Czech

Technical
University
in Prague

System for management of company
training

Tsimafei Raro

Supervisor: doc. Ing. lvan Jelinek, CSc.
May 2020

Acknowledgements Declaration

I would like to thank CVUT for being a I declare that I am the sole author of the
fantastic alma mater. following project.

ii

Abstract

This project attempts to simplify the man-
agement of educating employees of small-
scale engineering companies. The prob-
lem it attempts to solve is simplifying
and streamlining the process of manag-
ing lectures held within a company. Four
popular Learning Management Systems
were analyzed, from which it was con-
cluded that there is a lack of small-scale e-
learning applications focused on data man-
agement that also can integrate with other
systems commonly found within software
companies, such as LDAP and Git.

A custom solution was designed and
built on the basis of this research, which
consists of a web client written in Angular,
and a server written in Java, which is also
connected to a relational database. The
solutions does its best to adhere to cur-
rent standards of good architecture and
good security. A suite of automated tests
was created to make sure the application
remains in working condition during de-
velopment. Manual testing was also con-
ducted and showed several problems in
its initial design, which were subsequently
successfully resolved. The resulting ap-
plication is in a working state, however
there are more improvements planned for
the future.

Keywords: web application, lms,
e-learning, java, spring, angular

Supervisor: doc. Ing. Ivan Jelinek,

CSc.

iii

Abstrakt

Cilem projektu je zjednoduSeni manage-
mentu uceni zaméstnanci malych soft-
ware engineering firem. Konkrétnéji, pro-
blém, ktery zkousi byt vytesen, je zrych-
leni a zjednoduseni procesu archivace lekci
¢tenych uvnitt firmy. Cty¥i populdrnich
Learning Management Systému byly zana-
lyzované, a jako dusledek bylo usouzené,
Ze soucasné existuje nedostatek malych e-
learning aplikaci s fokusem na spravu dat
a integraci s dalsimi popularnimi nastroje,
které jsou ¢asto pouzité uvnit firem (napf.
LDAP a Git).

Vlastni aplikace byla navrzena a imple-
mentovana na zaklade provedené resersi,
kterd se skladé z web klientu v Angular,
serveru v Java, a rela¢ni databaze. Vy-
tvorena aplikace se starda odpovidat sou-
casnym standardim dobré softwarové ar-
chitektury a zabezpeceni. Sada automa-
tizovanych testd byla vytvorena pro za-
jisténi funkénosti aplikace béhem jeji vy-
voje. Také bylo provedeno manualni tes-
tovani, které ukazalo nékolik problému v
puvodnim névrhy aplikace, které nasle-
dovné byly vyTeSeny. Vysledni aplikace je
ve funkénim stavu, ale soucasné existuji i
plany na mozné zlepseni jeji funkcionality
v budoucnu.

Klic¢ova slova:
e-learning, java, spring, angular

webova aplikace, Ims,

Contents
1 Introduction 3
1.1 Preface ..o oovnen.. 3l

1.2 The problem

2 Analysis of existing Learning
Management Systems

2.1 Research conclusion

3 Technical specification of the
project

3.1 Technology stack

3.2 Domain of the problem

3.2.1 Thedomain

3.3 Architecture

3.3.1 Three-tier architecture.

3.3.2 Layered approach to server

architecture...................

3.3.3 Client — component-based

architecture...................

3.3.4 Data storage

oo

13

14

iv

4 Server implementation

4.2 REST-like APT

4.2.1 Controller layer as the
implementation of the API......

4.2.2 Exposing data via JSON
endpoints.....................

4.2.3 CRUD operations for domain
entities L.

4.2.4 Error handling.............

4.3 Business logic

4.3.1 Complex entity filtering.

4.3.2 Managing lectures..........

4.3.3 Giving feedback on lectures .

4.3.4 Attachments and file
persistence.

4.4 Integration...................

4.4.1 LDAP — user authentication .

4.1 Implementing layered architecture

30

4.4.2 Git — application versioning via

4.4.4 Faking integration for
development purposes

5 Client implementation

5.1 Component-based architecture. .

5.2 Consuming server’'s APl

5.3 User interface

5.3.1 Design philosophy — Ease of

use

5.4 Bootstrap........

6 Security

6.1 Token-based user authentication

6.1.1 Stateful authentication

6.2 User authorization

6.3 Data access based on user

permissions

6.4 Ensuring data validity

6.5 Security in user interface

7 Testing the application

7.1 Automated testing

44

7.2 Manual testing

8 Conclusion

9 Potential improvements

Bibliography

e BACHELOR'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details

4)
Student's name: Raro Tsimafei Personal ID number: 474678
Faculty / Institute: ~ Faculty of Electrical Engineering
Department / Institute: Department of Computer Graphics and Interaction
Study program: Open Informatics
Branch of study: Computer Games and Graphics

J

Il. Bachelor’s thesis details

~N
Bachelor’s thesis title in English:
System for management of company training
Bachelor’s thesis title in Czech:
Systém pro spravu podnikovych skoleni
Guidelines:
Design and implement an interactive web application for managing business training:
Research existing e-learning tools to manage business training and justify the need for a new solution.
Define the technical specification of the solution and design the application architecture with different access modes.
Create an application framework: connect the application to the enterprise database, formulate basic server logic, define
a functional user interface.
The solution must include security according to company standards.
Implement the whole system, formulate tests.
Implement the application, test it in practice and evaluate the result.
Bibliography / sources:
Nicholas S. Williams (2014) Professional Java for Web Applications, John Wiley and Sons
Craig Walls (2011) Spring in Action, Manning, Edition 3
Martin, R.C. (2017) Clean Architecture: A Craftsman's Guide to Software Structure and Design, Pearson Education
Gierke, Darimont, Strobl, Paluch, Bryant (2019) Spring Data JPA Documentation, Online, Available at:
https://docs.spring.io/spring-data/jpa/docs/2.2.3.RELEASE/reference/html/referen
ce
Alex et al. (2019) Spring Security Documentation, Online, Available at:
https://docs.spring.io/spring-security/site/docs/5.2.1.RELEASE/reference/htmisin
gle
Name and workplace of bachelor’s thesis supervisor:
doc. Ing. Ivan Jelinek, CSc., Center for Software Training, FEE
Name and workplace of second bachelor’s thesis supervisor or consultant:
Date of bachelor’s thesis assignment: 31.01.2020 Deadline for bachelor thesis submission:
Assignment valid until: 30.09.2021
doc. Ing. Ivan Jelinek, CSc. Head of department’s signature prof. Mgr. Petr Pata, Ph.D.
L Supervisor’s signature Dean’s signature)

CVUT-CZ-ZBP-2015.1 Page 1 from 2 © CVUT v Praze, Design: CVUT v Praze, VIC

lll. Assignment receipt

The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZBP-2015.1 Page 2 from 2 © CVUT v Praze, Design: CVUT v Praze, VIC

Chapter 1

Introduction

. 1.1 Preface

The inspiration for the subject of the project has been taken from the internal
workings of the software engineering company called Quanti s.r.o. I, Tsimafei
Raro, am the sole author of the project. Nevertheless, it must be stated that
I am an employee of the aforementioned company.

B 12 The problem

During the last year, the aforementioned company has been trying out a sys-
tem which allows employees to hold unsupervised lectures about professional
subjects within the company. These lectures are held for other employees in
the company, which basically makes it an internal education system. Outside
of sharing profession experience, the core idea of this system is to strengthen
interpersonal relationships between the employees, and to allow them to
practice and develop their presentation skills.

The employees of the company are divided into groups based on their
occupation. These groups are called guilds. There is, for example, a "Java
guild", which houses all of the programmers working with Java or JVM-
based programming languages. There is a "Tester guild", which is composed

3

1.2. The problem

of most of the company’s testers. Originally, guilds contained all of the
similarly-occupied employees of the company. However, as time went on and
the system evolved, the company has switched guilds to be more "opt-in".
Now, for example, the Java guild does not hold all of the company’s Java
programmers, but rather only those interested in sharing their knowledge.

Within the guilds, lectures are held on a regular basis. Before a lecture,
guild’s members hold a vote on a subject for it. A subject is usually relevant
to the guild member’s daily job: it could be something someone has been
working with in the last couple of weeks, and wants to share the acquired
know-how. After choosing a subject and agreeing upon a time and date, the
member of the guild who was most interested in lecturing about the subject
is tasked with researching and presenting it to the rest of the guild. During
the following lecture, this employee presents the subject, gives an explanation
of why it might be useful, gives examples of their own experience with the
subject, and then answers questions at the end of the presentation.

Despite the fact that different employees take the role of a lecturer for
each lecture, organization of lectures is usually done by a single person that
does not change (referred to as the moderator). Moderator’s task is to keep
their guild up and running. This includes keeping a list of potential topics
for a lecture up to date, holding votes on next lectures, sending reminders
to guild’s other members about upcoming lectures, and making sure past
lectures are archived so the knowledge is preserved and easily accessible. All
of this is done by hand using an array of different tools and systems (for
example, one of the guilds uses Google Sheets to keep a list of potential topics
and to vote on them, an internal wiki system for archiving past lectures, and
Slack and email messages for notifications).

This kind of management tends to become tedious and can eat up a lot of
moderator’s time. This leads us to the main problem this particular project
will attempt to solve: to make the work moderators do a little bit easier.
The way this is intended to be done is by creating a unified system, which
would remove the necessity of using many different tools to organize lectures,
and to automate discovering and archiving lectures, providing lecturers with
feedback, and notifying guild members about upcoming lectures they could
attend.

Due to the fact that the problem is tangentially linked to E-learning as a
whole, research of existing E-learning solutions will be done first. This way,
we will verify that currently no solutions exist which fit the problem in quite
the way we want. Due to that, we will end up designing and implementing a
custom application.

1.2. The problem

To give a quick summary, the following are the overarching steps that the
development of our custom solution, and of this whole projects, could be
divided into:

1. Researching existing E-learning solutions.

2. Designing the application.

3. Implementing the foundation of the application.
4. Implementing the application itself.

5. Testing and deployment of the application.

Before we take a look at the first of those steps, it should also be noted
that the application which we have developed during this project is not
considered to be "finished". There is room for future improvement, which will
be discussed in more detail in chapter (9.

Chapter 2

Analysis of existing Learning Management
Systems

This part of the research has been done as a part of the semestral project[6].
Therefore, this whole chapter will contain only a short summary of the work
done during that phase of the project.

The first step of the project was evaluating whether the problem at hand
was not solved by someone else already. The problem is related to the field
of e-learning, of which a short description is necessary. For the sake of our
project, E-learning will be understood as the particular type of learning that
relies on using computers and software applications. The kind of software that
is specifically aimed at managing e-learning is called Learning Management
Systems (LMS for short). The method chosen for deciding whether our
problem was already solved or not was to take a look at several distinct LMS,
which are still being kept up-to-date, and evaluate, based on a certain set of
criteria, whether they fit our problem or no.

