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Abstrakt

Ćılem této práce je prozkoumáńı metod časoprostorového modelováńı,
jež jsou v současné době použ́ıvány pro predikci poptávky v oblasti
přepravy, a přezkoumáńı zp̊usob̊u testováńı kvality těchto metod. Práce
ukazuje, že metody, které jsou v současnosti použ́ıvány pro predikci
poptávky, ve své podstatě obsahuj́ı vážné chyby. Proto jsou navrženy
dvě nové metody testováńı prediktivńıch model̊u, které tyto chyby
nemaj́ı. Na problém predikce poptávky jsou v práci, kromě běžně
použ́ıvaných metod, aplikovány metody z oblasti chronorobotiky. Dále
je navržena nová prediktivńı metoda. Experimenty v této práci demon-
struj́ı problémy současných vyhodnocovaćıch metod. Daľśı experimenty
porovnávaj́ı jednotlivé modely. Výsledky ukazuj́ı, že současně použ́ıvané
metody evaluace nemotivuj́ı tvorbu co nejpřesněǰśıch model̊u. Navržená
prediktivńı metoda ve výsledćıch experiment̊u dopadla vždy mezi dvěma
nejlepš́ımi.

Abstract

The goal of this work is to explore spatiotemporal modeling methods
currently used in transportation demand forecasting and to examine the
means of quality testing of these models. Furthermore, the thesis un-
veils fundamental issues in the way demand predicting methods are cur-
rently tested. The thesis proposes two new methods of demand prediction
quality evaluation. These methods address the issues mentioned above.
Chronorobotic modeling methods are applied to the domain, and a new
predictive method is proposed. The experiments in this work demon-
strate the shortcomings of the currently used evaluation methods. More-
over, the experiments evaluate the quality of various predictive models.
The experiments reveal that the currently used evaluation methods do
not incentivize the creation of the best possible models. Furthermore,
the proposed method ranked as one of the two best methods in the ex-
periments.
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1. INTRODUCTION

1 Introduction

With the recent rise of mobility-on-demand (MoD) services and the looming take-off
of widespread autonomous mobility, much research has been directed towards the design
of efficient algorithms to coordinate MoD fleets, minimizing service costs and passenger
discomfort along the way.

MoD encompasses services that enable users to request a journey through an interface
such as an app. The customer’s request is processed and a solution is offered (such as a
taxi trip). The payment for the service happens through the same unified interface. As a
general concept, MoD is a departure from privately owned transportation (such as personal
cars). Transportation is then approached as a service.

A common problem of these services (and of many others such as any vehicle-sharing)
is a fleet imbalance. Fleet imbalance is a disadvantageous placement of the vehicles in
places with little demand. This problem has been addressed by multiple fleet rebalancing
approaches[1, 2] that seek to distribute an automobile or a bike[3] fleet based on a criterion.
In many recent works, the criterion used for rebalancing is future demand prediction[1, 4–
6]. In other words, these works focus mainly on finding ways in which to utilize predictions
for fleet routing, not necessarily on demand prediction itself. This work does not aim to
design rebalancing algorithms, but rather to focus on modeling demand.

The problem of demand prediction was covered by a multitude of papers in and of
itself[7–18]. It was also briefly addressed in some of the works on rebalancing[1, 4–6]. Many
different approaches to demand forecasting have been described in recent papers, including
frequentist approaches[4], deep learning[7], various regression methods[18], and time-series
predictors. Nevertheless, all of the works have a commonality: they all discretize both the
time and area into a spatiotemporal grid. The predictive methods are then applied to the
time-series corresponding to demand on a segment of the map, losing spatial context. While
some address this issue through the use of convolutions or clustering[5, 17], there is still
information loss incurred by the discretization. A method able to utilize observed phenom-
ena in space and time without discretization would be better fitting for spatiotemporal
modeling.

The works focusing solely on demand prediction almost exclusively create short-horizon
predictions models[7–9, 11–13, 15–18]. That is, they only make predictions for one time
segment ahead of the training data. While this approach surely provides a tactical advan-
tage to a ride-hailing service provider, it does not provide them with a long-term strategic
edge, such as being able to anticipate a spike in demand in a few hours or even days.

Recently introduced methods of spatiotemporal modeling in the field of robotics (specif-
ically chronorobotics) can model periodic phenomena[19]. These methods are not yet ap-
plied to the domain of transportation. However, these methods have a few properties, which
may prove to be advantageous, namely: continuity and inherent periodicity detection[19].
The continuity characteristic enables the creation of models that do not reduce the space-
time into multiple discrete one-dimensional time-series as is currently commonly practiced.

1



1. INTRODUCTION

Periodicity detection should, in turn, help create models that are firstly able to make ac-
curate long-term predictions and, secondly, do not require constant recalibration with new
data for each prediction. The issue at hand is that these methods were developed for sparse
data and that they may not be able to utilize all data in a large dataset. The other problem
is the novelty of these methods, meaning that some are not yet perfectly optimized and
refined. While these methods may not replace the state-of-the-art methods for short-term
predictions, they might prove to be very useful in creating long-term models to be used
hand in hand with the current methods.

An important question that this thesis tries to address is: How do we assess the quality
of the models? The works mentioned above on rebalancing[1, 4–6] usually compared the
in-simulation performance of methods that used predictions for rebalancing to those that
did not. The apparent problem of simulations is that a simulation is a black box in many
ways (especially to an outsider). Many factors may influence the results, especially the
in-between step of using the prediction to manage a fleet (which in each simulation may
be different). These extra steps create a distance between the predictive model and the
evaluation criterion (such as the average time to serve a passenger). Other works use error
metrics such as mean absolute error (MAE) and root-mean-square error (RMSE) to eval-
uate predictions in a discretized space-time. This adjustment turns the demand prediction
problem into a time-series prediction problem. While the results of such evaluation are rig-
orous and relatively easily interpreted, they do not reflect spatial relations. Furthermore,
they were used to asses models built on compressed training data using compressed test
data.

