
Czech Technical University in Prague
Faculty of Electrical Engineering

BACHELOR THESIS

Alexandr Zemek

Prediction of Bicycle Trip Segment Velocities by
Machine Learning

Department of Cybernetics

Supervisor of the bachelor thesis: Ing. Jan Drchal Ph.D.

Study program: Open Informatics

Branch of study: Computer and Information Science

Prague, May 2020

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

474714Personal ID number:Zemek AlexandrStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Open InformaticsStudy program:

Computer and Information ScienceBranch of study:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Prediction of Bicycle Trip Segment Velocities by Machine Learning

Bachelor’s thesis title in Czech:

Predikce rychlostí úseků cyklistických tras pomocí strojového učení

Guidelines:
The task is to predict bicycle per-segment velocities based on training dataset composed of GPS track recordings. The
prediction model can be, e.g., used in route planning algorithms (which are not part of this work).
1) Familiarize yourself with state-of-the-art approaches of urban bicycle routing and machine learning methods with focus
on multiple instance learning paradigm.
2) Develop neural network-based prediction models.
3) Find which features are essential to predict the velocities.
4) Extract additional information from the related map data (Open Street Maps) and use these features to improve the
prediction accuracy.
5) Experiment with variable-sized feature vectors employing multiple instance learning methods.

Bibliography / sources:
[1] Using Neural Network Formalism to Solve Multiple-Instance Problems, Tomáš Pevný, Petr Somol, 2016.
[2] Hrnčíř, Jan, et al. "Practical multicriteria urban bicycle routing." IEEE Transactions on Intelligent Transportation Systems
18.3 (2016): 493-504.
[3] Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Name and workplace of bachelor’s thesis supervisor:

Ing. Jan Drchal, Ph.D., Artificial Intelligence Center, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: __________Date of bachelor’s thesis assignment: 10.01.2020

Assignment valid until: 30.09.2021

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
doc. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Jan Drchal, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Author statement for undergraduate thesis:
I declare that the presented work was developed independently and that I have listed
all sources of information used within it in accordance with the methodical instructions
for observing the ethical principles in the preparation of university theses.

Prague, date .
Signature

i

ii

Dedication
I would like to dedicate my work to my parents who supported me during my entire
bachelor’s degree study. Also, I would like to thank my supervisor Jan Drchal for his
guidance and excellent communication.

iii

iv

Abstrakt
Cílem této práce je vytvořit model strojového učení, který bude schopen predikovat
rychlosti segmentů cyklistických tras v Praze a okolí. Model je trénován na datovém
souboru složeném z GPS záznamů cyklistických tras a jejich odpovídajících reprezentací
v dopravní síti vytvořené z dat Open Street Map. Trasy jsou rozděleny na segmenty,
které obsahují různé prvky, jež budou využity pro učení konkrétního modelu. Cyk-
listické trasy jsou zaznamenány jednotlivými cyklisty a výsledná rychlost vykonaná
jednotlivcem je predikována zvlášť pro každý segment dané trasy. Prvky dopravních
segmentů jsou extrahovány z dopravní sítě a ty mohou být dále rozšířeny i o další in-
formace z OSM. Po náležité datové analýze se práce věnuje průzkumu různých metod
strojového učení, jako jsou například rekurentní neuronové sítě, časově konvoluční sítě
nebo regrese náhodných lesů, stejně jako jejich porovnání a vyhodnocení důležitosti
dodatečných OSM prvků.

Klíčová slova
predikce strojové učení cyklistická rychlost GPS

Abstract
The goal of this thesis is to build a machine learning model which will be able to predict
velocities of bicycle trip segments in the city of Prague and its surroundings. The model
is trained on a dataset composed of GPS track recordings and their corresponding
representation in a traffic network created from Open Street Map data. The tracks are
divided into segments which contain various features which will be used for learning
a particular model. The bicycle tracks are recorded by individual cyclists and the
generalized velocity performed by an individual is predicted for each segment of the
track. The features are extracted from the traffic network and can be extended by
even more OSM information. After the proper analysis of the dataset, the work focuses
on developing different machine learning methods such as recurrent neural networks,
temporal convolutional networks or random forest regression as well as comparing them
and evaluating the additional OSM feature importance.

Keywords
prediction machine learning bicycle velocity GPS

v

vi

Contents

List of Figures 3

List of Tables 5

1 Introduction 7
1.1 Motivation . 7

2 Problem statement 9
2.1 Related work . 10
2.2 Problem specification . 10

2.2.1 Regression . 10
2.2.2 Categorical variables . 11

2.3 Methods used . 11
2.3.1 Neural Networks . 11
2.3.2 Recurrent Neural Networks . 11
2.3.3 LSTM Networks . 11
2.3.4 GRU Networks . 12
2.3.5 Temporal Convolutional Networks 13
2.3.6 Random Forest Regression . 13

3 Data description 15
3.1 Graph representation of traffic network 15
3.2 GPS signal recordings . 16
3.3 Map-matching . 16
3.4 OSM data . 17

4 Solution approach 19
4.1 Feature extraction . 19

4.1.1 OSM feature extraction . 20
4.2 Data analysis . 21
4.3 Workflow . 23
4.4 Project structure . 26

4.4.1 Implementation details . 27

5 Evaluation 29
5.1 Model comparison with different dataset forms 30
5.2 Feature importance . 32
5.3 Velocity prediction . 33

6 Conclusion 35
6.1 Future work . 35

References 37

A Appendix 39
A.1 Data analysis details . 39
A.2 Evaluation details . 40

1

2

List of Figures

2.1 Example of a bicycle track and its segments. Starting point of the track is
denoted by the green dot. A black line between two white dots represents
a road segment and its origin junction and destination junction. The red
line with blue dots is a GPS record of the track. 9

2.2 Repeating LSTM cells and their interacting layers. Source: [1] 12
2.3 Elements of TCN architecture. (a) Dilated convolution with dilation

factors d = 1, 2, 4 and filter size k = 3. (b) Residual block with 1x1
convolution, which is added if the output has different dimension than
the input. (c) Connection of residual blocks. Source: [2] 13

3.1 Difference between raw GPS recording (red line) and map-matched track
(black line). 17

4.1 Difference between unprocessed GPX (left) and GPX with evenly spaced
points added between each two succeeding GPX points (right). 19

4.2 Data analysis of segment numerical features. 21
4.3 Data analysis of segment categorical features. 22
4.4 Data analysis of OSM features around segments. The y axis data are

provided in logarithm scale because of prominent zero values. 23
4.5 Measured speeds and times after dataset adjustments. 23
4.6 All tracks in dataset divided into Train set (black), Validation set (blue)

and Test set (red). 24
4.7 Example of model learning (left) and testing on a particular track (right).

The learning plot shows a progress of training loss and validation loss
during the training process. The testing plot shows target times and
predicted times for the sequence of segments in the track. The segments
are numbered from 0 to the particular number of segments in the track. 26

5.1 Boxplots for each model and each dataset form used in feature impor-
tance evaluation. 30

5.2 Boxplots for each model and dataset with and without OSM. 31
5.3 Histogram of absolute prediction errors. 32
5.4 Feature importance evaluated on Random Forest Regression model with

100 weak predictors. The x axis values are provided in logarithm scale.
The black line represents standard deviation of measurements. 32

5.5 Random Forest Regression models evaluated on different dataset forms
using RMSE of velocity in km/h. 33

A.1 Analysis of OSM features with linearly scaled y axis. 39
A.2 Boxplots for each model and each dataset form used in feature impor-

tance evaluation (unscaled error). 40

3

4

List of Tables

4.1 Some of the selected models, their parameters, learning hyper parameters
and error measured on the first version of dataset. 25

5.1 The neural network models and their parameters with smallest error
recorded. 29

5.2 Random forest regression models and their parameters. 29

A.1 Mean and standard deviation values for each model and each OSM feature. 41

5

6

1. Introduction
Riding a bicycle is a common means of transport. Unlike cars or public transport,

it is a very adaptive way of going from an origin to a destination which is very useful
especially in large cities. A person can ride a bicycle not only on a cycleway but also on
a road, in a narrow street, through a park, in a forest etc. Most people are also using
a bicycle as a workout or a relaxing activity. Another benefit of bicycles is that it is
the fastest form of transport without the use of fossil fuels or electricity (not counting
the electric bicycles). The bicycle speed is very important for this thesis because we
will predict the bicycle velocity values by machine learning algorithms. First of all, we
define the problem of predicting numerical values (regression) and propose a machine
learning methods used to create the prediction model. This is described in chapter 2 as
well as related work research. The data which we are going to work with are described
in chapter 3. In chapter 4, we propose a solution to the problem, make a data analysis
and describe workflow and implementation. The evaluation of developed models and
feature importance is covered by chapter 5. The thesis is concluded by chapter 6.