Before taking a look at the actual LMS evaluations, let us define the set
of criteria which will be used. To be a "good enough" fit for us, a potential
LMS must meet the following requirements:

- Be regularly updated — working with an outdated LMS would very
likely become a waste of time, as it would not integrate properly with
other modern software.

- Have a web GUI — Software developers are frequently working on

6

2. Analysis of existing Learning Management Systems

various operating systems, which makes portability an important concern.

- Provide the ability to store lectures with additional data —
Lectures usually produce additional data in the form of presentations,
lecturer’s notes, and videos.

- Provide different authorities to different user groups — Users
are separated into application’s administrators, guild moderators, and
regular employees. Having fine-grained control over what they should be
able to do is paramount.

- Provide a modern web API — There should be a way to expose
information stored within the application to other applications.

- Support LDAP authentication — LDAP is a popular solution for
centralizing user authentication, which is frequently used within software
engineering companies.

- Allow users to leave feedback on lectures — Lecturers are regular
employees, so it would be beneficial if they could give each-other feedback.

In the beginning, there was an additional requirement for the ability to
send customizable e-mail notifications. However, as the project evolved, it
turned out that this was not as important as initially though. Therefore, it is
no longer considered in the evaluation of the LMS.

By taking the "be regularly updated" and "have a web GUI" requirements
together (which are the broadest of them all), four LMS were chosen for
evaluation. These are Moodle, OpenOLAT, Canvas, and Sakai. What follows
is a short summary of the analysis of each of them.

Moodle is one of the most popular learning management systems. Its
particular strength is the strikingly large ecosystem of plugins, which means
that there is a lot of potential for customizing it.

Moodle fits most of our requirements: it has a robust system of storing
content, provides a fairly granular REST API, allows users to be authenticated
via LDAP, and allows dividing users into several groups with different levels
of authorization. Nevertheless, Moodle does not integrate well with JIRA
or Git, as there were no fitting plugins found. It also does not allow users
a simple way to leave feedback on individual lectures. This is because it is
oriented more towards the traditional studying system akin to how learning
is managed in a university: long-running courses, tests, and clear separation
of teachers and students.

2.1. Research conclusion

Because of those shortcomings, Moodle was deemed not suitable enough
for our problem.

OpenOLAT was initially developed in University of Zurich, and is currently
provided as an open-source LMS. It provides much of the same functionality
as Moodle: its content storing system is good enough for our requirement of
archiving lectures, it provides LDAP authentication, and it exposes a REST
API. However, it suffers from the same drawbacks as Moodle: at its core,
OpenOLAT is oriented towards traditional learning, which means that it lacks
the frictionless two-way communication that we would like to have between
the teachers and the students. Alongside that, OpenOLAT has a smaller
community than Moodle, which means that it’s probably going to be more
difficult to work with, as both the support and the documentation are likely
to not be very robust.

Canwvas is the third LMS on our list of potential solutions. Same as
OpenOLAT, it is available as an open-source solution at GitHub. it’s built on
Ruby on Rails, and provides LDAP authentication. However its integration
capabilities are fairly lacking, so it has been deemed not fit for our problem.

Sakai is the last LMS that has been evaluated before deciding that enough
research has been done to make a decision about developing a custom so-
lution. Its main strength is solid performance when serving huge numbers
of concurrent users. But due to the fact that we are looking for solutions
for small to medium-sized companies, this is not a particularly important
point. Sakai also does not provide a good way for teachers and students to
communicate with each-other.

. 2.1 Research conclusion

To give a short summary, none of the chosen LMS were deemed a good
enough fit for our particular problem, despite successfully covering most of
our requirements. All of them had similar problems, which originated in the
fact that most of the existing LMS are geared towards traditional long-term
learning rather than simpler, short-term management that we are interested
in. They frequently provide complicated systems such as management of
tests, exams, and whole forums for communication, which are all unnecessary
for us.

One more problem of the existing solutions is that making modifications to

8

2.1. Research conclusion

them is cumbersome or impossible, because they are either proprietary soltu-
ions, or the open-source codebase is expansive and would require significant
effort to get accustomed to. Seeing how the concept of guilds has changed
even during the last several months, the ability to make quick modifications to
our system would be welcome, which makes working with an existing solution
undesirable. Given all of that, a custom learning management application is
a better choice than trying to adapt an existing LMS to our needs.

Chapter 3

Technical specification of the project

As has been shown in chapter [2, some of the more popular LMS solutions
which already exist do not fit our requirements. It is possible that some
smaller, less well-known solution would fit better. However, further research
has been deemed not valuable enough to continue. Therefore, building a
custom implementation becomes our next most reasonable choice. This
chapter will go over the very beginning of this process — the design of the
application.

Our own custom application must obey the requirements for the existing
LMS solutions which were set in chapter 2. The only exception from this
is the necessity of the LMS to not be outdated. This is not of a concern in
our case, as we can choose any up-to-date technologies for the application
and support it for as long as is necessary. Given that, we are left with the
following set of problems our application must solve:

Provide graphical web-based interface for the end user.

Allow lecture archiving.

Allow users to be given different roles which govern access to information.

- Provide a way for users to suggest future lectures.

Provide a way for users to give feedback on past lectures.

Integrate with the existing software used within the company.

10

3.1. Technology stack

B 31 Technology stack

With the slightly modified list of requirements being made clear, the next
logical step in the designing process is to choose the technologies which will
be used to implement our custom solution.

Because of the necessity of a web-based user interface and the potential
benefits of exposing a custom web API, it would make sense to separate the
web-based client from the server and use the web API for communication
between them. This particular idea will be discussed in more details in section
3.3, where we will discuss the architecture of the application.

The core technologies for the server and the client were chosen in the
previous phase of the project [6]. To give a short summary, the application
uses the following list of technologies:

- Java 11 is the core language for the server. It has been chosen due to its
robustness and maturity in the context of developing web and enterprise
applications.

- Apache Maven is used to manage server’s dependencies on external
libraries and to manage compilation, building, and packaging the appli-
cation.

- Several Spring frameworks have been heavily used on top of Java to
streamline the development of a web application. Most notably, Spring
Boot is used to handle most of the Spring configuration, Spring Data
JPA is used to handle the Data Access layer of the application, and
Spring Security is used to handle user authentication and authoriza-
tion.

- MariaDB was chosen as the underlying database for the server due to
its maturity and personal previous experience with using it.

- Angular 8 is the main driving technology for the client.

- The Bootstrap library provides the foundation of the visual styles for
the UL

- Lastly, Git is used as the version control system to handle the devel-
opment process of both the server and the client. Moreover, the server
integrates with Git’s internal tag system to provide a good solution for
application versioning. More on this will be said in section 4.4.2.

11

3.2. Domain of the problem

B 3.2 Domain of the problem

B 3.2.1 The domain

The application we are trying to develop is intended to be used to manage
real-life ideas: lectures. One of the first and obvious realizations is that we
will need a way to represent these ideas within the application. To do this,
we need to define a set of entities, each having a set of properties and a set of
relationships to other entities. Specifying the ideas we will be working on in
these terms will allow us to easily map them to tables in a relational database
(which, as will be discussed below, was chosen in favor of a non-relational
database). And other than that, this also aligns nicely with the use of Java
as the primary programming language: we will be able to leverage Java’s
objects-oriented nature.

The most important entities are Lectures, Guilds, and Users. Lectures
are the core concept of the application — a single Lecture is defined by a title,
date when it was held, description, and status. It’s related to a single Guild
where it was held, has a single User lecturer and a single Meeting Room.
Alongside that, it has many (i.e. indeterminate amount which can be more
than one) User attendants, many Attachments, and many Comments. Guilds
model the professionally-linked group of users, and are defined by their name
and two flags: confidential and archived. A Guild has many User members
and a single User moderator. User models the user of the application, who is
simultaneously an employee of the company. User is defined by a username,
a name, and an email address. User can be a member of many Guilds, and
can simultaneously moderate many Guilds and attend many lectures.

The secondary entities, which are necessary for the workings of the applica-
tion, but do not hold so much meaning within the domain of the problem itself,
are Attachments, Meeting Rooms, and Comments — all three relating
to Lectures — as well as Roles, which are related to Users. Attachments are
external files which can be linked to a Lecture. Meetings Rooms model the
physical rooms where meetings and lectures are generally held. A Lecture
may have a relation to a Meeting Room. Comments model simple text-based
feedback which Users may leave many comments on Lectures. Roles hold
very little meaning in the actual domain, and are rather a convenient entity
which simplifies persisting information about User’s individual permission
levels.

12

3.3. Architecture

. 3.3 Architecture

B 3.3.1 Three-tier architecture

The problem of maintainability is ever-present in the process of developing any
software. It arises in the early stages of designing the architectural backbone
of an application to the late stages of deployment and support.

Our application lends itself nicely to being separated into three large pieces:
the client, the server, and the database. This division is commonly known
as three-tier architecture: the client, also referred to as the Presentation
layer, concerns itself with presenting data to the end user. The server (the
Application layer) handles complex data processing which is relevant to the
domain of the problem. Lastly, the database (the Data layer) handles data
persistence and long-term storage.

The reasoning for separating the server and the database should be fairly
obvious — the database is already running as a separate application which
we will not be developing. Therefore, we will now focus on explaining the
reasoning for separating the client and the server.

As already stated, the server will be running on Java 11 with the addition
of Spring. The web user interface could have been written using, for example,
JavaServer Pages without any separation from the server. This would have
been simpler than creating a separate client application in so far as not
requiring creation of a separate application and setting up communication
between the client and the server. So why has this choice been made? The
reasoning for opting for a completely separate client is that this made the
final project more modular. It opens the possibility for creating, for example,
a mobile application, which would simply connect to the server as the existing
client, and there would be absolutely no need to implement any changes on
the server.

The consequence of this decision is that there must now exists an interface
through which the client and the server will be communicating. This was
achieved by making the server expose a web API. In particular, a REST-like
API was implemented. There are several web API standards gaining in
popularity today, (for example, JSON:API or GraphQL), but those have
not been considered due to the relatively small scale of the application. The
particulars of the implementation of this web API will be discussed in more

13

3.3. Architecture

details in section 4.2l

B 3.3.2 Layered approach to server architecture

The high-level division of the application into the client, the server, and the
database cleanly separates presentation logic from business logic and data
storage. However, we have now created two separate applications (plus the
database, which is basically a third application). We are not solving the
database’s architecture, as this was done for us by its developers, but we are
solving the architecture of the client and the server, which now both have to
be reasonably well structured so they are maintainable in the future.

The server must solve several problems:

- Communicating with the database to persist and fetch domain-related
data.

- Creating ways to modify data in a way that makes sense within the
domain and strictly enforcing that all data modifications are valid.

- Providing access to both the domain data itself and to ways to modify it
to external users (i.e. the clients).