While very handy and sensible when comparing time-series prediction quality, these
metrics are unable to compare a discrete model to a continuous one thoroughly. Such used
metrics are thus incapable of rewarding a nuanced continuous model (demonstrated in
Sections 3.1 and 4.7.1). An ideal criterion of quality would preserve spatial relations, use
testing data without compression, not penalize models for finer resolution (if discretization
is used), and would be easily interpreted. The thesis briefly looks into the theory of contin-
uous forecast scoring[20] and shows the difficulties of applying conventional scoring rules to
the evaluation of demand forecasting. The thesis suggests a way of using error metrics to
satisfy the properties as mentioned above. Furthermore, a simple test measuring the ability
of predictive models to correctly position vehicle fleet is proposed. The thesis additionally
proposes a new method of spatiotemporal modeling based on gaussian mixture models.

Experiments that test the prediction quality of various models using different evaluation
methods are conducted. The initial hypotheses are then examined against the results. The
Future work section (6) considers possible future research in the area in light of the theses
findings.

2



2. RELATED WORK

2 Related work

This section is an introduction to the current state of research in the following areas:

1.) Demand modeling in transportation.

2.) Chronorobotic spatiotemporal modeling.

3.) Prediction quality evaluation

The first part is a brief survey of the recently used methods of modeling transportation
demand, especially in the area of MoD. It starts with a high-level overview of approaches
that seem to be common to all the recent contributions and concludes with all the details in
which they differ. The second part introduces the specifics of the particular chronorobotic
modeling methods and their current uses. It also demonstrates the link between its current
domain and demand modeling. In the third part, the thesis focuses on the evaluation
metrics recently used to asses predictive models in transportation. Lastly, it introduces
the theory behind scoring rules (functions that return a numerical evaluation of a forecast
based on observation) and the desirable qualities of proper scoring rules.

2.1 Demand modeling in transportation

2.1.1 Approach to data

The approach overwhelmingly used in recent works has been to discretize the data both
space-wise and time-wise into spatiotemporal segments and make predictions for these
segments[1, 4, 7–13, 15–18, 21]. The discretization of time into equally long stretches re-
mained consistent across the works, the length of these stretches varied between 15 minutes
and one hour [4, 8]. The way of splitting the area was much more diverse. The simplest
methods were different variations of division into a rectangular grid, the most interesting
one being geohashing[8, 22], which assigns a hash to a pair of latitude, longitude. Geohash,
in effect, splits the area into a rectangular grid with resolution affected by parameter choice.
Another approach was the selection of n points in the road network and assigning each
demand event to one of those points. A more sophisticated way of choosing the stations[1]
attempted to cover the area with as little stations as possible sufficiently. A sufficient cover
meant that each point of the road network is reachable from one of the stations in less than
t seconds. An interesting approach[15] was choosing only certain venues (such as sports
arenas or music clubs) for which predictions were made using not only past demand data
but also textual information about events at these venues. Rodrigues et al. were not the
only ones to use contextual data in their forecasts. A common approach in the most recent
work is the utilization of information about current weather [16–18, 23].

3



2. RELATED WORK

2.1.2 Modeling methods

The nature of the models is, to a large, extent determined by the approach to the data. In
the case of demand modeling in transportation, the models used in recent work are mostly
predictors of future values of time-series (of multiple time-series, where each corresponds
to an area segment). The meaning of the values being the volume of demand in the area
during the specified time-window. The recent works almost universally cover predictions
for one time-window following training data [7–9, 11–13, 15–18]. Nevertheless, there were
some fundamental differences in these models:

1.) Utilization of outside parameters such as current weather to fine-tune predic-
tions. This use of parameters was mostly the case of neural-network (NN) models.

2.) Use of spatial relationships. Some time-series[21] and convolutional NN[7, 13,
16, 17] models used past data from neighboring segments for their next prediction.

3.) Destination prediction. Meaning that the model made predictions for
Origin×Destination pairs[1, 4, 16].

4.) Model updating on new observations. Burke[24] distinguishes two types of
learning. Online, which uses each new observation to update itself, and offline, a fixed
model that does not update itself. The main focus of recent work is online models, with
the exception being historical offline models [1, 4].

2.1.3 Use of models

The last significant difference is the way that the models were used. Works focusing
solely on demand prediction[7–18] used the models to predict demand volumes. The works
which used the predictive models in simulations [1, 4, 6] aimed to create probabilistic
models that could be used to sample future prediction from for the simulation.

2.1.4 List of models

Following is an outline of the recently used methods.

1.) Neural Networks(NN). In the works from the last two years, this has been an
overwhelming approach. NN usually take into account spatial context as well as external
events such as weather.

2.) Autoregressive time-series predictors such as ARIMA (often used as a baseline
[9, 12]) and STARIMA, which has been used for traffic prediction [21].

3.) Regressive models, such as support vector regression (SVR), are often used as
baseline methods. Interestingly, in the experiments of Jiang et al.[18] SVR has achieved
better prediction accuracy than baseline NN.

4.) Historical models use the average of historical demand to make predictions about
the future demand volume or to create a probabilistic model. These methods model a fixed

4



2. RELATED WORK

period (such as a day or a week). The predictions are then made e.g., for the third hour of
Thursday.

5.) Stochastic models. These models create a distribution for each pair (station, time),
which is used for demand sampling, Tsao et al. [6] use Poisson distribution to determine
demand volume at each station at a given time.

