
bachelor’s thesis

Design and prototype implementation of a
module for graphical representation of data

flow parser

Yehor Petukhov

May 2020

Ing. Michal Valenta, Ph.D.

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Computer

Graphics and Interaction

Acknowledgement
I want to thank Michal Valenta for the help and support provided while writing this
work. I also want to thank the people who spent their time helping me with their
expert opinion - Petr Kosvanec and Yauheniy Buldyk. Furthermore, the main thanks
to my family, which always supported me.

Declaration
I hereby declare that I have authored this thesis independently, and that all sources used
are declared in accordance with the “Metodický pokyn o etické přípravě vysokoškolských
závěrečných prací".

I acknowledge that my thesis (work) is subject to the rights and obligations arising
from Act No. 121/2000 Coll., on Copyright and Rights Related to Copyright and on
Amendments to Certain Laws (the Copyright Act), as amended, (hereinafter as the
“Copyright Act"), in particular § 35, and § 60 of the Copyright Act governing the
school work.

With respect to the computer programs that are part of my thesis (work) and with
respect to all documentation related to the computer programs (“software"), in accor-
dance with Article 2373 of the Act No. 89/2012 Coll., the Civil Code, I hereby grant
a nonexclusive and irrevocable authorisation (license) to use this software, to any and
all persons that wish to use the software. Such persons are entitled to use the software
in any way without any limitations (including use for-profit purposes). This license is
not limited in terms of time, location and quantity, is granted free of charge, and also
covers the right to alter or modify the software, combine it with another work, and/or
include the software in a collective work.

v

Abstract
Jak sledovat veškerý tok dat v obrovském množství dat? Pro tento účel existuje speciální
software, například Manta Flow. Účelem této práce je implementace nového modulu pro
software Manta Flow, který je zaměřen na analýzu reportovací platformy MicroStra-
tegy a tvorbu grafů představujících datové toky uvnitř ní. Druhou částí této práce je
vytvoření funkčního prototypu nástroje s uživatelským rozhraním na základě zkuše-
ností získaných při vývoji analyzátoru. Nástroj musí zjednodušit budoucí proces vývoje
nových modulů. V poslední části práce musí být ověřena použitelnost nástrojů.

Klíčová slova
Tok dat, uživatelské rozhraní, vývojářské nástroje, Manta

vi

Abstract
How to track all data flow in a massive amount of data? There is a special software
for this, for example, Manta Flow. The purpose of this thesis is to implement a new
module for Manta Flow software, which is aimed to analyze MicroStrategy reporting
platform and produce graphs representing data flows inside of it. The second part of
this work is to create a functional prototype of a tool with a user interface, based on
the experience gained in the development of the analyzer. It must simplify the future
process of new module development. As a last part of the work, tool usability must be
verified with domain experts.

Keywords
Data flow, user interface, developer tools, Manta

vii

Contents

1 Introduction 1
1.1 Goal definition . 1
1.2 Plan . 2

2 Used technologies 3
2.1 Data flow parser . 3

2.1.1 Java . 3
2.1.2 Maven . 3
2.1.3 JUnit . 3
2.1.4 JavaDoc . 3
2.1.5 Spring . 3
2.1.6 Git . 3
2.1.7 Intellij IDEA . 4
2.1.8 Postman . 4

2.2 Graphical tool . 5
2.2.1 TypeScript . 5
2.2.2 React . 5
2.2.3 React-diagrams . 5
2.2.4 Blueprint JS . 5
2.2.5 Webpack . 5
2.2.6 Git . 5
2.2.7 Visual Code . 5

3 MicroStrategy Analysis 6
3.1 MicroStrategy Full Platform [7] . 6
3.2 MicroStrategy Desktop . 7
3.3 MicroStrategy REST API [8] . 7
3.4 MicroStrategy artifacts . 8

4 Data flow parser implementation 10
4.1 Extractor . 11
4.2 Resolver . 12
4.3 Generator . 13
4.4 Conclusion after implementing Data flow parser 14

5 Dev-Viewer analysis 15
5.1 Requirements . 16
5.2 Graphical representation . 17

6 Dev-Viewer implementation 20
6.1 Architecture . 20
6.2 file processing . 22
6.3 SubGraphBuilder . 23
6.4 Final result . 24

7 Usability testing 25

8 Conclusion 26

viii

Bibliography 27

ix

Abbreviations
REST REpresentational state transfer

API Application programming interface

HTTP Hypertext Transfer Protocol

URL Uniform Resource Locator

HTML Hypertext Markup Language

JS JavaScript

UI User interface

UX User Experience

SDK Software development kit

ETL Extract, transform, load

MVC Model–view–controller

CSV Comma-separated values

XML Extensible Markup Language

JSON JavaScript Object Notation

OLAP Online analytical processing

DOT Graph description language

CLI Command-line interface

ID Identifier

OBIEE Oracle Business Intelligence Suite Enterprise Edition

x

1 Introduction
Nowadays, data is one of the essential resources, especially for companies of all sizes.
We process data, create it, store, and spend a massive amount of money on protecting
it from competitors. In this project, we will focus on data analysis.[1]

Based on data analysis, companies can get information about business direction,
employers statistics, and much more internal and external stuff. With introducing big-
data, things are getting even more interesting. But there is one crucial problem - it
is beyond human capabilities to process such an amount of data, especially if we need
speed and accuracy. One solution is to use particular tools that can transform raw data
into human-readable form, e.g., table, graph, diagram. This sort of software is called
“reporting tools” and used to analyze internal and external data to make business de-
cisions. It is mostly used by business analytics, to save time and be more productive
by visualizing data.[2]

There are various products to choose from (Oracle Business Intelligence Suite En-
terprise Edition (OBIEE), Cognos, Tableau), but we will focus on the MicroStrategy
platform. This powerful instrument, among other functionalities, provides data analyz-
ing. But there is a common omission in this software segment. There is no possibility
to ensure data correctness and track all data flows, from sources to the final report.

