
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

MASTER’S THESIS

Aleš Novotný

Software for Analysis of Automotive Ethernet
Communication

Department of Cybernetics

Thesis supervisor: doc. Ing. Jǐŕı Novák, Ph.D.

Prohlášeńı

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré
použité informačńı zdroje v souladu s Metodickým pokynem o dodržováńı etických prin-
cip̊u při př́ıpravě vysokoškolských závěrečných praćı.

V Praze, dne. Podpis .

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

457209Personal ID number:Novotný AlešStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Measurement

Cybernetics and RoboticsStudy program:

Cybernetics and RoboticsBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Software for Analysis of Automotive Ethernet Communication

Master’s thesis title in Czech:

Programové vybavení pro analýzu komunikace v síti Automotive Ethernet

Guidelines:
Design and develop a software for analysis of Automotive Ethernet communication, satisfying the following requirements:
1. Frames capturing at Ethernet interface of common personal computer.
2. Filtering of the captured data by address at least..
3. Logging of captured data into the file format suitable for further processing.
4. Import of description database in arxml format.
5. Basic presentation of the captured data in form of table and graph.
6. Implementation of API for external program control.

Bibliography / sources:
[1] Bučkovskij, D.: Využití sítí Ethernet v osobních automobilech. Bakalářská práce ČVUT FEL, Praha 2016
[2] Correa, C.: Automotive Ethernet - The Definitive Guide. Interpids Control Systems 2014, ISBN: 978-0990538806

Name and workplace of master’s thesis supervisor:

doc. Ing. Jiří Novák, Ph.D., K 13138 - katedra měření

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: __________Date of master’s thesis assignment: 30.01.2020

Assignment valid until:
by the end of summer semester 2020/2021

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
Head of department’s signaturedoc. Ing. Jiří Novák, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Acknowledgements

First of all, I would like to thank doc. Ing. Ing. Jǐŕı Novák, Ph.D. for his supervision
in this project. I would like to thank my colleagues from Digiteq Automotive for their great
advices and information. Also I would like to thank my family, especially my wife and my
little son for their never-ending support, they have big understanding for researcher job.

Abstract

The aim of this work is to implement 100/1000BASE-T1 Automotive
Ethernet packet interpreting system for a common personal computer
connected to media converter from Automotive Ethernet device to
conventional Ethernet. Especially, methods for Automotive packet
capturing, filtering incoming communication, interpreting data with
Automotive Open System Architecture Extensible Markup Language
(AUTOSAR XML or ARXML), and logging of captured data to various
formats are proposed. The designed system is modular, and it can be
used from Graphical User Interface (GUI), Windows Command Prompt
interface, Tcl console, or another program. The functionality of the
system has been tested in several simulations using captured data from
the Electronic Control Unit (ECU).

keywords:
[100/1000BASE-T1 Automotive Ethernet, packet interpreting, media
converter, Automotive Open System Architecture Extensible Markup
Language, logging, Graphical User Interface, Electronic Control Unit]

Abstrakt

Ćılem této práce je implementovat systém, který interpretuje pakety z
100/1000BASE-T1 Automotive Ethernetu za pomoćı běžného osobńıho
poč́ıtače připojenému k převodńıku médíı z Automotive Ethernetu
na běžný Ethernet. Předevš́ım byly navrženy metody pro zachytáváńı
paket̊u Automotive ethernetu, filtrováńı př́ıchoźı komunikace, inter-
pretaci dat za pomoćı Automotive Open System Architecture Extensible
Markup Language a logováńı zachycených dat do r̊uzných formát̊u.
Navržený systém je modulárńı a může být využit pro zpracováńı
dat z grafického rozhrańı, př́ıkazového řádku Windows, Tcl konzole,
nebo z jiného programu. Funkčnost systému byla testována v několika
simulaćıch za použit́ı simulátoru vestavěné ř́ıdićı jednotky.

kĺıčová slova:
[100/1000BASE-T1 Automotive Eternet, interpretace paket̊u, převodńık
médíı, Automotive Open System Architecture Extensible Markup Lan-
guage, logováńı, grafické rozhrańı, vestavěná ř́ıdićı jednotka]

CONTENTS

Contents

1 Introduction 1

2 Theoretical framework 5

2.1 Theoretical framework overview . 5

2.2 AUTOSAR standard . 5

2.2.1 Introduction into AUTOSAR . 5

2.2.2 AUTOSAR XML . 9

2.3 Description of Automotive Ethernet ISO/OSI model 10

2.3.1 Introduction to Automotive Ethernet 10

2.3.2 ISO/OSI model using Automotive Ethernet 10

2.3.2.1 Physical layer . 11

2.3.2.2 Data link layer . 15

2.3.2.3 Network layer . 16

2.3.2.4 Transport layer . 17

2.3.2.5 Session layer . 19

3 Principle of system functionality 20

4 Implementation of ARXML parser 23

5 Capturing packets 28

6 Implementation of interfaces 29

6.1 GUI interface . 29

6.2 Tool Command Language interface . 38

6.3 Windows Command Prompt interface . 38

7 Functionality verification by a simulation 39

7.1 Simulation environment . 39

7.2 Verification by a simulation . 40

7.2.1 Test of real rough data . 40

7.2.2 Test of capture data loss . 41

7.2.3 Test of logger functionality . 42

i

CONTENTS

8 Conclusion 43

Appendix A DVD Content 49

Appendix B List of abbreviations 51

ii

LIST OF FIGURES

List of Figures

1 Adaptive Cruise Control principle. 1

2 RAD-Moon. 4

3 AUTOSAR Classic Platform software layers. 6

4 Connection of AUTOSAR Classic Platform software layers. 6

5 Principle of Virtual Functional Bus. 7

6 Conversion from physical to software signals and vice versa. 8

7 Process of ARXML creation from AUTOSAR meta-model. 9

8 ISO/OSI model of Automotive Ethernet. 10

9 100BASE T1 physical layers and its sublayers. 11

10 Differences between 100BASE-TX and 100BASE-T1 in physical layer. . . . 12

11 Simplified principle of full duplex communication over one twisted pair cable. 13

12 Coding . 14

13 PAM3 modulation example. 14

14 Data link layer (Ethernet) frame structure. 15

15 Network layer (IPv6) packet structure. 16

16 Transport layer (UDP) packet structure. 17

17 Transport layer (TCP) packet structure. 17

18 Example of TCP communication. 19

19 Structure of the system. 20

20 In principle. 21

21 Internal structure of Protocol Data Unit. 23

22 Comparison of XML parsers.1. 25

23 ARXML Parsing. 26

24 Example of rough data. 28

25 gui arxml . 30

26 gui conn. 31

27 gui conf. 32

28 100BASE T1 physical layers and its sublayers. 33

29 LOF entry . 34

30 1opers. 35

iii

LIST OF FIGURES

31 Sig tracker. 36

32 100BASE T1 physical layers and its sublayers. 37

33 Sim1. 39

iv

INTRODUCTION

1 Introduction

In recent years, there has been significant progress in Automotive industry car tech-
nologies and features. A lot of cars produced nowadays has embedded systems as Adaptive
Cruise Control (ACC) [1], [2] which enables a flexible response to traffic situation thanks
to embedded radar. The driver can adjust the car speed, and it is maintained up until
the ACC evaluates it as safe. If it is calculated by a Front Assist (part of ACC) that the
car or object in front is too close, the car will automatically brake (see Figure 1). An-
other example is Parking Assist (PLA) [3] which helps the driver to park quickly, safely,
and easily in every possible parking place. The PLA uses for its functionality the Optical
Parking System (OPS), which consists of about 12 parking sensors. The number of units
and sensors in the automobiles increases with many new features added to new cars, which
makes the car more complex and leads to an increasing volume of data transmitted and
thus placing more emphasis on communication Data Transfer Rates (DTR).

Figure 1: Adaptive Cruise Control principle 2.

At the beginnings of the transformation of a car composed of only mechanical parts
to a smart car with a lot of sensors and Electronic Control Units (ECUs) was Controller
Area Network (CAN). CAN is a multi-drop communication protocol that supports DTR
up to 1 Mb/s. First cars with integrated CAN buses were produced in the 1990s, it meant
revolution to the automotive industry because controllers, sensors, and actuators started

2Source: https://www.media.volvocars.com/global/en-gb/media/photos/8158

1/52

INTRODUCTION

to be capable to communicate within one uniform network. With an increasing amount of
transmitted data CAN throughput was ceased to be sufficient. This led to the development
of new buses and protocols such as CAN-FD, MOST, Flexray [4]. The requirements for
DTR in the car have been steadily increasing, as the number of devices and thus the buses.
This has led to a demand for a low-cost bus that would have a large DTR. The solution
came from Broadcom, which developed the Automotive Ethernet 100BASE-T1 capable of
full-duplex communication over one pair of wires with originally DTR up to 100 Mb/s,
and also 1 Gb/s [5], [6].