These tasks are not unique to our application — indeed, they are generic
enough that virtually every web application must solved them. It therefore
should come as no surprise that there are well-established ways to deal with
them, which have been tested by time. These conventions can be given a
wrapper name: layered architecture. Just as we have separated our formerly
ill-defined "application" into "client", "server', and "database", we can further
divide the server into layers, which are all mostly isolated from each-other

and solve their own unique sets of problems:

- Controller layer — this layer’s main responsibility is exposing data to
other applications. In the context of a web application’s server, this
usually means providing a set of special endpoints, listening for incoming
requests on all of them, deserailizing them, routing them deeper into the
application, and lastly handling serialization and sending of the responses
when they are ready.

14

3.3. Architecture

- Service layer — the layer responsible for processing of the actual data.
In a certain way, this layer is the "heart", as this is where most of the
actual business logic unique to the application’s particular domain is held.
After the controllers get a hold of a request, the request is sent down
into the service layer, where it is further processed. If necessary, this
layer further communicates with the Data access layer to fetch necessary
resources or persist freshly modified ones.

- Data access layer — this deepest layer concerns itself with mapping the
data structures and domain entities produced by the Service layer to the
underlying data storage of the application. It also provides an interface
for the Service layer to access the data stored in the database. In our
case, the Data Access layer handles ORM (object-relational mapping —
in our case, mapping of in-memory Java objects to database rows and
SQL queries) and connection to the relational database.

There is also a separate concept of domain entities, which are the internal
representations of the data which the application operates with (a concrete
representation of what a "lecture" or a "guild" is, which we can work with).
It doesn’t map to any single of the aforementioned layers, but we could make
an argument that the domain entities are most closely related to the Service
layer.

This layer-based division is quite effective in keeping small and medium-
sized applications maintainable, as it enforces clean and strict structure to
the codebase.

B 3.3.3 Client — component-based architecture

The client handles the presentation of the data to the end user. The problem
of presenting data is not quite as well-divisible into layers as the problems
that the server was handling. In the end, the division of the client is similar
to the MVC (Model-View-Controller) pattern, which is a fairly popular way
of managing user interfaces. This pattern divides the application into three
isolated parts:

- The View, which is the interface which the user sees.

- The Model, which is the data and the business logic which exist behind
the scene.

15

3.3. Architecture

- The Controller, which is the mediator between the two — reacting to the
user’s interactions with the View and transforming them into requests
for the Model.

The architecture of the client is similar to MVC, but not exactly that, as
the Model in this case is the server itself, leaving only the View and the
Controller on the client. The View, in this case, becomes the collection of
styled HTML templates, and the Controllers are the collection of TypeScript
classes linked to those templates. Angular handles these by aggregating them
into something called components — an HT'ML template and a TypeScript
code-behind bundled together. This approach is not exactly perfect, as the
View and the Controller become tightly coupled with each-other, however
it works well enough within our application to warrant not solving that
particular architectural problem.

The client is built from these components, which model individual pages
the user can visit. Some components model not whole pages, but rather
smaller reusable pieces of the interface — like the pagination module, which is
used across most of the tables on the server. Those smaller components are
then used within other, larger ones.

B 3.3.4 Data storage

The last big piece of the application is the data storage. We cannot rely on
keeping data purely in server’s internal memory — that way, every restart of
the server would completely wipe it all out. That’s reason enough to justify
the necessity of a database.

The question then becomes whether to use a relational (such as PostgreSQL
or MariaDB) or a non-relational database (such as MongoDB). Non-relational
databases are typically better suited for storing dynamically structured data,
which would otherwise be troublesome to fit into a strict definition of tables in
a relational databases. But as should be already evident from the specification
of the domain entities, our application’s data is pretty well-structured. Thus,
the choice to use a relational database was made, because not only does it fit
our data definition, but we would also be able to enforce strict constraints on
all of our entities. To be more specific, MariaDB was chosen due to its good
balance between performance and ease of use, overall maturity as a relational
database solution, and my personal professional experience in working with
it.

16

Chapter 4

Server implementation

. 4.1 Implementing layered architecture

The foundation of the server was implemented in the semestral project [6].
Each of the main domain entities were divided into a group of core classes,
which belong to different architectural levels of the application:

- Domain entity itself, which is an internal representation of a single
real-world idea (like a Lecture or a Guild).

- Controller, whose purpose is to handle HTTP requests relevant to the
given entity.

- Service interface and implementation, which handles any in-between
business logic like filtering collections of entities, validating the results
or preparing entities to be persisted.

- Data access object (also simply called DAO), which handled getting
data from the database and mapping them to domain objects within
the application. This is almost entirely handled by Spring’s Data JPA
library [3].

Additionally, as the application grew in complexity, most entities have also
been enriched by Data transfer objects and entity mappers.

17

4.2. REST-like API

Data transfer objects (DTOs for short) are classes whose purpose is to
be a temporary container for data. These could be used to store data in the
middle of a long processing chain or to define the data structure for HT'TP
responses. The latter use case is the one most prominent in our application.
But why are DTOs useful for handling HT'TP requests and responses? It
would certainly be simpler to directly serialize the internal domain objects
and send the result to the client. However, there is a problem with doing
that: the internal domain objects frequently do not contain the data which is
required by a client. Moreover, some of that data can change depending on
who is accessing. For example, lectures have a boolean field called attending,
which signifies whether the currently accessing user is attending the given
lecture. This is a field which does not exist in the domain entity itself (where
the same information is persisted as a special relationship between the Lecture
and the User entities).

If DTOs, in the context of processing HT'TP requests, are how we specify
how the received and sent data should look, then entity mappers are
responsible for transforming data between DTOs and internal domain objects.
In our applications, an external library called Mapstruct was used to facilitate
implementation of entity mappers.

It should also be noted that not all parts of the server’s logic are concerned
with handling domain entities. Security, for example, necessitated the creation
of several configuration classes and web filters, which for the sake of keeping
the code clean were isolated to a separate package.

B 4.2 REST-like API

The server exposes a web API, which can be consumed by a "good" client.
What does "good" mean? In the case of this application, this means that it is
properly authenticated and is capable of consuming JSON-based data.

Given the fact that web APIs are a popular way of letting applications
communicate with each-other, many conventions arose about how they should
be structured and implemented. One of them is REST, at which we will be
taking a closer look.

Representational state transfer (REST for short) was first defined by
Roy Fielding in his PhD dissertation Architectural Styles and the Design of
Network-based Software Architectures. Modern web APIs can not adhere to

18

4.2. REST-like API

REST at all, adhere to it partly (then they are commonly called REST-like
APIs), or adhere to it completely (in which case they are referred to as
RESTful APIs). In our particular case, our web API belongs to the second
group — it is REST-like.

Why is that? To answer this question, let’s quickly take a look at the
definition of REST. Per R. Fielding, REST is a set of architectural constraints
for a web service [5]. These constraints include things like statelessness and
cacheability. However, we will be interested only in the constraint called
uniform interface. An interface, which is what the client uses to consume
information from the server, is defined as uniform if it satisfies the following
properties:

1. Resources are identified in requests — clients should be able to
identify a resource from a URI contained within the request.

2. Resources are manipulated through their representations — given
the representation of a resource (what the client retrieves from the server),
clients should be able to modify the resource itself (the data on the server).

3. Messages are self-descriptive — all representations of resources which
are returned to the client should also contain information on how to
process them.

4. Hypermedia as the Engine of Application State (HATEOAS)
— client should be able to discover actions which it could take on a
representation of a resource given only that representation. To put it
simply, this means that the server should provide clients not only with
data, but also with explicit instructions about the actions which can be
taken on that data.

Interface in the context of our application is the web API. It is straight-
forward enough to prove that our web API obeys the first three proper-
ties. All resources can be accessed via GET requests to endpoints of the
/api/<resource-name>/<resource-id> format. Because of this, the URI
is enough to unambiguously identify any resource, which satisfies the first
property. After obtaining a representation of a resource, client can modify
it by sending POST, PUT, or DELETE request on the same endpoints, which
means that the second property is satisfied. All responses from the server
contain a Content-Type header, which allows the client to recognize how the
response should be parsed. Therefore, the third property is respected.

However, our web API does not adhere to the last property. To explain
why, a quick summary of what HATEOAS is is necessary. Hypermedia

19

4.2. REST-like API

as the Engine of Application State is a convention, also first defined by R.
Fielding, about how to ensure the discoverability of actions a client can take
when working with an API. To put it simply, an API adhering to HATEOAS
principle would, on request, provide not only a representation of the requested
resource, but also a set of hypermedia links (i.e. URLs), giving the client a
list of actions they can now do with the data. It’s going to be more easily
understandable with a concrete example. Here is what a response which
adheres to HATEOAS might look like:

GET http://localhost :8080/api/users/15
Accept: application/json

200 OK
Content -Type: application/json

{
"data": {
"id": 15,
"username": "neal.wisozk",
¥
"links": {
"guilds": "http://localhost:8080/api/users/15/guilds"
"lectures": "http://localhost:8080/api/users/15/lectures"
}
}

Contrast that with a response which does not adhere to HATEOAS:

GET http://localhost :8080/api/users/15
Accept: application/json

200 OK
Content -Type: application/json

{
"id": 15,
"username": "neal.wisozk",

}

In the first case, it’s clear that the retrieved user also has collections of
"guilds" and "lectures", which can be retrieved by appending /guilds or
/lectures, respectively, to the base user URI.

An API which does not adhere to the HATEOAS principle requires addi-
tional external documentation for clients to be able to effectively work with it
(not to say that HATEOAS-adhering APIs don’t need documentation — they
certainly do, but it becomes even more vital when client cannot infer future
actions from server’s response).

20

4.2. REST-like API

The decision to not adhere to HATEOAS was conscious. Given the fact that
our application is relatively compact and is unlikely to scale up to support a
wide variety of clients, investing additional time and resources into adding
proper HATEOAS support was judged as unnecessary.

B 4.2.1 Controller layer as the implementation of the API

Now that we have established that the exposed API will be only REST-like
and not entirely RESTful, let us take a look at the process of implementing
it.

Most of the API is built within the Controller layer, where individual
Controller classes model semantically-linked sets of endpoints. Controllers
handle exposing individual endpoints, mapping incoming requests to DTOs
which can be used by the server, and returning correct responses to the client.

"Semantically-linked sets of endpoints" in our case means a group of end-
points which are related to a single resource. For example, endpoints for which
process GET, POST, PUT, and DELETE requests for lectures are all contained
within a single LectureController class. Such grouping is the natural and
default way of implementing endpoints in a Spring web application. It also
provides the benefit of keeping relevant things close together in the code —
which makes further development easier and reduces the chance of introducing
bugs into the application when adding a new feature or modifying an existing
one.

There is one thing which is not modeled by a Controller — that is the
authentication endpoint, which is handled by a separate web filter. More on
that in chapter (0.