This is what Manta’s software does. Application process data flow in many reporting
tools by extracting metadata, analyzing, and preparing visual output in the form of a
graph in their application. There is a separate module for every tool that is supported
by Manta Flow since the internal structure of all reporting tools is almost unique. It
means that a programmer every time should precisely map extracted metadata struc-
ture to internal graph structure while writing a module for new technology, to be able
to work with data in Manta Flow. Because of complicated architecture, this process is
somewhat entangled. This is the primary problem that will be solved in this project.

1.1 Goal definition
The main goal of this project is to design and implement a functional prototype of a
module for data extraction and analysis to expand Manta Flow software. Prototype
functionality must provide the possibility to process data from MicroStrategy tool and
generate a graph that will show all data flows between data sources and MicroStrategy’s
final result. As a key detail, the module must be tested and documented like a regular
software project.

After getting experience with writing this type of software, and analyzing existing
help tools that are used by programmers, discuss the result of analysis with domain
experts, design a prototype of the tool that will provide useful features to help the de-
velopment process. The tool with User interface (UI) must fulfill requirements, which

1

1 Introduction

will be defined by experts (users). It can be a replacement for existing tools or a com-
pletely new instrument.

1.2 Plan
∙ Get used to the MicroStrategy platform to understand all key features and capabilities

of the software. Document expected behavior and possible artifacts. Dissect software
endpoints, to find out a way to get all needed information from the platform.

∙ Implement the main Manta Flow module. It consists of Extractor, Resolver, Model,
Generator, Analyzers. Will be described later in detail.

∙ Analyze the existing environment and design the prototype of a new tool.

∙ Verify that a new tool solves a problem, described by domain experts.

∙ Make conclusions about future work.

2

2 Used technologies

2.1 Data flow parser

2.1.1 Java

Java is an object-oriented, class-based language that is platform-independent and can
be run on any platform that supports Java Virtual Machine. Java is commonly used in
various projects for both Desktop and Web, target platforms. Manta Flow is written
in Java, and because of it, a new module for MicroStrategy also will be done in this
language. The reader doesn’t need to have a good knowledge of Java, to understand
everything described in this work.[3]

2.1.2 Maven

Maven is a build automation tool used for Java projects. Will be used to automate
build scenarios, manage libraries and artifacts.[4]

2.1.3 JUnit

JUnit is a framework intended for unit testing in Java projects. Together with Maven
will ensure quality automatic testing.

2.1.4 JavaDoc

JavaDoc is a documentation generator for generating Application programming inter-
face (API) documentation in Hypertext Markup Language (HTML) format from Java
source code.[5]

2.1.5 Spring

Spring is an application framework and inversion of control containers for the Java
platform. It used to benefit from the capabilities of Spring Bean.

2.1.6 Git

Git a primary version-control system for tracking changes in source code during soft-
ware development.

3

2 Used technologies

2.1.7 Intellij IDEA
Intellij IDEA is an integrated development environment for developing Java software.
Free Community edition will be used.

2.1.8 Postman
Postman is an API client tool that helps to test the APIs. It makes it possible to test
the same request against different environments with environment-specific variables. It
is used to find and test MicroStrategy REpresentational state transfer (REST) points.

4

2.2 Graphical tool

2.2 Graphical tool
2.2.1 TypeScript
TypeScript is an open-source programming language. It is a strict syntactical superset
of JavaScript and adds static typing to the language. Language is designed for the devel-
opment of all-size projects and transcompiles to JavaScript, which means that existing
JavaScript programs are also valid TypeScript programs. Such a choice is explained by
the fact that static typing makes JavaScript closer to traditional to us languages, such
as C, C++, C#, and Java.[6]

2.2.2 React
React is a JavaScript library for building user interfaces. Chosen because this is one of
the most popular frameworks for this purpose, is greatly documented and maintained
by a big company (Facebook), which means that React is relevant and will be supported
for some time. One of the most significant advantages is that it has a low entry-level.

2.2.3 React-diagrams
React-diagrams is an open-source TypeScript library for building interactive diagrams.
React-diagrams offers many advanced features for user interactivity such as drag-and-
drop, copy-and-paste, in-place text editing, context menus, data binding and models,
event handlers, commands, and customizable animations.

2.2.4 Blueprint JS
Blueprint JS is a React-based UI toolkit for the web. Used for faster and easier web de-
velopment, allowing building graceful user interfaces. Lightweight and straightforward
to use.

2.2.5 Webpack
Webpack is an open-source JavaScript and TypeScript module bundler.

2.2.6 Git
Git a primary version-control system for tracking changes in source code during soft-
ware development.

2.2.7 Visual Code
Visual Code is a development environment, among other things, used for JavaScript
and TypeScript development.

5

3 MicroStrategy Analysis

MicroStrategy platform consists of two main components that will be described on the
next pages. We will also analyze the REST API and platform artifacts.

