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Abstract

Since the widespread of space exploration, especially in the commercial sector, there has
been an enormous supply of satellite imagery. The amount of data supplied by various
satellites raises demand in human interpretation of given data in order to obtain valuable
information. One example of such data is the SpaceNet dataset.

The aim of this work is to design and evaluate a deep neural network as a solution
to the SpaceNet Road Network Detection challenge based on state-of-the-art published
architectures. Due to the complex nature of the SpaceNet dataset various methods of
neural network interpretability are explored and implemented.

Keywords: Convolutional neural networks, SpaceNet, image segmentation, deep learn-
ing.
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Abstrakt

Od rozš́ı̌reńı prozkoumáváńı vesmı́ru, předevš́ım v komerčńım sektoru, docháźı k vzinku
obrovského množstv́ı satelitńıch sńımk̊u. Množstv́ı dat dodávaných r̊uznými satelity
zvyšuje poptávku po interpretaci těchto dat za účelem źıskáńı hodnotých informaćı.
Př́ıkladem takových dat je dataset SpaceNet.

Ćılem této práce je vytvořeńı a vyhodnoceńı hluboké neuronové śıtě, jakožto řešeńı
soutěže SpaceNet Road Network Detection challenge. Kv̊uli komplexitě datasetu SpaceNet
jsou prozkoumány a využity r̊uzné metody interpretovatelnosti pro neuronové śıtě.

Keĺıčová slova: Konvolučńı neuronové śıtě, SpaceNet, segmentace obrazu, hluboké
učeńı.
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Introduction

This thesis focuses on design, implementation and evaluation of a deep convolutional
neural network on the SpaceNet roads dataset. This chapter offers a general overview
of the problem, Chapter 1 provides an introduction to the field of machine learning and
deep learning. Chapter 2 then describes the SpaceNet roads dataset, related competition
and its solutions. Chapter 3 further focuses on interpretability of machine learning and
provides an overview of published interpretability methods.

Motivation

Visual data are the easiest form of displaying information, be it graphs, tables or images.
An example of such data are maps. Most of the places and roads on Earth are already
well mapped, but challenges emerge when we take into account the validity of some maps.
For example humanitarian organizations may require reliable road network maps of areas
struck by a natural disaster. In such case, it is neither safe nor fast to manually attempt
correction or validation of available data. Updated and reliable data can be acquired
through satellite imaging, though. Recent advancements in technology led to an increase
in the amount of satellite data available. This further raised the demand for tools that
would simplify or automate processing of available data.

Neural networks have become a widely used tool for such tasks, unfortunately, trained
models are often viewed as black-boxes that provide a prediction using some sort of
internal magic. The field of interpretability focuses on discovery of methods that would
help interpret the inner workings of neural networks. In recent years, this field has seen
many new publications. Sadly, the proposed methods often aren’t evaluated by anyone
else than the publisher or simply do not receive enough attention.

Aims

The aim of this work is to design and implement a deep convolutional neural network
based on the already published state-of-the-art solutions for the SpaceNet Road detection
challenge and to provide an overview of existing interpretability methods along with
experimental evaluation of a selected method on proposed network.

Related work

The Machine Learning (ML) field is a very broad area of interest, therefore not many
publications cover it as whole, yet some works try to fit in and introduce all general
concepts of ML, for example [21, 48, 9]. Usually, publications tend to focus on a more

1
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specific field of ML instead. Some are discussing classical ML, others [3, 73] focus more on
the topic of deep learning which has lately become an extremely active field of research,
even more so in relation to object detection [20, 49], image segmentation [39, 7, 14] and
computer vision in general [4, 5].

Majority of publications regarding road detection tend to work with imagery obtained
on ground level, mostly for use in autonomous navigation systems and similar applica-
tions, some examples of such are [36, 71]. Publications approach road detection and
segmentation from satellite imagery in many different ways, G. Cheng et al. [16] pro-
poses a multi-step approach first segmenting the road region, thereafter generating a road
centerline network and finally using an algorithm for overcoming the ineffectiveness of
existing methods in the roads’ intersections.

An intricate area of interest for the purpose of this work is ML interpretability. Recent
publications present new ways to interpret the learning of deep neural networks (DNNs),
such as LCA [33], an overview of existing interpretability methods is covered here and in
[2, 22].



Chapter 1

Machine Learning and Neural
Networks

Machine Learning (ML) is a field of Artificial Intelligence (AI) , which in general
addresses the question Can machines think?, asked by A. Turing [70], and attempts to
answer in such manner to show that machines can, indeed, think [25]. The aim of ML
algorithms is to build a mathematical model based on sample data, usually called train-
ing data or similarly, in order to make predictions or decisions without being explicitly
programmed to do so. This is generally achieved by providing the algorithm with a de-
scription of features available in the training data. Features are distinct properties of the
data, which one can use for example to decide whether a picture is that of a dog or a cat.

Neural networks (NNs) are algorithms based on the idea of imitating the function
of a human brain, thus called neural. They were first described long before the 2000s, but
were not widely used until the much later introduction of the backpropagation algorithm,
a learning methodology which greatly impacted the performance of NNs. Nowadays, NNs
are dominant in many AI fields like computer vision, natural language processing, speech
recognition or big data processing.

1.1 Perceptron as the Foundation of Neural Networks

The Perceptron algorithm was first introduced by Frank Rosenblatt in 1957 [43]. It is
an algorithm for learning a binary classifier - a function that maps its input x, usually a
real-valued feature vector, to an output value f(x), a single binary value. In context with
neural networks, perceptron can be perceived as a single-layer neural network.

Given the Perceptron parameters, weights vector ~w ∈ Rn and a bias b ∈ R, classifica-
tion ŷ for a vector ~x ∈ Rn to two classes {−1, 1} is performed as

ŷ = sign(~w · ~x+ b) (1.1)

which is a linear function l(x) = ~w ·~x+b followed by a non-linear function σ(z) = sign(z),
thus ŷ = σ(l(x)). A more complex classifier can be created using more perceptrons with
shared input, as well as using their outputs as inputs to others, such structure can be
seen in Figure 1.1.