2.2 Spatiotemporal modeling in chronorobotics

Chronorobotics seeks to improve robots’ functionality by creating robust models of time-
dependent phenomena in the robot’s environment[19]. They model the changing environ-
ment as functions of time. A successful approach enabling long-term autonomy[19, 25, 26] of
the robots was modeling the environmental changes by periodic functions, as a lot of these
changes are periodical. These methods can detect significant periodicities in the modelled
phenomena, enabling them to make long term predictions. They have been successful in
anomaly detection eighteen weeks after training on two weeks of data[25]. These methods
have already been applied to the domain of spatiotemporal modeling by predicting human
presence[26] to avoid crowds or to find a person as fast as possible[27]. So the extension
of chronorobotic modeling approaches to the domain of taxi demand prediction is quite
natural. Frequency Map Enhancement (FreMEn)[28] and Warped Hypertime (WHyTe)[29]
are the modeling tools that will be used in this work.

2.2.1 Properties of the above methods

Following is a list of properties of these two methods, which may prove to be desirable
for spatiotemporal demand modeling and especially for long term predictions.

1.) Continuity These methods can be used to create nuanced continuous demand
density models (as opposed to the currently used discrete time-series predicting models).

2.) Periodicity modeling FreMEn and WHyTe both detect and model periodicity,
enabling realistic long term models.

3.) Parsimony Vintr et al. [26] show that a WHyTe model (occupying 2.4 KiB) had
a better prediction accuracy of human presence than any grid-based model (each of those
was at least an order of magnitude larger than the WHyTe model).

2.3 Prediction quality evaluation

2.3.1 Evaluation in recent works on the topic

Let us first discuss the methods used in recent works on the topic. The first commonly
used method was an evaluation in simulation[1, 4, 6]. However, the works above did not

5
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use simulation to compare different predictive models. They used the simulation to demon-
strate the effect of having a predictive model. The second approach was the use of widely
used error metrics such as RMSE and MAE. The use of this approach was quite natural due
to the reduction of the problem to the measuring of the quality of time-series predictions.
This evaluation approach is recommended for the evaluation of time-series prediction [30].
However, there are many questions at hand: Do we truly evaluate the quality of the spa-
tiotemporal model when we evaluate the quality of some arbitrary time-series (the fineness
of the grid or the number of stations can be manipulated, and it does not seem to be chosen
based on a rigorous method, as evidenced by substantial differences in recent works)? How
valid is it as a test of spatiotemporal prediction quality?

Wang et al. [31] show the shortcomings of mean square error (MSE) in the domain
of image processing. They show various striking examples of how an original image can
be manipulated in a way that results in relatively small MSE but leaves the image nearly
unrecognizable. Moreover, they demonstrate that two images that are nearly indistinguish-
able to the naked eye can have relatively high MSE. They suggest that MSE should not be
discarded, but used instead alongside more sophisticated methods, such as structural sim-
ilarity in the domain of image processing. Could it be that it is also the case in the domain
of spatiotemporal demand modeling? Let us explore some other methods of prediction
evaluation.

2.3.2 Probabilistic predictions evaluation

There is an extensive theory behind the testing of probabilistic prediction quality laid
out by Gneiting and Raftery[20]. They describe scoring rules as functions that measure the
quality of fit of a Probabilistic model to a sample. Their work also shows how to compute
the expected value of a scoring rule for pair of probability measures P (the probabilistic
forecast) and Q (the probabilistic measure from which a sample would be drawn). A strictly
proper scoring rule is then a function that for constant Q maximizes its value if and only
if P = Q. In other words, the expected value of the score is the highest for a correct
prediction.

Applicability of strictly proper scoring rules to demand prediction If we can
reduce the problem of demand prediction into the problems of demand volume and demand
distribution prediction (which can be represented as a continuous probability density), then
we could apply the available tools to evaluate the demand distribution prediction. However,
there are many problems when trying to use these as metrics to evaluate different demand
predicting models. Some tools are only applicable to discrete distributions, some only to
univariate distributions[20, 32]. Others require complicated arithmetics to be applied ef-
fectively to any type of distribution[32], which might not even be possible for some of the
models. The exception to those is the logarithmic score, which is the logarithmic likeli-
hood of a model. The logarithmic score is tough to interpret when applied across different

6
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distributions. Moreover, it has the undesirable property of predicting minus infinity every
time an event to which the model assigned zero probability happens. A model of demand
prediction can represent demand quite well even if it unable to predict some events. This
property is also the reason it is highly inconvenient to use any likelihood-based criterion
such as Akaike information criterion[33] as a quality metric in this case.

2.3.3 Final remarks

Due to the limitations of modeling demand predictors as a set of discrete time-series
predictors and the ensuing evaluation using error metrics, this work tries to look for other
testing methods. Also, the possibility to apply scoring rules used in the evaluation of
probabilistic forecasts to the testing of various demand predicting models is minimal. These
were the main reasons why one of the main goals of this theses became to suggest new
ways (see Section 3.2) of testing demand prediction quality to be used alongside established
methods.

7



3. PROPOSED METHODS

3 Proposed methods

As mentioned in previous section, error metrics such as MAE and RMSE are the over-
whelmingly used tests of prediction quality. Section 2.3.1 described how this is the recom-
mended approach when the spatiotemporal prediction problem is reduced to time-series
forecasting. This section evaluates the popular approach towards demand prediction eval-
uation critically. Firstly, it is demonstrated how discretization causes loss of valuable in-
formation. Afterward, two new methods of model evaluation are proposed. These methods
address the problems from which evaluation-on-grid suffers. See Section 4.3.1 for a detailed
description of evaluation-on-grid (the overwhelmingly used evaluation method for demand
prediction in recent works). The proposed methods should be suitable for a fair evaluation
of any spatiotemporal demand predicting model regardless of it being continuous or dis-
crete (and irrespective of resolution in case of discrete models) Lastly, a new spatiotemporal
modeling method based on gaussian mixture models (GMM) is proposed.