3.1 MicroStrategy Full Platform [7]

MicroStrategy Full Platform - architecture consists of four main elements: Metadata,
Warehouse, Intelligence Server, and Web Server. It is the basis without which the
full-fledged work of the program is impossible.

∙ Warehouse - database which contains the information that users work with,
some sort of internal disk. E.g. Comma-separated values (CSV), Extensible
Markup Language (XML), JavaScript Object Notation (JSON), data extracted
from databases etc. This information is usually placed or loaded in the data
warehouse using some sort of (Extract, transform, load (ETL)) process.

∙ Metadata - is a repository that stores MicroStrategy object definition and Warehouse
data usage information. The metadata allows the sharing of objects inside of the
MicroStrategy environment. All data are stored in a proprietary format.

∙ MicroStrategy Intelligence Server - analytical server optimized for Online
analytical processing (OLAP) analysis, which performs such important functions
as executing reports, dossiers, and documents against the data warehouse, objects,
and data sharing, objects management. Makes all calculations, works with data.
All data is saved as a path to the data source or stored in special cubes. A data
cube is a multi-dimensional array of values used to represent data. The server
provides Software development kit (SDK) and a rich collection of REST points
(as a separate MicroStrategy REST Server), that is ideal for our purpose.

∙ MicroStrategy REST Server - consumes the incoming Hypertext Transfer Pro-
tocol (HTTP) request, converts it into an XML command and passes the XML
command to the Intelligence Server that generates the requested results, and
passes them back to the MicroStrategy REST Server.

∙ Web Server - service that provides users with an interactive environment to access
and analyze data via web-browser, view file system on the server.

6

3.2 MicroStrategy Desktop

Figure 3.1 A simplified version of MicroStrategy architecture

3.2 MicroStrategy Desktop

MicroStrategy Desktop is a free desktop application that is created to get experience
with the product without additional configuration. It is simple to install and use. It
doesn’t have any dependencies. It also includes all common user features. Allows cre-
ating three types of data analysis: Report, Document, Dossier (3.4). MicroStrategy
Desktop supports export to all popular formats (e.g., pdf, png, CSV, etc.). It doesn’t
provide any endpoints. A perfect solution for regular users, but doesn’t fit devel-
oper requirements. However, it can work both independently and directly with the
Intelligence Server, as a replacement for Web Server.

3.3 MicroStrategy REST API [8]

MicroStrategy API is a RESTful application that provides a way to extract all data
related to dataflow that will be analyzed, from Metadata and Warehouse. Data is re-
turned as a response to an HTTP request, in the form of JSON. This will allow us
to extract data without interfering with the internal structure of the program. Such a
process can be done via multiple API families - groups of the related access points (Au-
thentication, Browsing, etc.). In the scope of the analyzer prototype, we are interested
in the next families:

∙ Authentication API - authenticate a user and returns an authorization token
(X-MSTR-AuthToken), which will be included in future requests.

∙ Projects API - return a list of all project Identifier (ID)s, which we have access
to.

∙ Browsing API - after providing authorization token and project ID, return a list
of file IDs stored in this project, and matching search filter.

∙ Dossiers and Documents API - return high-level specification of dossier / doc-
ument without any data. Also, allow getting cube IDs related to any dossier /
document.

∙ Cubes API - return specified cube raw data without direct formatting.

7

3 MicroStrategy Analysis

3.4 MicroStrategy artifacts

In MicroStrategy Desktop and MicroStrategy Web can be created three primary
sorts of objects:

∙ Report – is a MicroStrategy object that represents a request for a specific set
of formatted data from your data source. In its most basic form it consists of
two-part:

– A report template, which is the underlying structure of the report.

– The report-related objects are placed on the template, such as attributes,
metrics, filters, and prompts.

It is the most basic object that can be created, has a relatively simple structure,
and allows us to show only one unit of data at a time. It doesn’t have any
interactive features, can only display or export simple data visualization.[9]

∙ Document – contains objects representing data coming from one or more MicroS-
trategy reports, as well as images and shapes. Documents can appear in many
ways and are generally formatted to suit business needs. A sample document is
displayed on the right.Because a document consists of more reports, it provides
a possibility to create various, complex data visualizations.[10]

∙ Dossier - is the most powerful interactive display that you can create to showcase
and explore data. It is possible to add simple visual representations of the data
(called visualizations) to the dossier to make the data easier to interpret, perform
manipulations on the data to customize which information to display, organize
data into multiple sheets and pages to provide a logical flow to the dossier. Allows
quickly and easily create a polished dossier without requiring a lot of design time
using visualizations and predefined formatting.[11] Example dossier on Figure 3.3

Figure 3.2 Dossier editor

8

3.4 MicroStrategy artifacts

Figure 3.3 Dossier example1

1Source: https://www.microstrategy.com/us/resources/library/dossiers

9

https://www.microstrategy.com/us/resources/library/dossiers

4 Data flow parser implementation

After learning existing Manta Connectors and documentation, it has been found that
to visualize the data flow of the MicroStrategy platform, the data flow parser must go
through the following steps:

1. Analyze the entire MicroStrategy file system and find all objects that are impor-
tant for data flow analysis.

2. Download these objects and save them on disk as files.

3. Load the files from the disk and analyze them.

4. Create a Model(4.2) of Java objects that will represent and describe the analyzed
file system.

5. Create a graph from the Model(4.2), which will be used for visualizing data flows.

The whole module is divided into three main parts, each performing its tasks. The
Extractor(5.1) is responsible for the 1st and 2nd steps, the Resolver(4.2) takes care
of the 4th and 5th steps, and the last step is a task of the Generator(4.3).