This network is the most basic version of a Neural Network (NN). When building NNs,
we stack different types of layers to achieve the best results. One layer is, simply put, a
collection of neurons, where a single neuron is implemented using a linear function, such

3
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σ( ~w12 · ~x+ b12)

σ( ~w11 · ~x+ b11)

σ( ~w13 · ~x+ b13)
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Figure 1.1: Structure of a simple Multilayer Perceptron (MLP). Image created using TikZ
TEX package.

Input #1
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Input #3

Input #4

Output

Hidden
layer #1

Input
layer

Hidden
layer #2

Output
layer

Figure 1.2: Neural Network with 2 hidden layers. Image created using TikZ TEX package.

as previously mentioned l(x) = ~w · ~x + b, followed by a nonlinearity like σ(x), called an
activation function.

1.2 Deep Learning

Deep learning is an approach to NNs where more hidden layers are used. Since their
widespread, various types of NNs have been introduced, including, but not limited to,
Multi-Layer Perceptrons (MLPs), Convolutional NNs (CNNs, ConvNets), Recurrent NNs
(RNNs) and Generative Adversarial Networks (GANs).

The most abstract building blocks of NNs are layers. Layer is a collection of neurons,
and any regular NN can be decomposed into its layers, which can further be broken down
into respective neurons in each layer. These collections of neurons are called layers due
to the fact that the output of i-th layer is the input of (i + 1)-th layer, clearly shown on
Figure 1.2. Training data are fed into an input layer, thereafter processed by one or more
hidden layers and then finally forwarded to an output layer. If there is more than one
hidden layer, the network is referenced to as a deep neural network (DNN).

1.2.1 Activation Function

In ML, activation functions are differentiable nonlinear functions allowing NNs to model
complex nonlinear relationships between features. Common activation functions are the
Sigmoid and the ReLU function, shown in Figure 1.2.1. Pros and cons of different activa-
tion functions as well as some pitfalls when used along with backpropagation are described
in [28].
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σ(x) =
1

1 + e−x
R(x) = max(0, x)

Figure 1.3: Common activation functions. Left: the
sigmoid function. Right: the ReLU function.

λ(x) = C(t− x2) L(ŷ, y) = I(ŷ 6= y)

Figure 1.4: Common loss functions. Left: the quadratic
loss function. Right: the 0-1 loss function.

1.2.2 Loss function

Loss function is a function that maps values of one or more variables onto a real number,
intuitively representing a kind of cost associated with given values. It is a wrapper around
the network’s output saying how good or bad did the model score on given sample.

Selecting an appropriate loss function is not an easy task and many recent publications
[40, 67, 72, 27] present new types of computing loss. Common loss functions are the
quadratic loss function and the 0-1 loss function, seen in Figure 1.2.2.

1.2.3 Backpropagation

In ML, backpropagation is an algorithm used in the process of training of NNs. Backprop-
agation efficiently computes the gradient of the loss function with respect to the weights
of the network for a single training example.

Gradient of a scalar function f(x1, x2, . . . , xn), notation ∇f , is the direction and rate
of the fastest increase. Computationally, it is a vector of partial derivatives of f as its
value at index i is the partial derivative of f with respect to xi.

While the term backpropagation refers only to the algorithm computing the gradient,
it is often loosely used to refer to the entire learning algorithm including how the gradient
is used. This is often done using gradient descent or its variations like stochastic gradient
descent (SGD). Even though combination of backpropagation with the use of SGD is
applicable to both regression and classification, even with multiple classes, it does not
guarantee the reach of a global minima.

1.3 Convolutional Neural Networks

Contrary to regular networks, most layers in Convolutional Neural Networks (ConvNets,
CNNs) are not fully-connected, convolutional layers in CNNs send their outputs only to
some neurons in the next layer. They are most commonly applied to tackle problems of
computer vision such as image classification and segmentation or medical image analysis.
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0 1 3 1
1 2 2 3
0 0 2 2
0 0 0 1

×
3 2 1
0 2 2
4 0 1

=
15 21
13 22

Figure 1.5: Result of the convolution operation applied to an image of size 4x4 with filter
size 3x3 and stride 1

1.3.1 Layers in Convolutional Neural Networks

Convolutional Layer

Convolutional layer is based on the operation of convolution in signal processing, it is
defined as (f ∗ g)(n) =

∑inf
m=− inf f(m)g(n − m). In deep learning, this operation is

performed as element-wise multiplication and addition [6, 47].
In NNs, Convolutional layers are implemented as filters of given size that move across

the whole input. At each position of the input a matrix multiplication of overlaid part of
the data and the filter is performed. Each filter is described using its size (width) and a
stride, which tells how many columns or rows the filter moves each iteration. In Figure
1.5 it is shown that the dimensions of the convolution output are smaller than the input,
if the operation should preserve the dimensionality of the data, zero padding is applied
to the input, this means that given number of zeroes is appended to the input so that the
resulting dimensions are the same.

For 2D grayscale input (n× n matrix of 0-255 values), the value xlij of output on i-th
row and j-th column of l-th layer with filter size k × k is computed as [21] :

xlij =
k−1∑
x=0

k−1∑
y=0

wxyo
l−1
(i+x)(j+y) + b

Nonlinearities are sometimes considered to be a part of convolutional layers, other
times they are explicitly stated as a layer, either as activation layer or by the name of
used nonlinear function like ReLU or sigmoid.

Pooling Layer

Pooling layers allow downsampling of the input data. Besides the obvious reason being
less computational requirements for next layers, this is especially useful for extracting
important elements in the data. For example in a high-res image, location of a feature is
very precise and adjusting the image would greatly impact the detection of given feature
so in order to prevent such impact pooling layer downsamples the image resolution and
important features remain dominant. Pooling layers are usually applied after nonlineari-
ties (activations) and require selecting a pooling operation, very much like filter size and
stride in convolutional layers. Majority of NNs use pooling with filter size 2x2 pixels
applied with a stride of 2, which means that each dimension of pooling layer is halved on
the output. Most common pooling operations are max pooling, which finds the maximum
value for each section of the input, and average pooling, which computes the average value
for each section of the input.
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Figure 1.6: Scheme of the AlexNet network. Image from [37], CC-BY-4.0.