Bus DRT [Mb/s] First applications [Year]
CAN 1 1990s
CAN-FD 5 2015
FlexRay 10 2007
MOST 150 2001
Automotive Ethernet 1000 2013

Table 1: Comparision of CAN, CAN-FD, MOST, Flexray [4], [7], [8].

The aim of this thesis is to develop a modular system that is able to capture Au-
tomotive Ethernet packets, interpret their meanings, log results into various formats, and
visualize results or track a signal. This solution brings an opportunity to analyze the Auto-
motive Ethernet network with a media convertor and common PC or laptop. The designed
system is able to provide for:

� Lossless capture of Automotive Ethernet frames from traffic using a common personal
computer.

� Interpreting data with an appropriate ARXML file.

� Importing and working with large ARXML files in orders of 100 MB.

� Capturing data using these filters:

– Interpreting all packets without filtering.

– Protocol Data Unit (PDU) ID.

– Source or destination IPv6 or both.

– Signal name (specified in ARXML).

� Visualize results:

– Table - allows a detailed view of packets composition and meanings of the data

– Graph - allows to track one signal in time and view changes.

2/52

INTRODUCTION

� Logging results into files formats:

– .blf - one of the most widespread file systems in the automotive industry (used
by CANoe).

– .pcap - this format is used by many network sniffers like Wireshark.

– .csv - this format can be opened on almost any computer by MS Excel, Open
Office...

– .txt - this format can be opened by almost every text editor.

� The system is modular and allows to implement various interfaces:

– GUI interface implemented in C#.

– Universal command-line C++ interface as a base for an unlimited number of
interfaces like:

* Tcl interface.

* Windows Command Prompt interface.

It should be mentioned that this solution is adapted to Volkswagen AG standards
and may not be compatible with other car manufacturers.

As already mentioned, the designed system can run on a common computer and
use any media converter from Automotive Ethernet to the ethernet. In this case, a RAD-
Moon (see Figure 2) device is chosen as a media converter. The RAD-Moon is a low cost,
plug-and-play, small size, and high-performance device, which connects a 100BASE-T1
Automotive Ethernet physical layer to 4-wire 10/100 Ethernet (100Base-TX) and allows
sending/receiving all data in both directions. In this thesis, this device is used as a network
sniffer, when the RAD-Moon resends all received data to the PC for data packet analysis
[9].

3/52

INTRODUCTION

Figure 2: RAD-Moon 3.

As mentioned above, this thesis deals with the processing of received data from media
converter connected to the PC with the use of the Automotive Open System Architecture
Extensible Markup Language (ARXML) file. Firstly, Protocol Data Units (PDUs) from a
data packet are detected, the PDUs are then parsed into signals, and finally, the meaning
of signals is assigned. The designed solution also provides filtering data methods by IPv6
addresses, PDU ID, and signal name which improves readability of results and reduces the
complexity of the program.

The thesis is structured as follows. Firstly in the Chapter 2, the AUTOSAR standard,
the ARXML standard, used ISO/OSI model, and other essential information needed for
understanding this thesis is explained. In the Chapter 3, the principle of system operation is
shown. In the following Chapter 4, algorithms for searching data in ARXML are introduced.
In the Chapter 5, the implemented principle of capturing is described. In the Chapter 6,
the implementation of various interfaces with their features is described, and finally, in the
Chapter 7, its functionality is verified.

3Source:https://www.intrepidcs.com/products/automotive-ethernet-tools/rad-moon/

4/52

THEORETICAL FRAMEWORK

2 Theoretical framework

2.1 Theoretical framework overview

In this chapter, the knowledge necessary for understanding the rest of the work is
explained, the explanation is divided into two sub-chapters. In the first Chapter 2.2, the
basics of signal communication in a car and ARXML standard is explained. In the second
Chapter 2.3, the background of Automotive Ethernet is explained and the used ISO/OSI
model is presented.

2.2 AUTOSAR standard

2.2.1 Introduction into AUTOSAR

AUTOSAR is an automotive standard, that was founded in 2003 as a product of part-
nership automotive manufacturers and suppliers. The AUTOSAR is providing a framework
for development of uniform software independently on hardware components, thus acceler-
ating the evolution of cars which leads to increasing demands on the complexity of software
and hardware solutions that is still sustainable [12], [13].

The AUTOSAR standard separates software into hardware-independent (Applica-
tion layer) and hardware-dependent Basic Software (BSW) layers. The layers communicate
through Runtime Environment (RTE) layer which provides an input/output interface for
applications (see Figure 3). Thus the development of applications and BSWs is indepen-
dent. This allows the possibility to distribute different applications across ECUs due to car
variants or integrate software modules from different suppliers [14], [15].

The Basic Software (BSW) is composed of three sublayers:

� Service Layer - provides services to upper layers (communication, memory, crypto
services etc. (see Figure 3)).

� ECU abstraction Layer - software interface to electrical values of ECU.

� Microcontroller Abstraction Layer (MCAL) - standard microcontroller independent
interface for BSW modules.

The BSW also incorporate operating system, complex device drivers etc. (see Figure 4)
[12], [14].

5/52

THEORETICAL FRAMEWORK

Figure 3: AUTOSAR Classic Platform software layers 4.

Figure 4: Connection of AUTOSAR Classic Platform software layers [16].

The communication within every single ECU or between ECUs is based on Virtual
Functional Bus (VFB). The virtual bus strictly splits applications from the infrastructure.
There are defined specifically dedicated ports that are used by an application to handle
communication, these ports are then mapped onto local connections or network-technology

4Source: https://www.autosar.org/standards/classic-platform/

6/52

THEORETICAL FRAMEWORK

specific connections. Thus for application development detailed knowledge of lower-level
technologies is not needed (see Figure 5) [14], [16].

Figure 5: Principle of Virtual Functional Bus [16].

The VFB is used by applications to access microcontroller peripherals and ECUs
electronics, data from sensors and to control actuators (see Figure 6). An ECU abstrac-
tion provides a software interface for accessing physical ECU safely from higher-level soft-
ware. Below this is Microcontroller Abstraction Layer (MCAL), this hardware-dependent

7/52

THEORETICAL FRAMEWORK

layer provides hardware-independent commands for accessing microcontroller registers from
higher-level software indirectly [16].

Figure 6: Conversion from physical to software signals and vice versa [16].

The above described between ECUs or within ECU communication and ECU de-
scriptions (shown in Figure 5) are all included in AUTOSAR UML2.0 meta-model which
graphically describes all information in AUTOSAR system. From the UML2.0 meta-model,
the compliant XML schema can be compiled (see Figure 7) [17]. This AUTOSAR XML
(ARXML) is used in this thesis for the acquisition of AUTOSAR systems and is described
below.

8/52

THEORETICAL FRAMEWORK

2.2.2 AUTOSAR XML

AUTOSAR XML (ARXML) is derived from AUTOSAR UML2.0 meta-model (see
Figure 7), that describes all AUTOSAR systems [17]. The ARXML file holds important
information about application interfaces (messages periods, signals meanings) in standard-
ized format [18].

XML-File
Generation

SW Component Temlate,
SWC Modeling Guide,

Generic Structure Template,
Standardization Template

Produced by
VB Excel Macro

EXCEL

Transferred
manually

Meta Model
(Enterprise Architect)

(EA)

MASTER

Application
Interface

work product

.XSD
(XML Scheme)

Export directly
from EA

AI Definitions
(AI Table) .ARXML

Figure 7: Process of ARXML creation from AUTOSAR meta-model [18].

The AUTOSAR systems specification contains a huge amount of information. Each
subsystem is also described in a comprehensive way. For example CAN message specifica-
tion includes information about message ID, message length, cycle time, signals sent within
a message, physical dimensions of signal, byte order, etc. To avoid storing information into
very complex structures, the AUTOSAR splits information thematically into groups and
subgroups, which are then linked using relative path references [18].

The ARXML provides a great tool for searching data interpretations from packets
due to the comprehensiveness of the description. Likewise, it is preferable that the data is
stored in a common XML format, that can be opened without using specialized software
and it is human readable. The only disadvantage is the computational complexity due
to the low ratio of useful (data, values) and useless (element and node names, special
characters) data.

