

Luov-47-42-182

Luov-7-57-197

Luov-61-60-261

Luov-7-83-283

Luov-79-76-341

Luov-7-110-374

Ti
m

e
[s

]

Figure 3.1: Comparison of LUOV on PC

As can be seen in 3.1, the stronger the security the more time is needed for
the computation which is the expected result. Regarding the generation stage,
the shorter the public key the fastest it is. The same is true for the signing
and verifying stages, which are again the expected results.

In figure 3.2, it is possible to see that generating the public key (cyc versions)
and the private key (com versions) from the seed is a really slow operation. It
can be seen especially on the com variants where the signing stage can be up
to 85 times slower (maybe even more) than the classic variants. The verifying
stage is also faster than the classic variant because there is no generation from
the seed.

33

3. Testing and discussion

Generation Signing Verifying
0.0001

0.001

0.01

0.1

1

10

Rb-16-32-32-32

Rb-16-32-32-32-cyc

Rb-16-32-32-32-com

Rb-256-68-36-36

Rb-256-68-36-36-cyc

Rb-256-68-36-36-com

Rb-256-92-48-48

Rb-256-92-48-48-cyc

Rb-256-92-48-48-com

Ti
m

e
[s

]

Figure 3.2: Comparison of RB on PC

The next figure 3.3 is the comparison of LUOV and RB implementation. I
only compare the com versions of RB with LUOV with short public keys. I
selected this LOUV variant because it is faster and this RB variant because
it also (like LUOV) generates public and private keys from the seed. There is
no generation stage because on 3.1 and 3.2 it is obvious that generation times
of RB are much slower than LOUV.

Signing Verifying
0.001

0.01

0.1

1

10

Luov-47-42-182

Luov-61-60-261

Luov-79-76-341

Rb-16-32-32-32-com

Rb-256-68-36-36-com

Rb-256-92-48-48-com

Ti
m

e
[s

]

Figure 3.3: Comparison of PC implementations

How can be seen in 3.3, the LOUV implementation is faster at signing but
slower at verifying.

34

3.1. PC

3.1.3 Memory complexity

Memory complexity deals with the allocation of RAM on a heap for the sig-
nature schemes. I did not measure the required memory on a stack because it
is negligible in comparison to the heap (in the magnitude of a few kilobytes).
I measured the PC implementations with the help of Valgrind. Specifically,
with the help of tool Massif which is a heap profiler:

valgrind --tool= massif ./ test

To get a human-readable output it needs to be used with the following:

ms_print massif .out .*

From its output, I created the next few figures which show the maximum
memory allocation (in bytes) over the whole run of the test application.

In figure 3.4, the memory allocation of LUOV is visible. It shows the expected
result which is the following: with higher security category more memory is
needed. It is also visible that LOUV variants with a shorter public key need
less resources.

Luov-47-42-182

Luov-7-57-197

Luov-61-60-261

Luov-7-83-283

Luov-79-76-341

Luov-7-110-374

0 50000 100000 150000 200000 250000 300000 350000

Size [B]

Figure 3.4: Memory requirement of LUOV on PC

Next is the figure 3.5 illustrating RB memory allocation. It is shown again that
the higher security category the more resources it needs, which is the expected
result. But to my surprise, the com variants of Rainbow need less RAM
allocation compared to the classic and cyc variants. The only explanation I
can think of, which can explain this behaviour, is the generation of a private
key from the seed. That is the main difference compared to other variants.

35

3. Testing and discussion

Rb-16-32-32-32

Rb-16-32-32-32-cyc

Rb-16-32-32-32-com

Rb-256-68-36-36

Rb-256-68-36-36-cyc

Rb-256-68-36-36-com

Rb-256-92-48-48

Rb-256-92-48-48-cyc

Rb-256-92-48-48-com

0 1000000 2000000 3000000 4000000 5000000 6000000

Size [B]

Figure 3.5: Memory requirement of RB on PC

Luov-47-42-182

Luov-61-60-261

Luov-79-76-341

Rb-16-32-32-32-com

Rb-256-68-36-36-com

Rb-256-92-48-48-com

10000 100000 1000000 10000000

Size [B]

Figure 3.6: Comparison of PC implementations

The last figure of the memory complexity section is figure 3.6 illustrating the
comparison of LUOV and Rainbow. The figure shows that LUOV requires
much less memory than RB. This behaviour I attribute to the implementation
specifics (code programming, optimization and memory handling), which are
much better than in the Rainbow implementation.

36

3.1. PC

3.1.4 Conclusion note

The measured values show that the reference implementation of LOUV is
almost better at everything. It is faster, has a smaller memory imprint and
has a simpler implementation.