1.1 Motivation
The learned models and their predictions could be used in a bicycle track planning

algorithms. There are a lot of platforms, which can plan the fastest route for cars and
other means of transport but they are generally not covering all the possibilities for
cyclists. The traffic network for bicycles is more complex than for the other means of
transport simply because a cyclist is not as limited as a car driver for example. As
was described above, a cyclist has more options where to ride. This thesis might help
to cover them and make the decision in choosing the right track easier considering a
corresponding velocity.

7

8

2. Problem statement
The task of this thesis is to develop a machine learning model which will be able

to predict bicycle velocities on a given track ridden along by a cyclist. Each track is
recorded by a GPS device and can be visualised on a digital map of a given area. A
track is divided into multiple segments where each segment is defined by two junctions
and a line between them. The location of starting points, ending points and junctions
on the map are given by latitudes and longitudes which fulfill the role of axes in the
geographic coordinate system. Each two succeeding segments share one junction which
connects them - an ending point of (i − 1)-th segment is the starting point of i-th
segment. This connection creates a sequence of segments which defines a track on a
map and gives us the opportunity to extract information about the track from the map
data.

The machine learning model should predict a bicycle velocity for each track segment,
in other words it should learn a function

ŷ = f(x),

where x ∈ Rm is a vector of features of a particular road segment and ŷ ∈ R is the
velocity predicted by the machine learning model. If the model uses sequential data to
learn, the resulting function is altered to

ŷt = f(x, ŷt−1),

where the predicted value ŷt−1 for (t−1)-th segment is used as an input for the velocity
prediction of t-th segment. The vector x consists of m components, which describe a
particular road segment. These components include numerical data such as length of
the segment or maximum allowed speed and categorical data, i.e. road type of surface
present at the segment. The model will learn which features are essential for the right

Figure 2.1: Example of a bicycle track and its segments. Starting point of the track
is denoted by the green dot. A black line between two white dots represents a road
segment and its origin junction and destination junction. The red line with blue dots
is a GPS record of the track.

9

prediction by assigning bigger weights to the components which are more important.
To tell the difference between good and bad prediction, we have a ground truth value
y ∈ R for each segment. The error is calculated as a difference between predicted values
ŷ and so called target values y. The smaller the error, the better the prediction.

2.1 Related work
There have been many studies about predicting velocities not just for bicycles but

for the traffic flow in general. For example, in [3], authors used a dataset, which
consists of measurements performed by over 15000 detectors placed along freeways
across California (USA). They then evaluated deep-learning neural network models,
which can learn more complex patterns in features contained in the dataset. The use
of neural network models for prediction might be helpful, although it is not necessary
to implement deep-learning architectures, because we are going to work with much
simpler dataset. It will consist of features describing the recorded track instead of
features monitoring the situation on road. Furthermore, this work concentrates on
velocities performed by an individual rather than the overall traffic flow.

In [4], authors used track data recorded by a GPS device attached to the handlebar
of each cyclist. Their tracks are divided into segments and for the prediction, they used
the following features: type of facility (segment environment), segment length, number
of intersections with traffic signals, average daily traffic, time of day and personal
characteristics. Nevertheless, their dataset is quite small (only 8 people were involved
in recording their bicycle trips). On the other hand, they were able to use information
about a cyclist, which could make the prediction more accurate. The track recordings
contained in the dataset which will be used in the implementation were created during
an event where many more people participated in. Although the features do not include
any data describing cyclist characteristics, the dataset with only track segment features
is still large enough to take the neural network approach into consideration. Such
methods perform well on a big amount of data.

In [5], authors developed algorithms for bicycle route planning. The bicycle velocity
is very significant in this field and the prediction of it might help in calculating their
travel time criterion used in their solution. Authors suggested using a traffic web graph
created from Open Street Map [6] data. They proposed using segment features such as
surface, obstacles like stairs or elevators, places where a cyclist have to dismount the
bicycle like sidewalks, cycle infrastructure, road category and crossings like junctions
or traffic signals. Our model will use similar representation of traffic network with the
use of OSM features to predict bicycle trip velocities. Author of [7] used machine learn-
ing algorithms such as Random Forest Regression, Adaboost Regression or Gradient
Boosting Regression which were trained and evaluated on similar dataset using a traffic
network graph with OSM features.

2.2 Problem specification

2.2.1 Regression

To predict velocity of bicycle track segments, we have to solve a regression task for
the purpose of predicting a numerical output. The task of regression, described in [8],
is to find a vector of parameters θ ∈ Rm for the regression function

y = f(x, θ),

where x ∈ R is a function input and y ∈ R is a function output. In order to find the
right parameters, we have to make a set of measurements T = {(x1, y1), . . . , (xn, yn)},

10

where we have a desired output yi for each xi. Then we have to minimize the least
squares error, in other words, find a solution to the task

min
θ∈Rm

n∑︂
i=1

(yi − f(xi, θ))2.

2.2.2 Categorical variables

In the dataset, which we are going to work with, there are many features that cannot
be represented by a numerical value. We will use categorical variables to represent
this information in a numerical form, so that we can use it in regression task. Each
categorical variable [9] represents one feature. One-hot encoding is used to convert all
possible values into the numerical form.

2.3 Methods used

2.3.1 Neural Networks

This work focuses on machine learning through neural networks. Neural network is
a supervised learning system inspired by biological neural circuits which can represent
a brain functionality [10]. The system can be viewed as a multiple-layer perceptron as
described in [11]. It can learn a function f : Rm → Ro where m is an input dimension o
is an output dimension by training itself on a dataset. In our case, the output dimension
o is equal to 1 and the dataset which we are going to work with can be represented
by a set T = {(x1, . . . , xm, y)1, . . . , (x1, . . . , xm, y)n}, where (x1, . . . , xm, y)i is a vector
of input features x1, . . . , xm and target value y for i-th road segment. The network
architecture can consist of multiple hidden layers and non-linear activation functions
to be able to learn by updating its weights. The predicted features and the target
features are compared with a loss function, which calculates the error on predicted data.
The goal is to minimise the error by backpropagation and iteration methods such as
Stochastic Gradient Descent [12] or Adam algorithm [13]. The predicted function is an
approximator for either classification task or regression task. In our case, for predicting
bicycle velocity, we need a numerical prediction, so the regression will be used.

2.3.2 Recurrent Neural Networks

Because we are going to work with sequential data, the use of Recurrent Neural
Networks might be beneficial. These architectures are using cells stacked together
to form a loop [1]. Thanks to the loops, the network is able to remember previous
information and use it in the following prediction. However, recurrent networks often
suffer from problems such as exploding or vanishing gradients [14]. Therefore, we will
use more complex recurrent architectures like LSTM or GRU Networks, which provide
a solution to these problems.