3.1 Discretization issues
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Figure 1: Visualization of the issues of discretization. Cluster of observations on the border
of cells.

Figures 1 and 2 show the information loss caused by discretization on simple examples.
The figures also show how this may, to a certain degree, be mitigated by using a fine
enough resolution. However, with finer resolutions, the data of each time-series will be
more volatile. The volatility is caused by the irregularities of demand at different parts
of the cell balancing each other less with decreasing cell size. In other words, to create a
discrete model as accurate as possible, it would be advantageous just to predict the total
volume of demand (1x1 spatial grid). On the other hand, if one wanted a discrete model
that provides as much information about the demand, this model would have as fine a
resolution as possible. To illustrate this, let us compare two recent works. In the first one,
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Figure 2: Another discretization issue. Multiple clusters of observations in one cell.

Yao et al.[7] focus solely on creating accurate demand models, evaluated using error metrics
with no intention shown in their work of using their model for fleet positioning. They use
a rather coarse discretization into regions of 0.7 km× 0.7 km. While very sophisticated
and accurate, their model has no chance of fully capturing small but dense areas of high
demand due to the nature of data preprocessing. Alonso-Mora et al.[4] contrarily create
demand models to use in simulation; their motivation is to create models as informative
as possible to improve their routing algorithm in simulation. Their model, albeit a simple
historical model, is built on a relatively fine discretization where the distance between two
cell centers is at most 150 meters. This twenty-fold difference in region size is a significant
example of this ambiguity of intentions brought about by evaluating discrete models on a
grid. Should a criterion that does not punish a model for inaccuracies showed in figures 1
and 2 be used as a standalone performance indicator? This incongruity is a serious reason
why it is essential to look into new ways of evaluating demand models.

3.2 Proposed evaluation methods

In this section, two alternative methods of evaluation are presented. The first one is
Random area (RA) evaluation, which evaluates models’ ability to predict demand in dif-
ferent areas. The second one, called the Fleet placement test (FPT), is based on fleet
sampling from the predictive model and evaluating how well it serves demand in a short
time-window. The section about FPT (3.2.2) describes how it differs from simulation and
its simple results interpretation.

3.2.1 Random area evaluation

Random area evaluation method compares the ability of different models to predict
demand on randomly generated areas. For discrete models, the prediction over each area is
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Figure 3: Visualization of RA computation for discrete models.

a linear combination of model predictions pM for the whole grid, where prediction for each
cell is multiplied by its proportion in the random area (see Figure 3). Each discrete model
(M) comprises of time-series predictors for m areas ai, i = 1 . . .m, that together cover the
whole area A for which predictions are made. So demand prediction of the discrete model
for a random area (Ar) at time t is calculated as follows:

pM (Ar, t) =
m∑
i=1

V (ai ∩ Ar)

V (ai)
· pM (ai, t) , (1)

where V is the 2-dimensional volume of the area.

The prediction for a random area is computed via integration of demand density Dt at
time t over the random area in case of a spatially continuos model:

Vt(A) =

∫
x∈Ar

Dt(x)dxdt (2)

The predictions are then compared to the true values using RMSE to receive a score
(see Section 4.3.2 for RMSE definition).

This method expands evaluation-on-grid by asking models to predict volumes in areas
that do not correspond to the grid cells. It addresses many of the problems of evaluation-
on-grid, such as disregard for spatial relations and discouraging finer model creation, while

10



3. PROPOSED METHODS

remaining easy to interpret. The compression of test data is also much less severe, as any
observation from test data may belong to any area that contains it in the case of this
experiment.

On the other hand, it is necessary to implement a random area predictor for each model
(or at least for each kind of space discretization) to use this method. Also, its computation
could be relatively complex, especially for discrete models with irregular cells.

3.2.2 Fleet placement test

This method measures the efficiency of the assignment of the fleet to demand in a short
time-window. The steps are the following:

• Demand in a specific short time-window is considered, and a fleet is sampled from model
predictions (for the same time-window).

• The cars in the fleet are assigned to serve one demand each.

• The result is obtained by computing distance traveled per customer served.

This method is not dynamic in time and only performs one optimal assignment. This
temporal stasis is opposed to a simulation. So the method is rigorous, and the results
are not influenced by other factors such as assignment strategy the way they are in a
simulation. The strengths of this method are:

1.) Straightforward result interpretation. It is the average distance a taxi has to
travel to serve one customer.

2.) Link to the use of the predictions. As the predictions should be used for before-
demand fleet positioning and rebalancing, it is natural that the quality testing method
should evaluate the ability to place a fleet well.

3.) It does not reward dishonesty (or laziness) in model creation as opposed to
error metrics, which may incentivize coarse discretization and thus less informative models
(see 3.1 and 4.8.1).

FPT with specified demand volume To perform this test for a time-window ∆t, we
denote D = {di}ni=1 as the demand in t, S = {si}ni=1 the sample of the model at ∆t. Both
S and D are sets of vectors from IR2. Ro draw samples from any model, simple rejection
sampling, as described by Neal[34], was used.

Rejection sampler randomly generates points in IRn+1 for a distribution in IRn; if the
generated point is below the graph of the distribution, it is accepted into the sample
(illustrated in Figure 4). The points are generated until enough samples are produced.
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Figure 4: Visualization of rejection sampling using a univariate normal distribution. The
green points are accepted and the red ones rejected.