The only thing in which Rainbow is better is signature verification (how can
be seen in figure 3.3), but that is an implication from the signature size, which
is shorter than LUOV. For more details, see section 3.2.4.

From the point of usability, the Rainbow implementation is only optimal if a
lot of signature verification needs to be done or if there are a lot of very short
messages. Then the shorter signature can speed up the computational means,
for example, the network communication.

But I do not recommend this implementation of RB because there seems to
be some kind of an implementation bug. It can be seen in the cyc variant of
RB where the verification of the signed message reports that it is an invalid
signature.

If I were faced with choosing one of these implementations for general use, I
would select the LUOV implementation because, as was already mentioned,
it is faster, smaller and it does not contain any bugs (at least I did not find
any).

37

3. Testing and discussion

3.2 ESP32

ESP32 implementations were tested and ported to the ESP32-LyraT micro-
controller, specification of the microcontroller can be found in section 2.3. The
reason for the port is to test the behaviour of the selected algorithms in the
IoT environment or at least in an environment which is as similar as possible
to it.

Every measurement was done on a message of size of 1000B and was repeated
10 times. The final results in the figures below are given as average values.

3.2.1 Signature variants

The same variants of signature schemes were selected as in the PC section
3.1.1. There were, however, some changes. Dividing by security categories
they are the following:

Category I:

• Luov-47-42-182

• Luov-7-57-197

• Rb-16-32-32-32 - and its variants

Category III:

• Luov-61-60-261

• Luov-7-83-283

• Rb-256-68-36-36 - and its variants

Category V:

• Luov-79-76-341

• Luov-7-110-374

• Rb-256-92-48-48-com

In the category V, there is only the com variant of RB scheme because I was
not able to run the other variants (classic and cyc) due to the limited RAM.

I did a few memory optimizations in the RB scheme which can be found in
the 2.3.4.1 section. These optimizations reduced a considerable amount of
memory but when I tried to run the Rb-256-92-48-48-cyc variant I received a
segmentation fault. I attributed this behaviour to a bug in the implementation
where the signature is failing.

38

3.2. ESP32

3.2.2 Time complexity

As in the PC measurement before, section 3.1.2, following figures display in-
dividual stages of the signature scheme and the time it takes to complete each
of the stages. For the time measurement, I also used clock t from the standard
header.

In figure 3.7, the comparison of LUOV times which it took for each of the
stages is shown. It can be seen that the higher the security category, the more
time is needed for the completion of the stage. That is the expected result as in
the PC implementations, but some of the times were in the periods around 10
seconds. Especially Luov-7-110-374 or generally the whole security category
V is unusable with these periods in the moment when a lot of messages need
to be signed or verified.

Also, category III took a lot of time but the LUOV variant Luov-61-60-261
seems to be fast enough on ESP32-LyraT and can be used for common sig-
nature schemes. As a category III, it can provide very high security for IoT
devices but it has one disadvantage which is a large signature.

The Luov-47-42-182 and Luov-7-57-197 variants of security category I can be
fast on embedded devices putting them at the forefront of the other LUOV
signature variants.

Generation Signing Verification
0.1

1

10

100

Luov-47-42-182

Luov-7-57-197

Luov-61-60-261

Luov-7-83-283

Luov-79-76-341

Luov-7-110-374

Ti
m

e
[s

]

Figure 3.7: Comparison of LUOV on ESP32

Figure 3.8 is the comparison of times of Rainbow scheme. There it can be
seen that the generation of public and private keys is very slow but in the

39

3. Testing and discussion

practical (mostly) use cases this step needs to be only done once, therefore it
has little influence.

It can also be seen that signing and verifying stages do not belong into fast
operations. Especially the com versions which are really slow. It is very well
visible that generating public and private keys from the seed is not a good
idea from a time point of view. And if there was no generation, then there
is a large speedup, as can be seen in the comparison of Rb-256-68-36-36 and
Rb-256-68-36-36-com.

As in the LOUV scheme before, in the RB scheme the best variant is from
security category I, the variant Rb-16-32-32-32. It has more than enough
security for the common communication on IoT devices.

Generation Signing Verification
0.01

0.1

1

10

100

Rb-16-32-32-32

Rb-16-32-32-32-cyc

Rb-16-32-32-32-com

Rb-256-68-36-36

Rb-256-68-36-36-cyc

Rb-256-68-36-36-com

Rb-256-92-48-48-com

T
im

e
[s

]

Figure 3.8: Comparison of RB on ESP32

Last figure 3.9 of this section represents the comparison between LUOV and
RB. It is the only comparison between the LOUV variants with a shorter
public key and the RB com variants. The reasons for this selection of signature
schemes variants are given in section 3.1.2.