Fully Connected Layer

Fully connected (FC) layers are the same as used in regular NNs, not only CNNs. In
FC layers, neurons have connections to all activations of the previous layers, ouput is the
result of matrix multiplication, same as in Convolutional layers. In comparison to FC
layers, a 1x1 Convolutional layer with stride 1 computes a weighted sum of all the input
channels with the same weights for each spatial location, while a FC layer stores weights
for each spatial location, meaning that a FC layer has significantly more parameters with
increasing number of channels.

1.3.2 Common Architectures

While NNs as such are so widely used only recently, some types of architectures have
already proven to be more efficient for given tasks than others. This section discusses a
selection of important CNN architecture designs and related discoveries.

LeNet

LeNet, introduced by Yann LeCun et al. in 1998 is considered to be the first successful
CNN. The network used tanh as the activation function and incorporated the usage
of average pooling. While this publication is a big breakthrough in the field of ML,
CNNs were not widely used until the later success of AlexNet, mainly due to performance
restrictions [35].

AlexNet

A groundbreaking paper was published by Alex Krizhevsky et al. in 2012. The network
known as AlexNet, shown in Figure 1.6, won the 2012 ImageNet Large Scale Visual
Recognition Challenge [45], scoring an error rate more than 10 % lower than any other
competitor. This led to an extremely quick adoption of CNNs in ML. The network consists
of five convolutional layers, some followed by max pooling layers, all further followed by
three fully connected layers. Krizhevsky also puts emphasis on the effect of using ReLu
as the activation function instead of tanh or sigmoid [30].

https://creativecommons.org/licenses/by/4.0/
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VGG

VGG’s1 architecture is similar to that of AlexNet, only it is deeper. AlexNet consists
of 8 layers with parameters, also called weighted layers, in total, while VGG consists of
16 weighted layers. Of these 16 layers 13 are convolutional layers and three are fully
connected. The convolutional layers are divided into 5 groups each followed by a max-
pooling layer. The deeper convolutional layers in VGG have bigger filter sizes, which
means the receptive field is larger hence VGG generally performs better than AlexNet
[50].

GoogLeNet/Inception

While VGG achieves great accuracy on the ImageNet dataset, its deployment was a prob-
lem due to its high computational requirements. This is what the GoogLeNet attempts to
solve by introducing a module called inception module, shown in Figure 1.7. This module
uses so-called bottleneck layers with 1x1 convolutions for dimensionality reduction which
are followed by convolutions of various sizes to capture details at different scales. Further-
more, GoogLeNet replaced previously used fully connected layers at the end with a simple
average pooling layer. This leads to better utilization of computational resources inside
the network. Overall, these innovations help GoogLeNet achieve over 93% accuracy on
the ImageNet dataset while having much lower computational requirements than VGG
[65].

ResNet

Previous architectures have shown that with increasing depth of a network the accu-
racy increases until it gets saturated and then drops rapidly. Residual Neural Networks
(ResNets) address this problem by using so-called skip connections or residuals. Skip
connections are implemented in the form of two paths in the network, shown in Figure
1.8. One path is as usual, for example three convolutional layers, and the second path
is simply one convolutional layer with filter 1x1, these two paths are then merged. The
benefit of these connections is retained information which helps fight the problem of van-
ishing gradient [46]. ResNets introduce so-called conv blocks and identity blocks, where a
conv block looks as described here and identity blocks simply omit the 1x1 convolutional
layer in second path. ResNets widely popularized skip connections and helped design
even deeper CNNs without a compromise to generalization [23].

U-Net

Initially developed for biomedical image segmentation for use where less labeled training
data is available, the U-Net architecture yielded yet another insight into what connections
and information could be useful for CNNs. The architecture consists of a contracting and
an expansive path in the form of so-called encoders and decoders. The contracting path
uses encoders to reduce spatial information, thus it decreases dimensions and allows for
faster processing of available data, while the expansive path uses decoders to combine
learned features with original spatial information using so-called up-convolutions [42].

1VGG can refer to multiple architectures described in the same paper, discussed here is VGG-16
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Figure 1.7: Scheme of an inception mod-
ule from the GoogLeNet architecture.
Image from [66].

Figure 1.8: Scheme of a ResNet’s resid-
ual block. Image from [23].

Figure 1.9: Scheme of the Tiramisu net-
work. Image from [26].
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DenseNet

ResNets have shown that CNNs can be more accurate and efficient if they have direct
connections between layers close to the input and close to the output. Dense Convolutional
Networks (DenseNets) take this idea a step further by introducing so-called dense blocks
in which each layer takes input from all preceding layers directly. In a block with n
layers there are n(n+1)

2
direct connections in the dense block only compared to n direct

connections in a simple feed-forward NN. The increased number of direct connections help
reduce the rate of gradient vanishing while reducing the number of parameters. It has
also been observed that dense connections reduce over-fitting on smaller training sets [24,
12].

Tiramisu

Fully convolutional DenseNet, also called the One Hundred Layer Tiramisu, is an archi-
tecture described by Simon Jégou et al. in [26]. Inspired by the U-Net architecture, this
network contains a contracting and an expansive path while incorporating dense blocks
used in DenseNets, its scheme can be seen in Figure 1.9. When moving forward through
the network, features are learned in given dense blocks and outputs of the dense blocks
are then downsampled or upsampled depending on whether they are located on the con-
tracting or expansive path.

LinkNet

LinkNet, based on the findings of previously successful architectures, such as ResNets and
U-Nets, attempts to further utilize information learned by the encoder by sharing it effi-
ciently with the decoder after each downsampling block. It was designed for applications
in self-driving or augmented reality thus has the possibility of real-time performance on
both GPUs and embedded devices. At the time of publication, it can be seen in [13]
that the network clearly outperformed current state-of-the-art on both CamVid [10] and
Cityscapes [17] datasets.