2.3.3 LSTM Networks

The Long Short-Term Memory (LSTM) is capable of learning long-term dependencies
and thus remembering the previous information for a long time as desrcibed in [1] or
[15]. The LSTM cell has two states: a cell state ct, which accumulates the state
information and a hidden state ht, which is considered as an output of the single cell
at a time t. Derived from [16], it consists of four interacting layers where each of them
has a matrix of weights W for input xt and hidden state ht−1 and a bias vector b:

11

• Input gate layer, which takes the current input xt and previous output ht−1 and
accumulates the cell state:

it = σ(Wxixt + Whiht−1 + bi).

• Forget gate layer, which decides whether to keep or delete the learned information
from previous cell state ct−1:

ft = σ(Wxf xt + Whf ht−1 + bf).

• Cell update layer, which transforms the input and previous state to be regarded
in in the current state:

gt = tanh(Wxgxt + Whght−1 + bg).

• Output gate layer, which scales the output from LSTM cell to be propagated in
the hidden state ht:

ot = σ(Wxoxt + Whoht−1 + bo).

Update of the cell state is computed using the gated state and the gated input:

ct = ft ◦ ct−1 + it ◦ gt,

where ◦ is the Hadamard product. Final output of the LSTM is computed like this:

ht = ot ◦ tanh(ct).

Figure 2.2: Repeating LSTM cells and their interacting layers. Source: [1]

2.3.4 GRU Networks

Gated Recurrent Unit (GRU) Networks are similar to LSTM Networks except for
the cell architecture being less intricate. There is no cell state, only hidden state ht for
each cell is present. Derived from [17], the GRU cell consists of three layers (the bias
vector b was added to keep consistency with LSTM layers described above):

• Update gate layer, which computes how much of the previous information to be
kept:

zt = σ(Wxzxt + Whzht−1 + bz).

• Reset gate layer, which computes how much of the previous information to forget:

rt = σ(Wxrxt + Whrht−1 + br).

12

• Cell update layer, which transforms the input and previous state to be regarded
in in the current state:

h′
t = tanh(Wxhxt + rt ◦Whhht−1 + bh).

Final output of the GRU is computed like this:

ht = zt ◦ ht−1 + (1− zt) ◦ h′
t.

2.3.5 Temporal Convolutional Networks

Apart from the architectures mentioned above, we are also going to use and evaluate
the Temporal Convolutional Networks (TCN) defined and implemented in [2]. It is a
one-dimensional convolutional network, which has shown a great performance in time
sequence modelling tasks. Therefore, comparing results with standard neural networks
and recurrent neural networks might be helpful in evaluating the learned models.

Figure 2.3: Elements of TCN architecture. (a) Dilated convolution with dilation factors
d = 1, 2, 4 and filter size k = 3. (b) Residual block with 1x1 convolution, which is added
if the output has different dimension than the input. (c) Connection of residual blocks.
Source: [2]

The TCN architecture uses a dilated convolution and a connection of residuals
blocks. The dilated convolution operation is defined as

F (s) =
k−1∑︂
i=0

f(i) · xs−d·i,

where x is an input vector, f : {0, . . . , k − 1} → R is a filter function, k is a filter size
and d is the dilation factor. Regular convolution, as used in image classification, is
applied when d = 1. An illustration of dilated convolution can be seen in Figure 2.3
(a). A residual block contains transformations of the input vector x, which are added
to the input of the block itself. These transformations include two layers of dilated
convolution, the rectified linear unit (ReLU) activation function, weight normalization
and a dropout. An illustration of residual block and its connection is in Figure 2.3 (b),
(c).

2.3.6 Random Forest Regression

To tell if the neural network predictions are acceptable, we can make a comparison
of the models with other machine learning methods. We chose to evaluate the Random
Forest Regressor implemented by scikit-learn library developers [18]. Random Forest
Regression as defined in [19], uses combinations of decision trees called forests. The

13

trees are built depending on a random vector θ and are considered as weak predictors
h(x, θ), which predict numerical output. The final prediction of Random Forest is
formed as an average of k weak predictors h(x, θk).

14

3. Data description
There are four types of data to work with: A graph representation of traffic network,

raw GPS signal recordings of bicycle tracks, recordings of bicycle tracks after map-
matching and additional data manually extracted from Open Street Map [6]. The
map-matching method is used to map the recorded GPS tracks into the traffic network.

3.1 Graph representation of traffic network
The traffic network was extracted from Open Street Map (OSM) and provided

by Ing. Pavol Žilecký. It was extended by information about elevation, which could
be essential for speed prediction. The elevation data was taken from Shuttle Radar
Topography Mission [20].

Let us define a traffic network in Prague as a directed graph G = (V, E) where V is
a set of vertices where each vertex v ∈ V represents a junction and E is a set of edges
where each edge e ∈ E represents a road segment between two junctions. Each vertex v
is a tuple (i, g, gp, t, tp, h) which holds information about geographical position of given
junction: i is an identifier of the junction, g is a longitude, gp is a projected longitude,
t is a latitude, tp is a projected latitude and h is en elevation. Projected longitude
or latitude means the data is provided in S-JTSK (Ferro) / Krovak1 reference system.
It enables us to compute an euclidean distance between two geographical points by
simply calculating the size of difference between two vectors. Each edge e is a tuple
(i0, i1, n, m, c, r, s, o) which holds information about given segment: i0 is an identifier
of starting junction and i1 is an identifier of ending junction. Note that the graph G
is directed so that for each two edges e1 = (a, b, . . .) and e2 = (b, a, . . .) where a ̸= b
applies that e1 ̸= e2. Element n ∈ e is a number of car lanes on the road segment, m ∈ e
is a maximum allowed speed in kilometers per hour on the road segment and c ∈ e is
a cycle infrastructure present on the road. It can contain information represented by
one of the following values:

• Track - dedicated track for cyclists separated from car traffic

• Zone - pedestrian zone with allowed access by bike

• Lane - mandatory cycle lane

• Sharrow - advisory cycle lane

• None - no cycling infrastructure is present

Element r ∈ e is a road type which can consist of one of these values:

• Primary - first class roads

• Secondary - second class roads

• Tertiary - third class roads

• Service - generally for access to a building, service station, industrial estate, etc.

• Residential - residential and living streets

• Off-road - roads in countryside, mostly unpaved
1http://spatialreference.org/ref/epsg/2065/

15

• Foot-way

• Crossing

• Steps - stairs

• Cycle-way - dedicated road/street for cyclists

• Unknown

Element s ∈ e is a road surface which can contain one of the following values:

• Unknown

• Paved Smooth

• Paved Cobblestone

• Unpaved

Element o ∈ e is a no entry sign, which indicates if it is allowed to travel along this
segment. We will use all of the features listed above as inputs for machine learning.

Let us define a cyclist track as a sequence of vertices (junctions) connected by edges
(road segments) (v0, e1, v1, e2, . . . , en−1, vn−1, en, vn).

3.2 GPS signal recordings

All of the cyclist tracks are provided by Cycleplanner from a campaign "Do práce
na kole"2 which took place in 2015. There are 1084 different tracks recorded. The
recordings are stored in GPX files. It’s a special form of XML which consists of tags
with timestamps and coordinates (longitudes and latitudes) passed through by a cyclist.
These tags create a sequence of cyclist positions in time which can represent a cyclist
track. The timestamps will be used later as a target values in machine learning. There
might be some errors due to inaccurate signal processing that cause some tracks to
be out of a road, which can be viewed in Figure 3.1. Moreover we don’t have any
information about the track segments from the GPX. That is why map-matching is
introduced.

3.3 Map-matching

To map the GPS signal sequence on a road in order to get the right information about
the segments on which cyclist rode, we have to use map-matched data. Map-matching
is a problem of matching the raw recorded GPS signal into the logical model of the real
world [21], i.e. a digital map. There are many forms of the map-matching algorithm
[22], which can be categorized into three methods: the incremental (local) method,
the global method and the statistical method. Although there are plenty of different
implementations, some of them are not fast or precise enough. The map-matching
method - Graph Search Based Map Matching - used to create the dataset is introduced
and implemented in [23]. It uses a Breadth-first search algorithm with priority queue
structure. The process of finding the right nodes to map-match the GPS track is very
similar to Dijkstra’s shortest path algorithm. The main part of the algorithm can be
seen in Algorithm 1.