In this figure, it can be seen that the LUOV variants are faster in signing and
the RB variants are faster in the verification process, except for the Rb-256-68-
36-36-com which got slowed down. There is no comparison of the generation
stage because LOUV is clearly better in every security category.

If we compare the ESP32 figures of the time results with the PC implemen-
tations, we can see similar shapes. This means there are no large mistakes

40

3.2. ESP32

in my port of implementation on ESP32. It is also noticeable that the ver-
ifying stage of all the variants of RB got slowed down compared to the PC
implementations.

Signing Verification
0.1

1

10

100

Luov-47-42-182

Luov-61-60-261

Luov-79-76-341

Rb-16-32-32-32-com

Rb-256-68-36-36-com

Rb-256-92-48-48-com

Ti
m

e
[s

]

Figure 3.9: Comparison of ESP32 implementations

3.2.3 Memory complexity

Memory complexity was measured through the MEM MEASUREMENT flag,
which is described in more detail in the 2.3.3.2 section. It measures an allo-
cation on the heap which is extended by the external memory. The required
memory on the stack was not measured because it is negligible in comparison
to the heap (in the magnitude of a few kilobytes) and it was set to a maximum
of 20000B in LUOV implementation and 5000B in RB implementation.

From the flag output, I created the next few figures showing the maximum
memory allocation (in bytes) over the whole test application run.

The first figure 3.10 is an exception from the previous statement because there
was a small number of output data from the flag and it was possible to align
them such that I was able to create a figure visualizing memory allocation
of LUOV over the whole period of generation (left peak), signing (middle)
and verification (right peak). The peaks represent the moments when the
implementation needs to compute the public or private key from the seed. It
then uses the key and discards it afterwards.

It is possible to see that more memory is needed with higher security. Also, the
LOUV variants with a shorter public key need fewer resources. This could also

41

3. Testing and discussion

be seen in figure 3.11 which only shows the maximum allocation of memory.
This is the same conclusion as in the PC memory measurement, section 3.1.3.

1 2 3 4 5 6 7 8 9 10 11 12 13
0

50000

100000

150000

200000

250000

300000

350000

400000

Luov-47-42-182

Luov-7-57-197

Luov-61-60-261

Luov-7-83-283

Luov-79-76-341

Luov-7-110-374

S
iz

e
[B

]

Figure 3.10: Memory requirement of LUOV on ESP32

Generation Signing Verification
10000

100000

1000000

Luov-47-42-182

Luov-7-57-197

Luov-61-60-261

Luov-7-83-283

Luov-79-76-341

Luov-7-110-374

S
iz

e
[B

]

Figure 3.11: Memory requirement of LUOV on ESP32

42

3.2. ESP32

In the next figure 3.12, memory allocation of the Rainbow scheme is displayed.
Again, it shows that with higher security category the implementation needs
more memory. However, some of the Rainbow variants suspiciously need the
same amount of memory, around 4MB, for example, Rb-256-68-36-36-com or
Rb-256-92-48-48-com. However, this same allocation of memory can be seen
on the RB variant Rb-16-32-32-32-cyc in the verification stage.

Generation Signing Verification
100000

1000000

10000000

Rb-16-32-32-32

Rb-16-32-32-32-cyc

Rb-16-32-32-32-com

Rb-256-68-36-36

Rb-256-68-36-36-cyc

Rb-256-68-36-36-com

Rb-256-92-48-48-com

S
iz

e
[B

]

Figure 3.12: Memory requirement of RB on ESP32

I can only think of two possibilities of this result:

• Error in measurement - In my implementation of memory measurement
on ESP32 is some kind of error which inputs this result. But it is only
a few lines of C++ code directly using the esp API which is why I am
inclined to the second possibility.

• Wrong allocation - ESP32-LyraT only allocates the rest of free memory
in external RAM. This can happen when there is not enough time after
the free operation and the allocation table is not updated, therefore it
uses the next free block. Additionally, the segmentation of memory may
not be optimal and the needed memory block may not be allocated in
previous blocks because it requires a bigger capacity.

From these results, I can assume that a minimum of 4MB RAM is needed to
safely run the Rainbow implementation on ESP32-LyraT. It is also shown that
having a public key in the form of seed saves some of the memory (comparison
of the cyc and classic variants).

43

3. Testing and discussion

Generation Signing Verification
10000

100000

1000000

10000000

Luov-47-42-182

Luov-61-60-261

Luov-79-76-341

Rb-16-32-32-32-com

Rb-256-68-36-36-com

Rb-256-92-48-48-com

S
iz

e
[B

]

Figure 3.13: Memory requirement of implementations on ESP32

Figure 3.13 shows the comparison of LUOV and RB schemes in memory re-
quirements. LUOV is again a better implementation in memory management.
But because of this strange memory allocation in RB cases I created the
MY ESP MALLOC flag, see 2.3.4.2. With this flag, I received information
about every malloc and free in the implementation and was able to create
figure 3.14.