Chapter 2

SpaceNet Dataset and Challenges

Starting in November 2016 [69], SpaceNet [63] has released five challenges, each along with
a related dataset, requiring application of ML methods on difficult mapping challenges.
Since the release of the first of these challenges, the topics have been as follows: Building
Detection [56, 52, 57, 53], Road Network Detection [58, 55], Off-Nadir Building Detection
[59, 54] and Road Extraction and Route Travel Time Estimation [51, 60].

The aim of these challenges is to advance the field of ML as a whole. By providing
financial rewards to the best competitors, SpaceNet motivates many new people to com-
pete along. The best performing solutions are open-sourced after publishing results so
that anyone can view and discuss introduced methods and architectures [63].

2.1 Dataset Overview

For this work it was decided to work with The SpaceNet Roads dataset (further referred
to as the dataset), published with the Road Network Detection challenge (further referred
to as the challenge) [58], because it offers vast amount of data suitable for usage in CNNs
and offers a fairly simple evaluation metric - the average path length similarity (APLS) -
discussed further in section ”Average path length similarity metric”. The best solutions
of the challenge had APLS score around 0.66 [55].

The dataset contains satellite imagery from the four following areas of interest (AoIs):
Las Vegas, Paris, Shanghai and Khartoum. Each one of these cities is represented by
images taken in both RGB and multiple spectra, containing overall more than 8670km
of labeled road data. The goal of the challenge was to detect Road networks in provided
satellite imagery. Summary of the imagery available is shown in Table 2.1. The data are lo-
cated on an AWS s3 storage with path s3://spacenet-dataset/spacenet/SN3 roads/train/.

Data for each AoI are available in four different folders corresponding to four different
types of raster data provided by the WorldView-3 satellite [61], the following types of

AoI Length of labeled roads Covered area Number of samples Size on disk
Las Vegas 3685km 216 km2 989 38.9 GB

Paris 425km 1030 km2 310 13 GB
Shanghai 3537km 1000 km2 1198 48 GB
Khartoum 1030km 765 km2 283 12 GB

Table 2.1: Summary of available data in the SpaceNet Roads dataset. Data from [62] and
custom measurements.

11
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APLS = 1− 1

N

∑
min(1,

|L(a, b)− L(a′, b′)|
L(a, b)

)

Figure 2.1: The APLS metric. N is the number of unique paths in the graph, L(a, b) is
the length of path from point a to point b. [18]

images are available:

• MS contains multi-spectral images with 8 channels per image,

• PAN contains grayscale (panchromatic) images with 1 channel per image,

• PS-MS contains multi-spectral images with 8 channels per image pan-sharpened to
resolution of 0.3m,

• PS-RGB contains RGB images with 3 channels per image pan-sharpened to resolu-
tion of 0.3m.

2.1.1 Average Path Length Similarity Metric

Adam Van Etten, in his article about the challenge, introduces a metric called Average
Path Length Similarity (APLS) for similarity matching of ground truth and proposed
graphs. Based on the Djikstra’s shortest path algorithm, this new metric allows for
comparison of both logical and physical topology of the graphs [18]. The article also
compares this new metric with other available metrics such as Jaccard index or, more
widely used, F1 score, which computes similarity per-pixel, weighting each pixel equally,
thus a break in the graph structure is much less penalized than different road widths.
Definition of the APLS metric is in Figure 2.1

2.2 Challenge’s Published Architectures

This chapter discusses and focuses on the top five solutions of the challenge which had
APLS scores of 0.6663, 0.6661, 0.666, 0.6567 and 0.6284 respectively. All of these solutions
can be split into two parts, a neural network part and a ”image to graph” part building
the final graph. These top five solutions are also open-sourced and available for further
exploration.

All of the architectures are described by their authors in [64]. The descriptions are
written in terms of implementation, used libraries, inspirations and possible improvements
and pitfalls.

2.2.1 Albu

The winning submission of the challenge achieved resulting APLS score of 0.6663.
For the neural network part, the solution uses a network based on the U-Net archi-

tecture trained on square crops of training images of size 512px with batch size 11 for
30 epochs. The learning rate is dropped a while into training, starting with 10−4 for the
first 20 epochs, decreasing to 2× 10−5 for the next five epochs and decreasing once again
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to 4 × 10−6 for the last five epochs. The prediction is performed on a full image with
resolution 1344px.

For transforming the probability map into graph, a threshold is applied to the proba-
bility map to simply differentiate pixels into two classes - road and not road. The binary
image is denoised from small objects and holes and then run through a skeletonization
algorithm to thin the road widths. The solution then uses a package called sknw1 to
transform the skeleton into a graph. Further, the author found that skeletonization does
not work properly on borders and in order to fix this problem he replicated the border of
the binary image and only after that he applied skeletonization.

The author states that the designed architecture might not generalize well for different
weather conditions or zoom levels, which is a limitation for all ML solutions. The use of
information from adjacent tiles or OSM2 is a mentioned potential improvement.

Overall, this network won the challenge with APLS score 0.6663. It also scored the
highest of all submissions on the images of Khartoum, being the only network that sur-
passed 0.65 in APLS score in this city.

2.2.2 cannab

The author of the second solution does not go into much detail with the description of his
solution, nevertheless some information can be found. It is certain that the solution uses
an ensemble of multiple models based on U-Net and LinkNet architectures. To obtain the
final graph, it seems that the solution incorporates similar techniques to the first solution.
Skeletonization is used to get a graph structure, which is then cleaned off of some noise
and obvious mistakes such as small unconnected parts and crosses, finally, it is attempted
to fix some broken connections. The author specifies that a separate model for each new
city must be trained or at least tuned as he was not able build one model for all the cities.

The resulting network yielded APLS score 0.6661 which was just enough to take the
second place in the challenge. Scoring an APLS score of 0.6446 on the Paris images, in
this region it beat all subsequent submissions by 0.04 points.

2.2.3 pfr

On the third place followed a submission using an ensemble of nine NNs, all based on
an architecture called DPN-92, described in [15]. The output image is cropped by 24px
on all sides in order to remove borders which have less spatial context available. The
third solution is one of the only two that mention data augmentation prior to training -
author describes using squared crops of training images which are then randomly flipped
or rotated by multiples of 90 degrees.