2https://www.dopracenakole.cz

16

Figure 3.1: Difference between raw GPS recording (red line) and map-matched track
(black line).

The data stored in GeoJSON files contains a sequence of junction identifiers and
geographical coordinates of a junction. The map-matched tracks are representing the
cyclist track in a way that it is possible to extract the information about road segments
from the traffic network graph. The difference between track recorded by raw GPS and
map-matched track can be seen in Figure 3.1.

Algorithm 1: GSMM algorithm core. Source: [23]
Result: Path in the traffic network graph representing the recorded track.

1 init priority queue Q;
2 init starting node ns;
3 add ns to queue Q with priority 0;
4 while Q is not empty do
5 nc ← head of Q;
6 if nc not closed then
7 set nc as closed;
8 if nc = cd then
9 backtrack;

10 for nn ∈ neighbors of nc do
11 if nn not closed then
12 c← computeCosts(nn);
13 add nn to Q with priority c

3.4 OSM data
To be able to have more information about surroundings of a track, we can manually

extract additional data from OSM. The given dataset is not very large, so augmenting it
should improve the learning process, which should lead to a better prediction. Inspired
by [5], we have selected the following features along the road segments to extend the
basic dataset:
• Number of bus stops

• Number of tram stops

• Number of traffic signals

• Number of trees

• Traffic density (total length of all roads close to the segment)

• Number of sidewalks

17

18

4. Solution approach
To solve a regression task, we have to extract information from all available data.

The information will be represented by a matrix A ∈ Rm×n and a vector b ∈ Rm.
Each row of A represents a particular road segment and each column represents a
segment feature. The vector b is a vector of segment times in seconds. It indicates how
long it took for the cyclist to ride through the segment. For simplicity and because
we know a distance of each segment, we decided to determine segment velocity by
predicting duration per segment in seconds instead of segment speed in m/s or km/h.
The velocity in m/s for each segment can be calculated as:

v = segment length

predicted segment duration
.

The matrix and the vector are divided into blocks Ai ∈ Rli×n and bi ∈ Rli , where i
stands for track number and li is a number of segments in the track i. We use these
blocks to distinguish between individual tracks.

4.1 Feature extraction

The features for each track are extracted from traffic network graph, where a se-
quence of vertices corresponds to a sequence of junction identifiers stored in a particular
GeoJSON file representing a map-matched record of a track. For each junction in map-
matched sequence, the nearest cyclist position with timestamp extracted from GPX
is selected. The target value (time in seconds) for each segment is calculated as a
difference between two timestamps.

Nevertheless, the GPS signal is not very reliable and sometimes there are a lot of
blind spots. This is probably caused by a temporary signal loss or a malfunction of a
record device. This results in inaccurate assignment of GPX timestamps to the map-
matched junctions. As we can see in Figure 4.1, there are cases when there are more
map-matched junctions in the track than the GPX positions. Specifically in the west
area of the track, there are three junctions to which the same timestamp contained
in the nearest GPX point will be assigned. We can slightly overcome this problem by
thickening the GPX sequence. For each two succeeding GPX points p, q we can generate
s evenly spaced points filling up the space over the interval [p, q] considering the cyclist
positions as well as the timestamps. Value s = 5 is used in the implementation. This
heuristics believes that a cyclist passed through a road segment with a constant speed
which should not cause problems because the predicted speed will be constant as well.

Figure 4.1: Difference between unprocessed GPX (left) and GPX with evenly spaced
points added between each two succeeding GPX points (right).

19

Thanks to this we can get more precise target values because each junction will have
more options to select the nearest GPX point with the corresponding timestamp.

Unfortunately, there are more errors in the dataset than just a potential GPS signal
loss. Some parts of the tracks are map-matched wrongly, which may result in features
having i.e. negative time values. There are also cases when a cyclist went through a
segment incredibly fast or slow, which might indicate that the cyclist either cheated
during the campaign and used other mean of transport or took a break halfway through
the segment and forgot to turn off the record device. We have to make a data analysis
to point out these problems and suggest what to do with them.

Since all the tracks are located in Prague and its surroundings, there is a possibility
that a segment could be a part of multiple tracks. However, each cyclist could ride
through the segment with different velocity. These duplicates with different target
values might be harmful for the learning process. For that reason and also because we
do not have any information about cyclist condition, the target value for each segment
is replaced by an average of target values of all segment duplicates.

4.1.1 OSM feature extraction

Now that we have extracted all of the available information, we can still augment
the dataset by adding even more features. The OSM features will also be included
in the matrix A. First of all, we have to download an OSM area of Prague and its
surroundings. To save a lot of time and memory, we decided to download and store only
the identifiers and coordinates of the OSM nodes, which contain a desired tag. The
particular tag is defined as a key-value information, which describes the real meaning
of the OSM node. For example, to find a tree in the given area, the tag should contain
key-value string ’"natural"="tree"’. Again, for memory and time efficiency, each feature
(mentioned in 3.4) is stored in a different file in Comma-separated values (CSV) format.

For each road segment s with starting junction a, ending junction b and its latitudes
alat, blat and longitudes alon, blon, the coordinates clat and clon of the segment centre c
are computed as:

(clat, clon) = (alat + blat

2 ,
alon + blon

2).

The radius r is computed as a 2-norm of vector (clat − alat, clon − alon). We say
that a geographical point g (respectively OSM node) with latitude glat and longitude
glon is inside the surrounding of s, if

clat − r ≤ glat ≤ clat + r

and
clon − r ≤ glon ≤ clon + r.

Because some of the segments are too short and their surroundings are not large enough
to include OSM data, we can enlarge the radius r as necessary. In the implementation,
the radius r is multiplied by 11 − dist(a, c) if dist(a, c) < 10, where dist(a, c) is a
distance in meters between the starting junction a and the segment centre c. The
distance between two geographical points p and q in meters is calculated using the
Haversine formula [24]:

dist(p, q) = 1000 · 2R arcsin(
√︂

h(p, q)),

where
h(p, q) = sin2(qlat − plat

2) + cos(plat) cos(qlat) sin2(qlon − plon

2)

and R is Earth radius in kilometers. It is multiplied by 1000 to get distance in meters.

20

We can now count the total number of desired features or calculate the density as a
sum of distances between each two OSM nodes within the surrounding of each segment.

4.2 Data analysis

Analysis of numerical features of all road segments in dataset can be seen in Figure
4.2. We can see that there are a lot of nonsensical data. In the first histogram, which
shows a cyclist’s speed on a segment, there is a noticeable growth at 100 km/h value.
We have set this value on segments, where time is equal to zero to avoid division by
zero. These values were used in the first version of implementation but they were
removed afterwards because it does not make sense to predict values which obviously
could not have been achieved by bicycle transport. Average bicycle speed according to
[25] is around 19-26 km/h.

In the second histogram in Figure 4.2, we can see that there are not many differences

Figure 4.2: Data analysis of segment numerical features.

21

Figure 4.3: Data analysis of segment categorical features.

in elevation between segment’s starting end ending point. Most of the values are around
zero, which means that cyclists did not ride much uphill nor downhill. The angles of
ascent or descent can be seen in the third histogram. In the fourth histogram, we
can see that many segments in the dataset are short with regard to recorded times.
Unfortunately, there are some negative time values as well. These values should also be
removed from dataset. The fact that most of the segments are short is also well-founded
in the fifth histogram of Figure 4.2, which shows segment lengths in meters. Majority
of segments has only one lane, has no ’no entry’ sign and has maximum allowed speed
around 50 km/h, although in the seventh histogram of Figure 4.2, there is a growth
around 0. This is caused by the fact that there are many missing values which are
indicated by value -1.