Generation Signing Verification
100000

1000000

10000000

Rb-16-32-32-32

Rb-16-32-32-32-cyc

Rb-16-32-32-32-com

Rb-256-68-36-36

Rb-256-68-36-36-cyc

Rb-256-68-36-36-com

Rb-256-92-48-48-com

S
iz

e
[B

]

Figure 3.14: Memory requirement of my ESP32 malloc

Now, compared to figure 3.12, more meaningful results of memory allocation
can be seen. It must be noted that there are heap allocations of bare imple-

44

3.2. ESP32

mentation without system libraries.

Figure 3.14 shows that the cyc variants of RB are using the seed for a public
key because the memory needs are lower in the signature stage but higher in
the verification stage when compared to the classic variants. It also beautifully
shows the use of the seed for a private key in the com variants. In the signature
stage, it needs more memory than the cyc variant because of the generation of
a private key from the seed but in the verification stage, it saves the memory
because the private key is only in the form of a small seed.

3.2.4 Keys & signature

This section covers the comparison of sizes of keys for the different variants of
the signature algorithms. It must be said that the sizes of keys of the ESP32
implementations are the same as the PC implementations. I noted them from
the measurement of the ESP32 implementations.

Figure 3.15 shows LOUV sizes of public key, private (secret) key and signature.
It is clear that the LUOV implementation uses the same length of the seed for
its secret key. The variants with shorter signatures (Luov-7) which can be up
to 10 times shorter compared to their LUOV equivalents in the NIST security
category can also be seen.

Public key Secret key Signature
10

100

1000

10000

100000

Luov-47-42-182

Luov-7-57-197

Luov-61-60-261

Luov-7-83-283

Luov-79-76-341

Luov-7-110-374

S
iz

e
[B

]

Figure 3.15: Size of signature of LUOV on ESP32

On the other hand, the same figure shows that with shorter signatures the
variants need much more space for public keys, which can be up to 3 times
longer if I compare Luov-7-110-374 and Luov-79-76-341.

45

3. Testing and discussion

The variants of LUOV show a relatively large difference in these two values.
This means it depends on the situation which of the variants will be more
advantageous to use.

Public key Secret key Signature
10

100

1000

10000

100000

1000000

Rb-16-32-32-32

Rb-16-32-32-32-cyc

Rb-16-32-32-32-com

Rb-256-68-36-36

Rb-256-68-36-36-cyc

Rb-256-68-36-36-com

Rb-256-92-48-48-com

S
iz

e
[B

]

Figure 3.16: Size of signature of RB on ESP32

Figure 3.16 displays the size of the keys and signature of the Rainbow variants.
It shows that when the seed is used for the secret key in the com variants, it
saves a lot of space (the seed is only the size of 64B). For the public key in the
cyc variants the memory size was reduced 2.5 to 3.5 times. The signature is
longer (larger) with the stronger security category. However, for the Rb-256-
92-48-48-com variant it is only 204B. This amounts to almost nothing if we
consider that only the NIST security category V is taken into account.

Next two figures 3.17 and 3.18 show the comparison between LOUV and RB.
The first one is the comparison between the LUOV variants with shorter
public key and RB, and the second one is the comparison between the LOUV
variants with shorter signature and RB. I split it into two figures for a better
comparison, especially because of the signature.

In both of the figures, it is shown that LOUV use shorter seeds for the secret
key. In numbers it is 32B for LUOV and 64B for RB. However, the comparison
of the signatures also shows that the RB implementation has shorter ones in
both figures. The size of RB signature is 204B, LOUV with shorter signa-
ture has 440B and LUOV with shorter public key the signature has 4134B in
security category V.

The public key of LUOV is considerably shorter in both of the figures. In the
first figure, it is up to 17 times shorter and in the second figure, it is up to 6
times shorter.

46

3.2. ESP32

From these results in this section, it is evident that the only benefit of Rainbow
implementation is short signature which can maybe be very beneficial, for
example in some congested networks.

Public key Secret key Signature
10

100

1000

10000

100000

1000000

Luov-47-42-182

Luov-61-60-261

Luov-79-76-341

Rb-16-32-32-32-com

Rb-256-68-36-36-com

Rb-256-92-48-48-com

S
iz

e
[B

]

Figure 3.17: Comparison of LUOV with short public key and RB

Public key Secret key Signature
10

100

1000

10000

100000

1000000

Luov-7-57-197

Luov-7-83-283

Luov-7-110-374

Rb-16-32-32-32-com

Rb-256-68-36-36-com

Rb-256-92-48-48-com

S
iz

e
[B

]

Figure 3.18: Comparison of LUOV with short signature and RB

47

3. Testing and discussion

3.2.5 Conclusion note

The measured values show that the implementation of LOUV is almost better
in everything compared to RB. And also, the results of time measurements
of the implementations on ESP32 are similar (if I do not count the general
slowdown due to slower processor) to the implementations on PC, as they
should be.