Similarly to the previous designs, thresholding is used to obtain a binary image which
is further denoised, skeletonized and smoothed using shapely library3 to produce the final
graph structure. Same as previous competitors, short isolated and dead-end segments are
removed.

The author states that his network could be possibly improved by using multi-spectral
images instead of only RGB or implementing a more sophisticated vectorizer in place of

1https://pypi.org/project/sknw/
2OpenStreetMap - https://www.openstreetmap.org/
3https://pypi.org/project/Shapely/

https://pypi.org/project/sknw/
https://www.openstreetmap.org/
https://pypi.org/project/Shapely/
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simple thresholding. It is also necessary to manually provide six calibration coefficients
when applying the algorithm to a new area of interest.

The final APLS score of this network is 0.666 which resulted in taking the third place
in the challenge. This network had a best score for two separate cities, Las Vegas and
Shanghai, having scored 0.8009 and 0.6646 for these cities respectively.

2.2.4 selim sef

Submission that ended up taking the fourth place in the challenge consists of an ensemble
of six models based on U-Net and LinkNet architectures to generate the image mask. The
author notes that it is crucial to use both cross-entropy and soft dice in loss when dealing
with images.

For transforming the image mask to a graph the author used the sknw library. This
solution is the second one mentioning data augmentation prior to training - the author
used normalization of the contrast of the images prior to learning and states that this
might have had a notable impact onto performance.

Using multi-spectral images, adding post processing and incorporating a loss term that
punishes topology violation are some potential improvements mentioned by the author.
He also says that the current approach does not handle bridges and multilevel intersections
very well.

2.2.5 fbastani

The solution on the fifth place uses square image crops of size 256px for training and
targets output image masks with resolution of 128px. The network uses U-Net like ar-
chitecture, similarly to all the previous solutions, and also starts with learning rate 10−3,
decreasing it during training. The author describes using an ensemble of four trained
model per city and averages the segmentation output to obtain a single image mask.

To transform the image mask into a graph, thresholding is used to obtain a binary
mask, which is then thinned. Further, borders are copied on all sides as a form of padding
optimization in attempt to connect roads more precisely. Finally, small components and
dead-ends are removed and roads ending close to each other are connected.

The author discusses that since road matching threshold in APLS is very strict it
could be helpful to align vertices along the road in the satellite imagery as a form of
post-processing. He also says that, similarly to the fourth submission, overpasses and
underpasses are not handled well.

2.2.6 Summary

All architectures can be divided into two parts: a neural network part and a part trans-
forming probability map into graph structure using thresholding and skeletonization.
Aside from the obvious difference being in chosen network structure, the solutions differ
in the size of input, data augmentation, and details of how the final graph is created.
Some authors mention interesting potential improvements to their algorithms, some of
which could also be used also other networks.
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Figure 2.2: The original LinkNet architecture. Image from [13].

2.3 Designed Network

The architecture for experimental evaluation is heavily inspired by a baseline solution of
the SpaceNet Road Network Detection challenge. It is based on the LinkNet architecture,
first described in [13].

The SpaceNet data have to be manually downloaded from the Amazon Web Services
(AWS) s3 location, described in a bit more detail in [62], note that the current AWS s3
structure is different from the one being described on the website.

A data generator is used to feed data into the network. In each batch, at first, image
masks, used as the ground truth, are generated from the original SpaceNet dataset and
then fed together with a crop of the input image into the network.

The final layer of the network returns an image with values in between 0 and 1, which,
when multiplied by 255, yield the prediction mask.

The original LinkNet architecture is shown in Figure 2.2 for reference. The input to the
designed network is first fed through two sets of blocks with a convolutional (Conv) layer,
followed by a batch normalization layer (Bn), followed by a ReLu activation layer (Relu),
together abbreviated as ”ConvBnRelu”, and then passed further to five encoder-decoder
pairs. In this section of the network, there is a set of encoders, each downsampling the
image to a smaller spatial dimension, this resembles the contracting path of a U-Net-like
network as mentioned in Section 1.3.2. The output of the last encoder is fed to the first
decoder which upsamples the image and then further combines with output of the encoder
of corresponding depth, this resembles the expansive path.

Each encoder consists of a downsampling ConvBn layer, followed by one or multiple
residual blocks. The decoders are constructed as one ConvBnRelu layer, one DeconvBn-
Relu layer and another ConvBnRelu. In the Deconv layer, transposed 2D convolution is
used instead of convolution in order to upsample the image.
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After the encoder-decoder section, the values are passed through a single convolutional
layer with a single filter of size 1x1 to reduce the number of channels to one, and finally
a sigmoid activation follows which yields per pixel values between 0 and 1, which, when
multiplied by 255, result in the predicted image mask.



Chapter 3

Machine Learning Interpretability

Interpretability of ML is a field that attempts to provide better insight into the process
of training. The goal is to understand the process more in order to make better adjust-
ments to networks’ architectures and hyperparameters, as one would call it in regular
programming, debug the code.

3.1 State-of-the-art Methods

Even though the field as such exists as long as ML itself, it has become an active area
of research quite recently [19, 38, 22], only after the spread of NNs people really realized
that it is great when programs achieve something without being explicitly told how to do
so, but it is even better when we can understand why the results were such as they were
and what would make the program act differently.

3.1.1 Model Agnostic Methods

Model agnostic methods attempt to separate explanation from a specific ML model. This
means that any ML model could be used and the interpretability methods could still be
applied regardless of the algorithms and methods used to construct given model.

Partial Dependence Plot

Partial dependence plot (PDP) simply shows the effect a feature has on the predicted
result of a ML model [8, 38]. PDP provides an intuitive insight and can also compute the
correlation of two features, e.g. age and weight when predicting the probability of a person
being obese. Some disadvantages are the ability to compute PDP only for 2 features due to
restrictions of human imagination (for n features it would be a n-dimensional graph) and
more importantly so-called assumption of independence - it is assumed that the features
for which we compute the partial dependence are not correlated with other features, which
is obviously false. Unfortunately, it is fairly inconvenient to apply in this work since NNs
learn features in their hidden layers and these features would have to be uncovered.