9/52

THEORETICAL FRAMEWORK

2.3 Description of Automotive Ethernet ISO/OSI model

2.3.1 Introduction to Automotive Ethernet

OABR (Open Alliance BroadR-Reach) Ethernet is a technology that was developed
by Broadcom and it was released in 2011 within OPEN Alliance. The OPEN Alliance SIG
is a non-profit group (formation in 2011) of the main automotive industry and technology
providers who collaborate together to support widespread acceptance of Ethernet as a
standard for automotive network communication [19], [20].

The BroadR-Reach is a technology that allows point-to-point Ethernet communica-
tion only over one pair of unshielded twisted pair (see Figure 10b) [21] [6]. Cabling is the
3rd most expensive and also 3rd heaviest component in the car. This technology has led
to a significant reduction in cabling prices and weight which has a direct impact on fuel
economy [8].

The OABR was transformed by the OPEN Alliance SIG into IEEE standard IEEE
802.3bw also known as 100BASE-T1 in 2015 [22]. Year later in 2016 the standard IEEE
802.3bp was published for 1Gb/s Physical Layer (PHY) also known as 1000BASE-T1 [23].

2.3.2 ISO/OSI model using Automotive Ethernet

7. Application

6. Presentation

Layer

4. Transport

3. Network

2. Data Link

1. Physical

5. Session

Application/Services

AUTOSAR PDU, SOME/IP, ViWi, DoIP

UDP, TCP

IPv6 (ICMPv6)

Application/Services

Purpose

100/1000Base-T1

Ethernet MAC + VLAN

Figure 8: ISO/OSI model of Automotive Ethernet.

ISO/OSI model of Automotive Ethernet is shown in Figure 8. The first two layers
are administrated by an application that sends data to Automotive Ethernet. The session
layer describes the organization of data in a packet. Bellow this in Transport layer data
packet is transformed to TCP packet if the communication is reliable and into UDP if
not. In the network layer, the packet is extended with information about the source and

10/52

THEORETICAL FRAMEWORK

target IP addresses and other network layer fields. Below this is the data link layer which
extends packet with Medium Access Control (MAC) addresses and other link layer fields.
Finally, in the physical layer, a packet is sent over 100/1000Base-T1 ethernet. An opposite
sequence is applied when receiving packets.

2.3.2.1 Physical layer

The physical layer of the above mentioned ISO/OSI model defines physical and elec-
trical features. It includes Physical Coding Sublayer (PCS), Physical Medium Attachment
(PMA) sublayer, cable, connectors, etc. (see Figure 9).

MDIMII

MDIO

Another
ECUs PMA

MAC

(cable)

Link layer
Another ECU

PCS PMA

MANAGEMENT

100BASE-T1 PHY

Figure 9: 100BASE T1 physical layers and its sublayers.

The 100BASE-T1 uses one symmetric twisted pair cable (see Figure 10b) in contrast
with classic 100BASE-TX Ethernet which uses 2 pairs (see Figure 10a). The 100BASE-T1
is full-duplex and point-to-point (at the physical layer). On the one hand, 100BASE-TX
allows the higher distance between endpoints, 100 m instead of 15 m, but on the other
hand 100BASE-T1 PHY is cheaper because it requires only one unshielded twisted pair
for full-duplex communication. Another advantage can be seen at higher speeds, whereas
1000BASE-T1 is still unshielded twisted pair cable, but classic 1 Gb/s Ethernet used in
automotive must be shielded, which increases the price even more [4].

11/52

THEORETICAL FRAMEWORK

(a) IEEE 802.3u (100BASE-TX) communication 5.

(b) IEEE 802.3bw (100BASE-T1) communication 6.

Figure 10: Differences between 100BASE-TX and 100BASE-T1 in physical layer.

5Source: https://elearning.vector.com/mod/page/view.php?id=153
6Source: https://elearning.vector.com/mod/page/view.php?id=152

12/52

THEORETICAL FRAMEWORK

The full-duplex communication over a twisted pair cable is made possible by the
fact that there is only one receiver and sender and both know what they are sending (see
Figure 11). The calculation of the received signal is based on the assumption that both
the transmitted signal voltage and the actual voltage (sum of the transmitted and received
signal) on the bus are known. Under these conditions, the received signal can be determined
easily by this formula 1.

RX[V] = Bus status[V] − TX[V] (1)

Physical Coding Sublayer (PCS) is part of the physical layer (PHY). The PCS is re-
sponsible for the preparation of data between the Medium Access Control (MAC) sublayer
of Microcontroller Unit (MCU) and Physical Medium Attachment (PMA) sublayer. For
communication between these sublayers is used Media-Independent Interface (MII) (see
Figure 9) [5], [6].

-

+
Rx

Tx Tx+Rx

Figure 11: Simplified principle of full duplex communication over one twisted pair cable.

The data from MII is first converted by a 4B3B converter when the sequence of the
quadruple bits are changed to the sequence of triplets [6].

Then the bits are mixed using Scrambling, which has the benefit of reducing the
occurrence of spectral lines that arise when concatenating more the same data bit patterns.
It allows the pseudo-random distribution of energy on the conductor. Removing the DC
component reduces the Root Mean Square (RMS) of the signal [6].

Subsequently, each triad of bits is mapped to a pair of ternary symbols (TAn and TBn)
using a conversion table. Finally, data is serialized and entered into the PMA sublayer(see
Figure 12). This is called Pulse-amplitude modulation-3 (PAM-3) [19].

13/52

THEORETICAL FRAMEWORK

Figure 12: Example of 4B3B, 2B2T, PAM3 coding without Scrambler.7.

The Physical Medium Attachment (PMA) sublayer cares for controlling, PAM3 mod-
ulation/demodulation of data to/from Medium-Dependent Interface (MDI) (see Figure 13).

Figure 13: PAM3 modulation example.8.

The PHY is managed via Media Data Input/Output (MDIO) from MAC (see Figure
9). The management registers are read and written via MDIO. Typically, this is accom-
plished by communicating using two signals (Data and Clock).

7Source: https://elearning.vector.com/mod/page/view.php?id=152
8Source: https://community.cadence.com/cadence blogs 8/b/spi/posts/pam2

14/52

THEORETICAL FRAMEWORK

2.3.2.2 Data link layer

The data link layer cares about forwarding between adjacent nodes in the same
network (WAN, LAN). It includes Media Access Control (MAC) [24].

The MAC is realized in a network adapter of the Microcontroller Unit (MCU) and
identified by the MAC address saved in EEPROM. The purpose of the MAC sublayer is
controlling data flow, sending/receiving Ethernet frames, CRC, checking the integrity of
the received frame [25]. Ethernet frame structure is shown in Figure 14

Preamble
8B

Destination MAC
6B

Source MAC
6B

802.1Q VLAN-tag
4B

EtherType
2B

Payload
42-1500B

CRC
4B

PDUsTPID PCP DEI VID
16b 3b 1b 12b

HEADERs

Figure 14: Data link layer (Ethernet) frame structure [26], [27].

A structure of a data link layer packet is shown in a Figure 14. At the start of the
packet, there is a Preamble 8B data field. The first 56 bits are filled with alternating ”1”
and ”0” bits (7 bytes filled with 0xAA) which allows devices to synchronize their clocks
at bit-level. The last byte is called Start Frame Delimiter (SFD) and is used for byte
synchronization and signalize the start of a packet with ”1” bit (0xAB) [26].

The next source and destination MAC addresses are specified in MAC address fields.
Then the 802.1Q tag (VLAN-tag) field follows. The IEEE 802.1Q is a networking stan-
dard that supports Virtual LANs (VLANs) on the Ethernet network. This field is divided
into subfields Tag Protocol Identifier (TPID), Priority Code Point (PCP), Drop Eligible
Indicator (DEI), and VLAN Identifier (VID). The TPID is at the same position as the
EtherType field in untagged frames and in this case, the TPID is set to value 0x8100 to
identify the 802.1Q-tagged frame. Then is the PCP field describes frame priority level.
The DEI is used to indicate frames, which can be dropped when congestion occurs. The
last subfield VID is specifying VLAN of the frame. The 0x000 value is reserved for frames
which does not carry a VLAN ID, the 0xFFF is reserved for implementation use [26], [27].