B 4.2.2 Exposing data via JSON endpoints

Clients require a standardized format for responses they expect to get from
the server. For ease of implementation, JSON was chosen as the only data
format for the API.

Given the fact that most of the API works with resources, we can define

21

4.2. REST-like API

several standard situations which are commonly processed by the server:

1. Client requests a single domain entity
2. Client requests many similar domain entities

3. Client requests data which is not a domain entity (i.e. metadata)

B Client requests a single domain entity

The first case is the simplest one. Each domain entity which is available
through the API has a single DTO, which defines how a publicly available
representation of the given domain entity should look. When client requests
data about a particular domain entity (by accessing the URI which uniquely
identifies is), the server:

1. Fetches the domain entity from the underlying database.
2. Maps it to an internal representation.

3. Fetches and processes any additional required data (for example, reads
file contents of an Attachment from the filesystem)

4. Maps all of the collected data to a DTO.

5. Finally, serializes DTO to JSON, constructs an HI'TP response, and
sends it back to the client.

Therefore, the process of exposing a single resource via the API is fairly
straightforward.

B Client requests many similar domain entities

The second case is slightly more complex. The algorithm remains similar to
fetching a single domain entity, however additional complexity arises from
the new concepts of filtering and pagination.

22

4.2. REST-like API

Very frequently, client does not know the exact IDs of the domain entities
it needs (and indeed may not care about IDs at all), but instead has a list of
conditions which all of the entities must satisfy. A good example would be
"lectures in the Java Guild containing the word ’security’ in the title". This
leads to a necessity of implementing a way to not only return many resources
simultaneously, but also a way to for the client to specify filtering criteria.

In our application, client can specify these criteria via HT'TP query pa-
rameters. If we assume that the Java Guild is known by the application
as "guild with ID = 5", then the client can request all lectures in the Java
Guild with the word ’security’ in the title by sending a GET request to
/api/lectures?guild=5&search=security. The internal workings of how
filtering is implemented on the server will be discussed in section 4.3.1l

Pagination is the second complication which comes into view only when
dealing with collections of resources. Pagination is a way of splitting a
single collection into several "pages". This is done because processing whole
collections has severe drawbacks:

- The server may not have enough processing power or memory to prepare
a response with a very large collection.

- If the server can successfully respond with a very large collection, the
payload of such a response will be very large and thus will take a long
time for the client to download.

- Even if the server can respond with a very large collection and the payload
is successfully downloaded, the client can also experience problems with
insufficient memory or processing power.

Given the fact that speed and responsiveness of the application is of great
importance to the end user, it is indeed a much smarter choice to return a
small subset of the requested collection along with a bit of information on how
to get the rest, rather than to return the entire collection simultaneously. For
added convenience, the clients should also be capable of specifying how many
resources they are willing to get within a single request (with some reasonable
limits set by the server, so for example the client cannot request one million
lectures per page). In the application, specifying pagination is also done
through HTTP query parameters (more specifically through size, which
specifies how large a single page of resources is, and page, which specifies
which page to retrieve).

Given those complications, the final algorithm for processing a request for

23

4.2. REST-like API

a collection looks the following way:

1. Map client’s request to internally recognizable data formats, including
all query parameters for pagination and filtering.

2. Map filtering parameters to a Specification, which is an internal repre-
sentation of an idea of "this entity should have the following qualities"
(see section [4.3.1] for more).

3. Retrieve the domain entities which satisfy filtering criteria from the
database as a single page and map it to an internal representation.

4. Map each of the retrieved resources to its DTO representation and collect
them into a generic collection DTO (more on this below).

5. Serialize the collection DTO, construct HTTP response, and return it to
the client.

The collection DTO which was mentioned in the penultimate step of the
algorithm is a template for how a response containing a collection of resources
should look. It contains a list of the requested resources along with metadata
about the way those resources were filtered and paginated. It is generic in
the sense that it’s agnostic to what kinds of resources it contains: a collection
DTO is exactly the same for a list of Lectures and a list of Guilds, the only
difference is that the former contains Lecture DTOs, and the latter — Guild
DTOs. Within the application, Spring’s default Page object is used as a
collection DTO.

B Client requests data which is not a domain entity

This remaining category of requests is a collective grouping for client wanting
anything which isn’t inherently linked to a domain entity. There is no single
way to process requests for this kind of data, so how the server processes them
and how the responses look is entirely dependent on the specific situation.
That is, of course, aside from all of these responses obeying some fundamental
conventions like "response must always be valid JSON".

A very simple example of such an "ad hoc" response is getting server’s
current version:

{

"version": "v0.0.1"

24

4.2. REST-like API

Server’s version is evidently not a resource as it’s not a representation of
our domain. Indeed, the "version of a server" is not even a concept which
holds any meaning when we are thinking about lectures, guilds, and users.
Nevertheless it is the kind of information which is necessary for the client, so
it has to be represented in some way.

In this particular case, the server exposes a separate endpoint via
VersionController class, which accesses the properties file generated from
the project’s git repository (more on this in section 4.4.2)), retrieves the version
from it, and maps it to the JSON response.

Bl 4.2.3 CRUD operations for domain entities

Due to the fact that the main purpose of the application is to allow users to
not only view lectures, but also create new ones, it was necessary to implement
a way to modify the internal domain entities via the exposed web API. Most
of this work was done in the semestral project [6].

To summarize, the this is done by exposing several endpoints for each
of the editable resources. For example, client can add a new Lecture by
sending a POST request to /lectures. This request must contain a valid
JSON body which is equivalent to server’s LectureDto class (i.e. it can
be read by the server). In a similar way, client can send a PUT request to
/lectures/<lecture-id>, where <lecture-id> is a unique identifier of a
particular lecture, to modify any of the publicly available fields of that lecture.

B 4.2.4 Error handling

Sometimes things go wrong when the server is processing a request. The clients
make a variety of mistakes ranging from trying to access a secured endpoint
without proper authentication to simply providing filtering parameters in the
wrong format. Sometimes, the server can also encounter an unrecoverable
error due to which a request from a client cannot be properly processed. In
all of these cases, the server must still be able to return a reasonable response
to the client.

In Java, internal errors in the workings of the server exist as Exceptions,
which may be thrown at any point during the execution of the application

25

4.2. REST-like API

to signify that something unexpected had happened. Because of this, it’s
indeed a simple choice to leverage exceptions and, if anything happens when
processing client’s request, to retrieve the underlying exception and map it
to a response. Spring Boot is responsible for most of the heavy lifting in this
process, as it already maps all of the unhandled exceptions to a default JSON
error responses. Here is an example of how a default error response looks
for the case when the client is trying to access a secured endpoint without
proper authorization:

{
"timestamp": "2020-04-27T15:09:51.762+0000",
"status": 401,
"error": "Unauthorized",
"message": "Unauthorized",
"path": "/api/users/15"
b

The problem with Spring Boot’s default error responses is that, if failure
occurred on the server’s part, the exception’s stack trace is also serialized into
the error response. This is not a particularly large concern for our application,
however it’s generally not advisable as this reveals a lot of information about
server’s internal workings to the client. This naturally makes the server more
vulnerable.

To mitigate this and out of the desire to only return the information which is
useful to the client, a custom exception mapping was implemented. This was
done in the error package, mainly in the GuildManagerExceptionHandler
class. This class implements Spring’s abstract Exception handler which can
map exceptions to HTTP responses, and makes sure that certain excep-
tions are mapped to a custom error response (which is implemented in the
ErrorResponseDto class).

As the result, the same Unauthorized error looks the following way in the
current state of the application:

{
"code": "UNAUTHORIZED",
"description": "Current user is unauthorized to
perform this operation"

3

26

4.3. Business logic

B 4.3 Business logic

B 4.3.1 Complex entity filtering

As we have discussed in section [4.2.2) when describing the types of requests
a server must be capable of handling, the client requires a way to not only
fetch collections of data, but also to filter them by a set independent criteria.
This covers a basic use-case of user trying to find a lecture by a keyword.

The naive solution is to fetch an unfiltered collection of items into memory,
and then filter it by each individual criterion provided by the client. Such
an implementation has obvious drawbacks: the initial unfiltered collection
can be quite large, and may not fit into the available memory. The filtering
process can also become slow because of the necessity to iterate over the
whole large collection (especially during the first filtering steps).

A much better alternative would be to not filter anything at all on the
server, and instead to delegate this work to the database, which is build
specifically to handle this kind of data filtering very efficiently. The only thing
that has to be covered in this case is how to map client’s filtering parameters
to a database query. Within the application, this was achieved via Springs
Specifications. A Specification is basically a predicate — it’s a declarative
description of desired qualities of an object. The following is an example of a
specification for a Guild entity, which reads "A guild whose 'name’ property

o,

contains the String called 'query’":

public static Specification<Guild> nameContains (String query) {

return (guild, criteriaQuery, builder) -> (query == null)
? null
: builder.like(guild.get("name"), ’%’ + query + ’%’°);

Specifications can be chained together, which is a very important quality
which allows us to handle complex filters based on several independent
parameters. The following is a showcase of how Lectures are filtered internally
— a combination of filtering by status, guild, lecturer, and full-text search
within all of lecture’s text fields:
var spec = where(hasStatus(status))

.and (belongsToGuild (guildId))
.and (byLecturer (userId))
.and (where(titleContains (sanitizedSearchQuery))

.or(guildTitleContains (sanitizedSearchQuery))
.or(lecturerNameContains (sanitizedSearchQuery)));

27

4.3. Business logic

B 4.3.2 Managing lectures

Lectures go through four stages during their lifetime:

1. Suggestions — these lectures model the individual user’s suggestions
about potential future lectures.

2. Confirmed lectures — lectures, which have been agreed upon by the
guild, and have a defined future date, when it will be held and a lecturer,
whose job is to prepare the lecture.

3. Awaiting feedback — lectures, which have been successfully finished
and are currently awaiting feedback from other users. Currently it’s
being debated whether this stage is necessary (which will be talked about
in more detail in subsection 4.3.3)).

4. Archive — the final stage of a lecture, at which point it is preserved
on the server with all of the necessary information and is accessible for
future users.

Initially, it was thought that a separate voting system would have to be
implemented to allow users to collectively vote on the future lectures of
the guild. However, as the guilds developed within the company and more
feedback was collected, it became evident that most of the voting happens
during verbal conversations between the guild members. Because of this, the
initial plan of creating a voting system has been abandoned in favor of a
simpler suggestion system: any user can create a suggestion for a lecture,
which can then be confirmed by the guild’s moderator, after which point it
becomes a confirmed lecture.