An assignment is any bijective function Af : S → D. Let us define the cost of the
assignment as:

c(Af ) =
n∑

i=1

dist(si, Af (si)), (3)

where dist is a Manhattan distance function. This distance serves as a good estimate of
the length of the route, especially in the chosen scenario (see Section 4.5). In future work,
the distance function might be improved through using a more sophisticated model of a
city. An assignment is optimal if its cost is minimal out of all possible assignments. To
use the optimal assignment linear sum assignment function from scipy[35] optimize library
was utilized. This implementation uses the Hungarian algorithm[36] to find the optimum.

It is evident that this test only measures the quality of demand density prediction. This
method can be supplemented by other methods measuring the quality of total volume
prediction, such as any error metric mentioned thus far. Another way would be to contain
it in the test.

FPT-v - FPT with demand volume predictions Each model has to also predict
volume in this testing scenario. If the predicted volume is larger than the demand, the
superfluous taxis have to return to a station. Contrarily, if the predicted volume is smaller
than the demand, the extra taxis have to be deployed from the station. This means that
the size of the drawn sample would then correspond to the predicted demand volume. Any
difference in the sizes of S and D sets would be equalized by supplementing the smaller set
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with multiple instances of vector s0. This vector represents the station from which extra
taxis must be deployed (or to which they return). (Note: this turns the set into a multiset).

D = {di}ni=1, S = {si}mi=1 (4)

If n < m:

D′ = D ∪ {xi}m−ni=1 , ∀i : xi = s0, (5)

and if n > m:

S ′ = S ∪ {xi}n−mi=1 , ∀i : xi = s0 (6)

The cost of the optimal assignment is then computed the same way as was described in
the previous paragraph. The output value of both FPT and FPT-v is the distance traveled
per customer served, expressed in meters.

3.3 Proposed spatiotemporal modeling method

This work suggests a new approach towards spatiotemporal demand modeling using
gaussian mixture models (GMM) called: Time-window GMM (TW GMM). This approach,
similar to historical models (see 4.4.1), creates a spatial model for each time-window in
a certain period. This spatial model (Mt) for time-window t is a pair of total volume
prediction and a gaussian mixture probabilistic model (vt, Gt).

3.3.1 Model fitting

Time-window GMM model with a period T , time-window length, and n components
fits a GMM for each time-window. The total volumes are fitted analogically to the histor-
ical models (see 4.4.1). The GMM for a time-window is trained on the training dataset
data assigned to that time-window. It is fitted using the expectation-maximization (EM)
algorithm. This work uses scikit-learn [37] implementation of EM GMM.

3.3.2 Using the model for predictions

Let us define the demand density (Dt(x)) at a point x in time-window t as the value of
probability density function Gt(x) multiplied by the volume of demand in time-window t
(vt):

Dt(x) = vt ·Gt(x) (7)
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The total demand Vt(A) at an area A in time-window t is computed via integration of
demand density over A:

Vt(A) =

∫
x∈A

Dt(x)dx = vt ·
∫
x∈A

Gt(x)dx (8)
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4 Experiments

This section offers a detailed description of the used datasets, evaluation tool, used error
metrics, models, and the setup of different experiments.

4.1 Datasets
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Figure 5: Visualization of the raw datasets from the cities of Chicago (left) and New York
(right) shows that the Chicago data has already been somehow discretized.

The data used in the experiments throughout this work comes from New York taxi trip
data[38] collected between 2010 and 2013. This dataset is very suitable for the needs of this
work as it offers very dense data (over 10 million measurements per month). This density of
data enables experimentation with different discretization resolutions. The raw New York
data do not seem to be crudely masked or compressed, unlike the Chicago dataset[39]. This
phenomenon is best seen in Figure 5, which is a visualization of one month of data from
both cities. Other considered datasets such as uber trips from New York[40] were relatively
small. Some datasets used in recent work were not openly available such as the commonly
used[7, 17, 18] data from Chinese company Didi Chuxing.

4.2 Automated Evaluation tool

A unified evaluation tool (Evaluator) capable of an automatic model evaluation was
implemented for the thesis. The tool is implemented in Python 3 programming language
(as are all the predictive models). An interface defines how the tool communicates with
the predictive models. All the predictive models inherit from the Predictor class, which
ensures that the models follow the defined interface. The Evaluator class is initiated with
a dictionary of predictive models. Evaluator contains the following methods:

15



4. EXPERIMENTS

• train: takes training data and times and trains all the predictive models.

• different test methods: take testing data and times and evaluate all the models.

• visualization methods: show the results of the models in the performed tests.

• save and load: save or load the models.

4.3 Evaluation

4.3.1 Evaluation-on-grid

The evaluation method used throughout the recently published work on demand pre-
diction is the evaluation-on-grid. Evaluation-on-grid means that the models predict future
values of demand in each cell of the grid (for any amount of time-windows). These pre-
dictions are then compared to the actual values from the test dataset using error metrics.
Following is a short description of error metrics used in this work.

4.3.2 Root mean square error (RMSE)

RMSE[30] is defined for a sequence of predictions P = (pi)
n
i=1 and a sequence of true

values R = (ri)
n
i=1 as:

RMSE(P,R) =

√∑n
i=1(pi − ri)2

n
(9)

4.3.3 Mean absolute error (MAE)

MAE[30] is defined for a sequence of predictions P = (pi)
n
i=1 and a sequence of true

values R = (ri)
n
i=1 as:

MAE(P,R) =

∑n
i=1 |pi − ri|

n
(10)

4.4 Models

A wide array of model types were included (time-series tool, historical models, regressor,
spatio-temporal continuous model). Following is a table of the used models.
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Model Description

Historical Weekly and Daily and Mean models
Prophet [41] Time-series forecasting tool by Facebook
Zeros Predicts zeros only
SVR Support vector regressor
FreMEn see Section 4.4.4
WHyTe and WHyTeS see Section 4.4.5
Time-window GMM see Section 3.3

4.4.1 Historical models

Historical models base their prediction on the mean value of the predicted phenomena
at a similar time within a specified period in the past. Each historical model is defined by
its period (T ) and time-window length (lt). The period of each model is split into time-
windows of length lt. Each measurement from the training data can be assigned to one of
these time-windows. Because each time-window may appear multiple times in the training
data, the predicted value for a time-window is the amount of data assigned to it divided
by the number of appearances of that time-window in the training data.