Then the EtherType field follows, which is used to specify the size of bytes if the value
is ≤ 1500. If the value is ≥ 1536, then this data field is used to indicate which protocol
is encapsulated in the payload. In this case, the length of a frame is determined by the
Interpacket Gap (IPG). The next field is the Payload field which contains upper ISO/OSI
headers and PDUs, the headers are described in the following Chapters 2.3.2.3 and 2.3.2.4,
the structure of PDU is described in Chapter 4. Finally, there is the Cyclic Redundancy
Check (CRC) field that is used for detecting corrupted data [26].

15/52

THEORETICAL FRAMEWORK

2.3.2.3 Network layer

The Network layer is responsible for forwarding packets to destination network (LAN)
and thus determining the source and target networks. According to the above mentioned
ISO/OSI model, the IPv6 protocol is used [28].

Version
4b

Traffic Class
8b

Flow Label
20b

Payload Length
16b

Next Header
8b

PayloadHop Limit
8b

Destination IPv6Source IPv6
128b 128b

Ethernet
frame header

6b 2b
DS ECN PDUsTransport layer header

0-1480B

Figure 15: Network layer (IPv6) packet structure [29].

At the beginning the IPv6 packet is encapsulated into Ethernet frame packet (see
Figure 15) described in Chapter 2.3.2.2. The first field is Version which has value 0x6,
this describes that the packet is IPv6. Next field is the Traffic Class which is divided into
subfields Differentiated Services (DS) and Explicit Congestion Notification (ECN). The DS
is used for classification packets and the ECN describes if the source provides for congestion
control or not [29].

The Flow Label field is used as an identifier of a packet flow (a group of packets as
media stream) between source and destination. The next field is Payload Length which
defines the size of the Payload field in bytes. The following field is the Next Header which
specifies the transport header type. Then there is the Hop Limit field, this replaces Time
To Live field in IPv4, and is decremented by every forwarding. When the Hop Limit has
value 0, the packet is discarded. Next, there are Source Address and Destination Address
fields that describe sending and receiving node IPv6 addresses [29]. Finally, there is the
payload field which is composed of the transport layer header described in the following
Chapter 2.3.2.4, and the structure of PDUs is described in Chapter 4.

16/52

THEORETICAL FRAMEWORK

2.3.2.4 Transport layer

The Transport layer is responsible for host-to-host communication and provides ser-
vices for application as flow control, multiplexing, etc. [30] According to the above men-
tioned ISO/OSI model, it is expected both User Datagram Protocol (UDP) and Transmis-
sion Control Protocol (TCP) protocols.

2B
Destination Port

2B
Source Port Length

2B
Checksum

2B
Payload
0-1472B

PDU 0

IPv6 HEADER

PDU 1 ... PDU N

Figure 16: Transport layer (UDP) packet structure [31].

The UDP protocol is a very simple, unreliable communication protocol that is good
for transferring large amounts of data that are not critical. The UDP packet header is
formed up from 4 fields (see Figure 16). The first two fields specify the Source and Desti-
nation port. Next, the field Length value describes the total size of the whole UDP packet.
Finally, there is a Checksum field which is mandatory in IPv6 and it is used for checking
errors in header and data. The payload of the UDP packet may be composed of PDUs
described in Chapter 4, [31].

...

...

...

...

Destination Port
16b

Source Port Seq. number

Payload
0-60B

PDU 0

IPv6 HEADER

PDU 1 ... PDU N

16b
Ack. number Data offset

Reserved Flags Window size Checksum Urgent pointer Padding
3b 9b 16b 16b 16b

NSCWR ECE URG ACK RST SYNFINPSH

0-20B

32b 32b 4b

1b 1b 1b 1b1b1b1b1b1b

...

...

...

...

Figure 17: Transport layer (TCP) packet structure [32].

Unlike of UDP communication protocol, the TCP is reliable and connection-oriented
(needs establishing communication), thus TCP packet is more complex. The TCP packet
structure is shown in Figure 17. Similarly to the UDP protocol, the first 2 fields are ports.
Next field is the Sequence number, this field holds information about the first data byte
number. The following field is the Acknowledge number field which holds information
about how many data bytes were received. Then follows the field Reserved, which is here
for future purposes. The next field is Data offset which specifies the size of the header in
32-bit words. The minimum size of the header is 5 and the maximum is 15 words [32].

17/52

THEORETICAL FRAMEWORK

The next field is Flags. The most important flags for communication are the Ac-
knowledgement (ACK) flag which indicates that the Acknowledgement number field has
a valid value. Then Push (PSH) flag, which is set when sending data. The Reset (RST)
flag is set to reset a connection. The Synchronize (SYN) is for establishing connections
and Finish (FIN) signals the last packet from the sender. The URG flag indicates that the
Urgent pointer field is valid. The CWR and ECE flags are used for Explicit Congestion
Notification (ECN), the ECN is an optional feature and allows end-to-end notification of
network congestion without dropping packets. Finally, the NS flags are used for signalizing
concealment protection [32].

The next field is Window size, this is used for defining how much data bytes can
sender receive without sending acknowledge. Then the Checksum field is used for error-
checking of a header or a payload. The following field is an Urgent pointer field, which
is valid when the URG flag is set, and it is used for expressing the offset from a start of
the data field. This creates a subfield in a range from the start of the data and up till
Urgent pointer points up, this is then defined as urgent data. The last field of TCP header
is Padding and it is used to ensure that the header size is multiple of 32, bigger than 20
bytes, and less than 60 bytes. The payload of the TCP packet may be composed of PDUs
described in Chapter 4 or other protocol [32].

The example of TCP communication is shown in Figure 18. In this simple example
of the TCP communication server and client establish a connection and each side sends a
data packet. After this client close connection.

For establishing the connection, it is necessary to send a packet with a set SYN flag
first, the client increments the internal next sequence counter. After the server gives the
client an acknowledgement of sent by sending a message back to client with set ACK flag
and SYN flag. After this client acknowledges the server that message is received and thus
the connection is established.

When the connection is established each side can send any packet and after this
should await an acknowledgement. The Acknowledgement number sent in response must
increase by all packet data bytes number. The receiver shows this way that all sent data
is transmitted and received successfully. When sending the last data from the buffer, the
PSH flag is set.

For closing connection, one side sends a packet with a set FIN tag. Second node
answer that packet is received by sending a packet with set FIN tag back and also await
acknowledgement.

18/52

THEORETICAL FRAMEWORK

Client Server

100 SYN
SYN, ACK
ACK

CONNECTION INITED

Next
seq
num

Seq
num

Ack

num

Next
seq
num

Seq
num

Ack

num

1 0 1
1 1 1

Time

12911
ACK, PSH 128B

1
ACK

CLIENT DATA SENT
1129

SERVER DATA SENT

1129 119
ACK, PSH 118B

129 129 ACK

CONNECTION
FINISHED

129 130
ACK, FIN

130
130

119
ACK

119
120119

ACK, FIN

120
ACK

130130

119

119

Figure 18: Example of TCP communication.

2.3.2.5 Session layer

In the session layer of the ISO/OSI model data may be composed of PDUs, which
structure is described in Chapter 4, SOME/IP, ViWi, DoIP, or other protocol. In this
thesis, it is dealt with data composed of PDUs.

19/52

PRINCIPLE OF SYSTEM FUNCTIONALITY

3 Principle of system functionality

The core part of the designed system is a group of libraries (see Figure 19) encapsu-
lated by the Network capture manager library, which provides an effective tool for capturing
packets and their interpretation. The core of the system is connected by various interfaces,
which allows different access to the library functions and gives different options to the user
due to each selected interface.

C# GUI

Interface 1

Tcl shell

Interface 2

Win. cmd

Interface 3

pugixml

XML parser

C++ Dll

ARXML parser

C++ Dll

Network capture
manager

WinPcap

Packet capture
library

Core of system

C++ Dll

Universal C++
interface library

Figure 19: Structure of the system.

The core of system can be divided into 4 subsystems. First subsystem is third-party
open-source pugixml library, which is extremely fast, light-weight C++ XML library which
allows parsing a large XML file into Document Object Model (DOM) tree in the order
of 100 MB in few seconds [10]. Second subsystem is ARXML parser library. This library
encapsulates elementary functions of pugixml library and it is Swiss knife for searching in
ARXML files.

The third subsystem is a third-party open-source library WinPcap which is an industry-
standard tool for capturing and transmitting network packets [11]. The last subsystem is
the Network manager library; this subsystem connects ARXML parser and WinPcap, cre-
ating a tool for receiving packets and its transformation into useful data.