Analysis of categorical features in the dataset can be seen in Figure 4.3. There
are many missing values in surface feature. OSM features are analyzed in Figure 4.4.
The majority of values are equal to zero because the dataset consists of many short
segments, which have too small surroundings to include any OSM features mentioned
above. The histograms y axis data which shows the occurrence of a feature in the
dataset are provided in logarithm scale so that we can see the values greater than
zero. The histograms with linearly scaled y axis can be seen in Figure A.1 located in
appendix.

A machine learning model should not learn features which we consider absurd. The
learning process would become complicated and the results would not be as convincing
as we desire. To prevent these complications, we can adjust the dataset by removing
the road segments of which features are not much trustworthy. That means deleting
the road segments with recorded times lesser or equal than 0 and speed above or bellow
certain values. Average walking speed of an adult according to [26] is around 3.4-5.1
km/h. Since we are modelling and predicting velocity performed by an adult with a
use of bicycle and the dataset contains values around the average walking speed, we
decided to get rid of segments with recorded speed lesser than 6 km/h. Maximum
allowed speed in Czech cities is 50 km/h and the Figure 4.2 confirms that there are a

22

Figure 4.4: Data analysis of OSM features around segments. The y axis data are
provided in logarithm scale because of prominent zero values.

lot of segments with this limitation. Although it should not affect an average cyclist
much, the dataset contains segments with recorded speed over the limit, which could
indicate that a cyclist might have used other mean of transport. For that reason we
removed all segments with recorded speed over 45 km/h. The Figure 4.5 shows the
speed features and time features after the dataset adjustments.

Figure 4.5: Measured speeds and times after dataset adjustments.

4.3 Workflow
After parsing the GPX and GeoJSON data, extracting features from traffic net-

work graph and the data pre-processing, the columns of matrix A in the first version

23

Figure 4.6: All tracks in dataset divided into Train set (black), Validation set (blue)
and Test set (red).

contained following features: projected latitude (origin), projected latitude (destina-
tion), projected longitude (origin), projected latitude (destination), elevation (origin),
elevation (destination), number of lanes, maximum speed allowed, no entry, cycle in-
frastructure (5 columns), road type (10 columns) and surface(4 columns). The vector
b contained a target values (segment times in seconds) for each segment. We tried to
predict the velocity in km/h and m/s, but the prediction of time in seconds appeared to
have better results. The tracks represented by matrix blocks Ai and target vectors bi

were randomly divided into three sets: the training set, the validation set and the test
set. These sets are disjoint and each of them contains a certain number of tracks. The
test set, which is used to evaluate the learned model, contains 100 tracks. The valida-
tion set contains 120 tracks and is used in learning process as a test set for each epoch
to assess model generalization. The rest of the tracks are contained in the training set.
The dataset divided into these three sets can be seen in Figure 4.6.

A good practice for learning a neural network model is to scale the data in order
to have an equal unit for each feature. Some of the features are measured in meters,
some of the in km/h etc. The data standardization [27] scales the features to have
the unit variance and the mean equal to zero. There were some complications with the
correct dataset standardization. The correct way is to fit and transform the training set
and then transform the validation set and test set with the fitted mean and standard
deviation of the training set.

The first developed model did not use sequential data. In other words, the training
set and validation set contained shuffled segment features with particular target value.
It also did not use the additional OSM data. At first, the model did not learn anything.
It was caused by the wrong data standardization and also because we did not make the
data analysis and the dataset adjustments mentioned above. After dealing with these
problems and experimenting with the model architecture, we came up with a model

24

Model Hidden dim. # r.l.a Dropout B.sizeb l.r.c Epochs RMSE
Basic [128, 256] - [0.2, 0.1] 128 0.001 10000 0.4581
LSTM 128 2 0.5 14 0.0001 10000 0.8173
LSTM 14 2 0.1 14 0.001 10000 0.7793
LSTM 16 2 0.18 14 0.0011 20000 0.5114

a number of recurrent layers
b batch size
c learning rate

Table 4.1: Some of the selected models, their parameters, learning hyper parameters
and error measured on the first version of dataset.

with three linear layers: The first layer with an output dimension equal to 128, ReLU
as an activation function and a dropout with probability of 0.2, the second layer with
the same properties except the output dimension is equal to 256 and dropout to 0.1
and the third output layer with output dimension 1 to have one-dimensional output for
each segment. Let us call this model a "Basic model".

To measure how good is the prediction of a model, we use a Root Mean Square
Error defined as:

RMSE =

⌜⃓⃓⎷ 1
n

n∑︂
i=1

(ŷi − yi)2.

The RMSE is calculated using features from the test set. We can use either scaled
features or the original features to see the error in desired units. The scaled RMSE of
Basic model is 0.4581 and the so called unscaled RMSE is 8.6926.

After some time, we developed a LSTM model, which used sequential data but
it was able to learn only with batch size equal to 1. One batch consisted of segment
features of one track. However, learning a neural network model with batch size equal to
1 is very ineffective because it has to multiply many small matrices in a row. Learning
with bigger batch size and thus multiplying less matrices is faster even though the
matrices are larger. Number of segments is different for almost all the tracks and if we
want to utilize sequential data with greater batch size, we have to align the Ai blocks
contained in the batch to have the same dimension. The dimension of Ai is adjusted to
Rb×n, where b is a number of segments of the longest track contained in the batch. The
rows of matrix blocks of tracks with length shorter than b have to be padded with zero
vectors in order to have the same dimension for each block. Therefore, implementing
LSTM model with bigger batch size required building a customized dataset, which
remembered a number of segments for each track. The tracks contained in one batch
had to be sorted by their length and then padded with zero values to fill in the space in
the matrix block. The loss function used a mask to filter out the padding values to be
able to compute the error only for the desired data. Implementation of this model took
too much time because we had a mistake in iteration through the dataset. After fixing
this, we came up with a model, which RMSE reached 0.5114 for scaled data and 9.7035
for unscaled data. Some of the models developed and their architectures, parameters
and errors can be seen in Table 4.1. These models were learned and tested on Research
Center for Informatics cluster1.

After the LSTM implementation, we focused on augmenting the dataset with OSM
data because the error of LSTM model was still bigger than the error of Basic model.
We had to adjust the dataset again, because the columns of matrix A contained pro-
jected coordinates but the location of OSM nodes is described by original latitudes
and longitudes. The columns of A in the current version contain following features:

1http://rci.cvut.cz/

25

Figure 4.7: Example of model learning (left) and testing on a particular track (right).
The learning plot shows a progress of training loss and validation loss during the training
process. The testing plot shows target times and predicted times for the sequence of
segments in the track. The segments are numbered from 0 to the particular number of
segments in the track.

longitude (origin), latitude (origin), longitude (destination), latitude (destination), el-
evation (origin), elevation(destination), segment length, number of lanes, maximum
speed allowed, no entry, cycle infrastructure (5 columns), road type (10 columns) and
surface (4 columns). The segment length was added as a separate feature so that the
model does not have to calculate the distance by estimating the Haversine formula. The
OSM feature extraction was described in subsection 4.1.1. With this new dataset, the
error of Basic model was reduced to 0.3512 for scaled features and 6.3677 for unscaled
features and the error of LSTM model was 0.3330 for scaled features and 6.0383 for
unscaled features. After this, we developed GRU model and a model which use TCN
implementation. We took the best architectures of this 4 models and evaluated them
in the next chapter.

The next step of this thesis was to experiment with Multiple Instance Learning [28]
method, where models use features represented by vectors with variable length divided
into bags. The use of variable length features might have been useful in augmenting the
dataset with even more OMS features and even further information about OSM nodes
themselves. Unfortunately, we did not monitor much of an improvement when OSM
data were considered. After the consultation with supervisor, we decided to focus more
on comparing the learned models and on evaluation of the OSM feature importance.