Rainbow has shorter signature length, see figures 3.17 and 3.18, but brings
no other advantages. It needs much more memory for running (in some cases
it allocates all available memory) and it is slow when we compare the cyc
variants with LUOV.

The variants without key generation from the seed are fast, even much faster
than the LUOV variants. On the other hand, if the LUOV was not using
the seed for the keys it would also be faster. It would be interesting to make
the comparison of these two variants but the LUOV implementation does not
contain this implementation.

Interestingly, with higher NIST security categories the differences between two
variants of the same category grow. The reason being that these variants use
more resources which when compared have a larger difference.

48

3.3. Conventional algorithms

3.3 Conventional algorithms

One of the important criteria in usability in an embedded environment is the
comparison of algorithm complexity with conventional algorithms. For this
comparison, I selected a signature scheme of RSA and ECDSA. All of them
were measured on ESP32-LyraT.

Table 3.2 below lists the variants and the corresponding NIST security cate-
gories for possible comparison. [16] I was not able to measure the RSA-7680
variant because the signature verification was failing (the reason for it could
be the maximum support of 4096 bits for hardware ”big number” accelera-
tor), but it is good for illustration of the difference in the size of public keys
between categories I and III and their counterparts in ECDSA.

Alg. Category Bit security
RSA-2048 N/A 112
RSA-3072 I 128
RSA-4096 N/A 140
RSA-7680 III 192

ECDSA-256 I 128
ECDSA-384 III 192
ECDSA-521 V 256

Table 3.2: NIST security categories of conventional algorithms

Generation Signing Verification
0.001

0.01

0.1

1

10

100

1000 ECDSA-256

ECDSA-384

ECDSA-521

RSA-2048

RSA-3072

RSA-4096

RSA-2048-sw

RSA-3072-sw

ECDSA-256-sw

ECDSA-384-sw

ECDSA-521-sw

Luov-47-42-182

Luov-61-60-261

Luov-79-76-341

Rb-16-32-32-32-com

Rb-256-68-36-36-com

Rb-256-92-48-48-com

T
im

e
 [

S
]

Figure 3.19: Comparison with conventional algorithms

First two figures 3.19 and 3.20 are the comparisons of time with the algorithms

49

3. Testing and discussion

selected for this thesis. They show that ECDSA is faster than RSA except for
the verification. The LUOV variants show that they are not much slower than
ECDSA, Luov-47-42-182 is actually faster in the generation and verification
stages.

RB variants have similar generation times with RSA. In both cases, these
are rather long and the other stages are also slower. On the other hand, the
variant not using the seed is really fast, even faster than the conventional
algorithms.

Generation Signing Verification
0.001

0.01

0.1

1

10

100

1000
ECDSA-256

ECDSA-256-sw

RSA-3072

RSA-3072-sw

Luov-47-42-182

Rb-16-32-32-32-com

ECDSA-384

ECDSA-384-sw

Luov-61-60-261

Rb-256-68-36-36-com

ECDSA-521

ECDSA-521-sw

Luov-79-76-341

Rb-256-92-48-48-com

T
im

e
 [
s
]

Category I:

Category III:

Category V:

Figure 3.20: Time requirement comparison with conventional algorithms by
categories

The ESP32 supports hardware acceleration of RSA and ECDSA in terms of
big number multiplication for up to 4096 bits. I think with this disadvantage
the implementation of LUOV and RB are not lagging too much behind and
can be used in an embedded environment from the time point of view. But for
comparison, I measured RSA and ECDSA without the hardware acceleration.
These variants are with suffix sw. From the results, it is visible that RSA
is heavily depending on the HW support, the RSA-4096-sw variant took so
long that I decided to skip it, and ECDSA only has minimal to negligible
slowdown.

Last two figures 3.21 and 3.22 illustrate the comparisons of memory require-
ments with the algorithms selected for this thesis. They show that most of
the implementations need a similar amount (in KB) of memory for them to
work, with the exception of the Rainbow.

From the comparison with the conventional algorithms, it can be seen that
LOUV implementation is as good as conventional algorithms and maybe even

50

3.3. Conventional algorithms

a little bit better because of the hardware acceleration, high security for em-
bedded devices and small signature.