4.4.2 Prophet

Prophet is a time-series predicting tool by Facebook [41], which is fitted by providing
an array of equally spaced times and corresponding values for these times. For each cell in
the spatial grid, a Prophet model is fitted.

4.4.3 Support vector regression

Same as when using Prophet, an SVR model was fitted for each cell of the grid (the
scikit-learn [37] implementation of SVR was used).

4.4.4 FreMEn

The FreMEn model implemented in this work is based on the algorithm described by
Krajnik et al. [28]. A FreMEn model was fitted for each cell in the grid. Each FreMEn
model is defined by its mean value, around which it oscillates (α0) and by n periodicities,
which are chosen from a set of candidate periodicities.

4.4.5 WHyTe and WHyTeS

The implementation of WHyTe models in this work is based on the algorithm description
by Vintr et al. [25]. The WHyTe model is a gaussian mixture model with n components
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fitted on the points from the training dataset, whose time coordinate is projected onto
multidimensional vector space. A WHyTe model was fitted for each cell.

WHyTeS [26] is a version of the WHyTe algorithm over spatiotemporal space, where
the position and of each training datum is projected onto multidimensional vector space.
WHyTeS is continuous in space and time. Therefore, one WHyTeS model was trained to
create the model.

4.5 General experiment setup

The training dataset consisted of data from June 2010, and the testing dataset is made
up of data from July 2010. The length of each time segment was set to 10 minutes in all the
experiments for evaluation-on-grid or random areas. 1x1 grid (1 cell), 10x10 grid (100 cells),
and 200x200 grid (40000 cells) were used in the experiments. The sizes of the random areas
used in the random area test ranged from 1/40000 to 1/25 of the total area. The maximum
amount of demands in one iteration of the FPT is 200 due to the limitations caused by
computing optimal assignments. The resulting value is the total distance covered during
all the iterations divided by the total customers served. The station in the fleet placement
test with volumes was placed into the centroid of the training dataset.

4.6 Experiment 1

It was hypothesized in Section 3.1 that finer discretization yields more informative mod-
els. Another hypothesis was that it becomes more challenging to evaluate these models
conventionally on grids with finer resolutions. This experiment explores how different test-
ing methods evaluate discrete models at different resolutions. The methods used are RMSE
and MAE evaluation-on-grid and random area test. These methods are used to compare
three historical models (with the Zeros model as baseline) at three different resolutions. A
graph showing how the models rank at each resolution is included for all the evaluation
methods.

4.6.1 Experiment 1 - Results

Figures 6 and 7 both show that using evaluation-on-grid becomes unreliable for very
fine resolutions, as the models’ order changes at fine resolutions for each method. What is
worse, this change in order is different for each of the two metrics. While the Zeros model
at 40 thousand cells is the best model, according to MAE, it is the worst, according to
RMSE.

So this unreliability naturally turns researchers off from using very fine models when
evaluating on a grid. However, Figure 8 shows that models get increasingly accurate in
demand predictions for random areas with finer resolution. That could mean that the
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Figure 6: RMSE values of different models at different resolutions and the order (lower is
better) of the models at different resolutions.
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Figure 7: MAE values of different models at different resolutions and the order (lower is
better) of the models at different resolutions.
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Figure 8: RA values of different models at different resolutions and the order (lower is
better) of the models at different resolutions.
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current way of testing does not encourage the creation of models as informative as possible.
Furthermore, the RA is shown to be robust to the inaccuracy at fine resolutions in contrast
to evaluation-on-grid (see Figure 8).

4.7 Experiment 2

This experiment compares discrete models trained on a 10x10 grid and the two spatially
continuous models. The evaluation is performed using the RA method and the evaluation-
on-grid by MAE and RMSE. The experiment provides the analysis of prediction accuracy of
different models at the same resolution (in case of discrete models) and a comparison of how
the evaluation methods evaluate conceptually different models (discrete and continuous).
Prophet model was not used evaluated using RA due to its computational demands.

4.7.1 Experiment 2 - Results

Figure 9: Box plot of absolute errors of different models.

Figure 9 shows that none of the models can fully capture the intricacies of demand
fluctuation. This inability is demonstrated by the large number of absolute error outliers
that each model has.

Table 1 shows how different models compare to each other. The Weekly model is the
most accurate, with TW GMM being a close second when evaluated on a grid. However,
TW GMM is the most accurate, with Weekly being a close second when evaluated using the
RA method. This result seems to imply (perhaps not surprisingly) that evaluation-on-grid
favors models trained on the same grid. The theory can be further supported by comparing
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Model MAE RMSE RA
Zeros 29.97 65.28 32.91
Mean 14.20 32.25 14.56
Daily 8.18 20.18 10.05
Weekly 5.40 12.98 7.42
SVR 14.87 34.85 16.71
Prophet 8.79 19.75 -
FreMEn 8.63 19.10 9.51
WHyTe 9.88 23.70 10.23
WHyTeS 14.11 27.76 9.90
TW GMM 6.61 14.97 7.16

Table 1: Table of different models tested on a 10x10 grid. Error metrics and RA used for
evaluation. All discrete models trained on a 10x10 grid

the results of WHyTeS to the Daily and WHyTe models. WHyTeS is worse than both the
discrete models in the case of evaluation-on-grid. However, WHyTeS beats both in random
area predictions. When two discrete models are compared using RA and MAE, the results
are very similar. The only two discrete models whose order changes are FreMEn and Daily.
But the models were very close in both tests. Moreover, the order of the two models is
also different when using RMSE than when using MAE. This fact that the difference in
results is significant only when comparing a continuous model to a discrete one suggests
that evaluation-on-grid benefits the discrete models.