4.4 Project structure

All of the scripts and programs were implemented in Python 3.7.3 programming
language with the use of Jupyter Notebooks (version 6.0.1). The machine learning
models were implemented with PyTorch library. Other libraries and modules used for
data pre-processing, visualisation and are listed here:

• numpy - Library for matrix and vector operations
• matplotlib - Library for visualizing data in plots
• mplleaflet - Library used for track visualization 2

• gpxpy - Library for parsing GPX data 3

• pandas - Library for data storage
2https://github.com/jwass/mplleaflet
3https://pypi.org/project/gpxpy/

26

• scikit-learn - Library for data scaling and Random Forest Regressor implementa-
tion
• OSMPythonTools - Library for OSM pre-processing 4

• osmread - Library for reading OSM files 5

• TCN - Module with TCN implementation 6

Implemented scripts and notebooks are listed bellow:

• bike_speed.ipynb - Jupyter notebook implementing the workflow
• data_analysis.py - Module for data analysis
• loader.py - Module for data loading, data parsing, data pre-processing and data

visualization
• network_basic.py - Module implementing the Basic model
• network_gru.py - Module implementing the GRU model
• network_lstm.py - Module implementing the LSTM model
• network_tc.py - Module implementing the TCN model
• osm.py - Module for OSM data pre-processing
• utils.py - Module for utility functions

The data, serialized features, learned models and other necessities are separated into
the following directories:

• cluster_logs - Contains logs of RCI cluster jobs.
• cluster_models - Contains state_dicts of models learned on RCI cluster.
• data - Directory with traffic network graph, track recordings and track map-

matching.
• feat_imp - Contains results of feature importance evaluation computed on RCI

cluster.
• models - Directory with state_dicts of learned models.
• npz_files - Contains serialized features.
• osm_data - Directory with downloaded coordinates of OSM nodes.

4.4.1 Implementation details

The main code of implementation is contained in bike_speed.ipynb file. It starts
with parsing the GPX and GeoJSON files and storing them in gpx_array and geoj-
son_array variables. The following notebook cells contain track visualisation and data
analysis. The dataset is represented by two-dimensional numpy arrays train_features,
val_features and test_features. Each of them is accompanied by a list of track lengths
(number of segments for each track). The last column of each matrix contains target
values. After scaling the matrices and dividing them into inputs and target tensors, we
can start a learning process of a model.

The input for Basic model consists of two-dimensional tensor batches of shape
(batch size, dimension) with randomly shuffled rows of train_features and val_features
matrices. The output consists of vector of given batch size with predicted values for

4https://github.com/mocnik-science/osm-python-tools
5https://github.com/dezhin/osmread
6https://github.com/locuslab/TCN

27

each segment. The LSTM, GRU and TCN models take a three-dimensional tensor
batches of shape (batch size, length of the longest sequence in batch, dimension) as an
input. The output is a vector of size batch size · length of the longest sequence in batch.
It consists of vectors of predicted values for each track, which are appended to each
other and padded to have equal length.

The models are then tested on test_features matrix. The testing is performed on
each track individually. The Mean Square Error and Root Mean Square Error both
scaled and unscaled are computed for all predicted segment times in each track. The
total RSME used in evaluation is calculated on all tracks together. We can then display
a plot with target values and predicted values. In Figure 4.7, we can see an example
of model training and model testing plots. The following cells in the bike_speed.ipynb
notebook contain model architecture experiments and feature importance evaluation,
which is described in the next chapter.

28

5. Evaluation
The neural network models which showed the best performance were selected for

evaluation. The performance was measured by the Root Mean Square Error during
the Workflow process described in 4.3. The architecture parameters such as hidden
dimension or number of recurrent layers as well as the learning hyper parameters were
adjusted experimentally depending on the final prediction error. The table 5.1 shows
their architecture parameters and hyper parameters used for learning. These models

Model hidden dim. #r.l.a dropout k.s.b b. size l.r.c epochs RMSE
Basic [128, 256] - [0.2, 0.1] - 213 0.001 250 0.3671
LSTM 16 2 0.19 - 14 0.001 250 0.3562
GRU 42 2 0.3 - 19 0.001 250 0.3678
TCN [11, 11] - 0.09 4 14 0.001 250 0.3547

a number of recurrent layers
b kernel size for TCN architecture
c learning rare

Table 5.1: The neural network models and their parameters with smallest error
recorded.

were also used for evaluating the OSM feature importance to find out how much the
velocity prediction improved with the use of OSM data. It is also possible that there
would not be any improvement at all or in the worst case the prediction error would
increase. Apart from the models mentioned above, we are also going to evaluate two
random forest regression models with different parameters described in the Table 5.2.
The models were evaluated on the final version of dataset which contains the following
features for each road segment:

• Longitude of origin junction
• Latitude of origin junction
• Longitude of destination junction
• Latitude of destination junction
• Elevation of origin junction
• Elevation of destination junction
• Distance (segment length in meters)
• Number of lanes
• Maximum speed allowed (in km/h)
• No entry
• Cycle infrastructure (with 5 categories)
• Road type (with 11 categories)
• Surface (with 4 categories)
• Number of bus stops (OSM)

Model number of weak predictors min. number of samples
RFR 1 100 5
RFR 2 200 2

Table 5.2: Random forest regression models and their parameters.

29

• Number of tram stops (OSM)

• Number of traffic signals (OSM)

• Number of trees (OSM)

• Traffic density (OSM)

• Number of sidewalks (OSM)

5.1 Model comparison with different dataset forms

The evaluation of machine learning models was executed on Research Center for
Informatics cluster. The dataset was adjusted into the following forms: The dataset
without OSM data, the dataset with only one OSM feature present and the dataset
with all OSM features present. The six models (Basic, LSTM, GRU, TCN, RFR 1 and

Figure 5.1: Boxplots for each model and each dataset form used in feature importance
evaluation.

30

Figure 5.2: Boxplots for each model and dataset with and without OSM.

RFR 2) were trained and tested on twenty measurements for each of the mentioned
dataset forms. These measurements were performed with different randomization seeds
because the learning algorithm is based on random initialization of the model weights.
Because of a big number of measurements, the training algorithm of neural network
models was limited to 250 epochs so that the evaluation is finished within 24 hours
limit. The evaluation results with scaled errors can be seen in Figure 5.1 and they are
represented by boxplots. A boxplot shows statistical information about the measured
errors. The orange line represents a median, the horizontal box borders show the first
quartile and the third quartile. The places where a box narrows is called notch and it
represents a confidence interval. The vertical lines and the dots are representing mini-
mum or maximum values and divergent values. Each model is portrayed in a different
plot where each plot shows a boxplot for each dataset form. As we can see, the Random
Forest Regression models showed better results than the neural network models. It can
be caused by the epoch limitations for network training or the fact that there is still
a place for improvement considering the network architecture and its parameters. The
LSTM model and the TCN model are better than the Basic model and GRU model.
The bigger error of Basic and GRU could be caused by bigger number of neurons
which might have caused overfitting. The overfitting means that the model is perfectly
trained on training data but fails in generalizing which means that the prediction for
previously unseen data is far worse than for the training data. The unscaled error
results are represented by boxplots in Figure A.2. The mean and standard deviation
of the results can be seen in Table A.1 located in appendix. Although the error on
dataset with all OSM data present is lower for almost all models, the difference be-
tween the dataset without OSM is not statistically significant. The better view on this
can be seen in Figure 5.2. The OSM features slightly improve the prediction but only
if all the features are present. The additional features are evidently not as essential
as the features extracted from traffic network. The reason why the augmentation of
the dataset did not lower the error as much as expected is probably that the tracks
are mostly composed of short segments which cannot include the additional extracted
data. The fact was already revealed in Figure 4.2 and justified by Figure 4.4 from the

31

Figure 5.3: Histogram of absolute prediction errors.

data analysis section 4.2, where we can see that most of the values of OSM features are
zeros. In Figure 5.3, we can see that the models are predicting values which are often
smaller than the target values. The figure shows absolute difference between target
values and predicted values for each segment contained in the test set. The absolute
error is computed as a subtraction of target value from predicted value. The majority
of absolute error is centered around zero which indicates there is no systematic error in
predictions. Nevertheless, the lowest RMSE achieved by the Random Forest Regression
model is centered around 0.325 which is still quite a large value for prediction error.