The process of capturing is a complex routine, due to it is divided into several sub-
routines. Each subroutine can finish the job in a different time, to avoid slowing down to

20/52

PRINCIPLE OF SYSTEM FUNCTIONALITY

Parsing job

Result: Parsed data

Start i
nterpreting

Start parsing

Push interpreted messages to FIFO2

Pull oldest messages from FIFO2

Push rough packets to FIFO1

Pull oldest packets from FIFO1

Capture all message on port using WinPcap

Start capturing

Sniffing
job

Capturing job

Main thread

Interpreting job

Sniffing device

GUI/Log thread

Message 5
Message 4
Message 3
Message 2
Message 1

Packet 5
Packet 4
Packet 3
Packet 2
Packet 1

FIFO1

FIFO2

Figure 20: Internal principle of the system.

a speed of the slowest subroutine, FIFO buffers with dynamic length are implemented to
store input/result of each job (see Figure 20).

When the user pushes a ”start” button or types an appropriate command, threads
for parallel jobs are activated. The first thread is assigned to the Capturing job, which
handles incoming packets using the WinPcap library loop routine. It listens on a port,
where media convertor (RAD-Moon) resends all captured packets. When any packet is
received, it asserts an interrupt and calls a callback, which pushes packets into FIFO1.
This very simple mechanism guarantees that all packets will be processed in the future
without any packet loss.

21/52

PRINCIPLE OF SYSTEM FUNCTIONALITY

The next thread assigned to Interpreting job retrieves packets from FIFO1. This
thread decodes rough data into communication protocol headers and useful data. This
thread also fills all fields in headers. Due to it is possible to filter out all non-compliant
packets that are not UDP/TCP IPv6, these packets do not carry any appropriate informa-
tion for interpreting from the ARXML file and are forgotten (see Chapter 5). Remaining
packets are pushed into the FIFO2 queue. The two above threads are parts of Sniffing job
routine.

The next subroutine Parsing job is using the ARXML parser library functions and it
is a bottleneck of the designed system due to the computation demands of searching too
much data in an ARXML format. For this reason, this job is attached to multiple threads.
The FIFO2 buffer length is periodically checked by parsing threads. If the length of the
buffer is higher than 0, the oldest message is retrieved, and the parsing job starts. It should
be noted that all threads started Parsing job routine must finish in the same order to keep
the right order of incoming data. The result of the Parsing job is a structure where the
packet is represented by human-readable meanings with assigned data (see Chapter 4).
The data is then pushed directly to GUI or to buffer which is periodically read by Log
thread in the case of command-line interfaces (see Chapter 6).

22/52

IMPLEMENTATION OF ARXML PARSER

4 Implementation of ARXML parser

A lot of information is received from captured data (see Chapter 2.3) but how to
interpret data using ARXML? There are many ways to get a message description from
ARXML. In this thesis, the Protocol Data Unit (PDU) ID is mainly used as a key to
finding a message description in ARXML. Note that PDU ID is unique key same as port
(see Chapter 2.2).

Every Automotive Ethernet message may contain one or more PDUs. Each PDU is
composed from PDU ID, PDU DLC and data (see Figure 21). The PDU ID and the PDU
DLC are fields with a fixed size. As mentioned before, the PDU ID is used as a keyword
for searching in the ARXML file. The PDU DLC determines the size of the data field. This
way all the captured data are parsed into PDUs.

Headers PDU 1 PDU 2 PDU N.....

PDU ID PDU DLC PDU DATA

Figure 21: Internal structure of Protocol Data Unit.

Note that, this way error detection of incoming frames is easily done because for each
received packet must pay an equation

captured data len =
n∑

i=0

(pdu(i).id size() + pdu(i).dlc size() + pdu(i).dlc()). (2)

23/52

IMPLEMENTATION OF ARXML PARSER

The searching mechanism is explained in algorithm 1. Firstly the captured data is
parsed into PDUs, then the PDUs are error checked using equation 2. After that, for
every single PDU is found XML node using its ID in ARXML. Finally, the remaining
information is retrieved using this node. This method looks for specific references, that
should lead to specific data. This approach relies on the assumption that the ARXML
hierarchy is unchangeable.

Algorithm 1: ARXML searching mechanism

input : string input - data of any captured Ethernet message
string path - path to ARXML

output: EthernetMessages output - data parsed into structure
begin

// This opens arxml file (pugixml mechanism)

xmlDoc arxml = openArxml(path);

// This parses captured input data into pdus.

pduVector pdus = parseInputDataIntoPDUs(input);

// It is possible to parse data?

if pdus == NULL then
throw(”Input data cannot be parsed.”);
return NULL;

end

// This finds information for all PDUs in ARXML.

for i = 0 to pdus.size() do
// This finds node due to text.

xmlNode n = findNodeDueToID(pdus.at(i).ID, arxml);

// This fills ethernet structure due to predefined references.

output.Messages.pushBack(fillEthernetMessages(n, arxml));

end
return output;

end

24/52

IMPLEMENTATION OF ARXML PARSER

As already mentioned, searching information using ARXML is the bottleneck of the
designed system. Therefore, the greatest emphasis is placed on the efficiency and speed of
XML parser and ARXML file search. As mentioned in Chapter 3, for searching in ARXML
the pugixml library is used. This library provides fast elementary functions for manipulation
with large XML documents. See Figure 22 where the comparison of other XML parsers
relatively to pugximl is shown. There are several dots in the graph, each representing a
different XML document. In Figure 22a and 22b the parsing time of each XML parsers
relatively to pugixml parser for 32-bit (x64) or 64-bit (x86) application is shown. In Figure
22c and 22d the parsing memory of each XML parsers relatively to pugixml parser for
32-bit (x64) or 64-bit (x86) application is shown [10].

(a) Comparison of parsing time (x86). (b) Comparison of parsing time (x64).

(c) Comparison of parsing memory (x86). (d) Comparison of parsing memory (x64).

Figure 22: Comparison of XML parsers.9.

9Source: https://pugixml.org/benchmark.html

25/52

IMPLEMENTATION OF ARXML PARSER

The same important as choosing fast XML parser is to implement effective functions
for finding information in ARXML. For better performance the ARXML parser is written
in C++ language using only basic structures, classes, and pointers. A fact that the system
of XML branching of the ARXML is always the same is also used to increase search speed.
Under this assumption, it is possible to create a map of information and paths to access it
(see Figure 23). It is also possible to navigate starting part of the route statically. Taking
advantage of this fact, the considerably speed up the search is possible, as it significantly
reduces the number of branches to be searched.

PDU ID

Socket Connection

PDU triggering

I-SIGNAL I-PDU

I-SIGNAL

SYSTEM SIGNAL

UNITS

(string search)
IPv6 addresses

PORTs

PDU name

PDU length

Signal start bit

Signal name

Signal length

Data meaning

XML node
Data (string)

Legend

DFS search

DFS search

DFS search

DFS search

DFS search

XPath querry

XPath querry

XPath querry

XPath querry

XPath querry

XPath querry

(REF search)

(REF search)

(REF search)

(REF search)

(REF search)

Figure 23: ARXML map of information.

As shown in Figure 23, different searching methods for different cases are used. First
PDU ID is obtained from the message, this ID is used for searching in ARXML using XML
Path Language (XPath) query, which is used for selecting a subset of nodes that match
specified criteria [10]. In this case, the XML node is searched with determining value and
name. This is a very general search and therefore very slow, it takes hundreds of milliseconds
to find this XML node. After this is used XPath query for moving between XML nodes,
this search is less computationally demanding because the relative path (obtained from

26/52

IMPLEMENTATION OF ARXML PARSER

REF) to the target XML node and also part of the start path is known (see Chapter
2.2.2). Finally, the required information is searched using the Depth-First Search (DFS)
method.

27/52

CAPTURING PACKETS

5 Capturing packets

The Network capture manager library is responsible for capturing packets and it also
encapsulates all libraries in the system. The system architecture is described in more detail
in Chapter 3.

This library provides functions for printing all available sniffing devices, opening/closing
sniffing devices, getting one packet from a device, exporting packets into a pcap file. These
functions are used by interfaces described in Chapter 6.

When any suitable UDP or TCP IPv6 packet is received (see Figure 24), the informa-
tion is parsed into fields with knowledge of packets/frames structure described in previous
chapters. Then the parsed information is returned to the caller.

Figure 24: Example of rough data.10.

For communication between the library and the interfaces, the returned data is en-
capsulated into a binary string in XML format. The main advantage is that the format is
human readable and it is operable, possible to use in both C# and C++ applications.