Generation Signing Verification
10000

100000

1000000

10000000 ECDSA-256

ECDSA-384

ECDSA-521

RSA-2048

RSA-3072

RSA-4096

RSA-2048-sw

RSA-3072-sw

ECDSA-256-sw

ECDSA-384-sw

ECDSA-521-sw

Luov-47-42-182

Luov-61-60-261

Luov-79-76-341

Rb-16-32-32-32-com

Rb-256-68-36-36-com

Rb-256-92-48-48-com

S
iz

e
 [
B

]

Figure 3.21: Memory requirement comparison with conventional algorithms

Generation Signing Verification
10000

100000

1000000

10000000
ECDSA-256

ECDSA-256-sw

RSA-3072

RSA-3072-sw

Luov-47-42-182

Rb-16-32-32-32-com

ECDSA-384

ECDSA-384-sw

Luov-61-60-261

Rb-256-68-36-36-com

ECDSA-521

ECDSA-521-sw

Luov-79-76-341

Rb-256-92-48-48-com

S
iz

e
 [

B
]

Category I:

Category III:

Category V:

Figure 3.22: Memory requirement comparison with conventional algorithms
by categories

51

Conclusion

The goal of this thesis was to describe multivariate cryptography and create
a Wolfram Mathematica example for the educational purpose of the selected
algorithms, specifically: Unbalanced Oil & Vinegar and Rainbow. It also deals
with the implementation of the algorithms on PC and ESP32 and evaluates
their memory and time complexity. Finally, it compares the implementations
with the conventional algorithms, RSA and ECDSA. The goal of this Master’s
thesis was fulfilled.

In the first chapter, the terms used in the thesis are described and defined,
which is followed by a description of multivariate cryptography and algorithms.

The second chapter deals with the referenced implementation of the algo-
rithms, step by step examples in Wolfram Mathematica and description of
ESP32 and its implementation of the selected algorithms.

In the third and last chapter is a description of the testing environment,
including measuring and testing of the implementations on PC and ESP32.
The algorithms were then compared with each other and with the conventional
signature scheme implementations.

53

Bibliography

[1] CZYPEK, P.: Implementing Multivariate Quadratic Public Key Signature
Schemes on Embedded Devices. Ruhr-Universität Bochum, 2012.

[2] PETZOLDT, A.: Multivariate Cryptography Part 1: Basics [online].
2017, [cit. 2020-04-1]. Available at: https://2017.pqcrypto.org/school/
slides/1-Basics.pdf

[3] PETZOLDT, A.: Multivariate Cryptography Part 2: UOV and Rainbow
[online]. 2017, [cit. 2020-04-1]. At: https://2017.pqcrypto.org/school/
slides/2-UOV+Rainbow.pdf

[4] GEOVANDRO, C.C.F.P.: Introduction to Multivariate Public
Key Cryptography [online]. 2013, [cit. 2020-04-1]. Available at:
http://www.ic.unicamp.br/ascrypto2013/slides/ascrypto2013_
geovandropereira.pdf

[5] GOUBIN, L.; PATARIN, J.; YANG, BY.: Multivariate Cryptography. In:
van Tilborg H.C.A., Jajodia S. Encyclopedia of Cryptography and Security.
2011, Springer, Boston, MA

[6] DING, J.; PETZOLDT, A.: Current State of Multivariate Cryptography.
In: IEEE Security & Privacy., vol. 15, no. 4, pp. 28-36, 2017.

[7] Multivariate cryptography [online]. 2020, [cit. 2020-04-1]. Available at:
https://en.wikipedia.org/wiki/Multivariate_cryptography

[8] KIPNIS, A.; SHAMIR, A.: Cryptanalysis of the oil and vinegar signature
scheme. In CRYPTO 1998, LNCS vol. 1462, pp. 257–266, Springer, 1998.

[9] NIST - Post-Quantum Cryptography, Round 2 Submissions [online]. 2020,
[cit. 2020-04-1]. Available at: https://csrc.nist.gov/Projects/post-
quantum-cryptography/round-2-submissions

55

https://2017.pqcrypto.org/school/slides/1-Basics.pdf
https://2017.pqcrypto.org/school/slides/1-Basics.pdf
https://2017.pqcrypto.org/school/slides/2-UOV+Rainbow.pdf
https://2017.pqcrypto.org/school/slides/2-UOV+Rainbow.pdf
http://www.ic.unicamp.br/ascrypto2013/slides/ascrypto2013_geovandropereira.pdf
http://www.ic.unicamp.br/ascrypto2013/slides/ascrypto2013_geovandropereira.pdf
https://en.wikipedia.org/wiki/Multivariate_cryptography
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions

Bibliography

[10] WOLF, CH.; PRENEEL, B.: Equivalent keys in multivariate quadratic
public key systems. In Journal of Mathematical Cryptology, pp. 375–415,
2011.