5.2 Feature importance

As we can see, the Random Forest Regression models showed better results than
the neural network models. We picked the first model with 100 weak predictors and
evaluated the importance of all features. The evaluation was executed by a modified

Figure 5.4: Feature importance evaluated on Random Forest Regression model with
100 weak predictors. The x axis values are provided in logarithm scale. The black line
represents standard deviation of measurements.

32

version of the scikit-learn feature evaluation [29], which uses variance as an impurity
for each feature to determine how much the feature is important. The script uses the
feature_importances_ attribute of the whole random forest as well as the same attribute
of all its trees to calculate the measurement error represented by standard deviation.
The results represented with bar plots can be seen in Figure 5.4. Without a doubt, the
most important feature for velocity prediction is the distance. Since we are predicting
the duration in seconds and not the direct velocity, the distance information is crucial
for the prediction. It is obvious that a trip along a longer segment has longer duration
than a short segment trip. The coordinates of an origin junction and a destination
junction are also essential but not as much as an information about elevation. Even a
slight difference between the origin point elevation and the destination point elevation
can cause change in the segment duration. If a cyclist rides downhill, the segment trip
could be faster. Although it seemed unlikely that the use of OSM features is significant
because of very small improvement in prediction, the OSM data (especially the traffic
density) appear to have more impact than some of the features extracted from traffic
network graph. Is is also possible that the OSM features provide some sort of suitable
combination with other features and therefore some of them are more essential than the
others. The units representing a feature importance are provided in logarithm scale so
that we can see the difference between features which are evidently not as important.

5.3 Velocity prediction

All of the models evaluated are predicting the duration of a segment in seconds.
The final velocity prediction is calculated using the segment length in meters and the
predicted value. It is multiplied by 3.6 to get the value in km/h which is more common
in traffic. The prediction of Random Forest Regression models is the most accurate
of all the developed models so we will evaluate the error of the recalculated velocity
only for the two models. We can again examine the benefits of additional OSM data
by using the different dataset forms. To recalculate the velocity and evaluate the error,
we have to use the unscaled data to be able to get the prediction in desired units.
The results can be seen in Figure 5.5. The RMSE of velocity is centered between
6.92 and 6.97 km/h. This is rather big error considering the average bicycle speed is
around 19-26 km/h which was mentioned in 4.2. There are many reasons why is the
overall error so large not just for the Random Forest Regression models but also for
the neural network models. The reasons might include problems with map-matching,

Figure 5.5: Random Forest Regression models evaluated on different dataset forms
using RMSE of velocity in km/h.

33

GPS device malfunction, missing values in the dataset, or even inconveniently chosen
network architecture.

34

6. Conclusion
The thesis assignment was to develop a machine learning model capable of predicting

the velocity of an individual cyclist performed on tracks divided into segments. After
inspecting the data provided and familiarizing with the state-of-the-art by reviewing the
related studies, we implemented the fundamental scripts for extracting the features from
the traffic network representation. We then developed the first machine learning model
which was trained with the basic features without any adjustments. The prediction
was poor because we did not contemplate the possible errors the dataset could contain.
After the proper data analysis which revealed the unfavourable information, the bad
features were removed from dataset. Thanks to this, we came up with a model which
shows a good performance in prediction testing. In order to utilize the sequential
data representation of the tracks, we focused on implementing the LSTM networks.
We needed to introduce a customized dataset to be able to train a model with larger
batches. The training of LSTM network requires a lot of time and a great computing
power. For that reason, the LSTM and the other developed models such as GRU or
TCN were trained and tested on RCI cluster. The dataset was adjusted for one more
time and it was also augmented by additional OSM information to improve the learning
process.

We have evaluated different machine learning methods and found out which models
were the most suitable for the final prediction. We compared the developed models
with other non-neural network based methods. The random forest regression models
showed better performance than the neural network models. We discovered that the
neural network architectures need more training epochs to learn so that the error would
decrease as much as possible. The augmentation of dataset by OSM data was not as
essential as expected but some of the extended features appeared to be more important
for the prediction than some of the basic features contained in the dataset.

6.1 Future work
The machine learning model could be improved by using even larger dataset with

utilization of a more complex traffic network graph. A larger dataset was already
provided ten days before the thesis submission. Unfortunately, there were many errors
in the track recordings which would require more comprehensive techniques of data
pre-processing. With more features, we could consider building a deep-learning neural
network architecture which might find more complicated patterns in the dataset. We
can also search for a more important OSM features, which might be frequent for most
of the road segments. If it is possible to find such features, we should consider using
a Multiple Instance Learning method in order to make use of the most information
available.

35

36

References
[1] C. Olah. Understanding LSTMs. https://colah.github.io/posts/

2015-08-Understanding-LSTMs/. Accessed: 19 April 2020.

[2] S. Bai, J. Z. Kolter, and V. Koltun. An Empirical Evaluation of Generic Con-
volutional and Recurrent Networks for Sequence Modeling. arXiv e-prints, page
arXiv:1803.01271, March 2018.

[3] Y. Lv, Y. Duan, W. Kang, Z. Li, and F. Wang. Traffic flow prediction with big
data: A deep learning approach. IEEE Transactions on Intelligent Transportation
Systems, 16(2):865–873, 2015.

[4] A. El-Geneidy, K. J. Krizek, and M. J. Iacono. Predicting bicycle travel speeds
along different facilities using GPS data: A proof-of-concept model. Transportation
Research Board, 2007.

[5] J. Hrnčíř, P. Žilecký, Q. Song, and M. Jakob. Practical multicriteria urban bicycle
routing. IEEE Transactions on intelligent systems, 18(3):493–504, 2017.

[6] Open street map. https://www.openstreetmap.org/. Accessed: 20 April 2020.

[7] F. Langr. Modelling cyclist behaviour using machine learning, 2016.

[8] T. Werner. Optimalizace. https://cw.fel.cvut.cz/b191/_media/courses/
b0b33opt/opt.pdf. Accessed: 24 April 2020.

[9] Simple linear regression - one binary categorical independent variable.
https://www.southampton.ac.uk/passs/confidence_in_the_police/
multivariate_analysis/linear_regression.page. Accessed: 25 April
2020.

[10] Artificial neural network. https://en.wikipedia.org/wiki/Artificial_
neural_network. Accessed: 19 April 2020.

[11] Neural network models (supervised). https://scikit-learn.org/stable/
modules/neural_networks_supervised.html. Accessed: 19 April 2020.

[12] Stochastic gradient descent. https://en.wikipedia.org/wiki/Stochastic_
gradient_descent. Accessed: 19 May 2020.

[13] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. arXiv
e-prints, page arXiv:1412.6980, December 2014.

[14] N. d. Freitas. Machine learning course of department of computer at
university of oxford. https://www.cs.ox.ac.uk/people/nando.defreitas/
machinelearning/. Accessed: 19 April 2020.

[15] X. Shi, Z. Chen, H. Wang, D. Yeung, W. Wong, and W. Woo. Convolutional
LSTM network: A machine learning approach for precipitation nowcasting. arXiv
e-prints, page arXiv:1506.04214, June 2015.

[16] N. d. Freitas. LSTMs for language modelling. https://www.cs.ox.ac.uk/
people/nando.defreitas/machinelearning/practicals/practical6.pdf.
Accessed: 19 April 2020.