10Source: Wireshark

28/52

IMPLEMENTATION OF INTERFACES

6 Implementation of interfaces

The most important part of the designed system is an interface that interacts with
the user. As mentioned in Chapter 3 and shown in Figure 19, three interfaces have been
designed. First is C# Graphical User Interface (GUI), which is ideal for interacting with
the user. This interface is designed as a tool for analysing an Automotive Ethernet network
using a personal computer. Second interface is the Tcl shell interface, designed for use as
an embedded system commanded in Tcl language. Finally, an interface for commanding
from Windows using Command Prompt has been designed. The last two interfaces are
controlled from the command line, they are based on the same C++ library, which provides
implemented all functions for any command line like interface. This gives the possibility
to create an unlimited amount of command-line interfaces with the same functionalities.

6.1 GUI interface

The GUI Interface is implemented in C# language. This language has been chosen
because it is an effective tool for creating a nice-looking graphical interface. Due to the
designed system architecture described in Chapter 3 there are no high-performance re-
quirements because all computationally demanding operations are done inside of C++
libraries.

This GUI provides a user-friendly tool for analysing the Automotive Ethernet net-
work. The GUI contains only the necessary number of buttons, which makes this interface
very intuitive and easy to use.

29/52

IMPLEMENTATION OF INTERFACES

One of the most important things that are needed to be set before any use of the GUI
is a path to the ARXML file, which is used for interpreting packets. If the user chooses an
option that requires ARXML, the GUI first searches for file ”Default.arxml” in the same
folder level where the binary files of the application are located and if the file is not found
the user is asked to specify the ARXML file (see Figure 25).

Figure 25: Loading ARXML file in GUI interface.

30/52

IMPLEMENTATION OF INTERFACES

Setting a sniffing device that is connected to Automotive Ethernet by the media
converter is also important. This is needed for any mode when the live network is sniffed.
The chosen option is then remembered until the application ends, so the user does not
need to specify it again. If the user wants to use another device, the connection must be
set manually. The Figure 26 shows example of available connections. If the user connects
a new device after this window is shown, the ”Reload connection devices” button should
be pressed and the new device appears in the list.

Figure 26: List of available sniffing devices.

31/52

IMPLEMENTATION OF INTERFACES

The path to ARXML and connection to a sniffing device can be remembered for the
next run of the GUI by clicking to ”Save fast config”. This option save file in location,
where the quick config file is saved in the same folder level where the binary files of the
application are located or by clicking to ”Save config as” can the user specify where the
config file should be saved (see Figure 27). Similarly, the config should be loaded during
next time when GUI is running by clicking options ”Load fast config” or ”Load config
from”.

Figure 27: Saving configure file.

32/52

IMPLEMENTATION OF INTERFACES

After the user selects the sniffing option and the GUI is configured, the filtering
window is shown (see Figure 28). This allows the user to choose one of four filtering
methods. When the ”Filter off” option is selected, all suitable UDP or TCP packets are
interpreted. The option ”Filter due to ID” means that only desired PDU ID appears in
results. The next option is ”Filter due to IPv6”, this means that only packets sent from/to
this node address are accepted. And finally ”Filter due to signal” means that only signal
with the specified name is shown in the result table.

Figure 28: 100BASE T1 physical layers and its sublayers.

33/52

IMPLEMENTATION OF INTERFACES

Once the sniffing mode (filters) is selected, the threads are started. When an appro-
priate packet is received, it is interpreted and the results are stored in a table (see Figure
29). The user can control sniffing by control buttons. Pressing the ”Start” button cause
that all sniffing threads starts, pressing the ”Stop” button are all threads stopped, and
after pressing the ”Clear” button, table is cleared.

Figure 29: Example of sniffing without filters.

34/52

IMPLEMENTATION OF INTERFACES

The results can be then directly exported into file by selecting ”Export Data” option
(see Figure 30). This allows user to export data from table into various formats for opening
data in most common application. The first is format ”blf”, which is one of the most
widespread logging formats in the automotive industry, this format is used by programs
like CANoe developed by Vector. Next format is ”pcap”, this format is widely used among
network analysing applications based on WinPcap library like Wireshark. Follow format is
”csv”, which allows to export data into table which can be then opened by standard office
applications like Microsoft Excel or Open Office. The last possible option is saving into
”txt” text file which can be opened on any PC with almost every application.

Figure 30: Example of exporting captured and parsed data.

35/52

IMPLEMENTATION OF INTERFACES

The GUI also provides the possibility of displaying signal value changes over time
into a chart (see Figure 31). This is an extension of sniffing ”Filter due to signal” filter
option (see Figure 28). The user can control the application by control buttons similarly
to previously described sniffing control buttons. The ”Start” button starts sniffing threads,
”Stop” button stops threads, and ”Clear” button clears the chart. The user has to specify
the signal name, which is tracked and voluntary history of the chart, which allows setting
how many values should be viewed. Also when the user points on some point with a mouse,
the value is shown (see Figure 31). This allows better readability of results than in the table.

Figure 31: Signal tracker example.

36/52

IMPLEMENTATION OF INTERFACES

The last mode of the program is offline log interpreter, which allows importing pre-
viously saved data from this GUI or different application as Wireshark by the ”Import
data” button and then the ”Interpret” button interprets imported data by due to selected
ARXML file (see Figure 32).

Figure 32: Log interpreter example.

37/52

IMPLEMENTATION OF INTERFACES

6.2 Tool Command Language interface

Tool Command Language (Tcl) is an easy-to-learn open-source script language, suit-
able for a variety of applications such as testing, administration, networking, etc. [33].

This interface can be loaded and controlled in any Tcl console. Because it is a com-
mand line-like interface, many functions have been reduced. Basically, it is an interface
that loads an ARXML file for interpreting packets (filtering) and stores results in a log file.

6.3 Windows Command Prompt interface

The last interface is implemented for use with PC with installed Windows operating
system without the need to install additional programs and can be easily integrated into
a larger system. It is a console application that is used for the same as the Tcl interface in
Chapter 6.2, for interpreting packets (filtering) using ARXML and logging into a file.

38/52

FUNCTIONALITY VERIFICATION BY A SIMULATION

7 Functionality verification by a simulation

7.1 Simulation environment

Simulations are extremely important in the automotive industry. In our case, a console
application is used for simulating the functionality of the system. This application can
simulate connected sniffing devices by loading packets from a log and forwarding them to
the required Ethernet port.

For simulating the functionality of the system, real communication between ECUs
was sniffed by Wireshark. This data is then loaded by the application using the Winpcap
library and sending in the same relative times to start as received. After all packets from
.pcap log are sent, the application starts sending from the beginning of the log doing this
until the application is not quit. This provides good training data for interpreting packets
and measuring and improving the performance of the system functions (see Figure 33).

Figure 33: Example of simulation on one PC.

39/52

FUNCTIONALITY VERIFICATION BY A SIMULATION

7.2 Verification by a simulation

Only two PCs connected by an ethernet cable are needed for the simulation. One PC
simulates an ECU with the use of the application mentioned in Chapter 7.1, on the second
PC, my analyser is running.

The system was running on a laptop with an Intel Core processor with 4 cores and 8
threads and with 16 GB installed RAM. The datasets used for the simulation are described
in a Table 2. The ”Time of record” field means how long takes to run each record.

Name Number of packets Time of record [s] Packet rate [packets/s]
File1 13806 21.988 627
File2 1000 1.83 546

Table 2: Overview of recorded sniff used for simulation.

Two interfaces were verified by the simulation, C# GUI and C++ Windows Command
Prompt interfaces. Tcl interface was not verified by these tests because it uses the same
functions as Windows Command Prompt, this is described in Chapter 6.3.

7.2.1 Test of real rough data

In the following simulation, packets from File1 (see Table 2) were sent, both interfaces
were tested for capturing and parsing packets, and processing time was measured.

Name of test Capturing and parsing time [s]
GUI: without filter 63
GUI: PDU ID filter 30
GUI: IPv6 filter 23
GUI: Signal name filter 31
GUI: Signal tracker 25
Command Prompt: without filter 26
Command Prompt: PDU ID filter 26
Command Prompt: IPv6 filter 26
Command Prompt: Signal name filter 26

Table 3: Results of the first part of the simulation (running record from File1).

The results of the simulation are shown in Table 3. The command-line interface is
much faster than GUI, this is caused by interaction with GUI elements. The command-line
interface was able to process almost 22 s record with only little delay.