B 4.3.3 Giving feedback on lectures

The initial plan for the way users would give feedback on lectures was to
prompt them with a predefined set of questions about the lecture after it was
concluded. For example, one of the questions could have been "On a scale of 1
to 5, how useful was this lecture?" or "Do you think the lecture was too short,
too long, or about the right length?". However, it was later decided that a
simpler system would suffice — both because there were some doubts about
how many users would actually take their time to fill out all of the questions,
and because other, more pressing concerns were taking the implementation

28

4.3. Business logic

Comments

Hello world, | am a custom comment created by a real person. ®
- gm_admin - a few seconds ago

Porro deleniti quae placeat dolores quia quia autem architecto.
- Kendrick Marvin « a year ago

Est fuga ex dolor molestiae accusamus ullam consectetur voluptatem,
= Mrs. Cindi Buckridge - 2 years ago

Voluptas iste animi sed ducimus officia dolor soluta est.
- Mr. Tandy VonRueden « 2 years ago

Sit reprehenderit eos ipsa repellat explicabo natus ut dignissimos rem dolores optio saepe.
- Emanuel Renner - 2 years ago

Ipsa temporibus voluptatum corporis sed vel quidem voluptas aut laudantium qui harum alias est.
- Bo Powlowski « 3 years ago

Add comment

Figure 4.1: Example of how comments are displayed on the client. Note that
the top comment has a button to remove it, because it has been created by the
same user as the one that was logged into the application when the screenshot
was taken.

time. So, instead of a complete questionnaire, a simpler system of comments
was implemented.

A Comment is a written note a user can leave on a lecture. It contains three
important fields: body text, timestamp, and author. Users can add comments
in lecture details via a simple modal window. It was debated whether it
would be better to make comments anonymous or no — but ultimately it was
decided that keeping the names of the authors public would be better, as
then lecturers could more easily get in contact with comments’ authors, as
well as it would promote those writing the comments to be more polite.

On the client, comments are displayed in lecture details as a chronological
list — the most recent comments are added to the top of the list. You can see
the example of how this looks on Fig.

Users can currently add comments to any lectures (and delete their own
comments afterwards). This is the primary reason why it’s currently being
debated whether lectures should even have the state of "awaiting feedback" —
since Comments are the implementation of the idea of "providing feedback",
and currently it seems wise to not restrict their creating or modification to a
single stage during a lecture’s lifetime.

29

4.4. Integration

B 4.3.4 Attachments and file persistence

Archiving lectures implies also saving any additional information which was
created for that particular lecture. Most frequently, this information takes
form of a presentation or a set of lecturer’s notes. The solution to persisting
them was the idea of Attachments.

Attachments are external files, which can be linked to a lecture. On the
server side, they are implemented as domain entities with a separate file
system persistence logic. This was done so that the database didn’t have to
hold the file’s contents, and so that, if anything goes wrong during the regular
run of the application, the attachments could be accessed by accessing the
file system of the server.

One of the problems which arose when implementing attachments was
transferring attachment’s contents between the server and the client. This
is necessary to do because the users have to be able to upload their own
attachments to their lectures, and they should also be able to download and
preview the attachments which already exist on the server. Two potential
solutions were examined: multipart messages and base64-encoded strings
within JSON. The latter one was chosen, mainly because it was a better fit
for the existing JSON-only API, as well as it was more convenient to serialize
and deserialize the attachment’s contents from base64 both on the client and
on the server. The trade-off of this method is that base64-encoded content
takes roughly 133% more space than the original binary data[7]. But, given
the fact that the attachments that the users are expected to make are not
large, this increase in transferred size was considered justifiable.

On Fig. [4.2|you can the example of how the GUI for uploading attachments
looks on the client.

B aa Integration

B 4.4.1 LDAP - user authentication

One of the problems which had to be solved is registering all employees as users
which could use the application. Problem of registering employees in internal

30

4.4. Integration

Upload attachment

Figure 4.2: Modal window for uploading files to the server

services is not particularly unique. Because companies are almost guaranteed
to have several distinct internal services which all require authentications,
this problem has seen several mature solutions already. The overarching idea
here is that it makes a lot of sense to have a single repository of credentials,
so an employee can use a single set of credentials to access all applications
within the company.

This information is usually stored in a directory server, which are frequently
used by organizations as the central repository for user information. This is
where Lightweight Directory Access Protocol (LDAP for short) comes into
picture. LDAP is a protocol which standardizes the way an application many
communicate with a directory service, and allows them to efficiently search
for the necessary information.

The company which inspired this project currently maintains and uses
its own LDAP server to manage the information about user’s employees.
Fortunately for us, Spring Boot has robust support for LDAP, which was
used. Within the application, a separate configuration was written, which
makes Spring connect to the provided LDAP server to check the credentials
sent by the client:
auth.ldapAuthentication ()

.userSearchBase (securityParameters.userSearchBase)

.userSearchFilter (securityParameters.userSearchFilter)

.contextSource ()

.managerDn (securityParameters.managerDn)

.managerPassword(securityParameters.managerPassword)
.url(securityParameters.ldapUrl) ;

31

4.4. Integration

B 4.4.2 Git — application versioning via tags

Developing an application goes hand-in-hand with the necessity of versioning
it. In the application’s current state, server only exposes its version to the
client, but in the future it’s expected that it would also expose information
about the latest change logs. This would be useful to give the users the ability
to see what was changed in the last version of the application.

There are several ways to implement versioning of the application. The
most naive way would be to explicitly write the current version into a constant
variable within the code. This has several drawbacks, the most obvious being
that there is now a bit of code which has to be updated every time a new
version is released (and there is no way to know if it was updated or no aside
from actually checking the code).

Git, however, provides an interesting alternative. It allows developers to
create tags — permanent references to certain points in the history of the
application. And the main way to use them is, indeed, to mark different
versions of the application.

Git provides developers with two types of tags: lightweight tags and
annotated tags. Lightweight tags only contain a name, which essentially
makes them into a way to give a certain commit a name. Annotated tags
store additional data alongside a tag name: the name and email of the tag’s
creator, date of creation, and a message. The latter is perfect for marking a
new public release of the application.

Because our application exists within a git repository, it would be really
good if we could automatically use git tags to keep track of versions. Ideally, we
would do it in such a way that, when an application is built, this information
is compiled right into the resulting . jar file.

To achieve this, a small external library called Git Commit Id, which was
built specifically for Java applications running on Maven. It allows us to
scrape the .git folder (which is where all git-related information is stored)
and retrieve information about the last tag. This information is then written
into a separate configuration file, which is then parsed by the application into
an internal object and finally exposed by the VersionController as the
version endpoint.

This low-level integration with Git greatly simplifies versioning of the server

32

4.4. Integration

— now every time a new version is released, the developer only has to add a
tag (which they would do either way), and the next build of the application
will automatically provide the clients with the up-to-date information about
its version.

B 4.4.3 Email notifications

Because of prioritizing other features like application security and more
user-friendly UI, email notifications were not implemented. A draft of the
system has been implemented, which used Spring Email. However, as it was
only a draft which never connected to a real email server, the base of the
implementation has been removed from the project.

As of now, email notifications are not a high priority in the future develop-
ment of the application, and therefore it may take some time before they will
actually be implemented. Alternatively, as the application is tested more, it
may become evident that they are not necessary at all.

B 4.4.4 Faking integration for development purposes

B The database

The most important part of the application which had to be faked was the
database — or, to be more precise, the data stored within the database. This
becomes necessary during the development for obvious reasons: we cannot
test the application if there is no data flowing through it. And simultaneously
we do not want to keep the application filled with real "production" data
either — it could contain sensitive information, which we may not want to
keep on a local development machine. Therefore, a reasonable middle-ground
solution must be used — to keep the application filled with sets of dummy
test data.

The naive way to go about this would be to populate the database with
dummy data by hand. This has obvious drawbacks in the sheer amount of
work this would require the developer to do. This could be improved by
writing, for example, a single SQL script, which would populate all tables

33

4.4. Integration

with preset data. But this script would still have to be manually edited every
time the database structure was altered, which would be terribly cumbersome.

A slightly more clever alternative is to generate the script automatically.
And to make it even better, we would like to not only automatize feeding
the database our fake data, but to make the process of generating the data
itself automatic as well: after all, we care a lot more about the fact that
there would be a hundred users saved in the database than which names they
have. To top it off, we need a way to switch "database faking" on or off on
our own accord: it would be beneficial to be able to sometimes turn it off to
keep the same data set in the database across several application runs. This
way we could, for example, test whether a database migration script works
as expected, or add some data by hand which is only useful in the context of
the feature we are currently developing.

Now we have arrived at a decent solution to the problem of faking database
data. Two things are necessary for the actual implementation:

1. A way to execute bulk SQL statements from within the application.

2. A way to generate semi-believable data, so, for example, the names of
generated users still look like real names.

It must also be noted that we do not want to make our fake data as precise
as possible, i.e. it doesn’t matter if the users’ names are German, English, or
Czech — we only care that users have a name at all. The requirements for the
application are likely to change over time, the database’s schema will also
change over time — so we do not want to spend unnecessary time and effort
now on something which would be discarded later. What we want instead is
the cheapest way to generate "good-enough" fake data.

The first requirement — a way to execute SQL statements against the
database — does not actually require the use of external tools and could be
implemented using plain Java. Nevertheless, we will make use of a library
called Flyway. The primary reason for using this library in our project is
not executing SQL from within Java, but rather versioning database change,
i.e. retaining the history of how the database was changing over time. Each
semantically separate change in the schema is held within a separate SQL
script (which is called a migration, because it "migrates" the database from
state 1 before applying the script to state 2 after applying it), which are all
saved in the same git repository as the server. The major benefit of doing this
is that the way the database looks is now tightly tied to the server’s version

34

4.4. Integration

— meaning that if, for example, we are working on two features which both
change database’s schema, we won’t have to change the database manually
when switching between those features. And what Flyway does in this whole
idea is it automates taking those individual migrations and runs them against
our existing database instance in the correct order — so our database is kept
up-to-date with whatever new features are implemented.

By default, the library works with migrations written in SQL, but there
is also support for writing them in Java — for cases when plain SQL is not
convenient enough. And, by chance, the problem of generating fake database
data is precisely that kind of problem.

This leads us to the second requirement for the complete database faking
procedure — generating semi-believable data. For this, a second library called
Java Faker was used, which is a lightweight dummy data generator. The
library covers more than enough different kinds of data — from fake email
accounts to fake locale-based address and bank account numbers, to quotes
from popular movies — so it is more than enough to cover the necessities of
our application.

With both requirements being solved, the actual implementation resigns
in the class called V30000101000000__testData. The large number at the
beginning signifies database migration version — the bigger the number, the
later in order it will be executed by Flyway. These versions are generated
simply by taking the timestamp of migration script creation — so a database
change which was proposed on May 12 2020 at 13:45:05 would have version
V20200512134505. The contents of the class are fairly primitive: for each
table in the current version of the database, a single batch INSERT INTO
statement is prepared, populated with a predefined amount of fake tuples of
data, and then executed.

And to make this system switchable, the database faking class is only run if
the application was started with the local Spring profile. Spring profiles can
be thought of as on/off switches which developers define themselves. They are
passed to the application as command line parameters during startup, and
therefore cannot be changed while the application is running. The application
can then detect if a particular profile is active and make decisions based on
that. This is frequently used to change the way the application behaves on,
for example, a local "development" machine, on the test server, and on the
real production server.