3.1.2 Example Based Explanations

Example based explanations are methods that attempt to explain the behavior of ML
models in relation to training data. Example based explanations do not create summaries

17
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of features, instead they help understand the model by selecting instances from the train-
ing dataset. This works well with images and similar structured data, as they can be
easily represented in a meaningful way for humans [11, 38].

Adversarial Examples

Adversarial examples are data instances with intentional changes that are designed specif-
ically to make the model yield a false prediction. While this is not directly a method of
interpretability for the training process, adversarial examples provide an insight into what
could be a security issue with neural networks [68]. Consider a face identification software
for example - one could possibly wear glasses of a very specific shape or color and as a
result this person could be either simply misinterpreted as another random person, or
even worse, might be able to imitate another person’s look in the ”eye” of the network
[38].

3.1.3 Neural Network Interpretability

Neural networks are becoming more popular and widespread every day, this raises demand
for methods of interpretation of NNs’ behavior. Since NNs can have even millions of
parameters, depending on the architecture, it is humanly impossible to understand and
follow each and every step of the training process or prediction. This demand has led to
introduction of varied interpretability methods using either learned features or gradients
of the NN.

Learned Features

When working with many kinds of ML algorithms, for example SVMs1, different features
based on available data have to be manually created. Neural networks learn these features
by themselves in hidden layers. One branch of interpretability attempts to uncover these
features and visualize them for human understanding. An example of such visualization
is activation maximization. The idea behind activation maximization is fairly simple - the
goal is to generate an input image that maximizes the output activations of given filter.
This helps understand which patterns or textures help activate a particular filter [29].

Lucid

Lucid2 is an open-source collection of tools for research of feature visualization using the
TensorFlow [1] framework. It implements visualization out of the box on many different
models such as AlexNet, VGG, ResNet or Inception, all available in the Modelzoo library
provided as a part of Lucid. Sample code is available in the form of Google Colaboratory
notebooks which can be run in the cloud with no initial setup.

The visualizations generated by Lucid tell us that the network first looks for different
shapes and textures, seen in Figure 3.1. Later, deeper, it seems that the network is looking
for more profound patterns in the data, seen in Figure 3.2. Sample images were generated
using one of Google Colaboratory notebooks3 mentioned earlier.

1Support Vector Machines
2https://github.com/tensorflow/lucid
3https://colab.research.google.com/github/tensorflow/lucid/blob/master/notebooks/modelzoo.ipynb

https://github.com/tensorflow/lucid
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Figure 3.1: Examples of Lucid visualizations of the InceptionV4 architecture
trained on the ImageNet dataset. Left to right: channels 0 to 3 of the Incep-
tionV4/InceptionV4/Mixed 6b/concat layer.

Figure 3.2: Examples of Lucid visualizations of the InceptionV4 architecture
trained on the ImageNet dataset. Left to right: channels 0 to 3 of the Incep-
tionV4/InceptionV4/Mixed 7d/concat layer, the last layer before prediction.

Lucid also provides tools called advanced objectives and transformations. Using trans-
formations, the visualization can be made more robust and overcome different effects of
batch normalization or similar layers to display more understandable output. Objectives
are used to look for different kinds of results, such as negative activations, which sym-
bolize what the neuron is not looking for, or activation grids, showing how the network
perceives spatial locations in the image.

Many more visualizations generated by the Lucid library can be seen in the OpenAI
Microscope4 collection.

3.2 Loss Change Allocation

Loss Change Allocation (LCA) is an interpretability method introduced by Janice Lan,
Rosanne Liu, Hattie Zhou and Jason Yosinski in [33]. The proposed method provides
a rich window into the neural network training process by measuring how much each
neuron ”learns” at any iteration [32]. Each neuron has assigned a score describing how
much it helped or hurt (decreased or increased the loss, respectively) the network in
given iteration, the method can be summed across multiple neurons or layers, allowing
convenient visualization and fine-grained insight of acquired data.

The publication [33] demonstrates the LCA method on some common datasets and
DNN architectures - FC and LeNet on MNIST5, and AllCNN and ResNet on CIFAR-106,
for description of architectures see Section 1.3.2.

4https://microscope.openai.com/models
5Dataset of handwritten digits
6Dataset containing images of 10 different classes

https://microscope.openai.com/models
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3.2.1 Definition of the Method

The introduced method defines the Loss Change Allocation approach by deriving from a
general formula for calculating a path integral along the loss landscape. Consider starting
parameter value θ0, ending parameter value θT , the loss landscape L(θ) and any path P
from θ0 to θT , then the change in loss from θ0 to θT can be calculated as:

L(θT )− L(θ0) =

∫
P

〈∇θL(θ), dθ〉

where 〈·, ·〉 denotes a dot product. The publication further discusses the approximation
of this path integral using a series of first order Taylor approximations and improving the
accuracy of this approximation using the fourth-order Runge-Kutta method (RK4) [44,
31] or Simpson’s rule which yields the following:

L(θT )− L(θ0) =
K−1∑
i=0

(∇θL(θt))
(i)(θ

(i)
t+1 − θ

(i)
t ) :=

K−1∑
i=0

At,i

where the parameter θ contains K elements, v(i) denotes the i-th element of a vector v
and At,i an individual Loss Change Allocation component. These K components represent
LCA for a single iteration of the training process [33].

3.2.2 Revealed Insights

The LCA paper mentions three new resourceful insights into the training process of neural
networks - barely over half of parameters help in any given iteration, some entire layers
overall move against the training gradient and lastly, iterations of peak learning appear
to be synchronized. Generally, LCA offers a great metric to measure the effectiveness
of model training that could further yield even more insight into the training process
of (D)NNs as more people encounter this metric and attempt to uncover some unique
insight.

Learning Is Noisy

Noisy learning means that there is high variability in helping parameters and overall just
slightly over half of parameters are helping the training. Figure 3.3, showing LCA for
ResNet, demonstrates this result in detail. We can see that the distribution of LCA is not
narrow around the mean, but rather wide to both sides. This implies that the helping
and hurting parameters compete during the training process rather than move all in a
single direction [33].