The connector is made in such a way each part of the parser is an independent func-
tional unit, which is able to operate without others. So it allows us to implement each
part of the module separately and test it before completing the overall prototype.

Such architecture also allows clients to avoid using Extractor(5.1) in the client en-
vironment if it contains sensitive data, or it is a highly insulated system. In this case,
artifacts of Extractor(5.1) run must be prepared manually, to ensure the operation of
further components.

Orchestration of all these parts is done via scripts and Spring, from the Manta CLI
program (4.3).

Figure 4.1 Data flow parser structure

10

4.1 Extractor

4.1 Extractor
The main goal of the Extractor is to download all necessary files from the MicroStrat-
egy server and save them on the disk.

We can get all objects in the form of JSON using the available REST API and Apache
HTTP library. Used REST points were described above (3.3), and because of the risk
of unexpected updates from MicroStrategy, it is important to keep this part of the
project highly extendable and flexible. With this idea in mind, was created a structure
where each key element (dossier, document, cube, etc.) has its own ElementWorker
and ElementRequestManager.

∙ ElementWorker - contains the main logic of element processing and order of REST
requests that must be called.

∙ ElementRequestManager - provides simple methods that execute predefined API
requests and return JSON answers from MicroStrategy Intelligence Server.
Also extends AbstractManager, that grants access to unified authorization method.
All authorization credentials are passed in the form of a configuration file (Uniform
Resource Locator (URL), username, password).

After receiving all data we can store them on a hard-disk as a file, but this Manta
Connector is designed to serve as a corporate solution, it will process vast amounts of
data, so it is necessary to use some space optimization to avoid writing gigabytes of
data to disk.

In the future dataflow, we will not need raw data, it is enough to have their “defini-
tion” or “specification”. Accordingly, we can save a lot of space by removing redundant
information from JSON. To achieve this was used Jackson - JSON processor for Java
that allows working with JSON as with simple Java objects. After deleting unnecessary
data, we proceed to save the rest.

Using JSON, we deserialize Java classes into regular text and store reports, docu-
ments, dossiers, and data sources as files in a file system.

The result of the Extractor work is a directory, which contains files with metadata of
MicroStrategy objects. This directory and files are used as input for the Resolver(4.2).

11

4 Data flow parser implementation

4.2 Resolver
Resolver module contains three main parts:

∙ The first one is the Input Reader, that reads a raw data from the disk.

∙ The second part is the Model, which represents a collection of Java interfaces used
for a detailed description of objects needed for data flow visualization.

∙ And the last part is Resolver itself, which is just an implementation of Model’s
interfaces.

Input Reader - actually consists of two readers - SequenceFileReader and
DiscreteFileReader:

∙ SequenceFileReader consumes text data from the file system, but because of the
pretty complex relationship between extracted data - we look only for dossier(3.4)
and document(3.4) definition for now. Each found definition we pass to the
Resolver.

∙ DiscreteFileReader - takes the path to a file as an input parameter, reads data,
and passes it to the Resolver. A key feature of this reader is a cache that allows
reading less from disk, considering that one file can be requested many times.

The main difference from the first reader is that DiscreteFileReader is an iterative
reader, whereas DiscreteFileReader looks for an exact file. This is used later in the
Generator.

Resolver - main logic of this part is to take the input file and, according to its type,
maps it to appropriate Model, using a complex system of constructors in Model imple-
mentation.

Model – is a bunch of interfaces and implementations reflecting an internal represen-
tation of extracted data. Only the Model is used in the Generator as an API to access
data. So we separate interfaces and their implementations to increase encapsulation
and sustainability of the code.

So as a result of this module run, we have a model of java objects representing real
objects from the MicroStrategy server, which can be used for generating an output
graph of data flow.

12

4.3 Generator

4.3 Generator
The last part of the parser is the Generator, whose sole task is mapping java objects
from Resolver(4.2) to nodes of the data flow graph. To configure and run this module
Spring framework and configuration files are used. Resolver(4.2) is passed as a pa-
rameter to the Generator to use both provided readers (described above 4.2). Firstly,
the algorithm maps objects returned by SequenceFileReader to nodes of Manta Flow
visualization. After this is done, it pulls out all the data about the relationships with
the data sources (cubes) and asks for these objects from DiscreteFileReader. The
received object is also mapped to nodes and merged with an existing graph.

Mapping to nodes is on special classes - Analyzers - that analyze input objects, create
corresponding nodes in the graph, and add data flows between them. The Generator
also uses different existing services for building different parts of the graph (e.g., data
flow of a database used as a data source in some report) and then connect them all
together. Analyzers also use the help class MicroStrategyGraphHelper. This class is
used to build the resulting graph and keep its current version during creation. Probably
the most important and used method in this class is buildNode, which can build and
place a node to the right place in the existing graph, based on an input object of type
MicroStrategyItem.

At the same time, this method recursively creates all ancestors of the node up to
the root. That means that we can send to the buildNode method only the leaves of
MicroStrategyItem without worrying about its hierarchy. This approach allows us to
implement a smart process of adding nodes to graph, it takes care of already existing
nodes and adds only missing part.

In the end, we have the output graph, which consists of nodes and flows between
them, and represents the whole data flow from data sources to report items of each
object from the MicroStrategy server. As a next step, we send this graph to Manta
CLI, which will visualize it with many applied filters. This graph is the most important
thing for our future tool and is the definition of done for data flow parser.