40/52

FUNCTIONALITY VERIFICATION BY A SIMULATION

7.2.2 Test of capture data loss

In this simulation, the reliability of the program was tested. 1000 same packets from
File2 (see Table 2) were sent in a very short time. They were captured and parsed with
two mentioned interfaces. The time of capturing and parsing was measured, and the total
number of packets was counted.

Name of test Capturing and
parsing time [s]

Total number of packets [-]

GUI: without filter 19 1000
GUI: PDU ID filter 15 1000
GUI: IPv6 filter 18 1000
GUI: Signal name filter 5 1000
GUI: Signal tracker 106 1000
Command Prompt: without filter 3 1000
Command Prompt: PDU ID filter 3 1000
Command Prompt: IPv6 filter 3 1000
Command Prompt: Signal name filter 3 1000

Table 4: Results of the second part of the simulation (running record from File2).

The results are shown in Table 4, it confirms that all packets were reliably captured
by all described interfaces. The fact, that the GUI is now a bottleneck of the designed
system was also confirmed (see Chapter 7.2.1). The GUI algorithm is a little bit smarter
than the algorithm used for the Command Prompt, in the case of the PDU ID filter and
Signal name filter, information for packets was searched in the ARXML only once, in this
case, but still, the GUI was much slower than Command Prompt.

41/52

FUNCTIONALITY VERIFICATION BY A SIMULATION

7.2.3 Test of logger functionality

In the last simulation, logging into a file was tested using the same record file as in the
previous simulation (see Chapter 7.2.2). In the GUI case, the packets were first captured
and parsed, then logged to various formats. The logging time was measured and logged
packets were counted. In the Command Prompt case, the packets were captured, parsed,
and logged simultaneously, therefore it was measured time of all process parts, not only
logging into a file.

Name of test Logging time [s] Total number of packets [-]
GUI: .blf 0.7 1000
GUI: .pcap 1.1 1000
GUI: .csv 0.6 1000
GUI: .txt 5.6 1000
Name of test Capturing, pars-

ing and logging
time [s]

Total number of packets [-]

Command Prompt: .blf 3.6 1000
Command Prompt: .pcap 3.7 1000
Command Prompt: .csv 3.6 1000
Command Prompt: .txt 3.6 1000

Table 5: Results of the third part of the simulation (running record from File2).

The results presented in Table 5 confirmed that this application is able to create a
fast log file without data loss. Logging into ”blf” and ”pcap” takes a similar time because
the logging principle is similar. Logging into ”csv” and ”txt” is more complex and creates
bigger files because it holds all information shown in the table.

42/52

CONCLUSION

8 Conclusion

This thesis deals with Automotive Ethernet communication analysis for the automo-
tive industry using a common PC equipped with a simple media convertor from Automotive
Ethernet to Ethernet.

The first subtask of this thesis was to implement methods allowing capturing frames
at Ethernet interface using common personal computer. The WinPcap library was used
for mechanical capturing packets, which is described in Chapter 3. After this, useful infor-
mation is gathered with knowledge of ISO/OSI model, which is described in Chapter 2.3.
Then the principle of capturing is described in Chapter 5.

The next subtask was to filter captured data by address at least. This has been
implemented at the level of interfaces and described in Chapter 6. Not only address filtering
has been implemented, but also PDU ID and signal name filtering.

The next point was to log data in a format suitable for further processing. This has
been also implemented at the interface level and it is described in Chapter 6. It is possible
to save data into ”blf” format, which is one of the most widespread logging formats in
the automotive industry, ”pcap” format, which is widely used among network analysing
applications based on WinPcap library like Wireshark. Next is ”csv” format, which allows
exporting data into a table which can be then opened by standard office application like
Microsoft Excel or Open Office. Finally, there is an option to save data into ”txt” format,
which can be opened on any PC with almost every application.

The next subtask was to import descriptions from AUTOSAR XML (ARXML). For
mechanical loading ARXML file into memory and parsing to DOM pugixml library was
used, this is described in Chapter 3. The performance of the pugixml library is shown
in Chapter 4. The AUTOSAR standard, ARXML format, and the searching methods are
described in Chapter 2.2.

The last but one point was presentation of the captured data by graph or table. Both
of them have been implemented in C# GUI interface described in 6.1.

The last subtask was the implementation of API for external program control. Two
APIs were implemented, one can be turned on and commanded by Tool Command Lan-
guage console (see Chapter 6.2) and second by Windows Command Prompt (see Chapter
6.3). These APIs are based on universal C++ library with implemented functionality. The
library can be a basis for other command-line interfaces with the same functionality.

The reliability and performance of the designed system were tested in several simula-
tions (see Chapter 7). Results proved that the system was able to capture, parse, and log
packets without data loss, and in a relatively short time. The results showed that the GUI
was slower than command-line interfaces because of interaction with GUI elements.

43/52

CONCLUSION

44/52

CONCLUSION

References

[1] W. Pananurak, S. Thanok, and M. Parnichkun, “Adaptive cruise control for an intel-
ligent vehicle,” in 2008 IEEE International Conference on Robotics and Biomimetics,
Feb 2009, pp. 1794–1799.

[2] Y. Ying and O. Odunayo Solomon, “Research on adaptive cruise control systems and
performance analysis using matlab and carsim,” in 2017 5th International Conference
on Mechanical, Automotive and Materials Engineering (CMAME), Aug 2017, pp. 249–
253.

[3] J. Li and X. Sun, “A parking algorithm for parking assist system,” in 2011 Interna-
tional Conference on Electric Information and Control Engineering, April 2011, pp.
86–90.

[4] Joshi and Svb, “Can, flexray, most versus ethernet for vehicular networks,” 04 2018.

[5] C. M. Kozierok, C. Correa, R. B. Boatright, and J. Quesnelle, Automotive Ethernet:
The Definitive Guide. Intrepid Control Systems, 2014, ISBN-10: 0-9905388-0-X,
ISBN-13: 978-0-9905388-0-6.

[6] D. Bučkovský, “Ethernet application in passenger cars,” Bachelor’s thesis, Czech tech-
nical university in Prague, 5 2015.

[7] A. Sumorek and M. Buczaj, “The evolution of “media oriented systems transport”
protocol,” Teka Komisji Motoryzacji i Energetyki Rolnictwa PAN, vol. 14, pp. 115 –
120, 08 2014.

[8] S. B. Carlson, J. Farkas, N. Finn, D. Pannell, M. Potts, M. Seaman,
N. Wienckowski, and G. Zimmerman, “Ieee 802 ethernet networks for auto-
motive,” 07 2017. [Online]. Available: http://ieee802.org/802 tutorials/2017-07/
tutorial-Automotive-Ethernet-0717-v02.pdf

[9] Intrepid Control Systems, Inc., RAD-Moon, 05 2016, (accessed: 20.03.2020). [Online].
Available: https://cdn.intrepidcs.net/guides/radmoon/rad-moon ug.pdf

[10] A. Kapoulkine. (2018) pugixml. (accessed: 20.03.2020). [Online]. Available:
https://pugixml.org/

[11] (2018) Winpcap. (accessed: 20.03.2020). [Online]. Available: https://www.winpcap.
org/

[12] J. Gosda, AUTOSAR communication stack, 03 2009. [Online].
Available: https://hpi.de/fileadmin/user upload/fachgebiete/giese/Ausarbeitungen
AUTOSAR0809/CommunicationStack gosda.pdf

45/52

http://ieee802.org/802_tutorials/2017-07/tutorial-Automotive-Ethernet-0717-v02.pdf
http://ieee802.org/802_tutorials/2017-07/tutorial-Automotive-Ethernet-0717-v02.pdf
https://cdn.intrepidcs.net/guides/radmoon/rad-moon_ug.pdf
https://pugixml.org/
https://www.winpcap.org/
https://www.winpcap.org/
https://hpi.de/fileadmin/user_upload/fachgebiete/giese/Ausarbeitungen_AUTOSAR0809/CommunicationStack_gosda.pdf
https://hpi.de/fileadmin/user_upload/fachgebiete/giese/Ausarbeitungen_AUTOSAR0809/CommunicationStack_gosda.pdf

CONCLUSION

[13] J. Alexandersson and O. Nordin, “Implementation of can communication stack
in autosar,” Degree project, Linköping University, 06 2015. [Online]. Available:
http://liu.diva-portal.org/smash/get/diva2:822343/FULLTEXT01.pdf

[14] AUTOSAR. (2020) Classic platform. (accessed: 14.05.2020). [Online]. Available:
https://www.autosar.org/standards/classic-platform/

[15] A. Nyßen and P. Könemann, “Model-based automotive software development using
autosar, uml, and domain-specific languages,” 02 2013.