Some Layers Hurt Overall

The LCA score can be summed over multiple neurons, layers or even multiple layers which
is useful for a more macroscopic view of the network. This made possible visualization
of a pattern where some layers appear to be hurting the overall loss. More specifically,
the ResNet network trained on CIFAR dataset has consistently hurting the first and the
last layer. Janice Lan et al. [33] tried freezing the first layer to see if it would prevent
the layer from hurting the loss. They learned that even though the first layer hurts less,
other layers aren’t able to help as much as without the first layer frozen. Surprisingly,
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Figure 3.3: A histogram of all LCA values (all parameters at all iterations). Left: loga-
rithmic scale. Right: regular scale. Image from [32].

Figure 3.4: Left: LCA for ResNet, aggregated per layer. Right: overall network loss. Solid
bars represent regular training, hatched bars represent training with last layer frozen at
initialization. Image from [32].
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Figure 3.5: Peak moments of learning by layer and class for MNIST dataset and a three-
layer FC network. Each dot represents a peak in LCA for given layer and class. Dots
highlighted in red symbolize synchronized peaks. Image from [32].

freezing only the last layer results in such improvement in performance of the last layer
that it easily compensates for the change in other layers, which aren’t helping as much.
This trend can be seen in Figure 3.4.

Learning Is Synchronized Across Layers

Janice Lan et al. [33] further define a peak moment of learning : “we define a peak moment
of learning” for a layer and a class as a local minimum of LCA for that layer and class. In
other words, the loss for that class decreased due to the motion of that layer on iteration
t more than it decreased due to the motion on iteration t+1 or t-1”. This is visualized in
Figure 3.5 for easier interpretation and clearly shows that learning in many layers appears
to be synchronized.



Chapter 4

Results

This work focused mainly on a recently published machine learning interpretability method,
called the Loss Change Allocation (LCA) method. Firstly, it was experimentally evalu-
ated on the MNIST and CIFAR10 datasets and smaller neural network architectures.
Then it was attempted to evaluate the LCA method on a deeper architecture and larger
dataset. Alongside these experiments, another machine learning interpretability method
called activation maximization was evaluated using Lucid, an open-source visualization
libary.

4.1 LCA on Simpler Architectures

The first goal of this work was achieving the same results as in the LCA publication [33]
and summarizing the underlying concepts of machine learning.

The same dataset-architecture combinations as specified in the LCA paper were trained
and evaluated. Due to time and performance constraints, each was run only once and only
with SGD as optimizer. These combinations are MNIST-FC, MNIST-LeNet, CIFAR10-
AllCNN, CIFAR10-ResNet, some of them are described in more detail in Section 1.3.2.

Computed results correspond to those in [33], stating that only slightly over half of
parameters help reduce the overall loss in any given iteration, this can be seen in Figure
4.1 which says that out of 3600 iterations1 a parameter has helped approximately in
1819 iterations and out of 273066 trainable parameters in the ResNet network on average
137971 helped in a given iteration. Similar results can be seen in Figures 4.2, 4.3 and 4.4.

In Figures 4.3 and 4.4 a notably large amount of parameters that neither help nor
hurt in the FC and LeNet architectures can also be seen. This phenomenon is, too,
commented on in the LCA paper and occurs mostly due to the many dead pixels in the
MNIST dataset. [33] Dead pixels is a reference to those pixels that have the same value in
every training image. To understand this trend further, various hyperparameter settings
on the FC architecture were evaluated. Even though LeNet shows higher extremes in
”not-helping” and ”not-hurting” parameters, the FC architecture was chosen because of
significantly lower computational requirements when compared to LeNet. Various sizes of
learning rates and batch sizes were tried, since these parameters are the easiest to tweak
and by their nature should have relatively high impact on the training process. Lower
learning rate, same as bigger batch size, should lead to more precise and more constant

1used CIFAR-10 training set contains 45000 images, trained with batch size 250 that means 180
iterations per epoch are needed and the network was trained for 20 epochs

23
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Figure 4.1: LCA results for the ResNet architecture on CIFAR10 dataset. Left: Count of
parameters that helped each iteration (params per iteration). Right: Count of iterations
each parameter helped (iterations per param).
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Figure 4.2: LCA results for the AllCNN architecture on CIFAR10 dataset. Left: Count of
parameters that helped each iteration. Right: Count of iterations each parameter helped.

training steps, meaning more parameters should be helping, or in other words, the learning
should be less noisy and overall parameters should be helping in more iterations.

The FC architecture was evaluated with learning rate values of 0.1, 0.01 and 0.001 and
batch sizes of 125, 250 and 500, all trained in 15 epochs. Having three values of learning
rate and three values of batch size led to nine combinations of parameters corresponding
to nine experimental runs. These experiments generally confirm earlier hypothesis, that
lower learning rate and bigger batch size both contribute to less noisy training. See Figures
4.5, 4.6 and 4.7 that show how the loss curve is less noisy with increasing batch size and
decreasing learning rate, note the different scale on the y axis on the right showing the
size of change per iteration. Comparing results of models with learning rate 0.1 and batch
size 125, seen in Figure A.1, with learning rate 0.001 and batch size 250, seen in Figure
A.15, clearly shows the higher amount of helping parameters for lower learning rate and
bigger batch size. Visualizations of all the evaluated parameters and loss curves on the
FC architecture are in Appendix A.

The downsize of learning with such parameters should be noted. Lower learning rate
generally means that the training could get stuck in a local minimum, whereas having
bigger batch size is prone to overfitting and models trained with large batch size tend to
not generalize well. It is thus necessary to choose these hyperparameters with caution
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Figure 4.3: LCA results for the FC architecture on MNIST dataset. Left: Count of
parameters that helped each iteration. Right: Count of iterations each parameter helped.
The FC network was trained with 4400 iterations, the mean is skewed towards zero by
the number of not helping neither hurting parameters.