Manta CLI - is a set of scripts and scenarios that serves as an interlayer between the
connector and Manta visualization. It accepts configuration files, invokes the Spring
context, and decides whether to call only Generator or first call the Extractor(5.1).
CLI is also responsible for passing the resulting graph from Generator to sisualization.
This part of the workflow is already done in MicroStrategy and is just a target for
connector integration.

13

4 Data flow parser implementation

4.4 Conclusion after implementing Data flow parser
The main aim of this part of work is to design and implement a functional prototype
of a data flow parser for analyzing and processing MicroStrategy data streams

∙ to get into the working process, implement complex software adhering to all the
rules of writing high-quality product.

∙ to be able to investigate and propose a tool with a user-friendly user interface
that will simplify the future process of writing data flow parsers in Manta.

As a result, analysis of the MicroStrategy reporting tool was conducted and examined
the existing possibilities of processing its objects. Based on the analysis, was designed
and implemented a module that can download specific MicroStrategy documents from
the server, then process them and convert them into a Java model, from which it is easy
to generate a graph to visualize data flows (Figure 4.2). The codebase is covered with
automated tests and javadocs. The project was also manually tested and successfully
integrated into the Manta Flow product.

Some statistics:

∙ 4958 lines of Java code

∙ 606 lines of XML

∙ 90 classes

What was not done yet, but will be added in the future:

∙ Support for all types of MicroStrategy objects, such as Document and Report.

∙ Support of a database as a data source.

Figure 4.2 Example of MicroStrategy data flow parser in Manta Flow

14

5 Dev-Viewer analysis

After implementing a functional prototype of a Manta Connector (4) and having a con-
versation with domain experts, it was decided that the most necessary tool with user
interface (further just a “Dev-Viewer”) is a replacement for the archaic Graphviz pro-
gram. There are a bunch of needed features that can simplify the development process.

Graphviz is a package of open-source tools for drawing graphs specified in Graph
description language (DOT) language scripts. It also provides libraries for software
applications to use as the plug-in tool.

There is a special script in the Manta Flow project, that takes the Manta’s inter-
nal representation of data, extracted from a reporting tool (e.g., MicroStrategy) and
converts it to DOT language. After that, a new DOT language script is saved to the
file system as a regular file. Finally, Graphviz consumes this file to produce an image
of a graph, representing the original Manta Flows internal data structure. This whole
complex process is done just to verify manually that mapping of extracted data to in-
ternal representation is correct. This can be done dozens of times per day, and this
only exacerbates the complexity of the process. Even though the complexity, the result
is not suitable for comfortable work, it is just static, not interactive image, quite often
with a poor scale. Example of DOT language (5.1) and a Graphviz result image (5.2).

Eventually, it was decided to create a lightweight application that will replace out-
dated Graphviz. The reason for writing the whole data flow analyzer is to find a problem
and come to the right User Experience (UX) design for this tool, through getting real
experience.

Figure 5.1 Example of dot format

Figure 5.2 Example of how Graphviz displays dot file

15

5 Dev-Viewer analysis

5.1 Requirements
To find the right design and implement meaningful functionality, it is necessary to de-
fine requirements and definition of done. It was decided that a new graphical tool must
visualize the interstate of Generator(4.3) run, using an already existing mechanism of
export to DOT file. This interstate is actually a graph that represents flows of data
inside of some environment, for example, MicroStrategy.

After several rounds of discussions with a manager, and developers that are interested
in this sort of software, the following requirements were established:

∙ Dev-Viewer must be an application that does not need any installation or config-
uration. This can be solved by using a web solution - an application that runs in
a browser.

∙ Dev-Viewer must provide a human-readable format of data representation, and
high interactivity will help solve this problem.

∙ Display all available data without any filtration due to the fact that it is a de-
velopment tool, and it is important for debugging, even if Manta Flow hides this
information.

∙ Feature of filtering visualization by node type, but this must be disabled by
default.

∙ Search feature that will find a node by name.

∙ Export to the image, to maintain old functionality.

The appearance of Dev-Viewer and the rest features were not defined, freedom of
choice was granted, because of experience that was gained earlier during the creation
of data flow parser.

16

5.2 Graphical representation

5.2 Graphical representation
After determining the requirements, work on visualization was started. Many visual-
ization options have been tried, to come up with a correct representation of a graph
that is a file system structure with connections between files, and additional attributes.

Examples of tested visualizations 5.3, 5.4, 5.5.

Figure 5.3 Tree1

Figure 5.4 Graph2

Figure 5.5 Tree map3

3Source: https://gojs.net/latest/samples/incrementalTree.html
3Source: https://gojs.net/latest/samples/distances.html
3Source: https://gojs.net/latest/samples/treeMapper.html

17

https://gojs.net/latest/samples/incrementalTree.html
https://gojs.net/latest/samples/distances.html
https://gojs.net/latest/samples/treeMapper.html

5 Dev-Viewer analysis

There are two ways to implement graph visualization.

∙ Write new library for displaying data structures in JavaScript or TypeScript. This
is the right approach if you have the experience of developing web applications
and are familiar with these languages. This will allow fitting all requirements
perfectly but will take significantly more time and probably will go beyond the
scope of this work.