[11] BEULLENS, W.; PRENEEL, B.: Field lifting for smaller UOV public
keys. In Progress in Cryptology INDOCRYPT 2017: 18th International
Conference on Cryptology in India, Springer, 2017.

[12] PETZOLDT, A.; BULYGIN, S.; BUCHMANN, J.: Multivariate Signa-
ture Scheme with a Partially Cyclic Public Key. In: INDOCRYPT. 2010,
vol. 6498, pp. 33 - 48. Springer, 2010.

[13] CZYPEK, P.: LUOV. Signature Scheme proposal for NIST PQC Project
(Round 2 version). imec-COSIC KU Leuven, Belgium, 2019.

[14] DING, J.: Rainbow - Algorithm Specification and Documentation. The
2nd Round Proposal. University of Cincinnati, USA, 2019.

[15] NIST: Submission Requirements and Evaluation Criteria for the Post-
Quantum Cryptography Standardization Process. [online]. 2016, [cit. 2020-
04-1]. Available at: https://csrc.nist.gov/CSRC/media/Projects/
Post-Quantum-Cryptography/documents/call-for-proposals-
final-dec-2016.pdf

[16] BARKER, E.: NIST Special Publication 800-57 Part 1 Re-
vision 4. NIST, U.S. Department of Commerce, 2016. Avail-
able at: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.800-57pt1r4.pdf

56

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf

Appendix A
Acronyms

ECDSA Elliptic Curve Digital Signature Algorithm

IoT Internet of Things

LUOV Lifted Unbalanced Oil & Vinegar

MC Multivariate cryptography

MQ Multivariate quadratics

NIST National Institute of Standards and Technology

OV Oil and Vinegar

PRNG Pseudo-random number generator

RNG Random number generator

UOV Unbalanced Oil & Vinegar

57

Appendix B
Tables of measured values

Generation Signing Verifying
Luov-47-42-182 0,0070 0,0192 0,0102
Luov-7-57-197 0,0074 0,0189 0,0100
Luov-61-60-261 0,0220 0,0652 0,0305
Luov-7-83-283 0,0753 0,1164 0,0647
Luov-79-76-341 0,0890 0,2208 0,1053
Luov-7-110-374 0,1530 0,2455 0,1347
Rb-16-32-32-32 0,0907 0,0010 0,0009
Rb-16-32-32-32-cyc 0,1004 0,0010 0,0019
Rb-16-32-32-32-com 0,0932 0,0335 0,0021
Rb-256-68-36-36 1,1021 0,0129 0,0116
Rb-256-68-36-36-cyc 1,1929 0,0090 0,0151
Rb-256-68-36-36-com 1,2262 0,5935 0,0155
Rb-256-92-48-48 3,2330 0,0219 0,0232
Rb-256-92-48-48-cyc 3,6522 0,0210 0,0380
Rb-256-92-48-48-com 3,6334 1,7513 0,0384

Table B.1: Time measurement in seconds on PC

59

B. Tables of measured values

Luov-47-42-182 55497 Rb-16-32-32-32 418448
Luov-7-57-197 52339 Rb-16-32-32-32-cyc 460640
Luov-61-60-261 90701 Rb-16-32-32-32-com 367744
Luov-7-83-283 159809 Rb-256-68-36-36 1990596
Luov-79-76-341 224939 Rb-256-68-36-36-cyc 2151116
Luov-7-110-374 291712 Rb-256-68-36-36-com 1639732

Rb-256-92-48-48 4760028
Rb-256-92-48-48-cyc 5141804
Rb-256-92-48-48-com 3914764

Table B.2: Memory measurement in bytes on PC

Generation Signing Verification
Luov-47-42-182 0,29 0,600 0,320
Luov-7-57-197 0,52 0,810 0,470
Luov-61-60-261 0,84 2,290 0,970
Luov-7-83-283 3,84 4,880 2,330
Luov-79-76-341 4,54 11,240 4,590
Luov-7-110-374 8,77 11,150 5,240
Rb-16-32-32-32 1,86 0,040 0,030
Rb-16-32-32-32-cyc 2,04 0,030 0,290
Rb-16-32-32-32-com 2,02 1,020 0,290
Rb-256-68-36-36 20,06 0,200 0,200
Rb-256-68-36-36-cyc 22,31 0,190 1,530
Rb-256-68-36-36-com 22,33 11,230 1,570
Rb-256-92-48-48-com 67,90 33,490 3,640
ECDSA-256 0,40 0,149 0,556
ECDSA-384 0,46 0,180 0,670
ECDSA-521 0,76 0,340 1,160
RSA-2048 2,12 0,350 0,001
RSA-3072 24,46 0,852 0,004
RSA-4096 66,26 1,641 0,001
RSA-2048-sw 18,16 1,680 0,030
RSA-3072-sw 307,82 4,610 0,060
ECDSA-256-sw 0,37 0,150 0,550
ECDSA-384-sw 0,48 0,180 0,720
ECDSA-521-sw 0,82 0,300 1,190