4.8 Experiment 3

This experiment compares continuous models and discrete models of different resolu-
tions. The models are compared using the fleet placement test, both with and without
a given volume (see Section 3.2.2 for description). Furthermore, random area test and
evaluation-on-grid at different resolutions are added. MAE-n means MAE when evaluating
on a grid with n cells. Each discrete model in this experiment is trained on a 10x10 (100
cells) grid unless further specified. Prophet model was not tested in this experiment due
to its computational demands.

4.8.1 Experiment 3 - Results

Table 2 shows that all the models which capture demand density reasonably well all rank
similarly on fleet placement test without volume prediction. The exception is the models
that are trained on a 1x1 grid and thus place the taxis uniformly. The finding suggests that
there are diminishing returns in improving demand density predictions. It might also mean
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Model FPT FPT-v RA MAE-1 MAE-100 MAE-40k Size
Daily-1 352.4 524.3 11.80 606.6 37.98 0.068 1.2kB
Daily-100 124 195.5 10.05 606.6 8.18 0.104 112.6kB
Daily-40K 123.8 188.8 9.12 606.6 8.18 0.068 43.9MB
Weekly-1 351.9 443.4 9.76 292.2 37.82 0.056 8kB
Weekly-100 127.1 152.4 7.42 292.2 5.40 0.103 787.6kB
Weekly-40K 124.8 148.6 6.29 292.2 5.40 0.068 307.6MB
WHyTe 124.9 198.9 10.23 626.4 9.88 0.104 75.4
WHyTeS 129.7 225.7 9.90 644.9 13.03 0.105 3.8kB
FreMEn 128.9 203 9.51 609.16 8.63 0.105 70.8kB
SVR 128.8 331.6 16.70 1182.3 14.87 0.114 322.2kB
TW GMM 123.7 149.1 7.16 292.2 6.61 0.097 1.6MB

Table 2: Discrete models of different resolution and continuous models compared using
different testing methods. Values of FPT and FPT-v are in metres.

that correct volume prediction might play a more significant role in running an efficient
taxi service than having a perfect demand density model. This hypothesis is, to a certain
extent, tested in the fleet placement test with volume predictions. The test shows that
models that correctly predict volume (shown by MAE-1) are able to provide their service
more efficiently.

The experiment also shows that it is challenging to choose the best model, according
to evaluation-on-grid (or to choose a resolution in case of a discrete model). Evaluation
on a coarse grid results in the models trained on this grid having similar results as finer
models (or same in case of historical models). Evaluation on a fine grid is not very valid, as
demonstrated in the first experiment. Also, evaluation-on-grid favors models trained on the
same grid in general, as demonstrated in the second experiment. To choose the best model
random area test or even fleet placement test with volumes seem to be more appropriate.

4.9 Discussion of model quality

The experiments reveal a few intriguing discoveries about the different models and their
quality. The ability to model significant periodicities seems to be very important. The two
best models have a hard-coded weekly periodicity. Other methods might also detect this
periodicity. However, they may not be able to capture the demand fluctuations during the
period entirely. The importance of period detection is best captured in the Daily models.
There is a glass ceiling in the performance that the Daily models are not able to break,
no matter how many cells they contain. The other finding is that the continuous methods
are disadvantaged when in evaluation-on-grid (when the discrete models are trained on the
same grid). Additionally, continuous models are relatively memory efficient. The WHyTeS

24



4. EXPERIMENTS

model was the second-smallest, but ranked much better in all the test in secon experiment.
The TW GMM method performed better in the proposed tests than Weekly-100. If the
TW GMM object were stripped of parameters unnecessary for predictions before being
saved, it would take up less than half of its current space. This decrease would mean that
it would perform better than the weekly model and would be more memory efficient. The
proposed test showed that it is preferable to use finer discrete models if possible. Finally, in
most of the rankings, the proposed method ranked second or first, while never generating
the largest models (memory-wise).
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5 Conclusion

This thesis began with three main goals. Firstly, to examine methods currently used
for demand modeling and evaluation of these demand predictions. Secondly, to apply
chronorobotic modeling methods to the domain of demand modeling. Thirdly, to create an
automatic evaluation tool able to compare them to a set of methods used in state of the
art.

The evaluation method across the recent works from the field was the same (using
error metrics to evaluate prediction accuracy on a grid). However, intuitively this method
did not seem to encourage the creation of as informative models as possible. The thesis
demonstrated the issues of the method. Furthermore, two novel methods that do not suffer
the same maladies were proposed. The methods enable a fair comparison of different classes
of methods (e.g., continuous and discrete). The thesis showed that chronorobotic methods
could indeed be applied to the demand modeling domain. Moreover, the thesis proposed
a new predictive method derived from the chronorobotic paradigm. The proposed method
combines relative memory efficiency with good predictive qualities. These qualities are
demonstrated in Section 4.8.1, where it ranks as one of the two best methods.

The experiments presented in the thesis were performed using the automatic evaluation
tool.

The future work section (6) suggests many possible routes to be taken that could improve
both demand prediction evaluation and especially demand modeling.