∙ Use an existing solution that best suits the required functionality. This way has
several disadvantages and limitations. For example, it must be open source to be
used in business and ensure that this solution is safe. Also, this library must have
at least some maintenance with documentation provided. The existing solution
will save a lot of time and allow to start work on Dev-Viewer immediately without
further delay, but the price is a higher time of adding new features in the future
because the core of the library must be updated to provide expected functionality.

Because of the lack of experience with this type of development, it was decided that
the second option is more suitable in current work. After little research was finally found
a library that fits best - “react-diagrams v6.1.1”. It is used to create customizable ori-
entated diagrams simply. Unfortunately, it does not support nested nodes, which are
great for file structure representation, but this can be solved by using a descending
structure with the right offset.

Figure 5.6 Simple example of react-diagrams functionality4

The best solution that was found to display the graph, taking into account the se-
lected technologies, is to split the graph based on the relationships between the leaves
(Element 5.7). It allows us to keep the visualization clean and readable. This idea
is already used in Manta visualization, which is good, this will maintain consistency
between the final product and developer tool.

4Source: http://projectstorm.cloud/react-diagrams/

18

http://projectstorm.cloud/react-diagrams/

5.2 Graphical representation

Figure 5.7 Example of graph representation

19

6 Dev-Viewer implementation

6.1 Architecture

For Dev-Viewer implementation was selected TypeScript because it provides static-
typing and selected react-diagrams library is also written in this language. To work
with UI was selected React framework for simplicity and maintainability.

There are multiple popular architectures intended for this technology stack, such as
Model–view–controller (MVC) and Flux.

∙ MVC - is a great classic software design pattern that divides user interface from
the data model, has the ability to provide multiple views, has better code mainte-
nance. However, it has the following disadvantages: an increased complex setup
process, changes in the model or controller force us to rework almost the whole
project.

∙ Flux - is an advanced MVC design pattern, designed to be used in React ap-
plications. Compared with the MVC, it has a more complex structure and the
connection is unidirectional instead of bidirectional.

Based on this information was selected a simplified version of MVC architecture,
where Model and Controller are actually united. That was done to simplify the structure
of this relatively small project. The model that represents data is created once and stays
immutable until the end of the run. The functionality of the user interface and controller
is provided by React itself. So it is MVC, but without explicitly separating View and
Controller into different classes, this is delegated to React framework.

Figure 6.1 Dev-Viewer architecture

20

6.1 Architecture

As a regular web page, Dev-Viewer starts from index.tsx, it is an entry point of
the whole application. After that diagram.tsx is called, this is the root of all visual
elements and contains main event handlers that trigger data procession when the target
file with DOT language is uploaded (handleFileLoad). Some of the elements have their
own event handlers because they do a logically independent piece of work, for example,
class NodeDetail (Information panel in 6.4). But together with diagram.tsx they
inherit React functionality for this reason such behavior does not break adopted archi-
tecture. That means that there is a program basis that handles main functionality and
visualization. This basis is easily extensible with new elements if needed. Such a simple
project structure allows us to add new functionality, with zero price initial setup quickly.

To fulfill structure understanding, let’s take a look also on the page(Figure 6.2). In
general, the user interface consists of the following elements:

∙ Main working area

∙ Individual nodes

∙ Tool panel with buttons

Figure 6.2 Dev-Viewer working area

For now, only the green button “Load .dot File” is important, other buttons will
be overviewed later. This button is the start of the usage scenario, it opens a file
selection window for uploading, where you have a predefined filter for DOT files. After
the user chooses a file, processing starts, this causes Model creation and subsequent
visualization. Each file upload is equivalent to application restart. It helps to avoid
problems of the inconsistent state.

21

6 Dev-Viewer implementation

6.2 file processing
After the file upload is finished, one of the most essential processes starts - converting
the DOT file into visualization. This is a multiple steps process, that will be described
below in details:

1. The file is uploaded and converted into regular JSON, using the dot library. JSON is
great for our purposes because it is JavaScript type - natively supported by JavaScript
and TypeScript languages. A disadvantage of this conversion is that this conversion
stores a label as one attribute. For example, one line of DOT file:

8 [label = “Page 1 [Page] (Chapter 1)]”

will be stored as (Figure 6.3)

Figure 6.3 Example of dot file storing

2. The resulting JSON is passed to CustomTreeBuilder that maps the received JSON
to the custom tree. This process also includes label splitting into different attributes.
The algorithm starts from the root and adds nodes one by one. A simple cache is
implemented to avoid onstantly searching for newly created nodes when looking for a
node’s ancestor. Each node is an object of Node class, in addition to the convenient
shape of the tree, it also allows us to store real data flow connections between nodes,
this will simplify future work.

3. The next step is to call SubGraphBuilder - this class transforms one tree to the
separated subgraphs representation, which was described above. It works as a black
box - just pass the root Node, and the build method will return a final result that
consists of a bunch of subtrees with connections between them. All links go from left
to tight, without circle dependency, it is guaranteed by MicroStrategy architecture.
We will take a look at this important class in 6.3.

4. And the last thing to be done is converting all nodes from the internal represen-
tation to library nodes - GraphNodeModel, that will be visualized. This is done in
ModelBuilder, thanks to a convenient on-site representation, this is a relatively sim-
ple process. Data flow connection is added when a node with outgoing relation is
found. Mapping is done from the right to the left side of the graph, to create all
the connections between nodes on the fly. Each created visual node we add to the
library model. A library model is an object containing all elements that need to be
displayed.