35

4.4. Integration

B LDAP

Our application performs an LDAP synchronization on startup, which keeps
the employee information in the application’s internal database up to date.
However, to connect to a potential company’s LDAP, the computer on which
the application is being developed would have to be connected to the internal
network of the company either directly or via a VPN, which complicates the
boot of the application.

Our application connects to LDAP twice for two isolated reasons: The first
connection happens when a user is trying to authenticate themselves (which
was first described in section 4.4.1)). For simplicity’s sake we will refer to this
process as LDAP authentication. The second reason is the aforementioned
synchronization of the internal user database, which will be referred to as
LDAP user synchronization. The internal database stores only the surface-
level information about employees, such as their name, public email address,
and internal username, without storing any sensitive information such as
their private email addresses or bank accounts. Given all of this, to fake
LDAP integration we would have to replace both of those processes with fake
instances.

LDAP authentication is configured using a separate Spring Boot configu-
ration class, which was shown in section 4.4.1. To replace it with a dummy
implementation, writing a separate set of configuration was enough:
auth.inMemoryAuthentication ()

.withUser ("gm_admin") .password ("{noop}admin").roles ("ADMIN") .

and ()
.withUser ("gm_user") .password("{noopltuser").roles("USER") ;

What this does is, register two dummy users which can log into the
application: gm__admin with the ADMIN set of privileges, and gm_ user with
the USER set of privileges. No other users exist and none can be registered
in addition to these (without changing the actual configuration). And just
as with the database faking, switching between the real and the dummy
configurations is implemented via Spring profiles. More specifically, if the
nolLdap profile is active, then the dummy configuration will be used instead
of the real one.

For replacing LDAP user synchronization, instead of faking the connection,
we entirely disable the synchronization if noLdap profile is active. But where
will the user information be gotten from instead? Instead of fetching user
information from somewhere, we generate users completely internally with a

36

4.4. Integration

simple SQL batch, which is a part of the database faking which was already
discussed.

37

Chapter 5

Client implementation

During the very early stages of designing the application, the decision was
made to separate the underlying business logic (the server) from data persis-
tence (the database) and the user interface and presentation logic (the client).
This chapter contains an overview of the implementation of the latter: a short
summary what was prepared during the semestral project, what problems the
initial implementation had, how they were improved upon, and the thought
process behind the current Ul design.

B 51 Component-based architecture

The Java-based server was divided into several isolated layers, which laid the
foundation to making it maintainable. The approach on the client was similar
but not exactly the same. The main task of the client is presenting data to
the user and allowing them to modify in a reasonable and comprehensible
manner. The differences in the conventions of how to structure an Angular
application versus a Java application also played a part in the architecture of
the client.

The bulk of the client is divided into isolated components, which can be
considered large building blocks of the user interface. A single component
is composed of an HTML template, an Angular code-behind, which is the
place for the component’s internal logic and data. Components can nest
other components within their HI'ML templates, which allows the developers

38

5.2. Consuming server’s API

to create generic "blocks" for their interfaces, which can then be reused in
multiple places. This approach has the benefit of reducing duplication within
the code, which is beneficial because it makes making future changes cheaper
and less likely to introduce new bugs. Most of the client is made up of such
atomic components.

Just as the server has some logic which does not fit into the domain entities,
there is a thin layer of client logic which does not fit into a component. These
are the classes responsible for directly communicating with the server and
mapping its responses to internal data structure. To keep the code tidy, they
are kept in the separate _services directory.

B 52 Consuming server’s API

The solution of communicating with the server was one of the results of the
semestral project [6], so this will only be a short overview of how it works.

The client implements a separate service to communicate with the server,
called RestService. This class provides simple public methods (for exam-
ple, getLectures (params) or getGuilds (params)) for calling the server for
various resources. The following is an example of one such method, which
requests a list of lectures from the server:

getlLectures(params: HttpParams): Observable<any> {
return this.http
.get(baseUrl + ’/lectures’, {params})
.pipe (map(this.extractData));

The specifics of the TypeScript syntax are not important, what this method
does is, basically, create a GET request to the /lectures endpoint with the
provided HTTP query parameters, send it to the server, receive the response
and map it to an internal data structure. Because this logic is hidden within
this single method, other classes which actually need to pull collections of
lectures from the server can simply call this method and not worry about
how the lectures are actually retrieved. This, by the way, also means that if
we wanted to fake getting lectures from the server, we would need to change
this single method.

39

5.3. User interface

Just as with the example of getting lectures, similar methods are imple-
mented for all other endpoints which the server exposes.

. 5.3 User interface

B 5.3.1 Design philosophy — Ease of use

During the development of the foundation of the application, the design of
the user interface was not a priority[6], and therefore it was made only to be
"good enough" to be usable.

The initial Ul mostly consisted of tables and navigation buttons, which
were stretched across the entirety of the user’s screen (on some pages in two
columns). We will illustrate some of the problems which the initial "proof of
concept” client had on the page with the list of lectures, which the user will
see quite frequently. By doing so, we will also showcase how these problems
were solved in the current version of the application, and which problems still
remain to be solved at some point in the future. You can see an example of
the old lecture list UI on Fig. and the updated version on Fig.

GM
Lectures

= D ouid Title Date Lecturer Meeting Room

Guids PO & i Incredibl Iron Bench - Scorpius 2017-12-29 Ivan Domnelly 1 ®

Lectures =
2 shoes 2018-10-21 Loren Towne 1 -

Helk
i : x| 2014123 Ian Gottieb 1 -

[vogout | ‘

— o shoes Gorgeous Bronze Pate - Lite Dipper 2012-10-04 Laverence Rath 1 ®
s €D sy ck - Litte Dipper 2016-05-22 Beverley Schaden 1 -
6y M o - Litte Dipper 2018-03-28 BrunoLynch DDS 1 -
.. i Durable Granite Shirt - Big Dipper 2016-04-25 Shannon Altenwerth 1 -
« 20110104 Milda Fatley 1 -

s @D Durable fron Shoes - Pisces 2011221 Ms. Hovard Berge 1 -
L coror Aerociynanic Rubber Gloves - Loe: 20201110 Riey Robel 1 -

Page 0 out of 50 (10 items per page) Previous Next

Figure 5.1: The old version of the lecture list Ul

40

5.3. User interface

qGuild « FC . Logout

Lectures
Search. Suggest a lecture
Suggested 121 Confirmed 127 Feedback 124 Archived 128
Ergonomic Marble Car - Auriga

+ + by Mr. Todd Kunde + 20 February 2020, 12:00 am

Aerodynamic Plastic Bench - Canis Minor
+ « by Mr. Reed Swift - 28 March 2020, 12:00 am

Heavy Duty Copper Bench - Loe
v « by Dr. Margy Prosacco « 13 March 2020, 12:00 am

Synergistic Wool Bottle - Loe
+ + by Daryl Upton + 13 May 2020, 12:00 am

Mediocre Plastic Hat - Scorpius
- by Dr. Margy Prosacco « 8 May 2020, 12:00 am

Enormous Granite Shirt - Litte Dipper
v - by Twanna Sipes « 2 May 2020, 12:00 am

Small Wooden Bench - Litte Dipper Automotive & Outdoors.
v - by Dr. Margy Prosacco « 30 April 2020, 12:00 am

Heavy Duty Leather Shirt - Canis Minor
v - by Emanuel Renner + 15 May 2020, 12:00 am

i deaa

Practical Plastic Plate - Pisces
v+ by gm_user + 26 April 2020, 12:00 am

Figure 5.2: The new version of the lecture list Ul

The first problem of the old Ul was its excessive width. The lecture table
stretched across the entirety of the display, making the user have to move
their eyes across the display to parse information about a single lecture. The
solution to this problem was to limit the maximum width of the table and
put it in the middle of the screen.

Another improvement in usability was acquired by restructuring the way
the information about a single lecture was displayed. As can be seen on the
old screenshot, lecture’s title, date, lecturer, and guild were separated into
individual columns of the table. This visual fragmentation is excessive, as
users will rarely scan lectures by a single individual column and will instead
want to see the entirety of the information at the same time. To fix this,
columns were scrapped entirely, and only the most important information
was left visible: the lecture’s title, the lecturer’s name, and the date when
it was done. The title, being the most important bit of information, was
emboldened, while the font for the secondary information was made lighter
to accent the fact that it’s not as important. The margins between individual
rows of the table were also increased, and the striped background removed,
which made the table look cleaner.

The next issue was navigating to a lecture’s details page. In the old version,
to see detailed information about a lecture, users had to click the small eye
icon to the very right of the row of the lecture. This is not intuitive for two
reasons. First, lecture’s most important information is grouped to the left of
the screen (the guild and the title), but "View details" page is as far away
from that as it can be — on the right end of the screen. Second, which was

41

5.4. Bootstrap

figured out during the testing, is that users frequently try to click on the title
of the lecture to see the details. Both of these problems were fixed in the
new version: the "View details" button was removed altogether, and the title,
which is already the most prominent bit of information for each lecture, was
made to act as the only link to the lecture’s details page.

One more large improvement was the ability to filter lectures. Filtering is
composed of two interactive elements: first, lectures are visually separated
into four tabs according to their status; second, a large search bar was added
at the very top of the table. Initially, creating separate search bars for
lecture’s title, guild name, and lecturer’s name was considered. But with
the simplification of the table, it soon made no sense to have such granular
searching capabilities. Instead, the single present search bar will search across
all text fields that the lecture has. This is quite fast due to efficient filtering
implementation on the server, and allows the interface to remain as simple as
possible.

The improvements mentioned above, along with several other ones, led to
the following core ideas, which were adhered to (to the best of our ability) in
the design of the rest of the user interface:

- The interface is constrained to the middle of the screen — this
way, the user does not have to move their eyes across the whole screen.

- All lecture, user, or guild references are links — this allows users
to more easily move between pages, which provides a more pleasant
experience.

- Colors are kept to a minimum — most of the application is kept in
grayscale, which is easy on the eyes and keeps the application looking
clean. Limiting the use of color also makes the color that is present in
the interface more visible.

B 54 Bootstrap

The user interface required proper styling, however creating a custom CSS
solution from scratch was not within the scope of the project — this would
have taken a lot of additional time which could not be justified. Therefore,
the decision to use an external ready-to-use CSS library was made. And out
of all of the libraries which are currently available, Bootstrap is one of the
most well-known and robust, which is the reason for choosing it. The whole

42

5.4. Bootstrap

point of the library is to allow developers to quickly come up with a relatively
good-looking interfaces without having to write their own CSS (or, at least,
without having to write a large amount of it).