The main takeaways are the following. We need to choose testing methods that encourage
honesty in model creation (a model that receives a good score is suitable for practical use).
The method used across recent works does not necessarily do so. Therefore, we need to
look for better ways to evaluate demand prediction.

Coupling of the domains of transportation demand predicting in MoD and chronorobotics
benefits both areas of research. The MoD domain gains a different view of the problem
and new methods of long-term prediction. Chronorobotics gains a new field of application
and the opportunity to design more generalized predictive methods.

This thesis is an effort to make a step in the right direction so that the way that demand
modeling methods are created and evaluated makes sense in the light of how they will be
used.
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6 Future work

This section considers possible future improvements in three key areas: Prediction eval-
uation, Time-window GMM model, and demand modeling.

6.1 Prediction evaluation

This thesis offered two novel approaches to demand prediction evaluation, which encour-
age the creation of models that are as informative as possible. However, each of these has
its problems. The random area test requires that the models are extended by predictors of
demand on an area in a specified time-window. The fleet placement test with given volumes
is not very good at distinguishing models once they reach a certain degree of quality. When
used with volumes, the test contains an arbitrary factor (the return of unused taxis to the
station), which introduces a distance between the prediction and the test result. They are
the first attempt to introduce testing, which encourages honesty in model creation, into the
field. This work has shown that they are capable methods of model evaluation, probably
more so than the currently used ones. However, there might be methods which might be
even better and simpler tests.

It might be the case that simulations ultimately prove to be the best way to test the
quality of these models. Nevertheless, a comparison of how different simulations utilize the
same models will be necessary.

6.2 Time-window GMM

The model is currently discrete in the time dimension. The natural extension is finding
a way to make the model spatiotemporally continuous, which might prove to be useful
in other domains. The next step would be an efficient implementation and release as an
open-source tool for spatiotemporal modeling.

6.3 Demand modelling

One possible direction is to split demand volume and density predictors. This approach
would enable more focused modular methods that could be combined.

Since data discretization incurs a penalty in prediction accuracy, as repeatedly demon-
strated in this thesis, the natural way of using past demand data would be to sample
them directly. When deployed in practice, the models are used for sampling. That means
the approach would be natural. In this case, the model would, for example, choose time-
window from training data most similar to the one for which it predicts, then a volume
predicting model would determine how many samples should be drawn from the training
data. This approach has many advantages. Firstly, it places the taxis in places where there
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was a demand for them in the past. Secondly, these models could use neural networks in
a way that makes sense for informative model creation. That means they would be used
to predict volume and could utilize contextual data (such as weather). Furthermore, they
could be used to choose similar times from the past from which the demand prediction
would be drawn.
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7 Extra chapter: Creating spatio-temporal models for

social distancing

The writing of this thesis coincided with the unfortunate breakout of the COVID-19
pandemic. The recent developments have greatly influenced our lifestyles due to the com-
prehensive efforts to stop the spreading of the disease. One of the most effective preventive
measures is social distancing [42, 43], the avoidance of close contact with other people.
Koo et al.[43] show that the vast majority of cases in Singapore are linked to clusters that
formed due to lack of social distancing. To follow preventive measures is crucial, especially
for at-risk people (such as the elderly and the people with diabetes)[44] and their household
members. Social distance is best maintained while staying at home, but for some people,
leaving home for tasks such as shopping for food and prescription drugs or visiting a doctor
is unavoidable. Other people might not be willing to stay at home despite being part of
the at-risk group. In any case it is necessary to help people keep social distances when they
leave their homes.

One such way of helping is providing the people with information about the crowdedness
at different times of the places they are about to visit. This information could help them
plan their errands in such a way that they visit these places when they are the least busy.
That requires the ability to forecast the crowdedness of different places, which in turn
requires the data about crowdedness of places upon which the forecast models could be
based. The FreMEn contra COVID initiative of the Laboratory of chronorobotics at the
Faculty of Electrical Engineering facilitated this effort to create a system of anonymous
data collection about crowded places and then using the data to help people through
Nebojsa mobile app, which provides predictions about crowdedness.

The application of chronorobotic methods to this specific problem is included as a part
of this thesis.

7.1 Application of chronorobotic methods to crowdedness mod-
eling

Let us first introduce this problem by showing its main differences and similarities to
the problem of transportation demand modeling.

The main difference stems from the different usage and, thus, different requirements. The
displacement of a taxi by a few tens of meters when rebalancing a fleet does not severely
damage the quality of the service. In the case of modeling crowds, spatial precision is of
utmost importance. A supermarket might have completely different visiting patterns than
the park right next to it. Firstly, correct labeling of the data (each datum has a specific
location type) is important, and secondly, data is relevant only within a particular location.
These spatial limitations mean that making spatially continuous models would not make
much sense in this case.
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However, once the data for a specific location is extracted, it is possible to model its
crowdedness the same way as the taxi demand in a specific cell of the spatial grid.

How then is the data for a specific location extracted? Different ways of achieving that
were suggested. One of them was using a combination of data labels and geohash (briefly
described in Section 2.1.1). However, geohash is not well suited to this problem. Firstly,
it has a very limited set of resolutions. Secondly, a location for which prediction is made
might lie on the boundary of two different geohash areas. The approach chosen in the end
was filtering nearby and correctly labeled data for each request and creating a model from
the data.

FreMEn method was used to model the crowdedness, as the amount of data collected
was relatively small (compared to the taxi data) and was not evenly placed. FreMEn is
robust against sparse and uneven data (unless the data is extremely uneven).

7.2 Summary

This section described the application of FreMEn, a chronorobotic modeling method,
to the task of modeling crowdedness in order to simplify social distancing for people. The
crowd modeling was achieved by creating temporal models for each request by filtering out
relevant data and fitting model on to them.
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