5. The model is passed to the render engine.

22

6.3 SubGraphBuilder

6.3 SubGraphBuilder
The algorithm implemented in SubGraphBuilder solves one of the critical problems,
converting an unreadable tree with many intricate connections into the main target
of this work - user-friendly interactive representation. After studying all the nuances
of architecture (for example, cyclic data flow connection is impossible), the following
algorithm was used:

1. Collect all graph leaves.

2. Find all leaves without outcoming connections and add them to the first groups
of nodes.

3. Traverse the first group and find all nodes that point to the nodes from this group.
Add them to the second group.

4. Repeat 2. and 3. steps while the last created group has any incoming connections.

5. For every node in each group, recreate the full path to the root, ignoring other
leaves. After this step, we have groups of branchless graphs.

6. Merge all the graphs in each group among themselves.

7. Reverse groups, so that the connections go from left to right.

8. Final logical data representation is done.

Figure 6.4 How SubGraphBuilder works

23

6 Dev-Viewer implementation

6.4 Final result
Figure 6.5 is a view of Dev-Viewer with simple input example:

Figure 6.5 Dev-Viewer prototype

In addition to the main display task, the following functionality was added:

∙ Leaves grouping - all neighbor leaves are grouped under their parent node, to
combine them visually and thus simplify the perception. That means that such
an ancestor node contains its name and all child leaves - for example, ’csvDataSet’
node.

∙ Zoom to fit - the button that performs zooming action that places all (or selected)
elements in the visible part of the working area. This action is automatically
called after each file upload, to show centered and sized visualization.

∙ Take screenshot - the button that allows users to download visualization in the
form of png image. A snapshot is taken only of the working part of the window
without a toolbar.

∙ Information panel - that is placed in the top right corner of the example is designed
to show the developer all the available information. For instance, in case if the
name of a node is cropped because of length. The type attribute is not displayed
in the node at all (so as not to overload the visualization) and can be found in
this panel only. Also, it helps to find the name of a parent node in case of a huge
graph.

∙ Level selector - background feature that highlights all nodes at the same level as
the node that was selected.

∙ Search - it was not done as a separate feature, because it is already well im-
plemented in any browser. Page structure makes it easy to use standard search
through a keyboard shortcut “ctrl + f”.

24

7 Usability testing

To test the usability of a newly created tool, Dev-Viewer was sent to two domain ex-
perts from Manta for a test. There were multiple rounds of testing on different stages
of implementation, thanks to timely expert reviews, development was headed in the
right direction. This allows saying that was applied incremental approach for user in-
terface development, which greatly influenced the requirements and the final result for
the better

In the meanwhile, it was tested while developing new functionality for the MicroS-
trategy data flow parser, but to be objective, only the results of tests conducted by
other experts will be given. Testers praised successful solutions and pointed out flaws
and bugs. Some of the suggestions were already implemented, some of them will need
to be done in the future, because of the complexity and prototype status of the tools.

Here are some citations where experts compare Dev-Viewer to the previous solution.
[Original comment can be found in attachments as CommentDevViewerPK.odt]

Petr Kosvanec: “Where Graphviz failed in visualizing relations between a parent and
a child node, Dev-Viewer shines and provides a detailed overview of the whole hierarchy.
Where Graphviz produces only png images, Dev-Viewer is browser-based and allows
the user to filter for specific nodes using ctrl+f.“

Yauheniy Buldyk: “Compared to Graphviz, the Dev-Viewer shows excellent readabil-
ity and interactivity. It is possible to search, and there is a native image enlargement,
which helps a lot.“

Of course, there are not only positive things but also problems. The following things
have been highlighted as flaws:

∙ Graphviz shows edge type, which is missing in Dev-Viewer.

∙ The pre-filtering of visualized nodes is needed.

∙ It would be great to add a node full path to the information panel.

But overall, the project was described as useful and convenient:

“I reviewed the developer visualizer, which is the subject of this thesis and it is ev-
ident that it aims to do just that, and even in its current form, it can prove much
stronger and suitable a tool for our purposes than Graphviz.“

“There is still some work to do, namely pre-filtering of visualized nodes, codebase
integration, and a few less important issues, but in MANTA, we believe Dev-Viewer
will soon replace Graphviz in our company.“

25

8 Conclusion

The main goal of this work was to implement a data flow parser for the MicroStrat-
egy reporting system and using the gained experience, create a functional prototype of
a tool that aims to replace outdated technology. A lot of work was done to identify
requirements with domain experts and find a suitable solution, with a correct user in-
terface. It was a really productive process.

The created tool is not perfect, and there is still a lot of work for the future. This is
just a prototype at this moment, but it already shows great results in real-life usage.
There are big plans for further development and improvement. In the foreseeable fu-
ture, the Dev-Viewer will completely replace the Graphviz in Manta.

For me, it was a very positive experience in creating this type of software, since I first
encountered the development of interfaces and web applications in real-life. However, I
am very pleased with the result and intend to continue to develop in this direction.

26

Bibliography

[1] GROW. WHY IS DATA IMPORTANT FOR YOUR BUSINESS? 2020-05-09.
url: https://www.grow.com/blog/data- important- business (visited on
05/22/2020).

[2] Sunny Dhami. What Is Business Intelligence and Why Does It Matter to Enter-
prises. 2019-12-20. url: https://www.ringcentral.co.uk/blog/business-
intelligence/ (visited on 05/22/2020).

[3] Aayushi Johari. What Is Java? A Beginner’s Guide to Java and Its Evolution. c○
2002–2019. url: https://www.edureka.co/blog/what-is-java/ (visited on
05/22/2020).