Table B.3: Time measurement in seconds on ESP32

60

Generation Signing Verification
Luov-47-42-182 100790 123214 84870
Luov-7-57-197 118854 120170 90814
Luov-61-60-261 125882 158418 94986
Luov-7-83-283 228654 195778 115302
Luov-79-76-341 206106 292658 110730
Luov-7-110-374 360554 272514 163178
Rb-16-32-32-32 439439 276247 272895
Rb-16-32-32-32-cyc 309431 185399 4219643
Rb-16-32-32-32-com 314499 296531 392435
Rb-256-68-36-36 2011587 1260919 1253123
Rb-256-68-36-36-cyc 1440523 757023 4219643
Rb-256-68-36-36-com 4220771 4219643 4219643
Rb-256-92-48-48-com 4220771 4219643 4219643
ECDSA-256 192354 80198 81230
ECDSA-384 192322 83666 87554
ECDSA-521 191994 85630 90826
RSA-2048 81358 83898 80358
RSA-3072 192430 87354 82390
RSA-4096 191918 90818 84246
RSA-2048-sw 192354 86522 81154
RSA-3072-sw 192482 91254 83394
ECDSA-256-sw 192430 81122 81122
ECDSA-384-sw 192426 87442 87442
ECDSA-521-sw 192438 90666 90666

Table B.4: Memory measurement in bytes on ESP32

Generation Signing Verification
Rb-16-32-32-32 410424 248088 0
Rb-16-32-32-32-cyc 280408 157240 452184
Rb-16-32-32-32-com 280472 263640 359288
Rb-256-68-36-36 1982572 1233020 0
Rb-256-68-36-36-cyc 1411500 729124 2142660
Rb-256-68-36-36-com 1411564 1279580 1631276
Rb-256-92-48-48-com 3377764 2949444 3906308

Table B.5: Memory measurement of my ESP malloc in bytes on ESP32

61

B. Tables of measured values

Public key Secret key Signature
Luov-47-42-182 4773 32 1332
Luov-7-57-197 11810 32 239
Luov-61-60-261 13757 32 2464
Luov-7-83-283 36200 32 337
Luov-79-76-341 27829 32 4134
Luov-7-110-374 83976 32 440
Rb-16-32-32-32 148992 92960 64
Rb-16-32-32-32-cyc 58144 92960 64
Rb-16-32-32-32-com 58144 64 64
Rb-256-68-36-36 710640 511448 156
Rb-256-68-36-36-cyc 206744 511448 156
Rb-256-68-36-36-com 206744 64 156
Rb-256-92-48-48-com 491936 64 204

Table B.6: Size of keys and signature in bytes

62

Appendix C
Contents of enclosed CD

README.md.........................the file with CD contents description
src.......................................the directory of source codes

esp..........................the implementations for esp32 platform
mathematica...................the implementations in Mathematica
offline...............................the offline reference materials
pc.............................the implementations for PC platform
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

63

	Introduction
	Basic terms and definitions
	Basic terms
	Polynomial
	Degree of a polynomial
	Quantum computer
	Post-quantum cryptography
	Finite field
	Translation
	Linear map
	Affine map
	Wolfram Mathematica
	Internet of things
	Valgrind
	PRNG
	ESP32
	RSA
	ECDSA

	Multivariate cryptography
	MQ problem
	Public key
	Encryption
	Signature

	Unbalanced Oil & Vinegar
	Definition
	Security

	Rainbow
	Definition

	Implementation
	Wolfram Mathematica
	Unbalanced Oil & Vinegar
	Generation of instance

	Rainbow
	Generation of instance

	Reference implementation
	Unbalanced Oil & Vinegar
	Adjustments

	Rainbow
	Adjustments

	Test file

	ESP32 implementation
	Setup of environment
	Build & Load
	Memory

	Project description
	Lifted Unbalanced Oil & Vinegar
	Optimization
	Memory

	Rainbow
	Optimization
	Memory

	Conventional algorithms
	RSA
	ECDSA

	Testing and discussion
	PC
	Signature variants
	Time complexity
	Memory complexity
	Conclusion note

	ESP32
	Signature variants
	Time complexity
	Memory complexity
	Keys & signature
	Conclusion note

	Conventional algorithms

	Conclusion
	Bibliography
	Acronyms
	Tables of measured values
	Contents of enclosed CD