[16] AUTOSAR, Virtual Functional Bus, 12 2017. [Online]. Available: https://www.
autosar.org/fileadmin/user upload/standards/classic/4-3/AUTOSAR EXP VFB.pdf

[17] AUTOSAR, ARXML Serialization Rules, 11 2019. [Online].
Available: https://www.autosar.org/fileadmin/user upload/standards/classic/19-11/
AUTOSAR TPS ARXMLSerializationRules.pdf

[18] AUTOSAR, Application Interfaces User Guide, 11 2019. [Online].
Available: https://www.autosar.org/fileadmin/user upload/standards/classic/19-11/
AUTOSAR EXP AIUserGuide.pdf

[19] Vector Informatik GmbH. (2018, 12) Ieee 100base-t1 (formerly oabr). (accessed:
30.03.2020). [Online]. Available: https://elearning.vector.cm/mod/page/view.php?
id=152

[20] OPEN Alliance SIG. (2017) About open alliance. (accessed: 30.03.2020). [Online].
Available: https://www.opensig.org/about/about-open/

[21] Broadcom Corporation, BroadR-Reach Physical Layer Transceiver Specification For
Automotive Applications, 5 2014. [Online]. Available: http://www.ieee802.org/3/
1TPCESG/public/BroadR Reach Automotive Spec V3.0.pdf

[22] IEEE Computer Society, “Amendment 1: Physical Layer Specifications and
Management Parameters for 100 Mb/s Operation over a Single Balanced Twisted Pair
Cable (100BASE-T1),” in IEEE Standard for Ethernet, 3 2016, ISBN: 9781504401371.
[Online]. Available: https://standards.ieee.org/standard/802 3bw-2015.html

[23] IEEE Computer Society, “Amendment 4: Physical Layer Specifications and
Management Parameters for 1 Gb/s Operation over a Single Twisted-Pair Copper
Cable,” in IEEE Standard for Ethernet, 9 2016, ISBN: 9781504422888. [Online].
Available: https://standards.ieee.org/standard/802 3bp-2016.html

[24] Wikipedia. (2020, 4) Data link layer. (accessed: 21.04.2020). [Online]. Available:
https://en.wikipedia.org/wiki/Data link layer

46/52

http://liu.diva-portal.org/smash/get/diva2:822343/FULLTEXT01.pdf
https://www.autosar.org/standards/classic-platform/
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_EXP_VFB.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_EXP_VFB.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_TPS_ARXMLSerializationRules.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_TPS_ARXMLSerializationRules.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_EXP_AIUserGuide.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_EXP_AIUserGuide.pdf
https://elearning.vector.cm/mod/page/view.php?id=152
https://elearning.vector.cm/mod/page/view.php?id=152
https://www.opensig.org/about/about-open/
http://www.ieee802.org/3/1TPCESG/public/BroadR_Reach_Automotive_Spec_V3.0.pdf
http://www.ieee802.org/3/1TPCESG/public/BroadR_Reach_Automotive_Spec_V3.0.pdf
https://standards.ieee.org/standard/802_3bw-2015.html
https://standards.ieee.org/standard/802_3bp-2016.html
https://en.wikipedia.org/wiki/Data_link_layer

CONCLUSION

[25] D. Porter, 100BASE-T1 Ethernet: the evolution of automotive networking, Texas
Instruments, 2018. [Online]. Available: http://www.ti.com/lit/wp/szzy009/szzy009.
pdf

[26] Wikipedia. (2020, 5) Ethernet frame. (accessed: 14.05.2020). [Online]. Available:
https://en.wikipedia.org/wiki/Ethernet frame

[27] Wikipedia. (2020, 4) IEEE 802.1Q. (accessed: 14.05.2020). [Online]. Available:
https://en.wikipedia.org/wiki/IEEE 802.1Q

[28] Wikipedia. (2019, 9) Network layer. (accessed: 21.04.2020). [Online]. Available:
https://en.wikipedia.org/wiki/Network layer

[29] Wikipedia. (2019, 10) Ipv6 packet. (accessed: 21.04.2020). [Online]. Available:
https://en.wikipedia.org/wiki/IPv6 packet

[30] Wikipedia. (2020, 5) Transport layer. (accessed: 14.05.2020). [Online]. Available:
https://en.wikipedia.org/wiki/Transport layer

[31] Wikipedia. (2020, 4) User datagram protocol. (accessed: 14.05.2020). [Online].
Available: https://en.wikipedia.org/wiki/User Datagram Protocol

[32] Wikipedia. (2020, 5) Transmission control protocol. (accessed: 14.05.2020). [Online].
Available: https://en.wikipedia.org/wiki/Transmission Control Protocol

[33] Welcome to the tcl developer xchange! (accessed: 19.04.2020). [Online]. Available:
https://www.tcl.tk/

47/52

http://www.ti.com/lit/wp/szzy009/szzy009.pdf
http://www.ti.com/lit/wp/szzy009/szzy009.pdf
https://en.wikipedia.org/wiki/Ethernet_frame
https://en.wikipedia.org/wiki/IEEE_802.1Q
https://en.wikipedia.org/wiki/Network_layer
https://en.wikipedia.org/wiki/IPv6_packet
https://en.wikipedia.org/wiki/Transport_layer
https://en.wikipedia.org/wiki/User_Datagram_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://www.tcl.tk/

CONCLUSION

48/52

APPENDIX A DVD CONTENT

Appendix A DVD Content

In Table 6 are listed names of all root directories on DVD.

Directory name Description
code Implemented Automotive Ethernet analyser
doc This thesis in pdf

Table 6: DVD Content

49/52

APPENDIX A DVD CONTENT

50/52

APPENDIX B LIST OF ABBREVIATIONS

Appendix B List of abbreviations

In Table 7 are listed abbreviations used in this thesis.

Abbreviation Meaning
ACC Adaptive Cruise Control
PLA Parking Assist
OPS Optical Parking System
DTR Data Transfer Rate
ECU Electronic Control Unit
CAN Controller Area Network
AUTOSAR AUTomotive Open System ARchitecture
XML eXtensible Markup Language
ARXML AUTOSAR XML
PDU Protocol Data Unit
ISO International Organization for Standardization
OSI Open Systems Interconnection
DOM Document Object Model
BSW Basic Software
RTE Runtime Enviroment
MCAL MicroController Abstraction Layer
VFB Virtual Functional Bus
XPath XML Path Language
DFS Depth-First Search
OABR Open Alliance BroadR-Reach
PHY PHYsical layer
MAC Medium Access Control
PCS Physical Coding Sublayer
MCU MicroController Unit
PMA Physical Medium Attachment
MII Media-Independent Interface
RMS Root Mean Square
PAM Pulse-Amplitude Modulation
MDI Medium-Dependent Interface
MDIO Media Data Input/Output
SFD Start Frame Delimiter
VLAN Virtual LAN
TPID Tag Protocol IDentifier
PCP Priority Code Point
DEI Drop Eligible Indicator
VID VLAN IDentifier

51/52

APPENDIX B LIST OF ABBREVIATIONS

IPG InterPacket Gap
CRC Cyclic Redundancy Check
DS Differentiated Services
ECN Explicit Congestion Notification
UDP User Datagram Protocol
TCP Transmission Control Protocol
ACK ACKnowledgement
PSH PuSH
RST ReSeT
SYN SYNchronize
FIN FINish
GUI Graphical User Interface
Tcl Tool Command Language

Table 7: Lists of abbreviations

52/52

	Introduction
	Theoretical framework
	Theoretical framework overview
	AUTOSAR standard
	Introduction into AUTOSAR
	AUTOSAR XML

	Description of Automotive Ethernet ISO/OSI model
	Introduction to Automotive Ethernet
	ISO/OSI model using Automotive Ethernet
	Physical layer
	Data link layer
	Network layer
	Transport layer
	Session layer

	Principle of system functionality
	Implementation of ARXML parser
	Capturing packets
	Implementation of interfaces
	GUI interface
	Tool Command Language interface
	Windows Command Prompt interface

	Functionality verification by a simulation
	Simulation environment
	Verification by a simulation
	Test of real rough data
	Test of capture data loss
	Test of logger functionality

	Conclusion
	Appendix DVD Content
	Appendix List of abbreviations