[4] The Apache Software Foundation. Apache Maven Project. 2020-05-07. url: http:
//maven.apache.org/ (visited on 05/22/2020).

[5] Yash𝑀 𝑎ℎ𝑒𝑠ℎ𝑤𝑎𝑟𝑖. What is JavaDoc tool and how to use it? url: https://www.
geeksforgeeks.org/what-is-javadoc-tool-and-how-to-use-it/ (visited on
05/22/2020).

[6] tutorialspoint. TypeScript - Overview. c○ 2020. url: https://www.tutorialspoint.
com/typescript/typescript_overview.htm (visited on 05/22/2020).

[7] MicroStrategy. The MicroStrategy platform. c○ 2017. url: https://www2.microstrategy.
com/producthelp/10.4/ProjectDesignGuide/WebHelp/Lang_1033/Content/
ProjectDesign/The_MicroStrategy_platform.htm (visited on 05/22/2020).

[8] MicroStrategy. MicroStrategy REST. url: https://demo.microstrategy.com/
MicroStrategyLibrary/api-docs/index.html#/ (visited on 05/22/2020).

[9] MicroStrategy. Creating a report. url: https://doc-archives.microstrategy.
com/producthelp/10.1/WebUser/WebHelp/Lang_1033/Creating_a_new_
report.htm (visited on 05/22/2020).

[10] MicroStrategy. Designing and creating documents. c○ 2016. url: https://doc-
archives.microstrategy.com/producthelp/10.7/ReportDesigner/WebHelp/
Lang_1033/Content/ReportDesigner/designing_documents.htm (visited on
05/22/2020).

[11] MicroStrategy. About Dossiers. c○ 2019. url: https://doc-archives.microstrategy.
com/producthelp /10.10 /WebUser/WebHelp /Lang_1033 /Content/about _
analyses.htm (visited on 05/22/2020).

27

https://www.grow.com/blog/data-important-business
https://www.ringcentral.co.uk/blog/business-intelligence/
https://www.ringcentral.co.uk/blog/business-intelligence/
https://www.edureka.co/blog/what-is-java/
http://maven.apache.org/
http://maven.apache.org/
https://www.geeksforgeeks.org/what-is-javadoc-tool-and-how-to-use-it/
https://www.geeksforgeeks.org/what-is-javadoc-tool-and-how-to-use-it/
https://www.tutorialspoint.com/typescript/typescript_overview.htm
https://www.tutorialspoint.com/typescript/typescript_overview.htm
https://www2.microstrategy.com/producthelp/10.4/ProjectDesignGuide/WebHelp/Lang_1033/Content/ProjectDesign/The_MicroStrategy_platform.htm
https://www2.microstrategy.com/producthelp/10.4/ProjectDesignGuide/WebHelp/Lang_1033/Content/ProjectDesign/The_MicroStrategy_platform.htm
https://www2.microstrategy.com/producthelp/10.4/ProjectDesignGuide/WebHelp/Lang_1033/Content/ProjectDesign/The_MicroStrategy_platform.htm
https://demo.microstrategy.com/MicroStrategyLibrary/api-docs/index.html#/
https://demo.microstrategy.com/MicroStrategyLibrary/api-docs/index.html#/
https://doc-archives.microstrategy.com/producthelp/10.1/WebUser/WebHelp/Lang_1033/Creating_a_new_report.htm
https://doc-archives.microstrategy.com/producthelp/10.1/WebUser/WebHelp/Lang_1033/Creating_a_new_report.htm
https://doc-archives.microstrategy.com/producthelp/10.1/WebUser/WebHelp/Lang_1033/Creating_a_new_report.htm
https://doc-archives.microstrategy.com/producthelp/10.7/ReportDesigner/WebHelp/Lang_1033/Content/ReportDesigner/designing_documents.htm
https://doc-archives.microstrategy.com/producthelp/10.7/ReportDesigner/WebHelp/Lang_1033/Content/ReportDesigner/designing_documents.htm
https://doc-archives.microstrategy.com/producthelp/10.7/ReportDesigner/WebHelp/Lang_1033/Content/ReportDesigner/designing_documents.htm
https://doc-archives.microstrategy.com/producthelp/10.10/WebUser/WebHelp/Lang_1033/Content/about_analyses.htm
https://doc-archives.microstrategy.com/producthelp/10.10/WebUser/WebHelp/Lang_1033/Content/about_analyses.htm
https://doc-archives.microstrategy.com/producthelp/10.10/WebUser/WebHelp/Lang_1033/Content/about_analyses.htm

	Introduction
	Goal definition
	Plan

	Used technologies
	Data flow parser
	Java
	Maven
	JUnit
	JavaDoc
	Spring
	Git
	Intellij IDEA
	Postman

	Graphical tool
	TypeScript
	React
	React-diagrams
	Blueprint JS
	Webpack
	Git
	Visual Code

	MicroStrategy Analysis
	MicroStrategy Full Platform microstrategy
	MicroStrategy Desktop
	MicroStrategy REST API rest
	MicroStrategy artifacts

	Data flow parser implementation
	Extractor
	Resolver
	Generator
	Conclusion after implementing Data flow parser

	Dev-Viewer analysis
	Requirements
	Graphical representation

	Dev-Viewer implementation
	Architecture
	file processing
	SubGraphBuilder
	Final result

	Usability testing
	Conclusion
	Bibliography