37

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.openstreetmap.org/
https://cw.fel.cvut.cz/b191/_media/courses/b0b33opt/opt.pdf
https://cw.fel.cvut.cz/b191/_media/courses/b0b33opt/opt.pdf
https://www.southampton.ac.uk/passs/confidence_in_the_police/multivariate_analysis/linear_regression.page
https://www.southampton.ac.uk/passs/confidence_in_the_police/multivariate_analysis/linear_regression.page
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://scikit-learn.org/stable/modules/neural_networks_supervised.html
https://scikit-learn.org/stable/modules/neural_networks_supervised.html
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/
https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/
https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/practicals/practical6.pdf
https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/practicals/practical6.pdf

[17] S. Kostadinov. Understanding GRU networks. https://towardsdatascience.
com/understanding-gru-networks-2ef37df6c9be. Accessed: 19 April 2020.

[18] Random forest regressor. https://scikit-learn.org/stable/modules/
generated/sklearn.ensemble.RandomForestRegressor.html. Accessed: 6 May
2020.

[19] L. Breiman. Random forests. In Machine Learning, volume 45, pages 5–32. Kluwer
Academic Publishers, 2001.

[20] Shuttle radar topography mission. https://www2.jpl.nasa.gov/srtm/. Ac-
cessed: 1 May 2020.

[21] Map matching. https://en.wikipedia.org/wiki/Map_matching. Accessed: 20
April 2020.

[22] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang. Map-matching
for low-sampling-rate GPS trajectories. In Proceedings of the 17th ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information Systems,
GIS ’09, page 352–361, New York, NY, USA, 2009. Association for Computing
Machinery.

[23] D. Fiedler, M. Čáp, J. Nykl, P. Žilecký, and M. Schaefer. Map Matching Algorithm
for Large-scale Datasets. arXiv e-prints, page arXiv:1910.05312, September 2019.

[24] Haversine formula. https://en.wikipedia.org/wiki/Haversine_formula. Ac-
cessed: 1 May 2020.

[25] H. Reynolds. How to cycle faster and increase your aver-
age speed. https://www.cyclingweekly.com/fitness/training/
13-ways-increase-average-cycling-speed-144937. Accessed: 2 May
2020.

[26] E. Cronkleton. What is the average walking speed of an adult? https://www.
healthline.com/health/exercise-fitness/average-walking-speed. Ac-
cessed: 2 May 2020.

[27] scikit-learn Standard scaler. https://scikit-learn.org/stable/modules/
generated/sklearn.preprocessing.StandardScaler.html. Accessed: 4 May
2020.

[28] T. Pevný and P. Somol. Using Neural Network Formalism to Solve Multiple-
Instance Problems. arXiv e-prints, page arXiv:1609.07257, September 2016.

[29] Feature importances with forests of trees. https://scikit-learn.org/stable/
auto_examples/ensemble/plot_forest_importances.html. Accessed: 19 May
2020.

38

https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be
https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://www2.jpl.nasa.gov/srtm/
https://en.wikipedia.org/wiki/Map_matching
https://en.wikipedia.org/wiki/Haversine_formula
https://www.cyclingweekly.com/fitness/training/13-ways-increase-average-cycling-speed-144937
https://www.cyclingweekly.com/fitness/training/13-ways-increase-average-cycling-speed-144937
https://www.healthline.com/health/exercise-fitness/average-walking-speed
https://www.healthline.com/health/exercise-fitness/average-walking-speed
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html
https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html

A. Appendix
A.1 Data analysis details

Figure A.1 shows analysis of OSM feature in linear scale. We can see that the
majority of feature values is equal to zero which is caused by the fact that there are
many short segments in dataset, which cannot include any other features within its
surroundings.

Figure A.1: Analysis of OSM features with linearly scaled y axis.

39

A.2 Evaluation details
Figure A.2 shows evaluation of model comparison with different dataset forms in

unscaled units to be able to have an idea about the error in seconds. The Table A.1
shows mean values and standard deviation values for the evaluation measurements.

Figure A.2: Boxplots for each model and each dataset form used in feature importance
evaluation (unscaled error).

40

Model OSM data Scaled error Unscaled error
Mean Std Mean Std

Basic

None 0.3719 0.0067 6.7431 0.1209
Bus stops 0.3675 0.0048 6.6623 0.0866

Tram stops 0.3689 0.0049 6.6885 0.0882
Traffic signals 0.3712 0.0053 6.7293 0.0969

Trees 0.3699 0.0077 6.7067 0.1404
Traffic density 0.3699 0.0059 6.7062 0.1071

Sidewalks 0.3704 0.0060 6.7151 0.1089
All 0.3671 0.0044 6.6554 0.0798

LSTM

None 0.3615 0.0081 6.5547 0.1471
Bus stops 0.3616 0.0085 6.5556 0.1538

Tram stops 0.3582 0.0059 6.4949 0.1077
Traffic signals 0.3587 0.0074 6.5038 0.1350

Trees 0.3631 0.0093 6.5841 0.1682
Traffic density 0.3577 0.0068 6.4854 0.1231

Sidewalks 0.3588 0.0062 6.5046 0.1121
All 0.3562 0.0093 6.4590 0.1690

GRU

None 0.3641 0.0086 6.6024 0.1553
Bus stops 0.3638 0.0098 6.5961 0.1783

Tram stops 0.3706 0.0209 6.7202 0.3787
Traffic signals 0.3631 0.0119 6.5842 0.2160

Trees 0.3679 0.0126 6.6708 0.2277
Traffic density 0.3637 0.0099 6.5948 0.1792

Sidewalks 0.3641 0.0149 6.6019 0.2698
All 0.3678 0.0154 6.6690 0.2793

TCN

None 0.3569 0.0045 6.4713 0.0821
Bus stops 0.3580 0.0039 6.4909 0.0702

Tram stops 0.3581 0.0064 6.4935 0.1158
Traffic signals 0.3592 0.0071 6.5122 0.1281

Trees 0.3568 0.0047 6.4686 0.0856
Traffic density 0.3584 0.0052 6.4990 0.0935

Sidewalks 0.3564 0.0039 6.4616 0.0709
All 0.3547 0.0062 6.4317 0.1125

RFR 1

None 0.3258 0.0021 5.9072 0.0373
Bus stops 0.3261 0.0017 5.9125 0.0310

Tram stops 0.3262 0.0017 5.9140 0.0310
Traffic signals 0.3266 0.0021 5.9219 0.0389

Trees 0.3256 0.0027 5.9031 0.0489
Traffic density 0.3260 0.0026 5.9106 0.0470

Sidewalks 0.3257 0.0022 5.9057 0.0400
All 0.3249 0.0023 5.8908 0.0423

RFR 2

None 0.3249 0.0017 5.8902 0.0309
Bus stops 0.3249 0.0015 5.8901 0.0275

Tram stops 0.3244 0.0017 5.8824 0.0314
Traffic signals 0.3248 0.0010 5.8890 0.0181

Trees 0.3248 0.0016 5.8883 0.0297
Traffic density 0.3239 0.0018 5.8730 0.0321

Sidewalks 0.3257 0.0013 5.9059 0.0229
All 0.3241 0.0020 5.8757 0.0371

Table A.1: Mean and standard deviation values for each model and each OSM feature.

41

42

	List of Figures
	List of Tables
	Introduction
	Motivation

	Problem statement
	Related work
	Problem specification
	Regression
	Categorical variables

	Methods used
	Neural Networks
	Recurrent Neural Networks
	LSTM Networks
	GRU Networks
	Temporal Convolutional Networks
	Random Forest Regression

	Data description
	Graph representation of traffic network
	GPS signal recordings
	Map-matching
	OSM data

	Solution approach
	Feature extraction
	OSM feature extraction

	Data analysis
	Workflow
	Project structure
	Implementation details

	Evaluation
	Model comparison with different dataset forms
	Feature importance
	Velocity prediction

	Conclusion
	Future work

	References
	Appendix
	Data analysis details
	Evaluation details