One of the problems which regular bootstrap does not solve is dynamic
interface elements, such as tab groups or date pickers. Because of this, an
additional smaller Angular Bootstrap library was also added, which, as is
probably evident from the name, works on integrating the core Bootstrap
library with Angular. This is exactly what provided us with templates for
some of the more complex Ul components, such as the aforementioned date
pickers and tabs.

43

Chapter 6

Security

Having discussed the problems that were solved during the implementation
of both the client and the server, the last large topic to talk about is the
security of the application. But before we do that, What does "security" even
mean in the context of a web application? To put it simply, it means that:

- Only the "good" users can access the application.

- Users which can have a limited set of actions they can do based on their
privileges.

- Finally, these actions are validated before they are executed.

This is of course not an exhaustive list of what "security" really means, but it
is the list of the problems which were focused during the project. The first
one is a problem of user authentication, the second — user authorization, and
the last — data validation. All of them will now be discussed in that same
order.

. 6.1 Token-based user authentication

How do you make sure that the incoming requests come from a trusted source?
This is the core of the problem of user authentication. The simple solution is

44

6.1. Token-based user authentication

to require all requests to have some sort of an "identity confirmation" attached
to them, which the server could validate and reject to serve the request if the
provided identity could not be verified. That sounds reasonable enough, and
indeed this is the way authentication usually works: clients attach a special
header or a cookie to their requests, which identifies them in a way that the
server understands.

The next question is how do new clients obtain the "identity confirmation"?
There are several true-and-tested approaches to this, ranging from very simple
ones such as basic HI'TP authentication to robust secure solutions such as
OAuth2.

During the first phase of development of the application, there was no
necessity to implement proper authentication[6], and therefore the first imple-
mentation used the simplest possible solution — basic HI'TP authentication.
The way it works is that the "identity confirmation" that the client must send
with each request is a username-password pair, which is base64 encoded. This
is far from ideal in terms of security — or, rather, this offers no security at all,
as base64 encoding is exactly that — encoding, not encryption. If a request
with basic HTTP authentication header is intercepted by an attacker, retriev-
ing client’s credentials is trivial — and, therefore, the concerns of security fall
entirely on having a secure communication channel between the client and
the server.

B 6.1.1 Stateful authentication

Basic HTTP authentication is, evidently, quite a sub-optimal solution. A
much better approach is token-based authentication. The core idea here is
that the client only has to send its credentials to a specific entry point of
the server at the beginning of the communication session. The server then
verifies their validity and, if they are valid, generates a unique key (commonly
referred to as a token), which it sends back to the client. Each subsequent
request that the client sends to the server must now contain the token. This
token is then verified by the server to check the identity of the request’s
sender.

The token could just be a sufficiently large random string of bytes, which
would be stored in the server’s memory (or, in some cases, in the underlying
database as well) with some additional data about which user this token
refers to. This is what is called stateful, or session-based, authentication —
because for each currently logged-in user, server has to save a little bit of

45

6.1. Token-based user authentication

information — their state (to put it another way, information about an ongoing
communication session is stored). One of the major benefits of session-based
authentication is that, if there’s any reason to stop trusting any particular
client, their session can be terminated immediately, effectively denying them
any access as if they were never authenticated.

Persisting information about users on the server has a drawback of memory
consumption scaling linearly with the amount of logged-in users. This is not
a problem for a small-scale application, such as ours, but due to personal
interest, an alternative solution was still sought.

Il Stateless authentication

The alternative solution arises from the idea of storing some user-related
data within the authentication token itself. If the server can safely store,
for example, client’s username and a list of privileges within the token, then
there is no need to save any information on the server. This kind of approach
is called stateless authentication.

Stateless authentication is the system that was chosen for this project, with
the main reasoning being, as already stated, the desire to experiment with
various authentication processes.

To securely store data within a token, some sort of encryption is necessary.
One of the currently widely used standards for these kinds of authentications
are JSON Web Tokens (JWT for short) [8]. A JWT is composed of three
parts: the header, which contains information about which algorithm was
used for encryption of the data, the payload, which is where server stores
client-related data, and the signature, which is used to verify that the JWT
has not been modified or tampered with.

In the application, JWTs are used as authentication tokens, and the payload
stores client’s username and database ID. After receiving a request with a
token, the server decrypts JWT, checks that it is valid, extracts client’s ID
and fetches their information from the database, and then confirms that
the client is authorized to do what they are trying to do. The process of
generating, encrypting and decrypting JWTs is beyond the scope of this
project, so a robust external library was used to manage JWTs.

46

6.2. User authorization

. 6.2 User authorization

After solving the problem of securely authenticating clients, the next problem
is to define which users can perform which operations. A natural way of
achieving that is grouping users into several categories and then assigning
access rights to these groups.

An alternative approach which is sometimes used in larger applications is
the inverse — instead of grouping users into separate categories, the actions
users can take are grouped into categories and then users are assigned a list
of categories of actions they are authorized to do. This was considered as
a potential solution, but ultimately disregarded as the small amount and
relative simplicity of access rights that had to be defined did not justify the
additional complications of solving authentication in this way.

Therefore, the users had to be divided into groups based on what they
could do with the application. The first separation (and the main one which
would be set in this way) is between ADMINs and USERs. The ADMIN category
represents a small subset of people who will be responsible for managing
the application’s internal workings. Users from the ADMIN category have
access to all endpoints and are allowed to perform any operations on the
application — frequently those people would simultaneously have access to
the application’s underlying database and the source code, so they would be
capable of fixing any problems which might arise during regular use of the
application. USERs, on the other hand, are the majority of expected users
of the application. These are regular employees, who can see only a subset
of publicly available lectures and guilds, suggest lectures, and manage only
their own lectures.

These two categories were implemented using Spring Security’s role man-
agement capabilities [4]. This allowed for a simple, coarse-grained definition
of which endpoints could be accessed only by admins, and which — by all
users.

The USER group, however, had to be further divided due to the existence
of an idea of a guild moderator. As mentioned in the beginning of this
document, each guild has a single representative person who is responsible for
managing their guild’s internal workings — organizing meetings for lectures
and discussions, having the final word on choosing the next subject — in short,
keeping the guild running. These users naturally will have to have more
access rights than just USERs, but less than ADMINs.

47

6.3. Data access based on user permissions

Creating a third MODERATOR category was considered first. However, as the
actual rights of moderators were being examined more closely, this proved to
be not a good enough solution: a guild manager must be capable of editing
details of their own guild, not of any guilds in general. This constraint cannot
be satisfied simply by saying that clients with the role of MODERATORs should
be able to edit guilds.

Instead, what was implemented was a custom finer-grained solution. Upon
confirming that a request to modify a guild is coming from a valid client,
the accessing user is further checked to be either an ADMIN or the guild’s
moderator. If the user is neither of those things, the request is denied with a
403 FORBIDDEN response.

To summarize, the application divides all users into two coarse-grained
categories of ADMINs and USERs, and then further divides USERs into
finer-grained guild moderators and regular users.

B 6.3 Data access based on user permissions

There is another facet to permission-based security than just the actions
the users can take. The kind of data they are able to retrieve in the form
of collections of resources or single resources is also determined by their
permissions.

This data access checking is done on the service layer of the server. A
good example would be the guilds, which as we have previously defined,
could either be be public or confidential. Confidential guilds should only be
visible to admins and users which are already a part of the guild. To do this,
the service class responsible for guilds does a quick check for exactly that:
whether the request is coming from an administrator or a member of the guild.
If it is, then the guild data is fetched, prepared, and returned to the client in
the usual fashion. Otherwise, the processing of the request is terminated and
an error response with 403 FORBIDDEN status code is returned to the client.

48

6.4. Ensuring data validity

B 64 Ensuring data validity

One last thing to keep in mind when talking about security is data validity.
The concept is simple enough — at any point in time we must be certain
that the data we are working with makes sense both from a universal point
of view (for example, a person must have a name), as well as within the
specific constraints of the business (for example, guilds can only have a single
manager).

Data which the application works with is checked for validity several times
in the different layers of the application:

1. First, the data which was input by the user is checked against a basic
set of rules on the client: a request is not permitted to be made if a
required field is missing. Using data-specific input fields also helps make
sure that, for example, date fields are properly formatted.

2. Upon receiving a request from the client, if it contains a body, that
body is mapped to an internal DTO and also checked for validity by the
server. This check is made automatically by Spring by processing the
Bean Validation annotations, which are used on DTO classes.

3. If everything looks valid so far, the next validation happens before
persisting entities to the database. This is, again, done using Bean
Validation annotations, only this time they are put on the internal
domain classes, and are therefore more detailed than the ones on DTOs.

4. Finally, there is an entirely separate isolated set of constraints which
are defined within the database itself, which check whether the data
that is about to be written into a table makes sense in terms of entity
relationships and all non-null fields.

B 65 Security in user interface

The most important part of the security is maintained by the server — if a
user is not authorized, they will not be able to request the data or perform
the actions they should not be able to. So the client’s role in the security is
more cosmetic than anything else: it only has to make sure that the user does
not see the controls (such as buttons or menu items) they aren’t authorized
to use, and that they cannot get to the pages they aren’t authorized to use.

49

6.5. Security in user interface

Guild Manager
sckend v0.0.1 - Frontend 001 - Changeog

Figure 6.1: The current state of the login page

The basis of the client-level security was implemented along with the
foundation of the client in the [6]. To give you a quick overview: the client
initially forbids access to any of the application’s pages to an unauthenticated
user, redirecting them to login instead, the example of which you can see
on Fig. 6.1 (which is done by intercepting any of the server’s responses and
catching any 401 UNAUTHORIZED status codes). There, the user can
authenticate themselves by providing their credentials. If the credentials
are valid and the server confirms user’s authentication, the current user’s
token is persisted to browser’s local storage and then used to authenticate
all of the further actions the user takes. This functionality resides in the
BasicHttpAuthInterceptor, whose purpose is to intercept any outgoing
requests and enrich them with the authentication header. Saving the token
to local storage also means that the user does not have to log in every time
they open a new tab or a new browser window. After successfully logging in,
they can access most of the client’s other pages (the access to individual ones
depends on the rights of the client).

Other than the login page, the only other security concern solved on the
client is the aforementioned hiding of controls which the user is not permitted
to see.

50

Chapter 7

Testing the application

During development, the application exists in an unstable state where features
are created and modified very rapidly. This naturally means that bugs are
also frequent and quite easy to introduce. This is a problem which can partly
be solved by good planning before the implementation of each new change,
however even that is liable to the human factor. Because of this, testing the
application continuously during development is imperative.

Testing in general is vast and muddy, so for the sake of this project we will
define two kinds of testing: automated testing, which is done by the computer,
and manual testing, which is done by real people. Ideally, we would want the
former type of testing to cover all of our needs — that way, we as developers
wouldn’t have to test anything by hand at all. Sadly, that is impossible,
as, for example, automatically testing user interface is a large and currently
unsolved problem. Nevertheless, we strive to make automated tests cover as
much of our application as possible — if we have a robust set of automated
tests, we can be reasonably certain that a new feature that we have just
added didn’t accidentally break half of the application.

Because of this, a suite of automated tests was created on the server, which
check that the basic functionality of the application works.

o1

7.1. Automated testing

B 7.1 Automated testing

Out of the two large separate parts of the application — the client and the
server — the server is much easier to test automatically. Testing the server
application is also devoid of the problem of testing graphical user interface,
which, as already mentioned, is very troublesome to automate. Because of
this, most of the automated tests were written for the server, while more
manual testing was done on the client.

Within the context of small-scale enterprise application, the automated
tests can be divided into two categories: unit tests and integration tests.

Unit tests are the simplest and most low-level of the two. Their goal is to
taste that a single particular "bit" of the application (called a unit) works as
expected. A single method or a group of methods which achieves a certain
goal are examples of what can be considered a unit. The great thing about
unit tests is that they are very cheap in terms of execution time — because
they test a very focused part of the application, the application itself doesn’t
need to be running during the tests, and indeed very frequently it’s enough
to just instantiate the class under test. Because of this, it makes sense to
have lost of unit tests and cover as much non-trivial application logic with
them as possible.

Integrated tests are more high-level than unit tests. The goal of an in-
tegration test is to verify that several parts of the application are working
together correctly and producing expected results. Within our application,
integration tests cover the entire workflow of the server getting a particular
request, processing it, and sending a response. However, these tests do not
test that every single part of the process is correct — if they did, they would
be enormous, very complex, and difficult to maintain. Instead, they verify
that, if a request is made under certain conditions, the server responds in
an expected way (for example, if a POST is made to create a guild, and the
authenticated user is not an administrator, then the request is rejected with
a 403 FORBIDDEN response status).

At the current stage, 54 automated integration tests were written using
the popular Java testing framework called JUnit: 16 check the correctness
of Lecture-related endpoints, 20 — Guild-related endpoints, 8 — Attachment-
related endpoints, 6 — user-related endpoints, 2 — meeting room-related
endpoints. 1 test was written to check that the server version endpoint works
as expected, and 1 test was written which checks that the application even
loads. This is 21 more than the after the first stage of the project, where there

52

7.2. Manual testing

were only 33 tests [6]. Initially, we expected that with the implementation of
the bulk of the business logic which happened during this project, unit tests
would naturally arise. However, it turned out that most of the business logic
was not complex and a lot of it was concerned with user permissions, which
are the domain of integration tests, so no unit tests were written. Given all
of that, it must be admitted that the currently existing suite of automated
tests does not cover all of the important logic, and it could do with some
improvement and enrichment. This section of the project will be improved
on in the future, but it will be done outside the scope of this project.

B 72 Manual testing

Manual testing, in contrast to automated testing, was done primarily on
the client, because this was the most straightforward way of testing the
application. Nevertheless, some manual testing was also done on the server
during the development of individual features.

Server-related manual testing took form of sending pre-made requests to
a running instance of the server and observing whether the responses were
correct. The bulk of such requests was done using an external application
called Postman, which provides the developers with the ability to create
ordered collections of HI'TP requests.

Just as after the first phase of the project, not automated speed tests were
written due to them not being of great importance to the working of the
application. Nevertheless, because the amount of logic firing for individual
endpoints has certainly increased since the first phase of the project, some
statistics were collected to see if any endpoints began returning responses
more slowly. For each comparison, both the old version and the new version
was tested by sequentially sending 100 requests (each requesting only 10 of
their respective resource i.e. 10 lectures or 10 guilds) to a running instance
of the server. The comparison also does not include the resources which were
not created during the semestral project:

1st phase Current state
Lectures 97ms 319ms
Guilds 120ms 140ms
Users 36ms 79ms

As can be seen, there has been an increase in the response times all across
the board. This is to be expected — the size of the returned entities has

53

7.2. Manual testing

increased as more of their functionality was implemented. The original
estimation was that all response times would be kept within 100-200ms, and
only getting all lectures has crossed that threshold. It is slightly noticeable
in the user interface, however it hasn’t had as bad an impact on the usability
as originally expected, and therefore was not yet dealt with. A potential
solution, which will be implemented at a later point in time, is to limit the
fields which are returned by the endpoints only to those necessary to the
client (or to allow the clients themselves to send a list of the fields they need).

The manual testing on the client involved going through the user interface
and interacting with it in a way that a regular user might interact with it.
This meant checking that, for example the login page works correctly, all of
the links between pages redirect users to correct pages, and all components
render properly. This kind of testing does not provide a lot of insight, but
rather simply validates that the application is working as expected.

The other kind of manual testing involved giving other users the unfinished
version of the application. This has been done sporadically, but it has
nevertheless proven to be insightful, particularly in terms of the usability of
the interface — for example, as discussed in section |5.3.1, it showcased the
fact that users were much more inclined to click on the names of users, titles
of guilds and titles of lectures to try to see more information about them.
Because of this, the separate "view details" links were deprecated and titles
were made into hyperlinks themselves.

o4

Chapter 8

Conclusion

This short chapter, will give a high level overview of the project’s goals,
of what was achieved and what was not, and attempt to give reasonable
judgment to the results.

The inspiration for this project was taken from the internal practices of the
company called Quanti s.r.o., where employees are teaching each-other in the
form of presentations within thematic groups called "guilds". The moderators
of these guilds — the people responsible for managing individual lectures and
keeping the guilds running — were primarily using ad hoc solutions to do their
job. This made the process of moderating the guilds somewhat cumbersome
and time-consuming. This project has set out to attempt to fix that.

First, the existing Learning Management Systems were analyzed to see
whether none of them would be a right enough fit for the problem and whether
it was not solved by somebody else beforehand. Four existing E-learning
solutions were analyzed: Moodle, OpenOLAT, Canvas, and Sakai. The
conclusion was that none of them fit the exact requirements this problem
had.

After determining that, a custom solution was designed and built. The
solution consisted of two separate applications: the client, written in Angular,
and the server, implemented in Java and leaning heavily onto the family of
Spring libraries. The bulk of the work which was done during the project
was the implementation of these two applications. Their foundations were
created as a part of the semstral project which preceded this project [6]. This
project built on top of that foundation and:

55

8. Conclusion

- Implemented the bulk of the business logic on the server, such as the
complex filtering of lectures and their management.

- Improved the security of the project by switching to a token-based
authentication and enriching the access rights of various users

- Integrated the application with several other applications widely used
within software development companies: LDAP, Git.

- Redesigned the bulky UI which was previously implemented and made
it much more user-friendly

The project’s main goal was the creation of the application which covered
suggesting, managing, and archiving lectures along with their main relevant
information: the presentation files, text notes, and external links. The
application also had to be a repository of all of the existing lectures, so that
users could have quick access to them. From this point of view, the project
had met its main goal.

For testing purposes, the project has also been deployed to the test server
within the company’s internal network. Initially it was planned that it would
also be deployed to the production server, however due to the unexpected
situation with global pandemic, this was postponed to a date which falls after
the conclusion of this project.

Initially, it was expected that a system for voting on lectures would be
necessary. However, as more lectures were held within the company, it became
evident that most of the decision-making for future lectures happened at
the end of other lectures via verbal communication between the employees.
Therefore, the initial plans for the voting system were discarded and a simpler
system of Suggestions was implemented.

In conclusion, the project has achieved the main goals it had set out to
achieve. The produced application, while not finished, is capable of archiving
lectures, allowing access to them to different sets of users, and managing
suggestions for future lectures. Despite the slight shortcomings, such as the
delayed deployment, it is considered to be successful.

56

Chapter 9

Potential improvements

The application has reached a stable state. There are, however, several ways
it could be developed further to encompass more of the user’s needs and make
it more convenient. One of the potential improvements is designing a way to
handle large video files. One of the changes in the workings of guild lectures,
which happened during this project, was that they began being recorded
for archiving purposes. These recordings, after being processed, can weigh
up to several gigabytes, which is far too large to handle with the currently
implemented system of Attachments, and therefore the video recordings were
not in the list of the initial features the application had to have.

Another potential improvement would be to integrate the notification
system with Slack — a chat system which is widely used in software engineering
companies. This may make for a less intrusive, lighter alternative for email
notifications, although further testing would be required to decide whether
that is the case.

A slightly less interesting, but certainly no less important improvement
would be to write proper documentation for the server’s web API. Or, as
a more robust alternative, to have the documentation be automatically
generated from the source code. Auto-generated documentation is a fairly
well-established concept, and there are several tools which could be used to
achieve that.

To summarize, there is definitely room for improvement of the application,
however it falls outside the scope of this project.

o7

Bibliography

[1] Nicholas S. Williams (2014) Professional Java for Web Applications, John
Wiley and Sons

[2] Craig Walls (2011) Spring in Action, Manning, Edition 3

[3] Gierke, Darimont, Strobl, Paluch, Bryant (2019) Spring Data JPA
Documentation, Online, available at:
https://docs.spring.io/spring-data/jpa/docs/2.2.3. RELEASE /reference/html/#reference

[4] Alex et al. (2019) Spring Security Documentation, Online, available at:
https://docs.spring.io/spring-security/site/docs/5.2.1. RELEASE /reference /htmlsingle

[5] Fielding, Roy Thomas (2000) Architectural Styles and the Design of
Network-based Software Architectures, Doctoral dissertation, University
of California, Irvine. Online, available at:
https:/ /www.ics.uci.edu/fielding /pubs/dissertation /top.htm

[6] Tsimafei Raro (2020) Application for managing professional learning,
Semestral project, Czech technical university in Prague

[7] Simon Josefsson (2006) The Basel6, Base32, and Base64 Data Encodings,
Online, available at:
https://tools.ietf.org/html/rfc4648

[8] Jones, et al. (2015) JSON Web Token (JWT), Online, available at:
https://tools.ietf.org/html/rfc7519

o8

	Introduction
	Preface
	The problem

	Analysis of existing Learning Management Systems
	Research conclusion

	Technical specification of the project
	Technology stack
	Domain of the problem
	The domain

	Architecture
	Three-tier architecture
	Layered approach to server architecture
	Client – component-based architecture
	Data storage

	Server implementation
	Implementing layered architecture
	REST-like API
	Controller layer as the implementation of the API
	Exposing data via JSON endpoints
	CRUD operations for domain entities
	Error handling

	Business logic
	Complex entity filtering
	Managing lectures
	Giving feedback on lectures
	Attachments and file persistence

	Integration
	LDAP – user authentication
	Git – application versioning via tags
	Email notifications
	Faking integration for development purposes

	Client implementation
	Component-based architecture
	Consuming server's API
	User interface
	Design philosophy – Ease of use

	Bootstrap

	Security
	Token-based user authentication
	Stateful authentication

	User authorization
	Data access based on user permissions
	Ensuring data validity
	Security in user interface

	Testing the application
	Automated testing
	Manual testing

	Conclusion
	Potential improvements
	Bibliography