100000 150000 200000 250000 300000 350000 400000
params helped per iteration

0

200

400

600

800

1000

1200

1400

1600

nu
m

be
r o

f i
te

ra
tio

ns

Mean = 116705.95, stdev = 10637.04

0 1000 2000 3000 4000
iterations helped per param

0

100000

200000

300000

400000

500000

nu
m

be
r o

f p
ar

am
s

Mean = 634.77, stdev = 970.53

Figure 4.4: LCA results for the LeNet architecture on MNIST dataset. Left: Count of
parameters that helped each iteration. Right: Count of iterations each parameter helped.
The mean is highly skewed towards zero as in 4.3.



CHAPTER 4. RESULTS 26

0 1000 2000 3000 4000 5000 6000
iterations

0.0

0.5

1.0

1.5

2.0

2.5

lo
ss

actual loss
sum approx loss

0.0003

0.0002

0.0001

0.0000

0.0001

di
ff 

pe
r i

te
ra

tio
n

true and approximated loss (err 0.05%)

Figure 4.5: Loss of the FC architecture on MNIST dataset with learning rate 0.1 and
batch size 125. Differences in loss per iteration and sum of the differences are shown in
orange. Actual loss in given iteration is in blue, but it is covered by the orange sum.
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Figure 4.6: Loss of the FC architecture on MNIST dataset with learning rate 0.01 and
batch size 125. Differences in loss per iteration and sum of the differences are shown in
orange. Actual loss in given iteration is in blue, but it is covered by the orange sum.
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Figure 4.7: Loss of the FC architecture on MNIST dataset with learning rate 0.001 and
batch size 500. Differences in loss per iteration and sum of the differences are shown in
orange. Actual loss in given iteration is in blue, but it is covered by the orange sum.

and perform multiple experimental runs with different settings.

4.2 LCA on the SpaceNet dataset

After evaluating and discussing the results of LCA [33, 34], the same was attempted with
a baseline solution of the SpaceNet Roads Network Detection challenge.

In order to obtain at least some results, a model trained for only 300 iterations overall
was evaluated, the issues behind this are discussed in Sections 4.4 and 4.5. Results of the
LCA method on this model can be seen in Figure 4.8. It should be noted that the number
of trainable parameters in this model overall is 21 485 089, meaning that less than half of
parameters are helping at a given iteration on average. From the graphs we can see that
the training is very noisy, with the lowest number of parameters helping in an iteration
being under 5 million and the highest being over 12 million. This could be expected as a
small batch size was used, confirming earlier findings of experiments on smaller datasets.
The trend of noisy learning can further be seen in Figure 4.9, which shows the loss curve
during the course of training. Many parameters did not help at all or only sporadically,
this is probably caused by the complex nature of the dataset and might improve if the
network was trained for longer. Unfortunately, application of the LCA method on a more
precisely trained model was unsuccessful due to problems with available storage space
and memory.
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Figure 4.8: LCA results for the LinkNet architecture on SpaceNet Paris dataset. Left:
Count of parameters that helped each iteration (params per iteration). Right: Count of
iterations each parameter helped (iterations per param).
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4.3 Lucid

Aside from the LCA method, the Lucid library was used to generate activation maps of
the baseline solution. At first a version of Lucid available from the pip2 tool was used. The
API seemed very complicated as the TensorFlow graph has to be manually saved, frozen
and imported, which resulted in many errors about incompatible shapes or non-existent
layers in the graph. After a few attempts, cloned version of Lucid directly from GitHub
was tried, which turned out to be easier to use as there was a newer version available
which had implemented a simple Model.save() call with a few parameters defining the
model. This saved model file is then loaded with Lucid without any need to construct
the network graph manually.

After saving the model definition for Lucid, at first, errors regarding incompatible layer
shapes were still encountered. These errors were related to the number of input channels.
There were either 8 or 12 channels in the input depending on the run configuration when
training the model. The errors did not occur when using simpler RGB images with three
channels as input, thus, the RGB images were further for this experiment.

The resulting visualizations definitely do not show as much detail, nor look as appeal-
ing, as the sample images from ImageNet and CIFAR10 datasets. This is can be caused
by the following reasons:

• the network could not be trained for long enough to learn precise patterns,

• in some locations, the roads are obscured by trees or other objects and it is not
possible to clearly see them,

• roads themselves are not that much distinctive to their surroundings, therefore there
would not be much to be seen in the visualizations, possibly only some oriented edges
in places where certain directions of roads are more common than others,

examples of such images with their corresponding masks are shown in Figure 4.10 Taking
these points into consideration, some indications of roads or even shapes of blocks of
buildings in the later layers of the network can still be seen. Examples of the generated
visualizations can be seen in Figure 4.11. Moreover, the results from evaluation of this
method support the claim that neural network first learn simpler textures and shapes
and later on more difficult patterns, this is shown in Figure 4.12. While some of the
visualizations definitely provide an insight into the network, many of them also look just
like almost random noise, like the ones shown in Figure 4.13.

4.4 Experiments with training

For evaluating the LCA on the SpaceNet dataset, a solution on the 4th place by author
whose nickname is selim sef was chosen as a baseline solution. It is one of the only
two solutions using TensorFlow and Keras libraries, which makes it significantly more
similar to LCA’s code than the other solutions which use PyTorch. The codebase of the
4th solution also seems to be more understandable and readable when compared to the
second solution using TensorFlow and Keras. Firstly, the implemented LinkNet-Inception
architecture was used, later, a simpler LinkNet architecture with ResNet encoder due to
fewer parameters in the network was chosen.

2https://pypi.org/project/pip/

https://pypi.org/project/pip/
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Figure 4.10: Examples of roads difficult to detect. Left: image from Las Vegas showing
road heavily obscured by trees. Middle: image from Khartoum showing various types
of roads and their contrast to surroundings. Right: image from Khartoum showing road
network among buildings covered by sand or dust that is extremely difficult to detect even
by human eye.

Figure 4.11: Sample visualizations obtained using the Lucid library. Left: activation for
layer ”decoder1/c2 relu/Relu:0” of the LinkNet model trained on SpaceNet images from
Khartoum. Middle: activation for layer ”fc 2 Relu/Relu:0”, which is the last layer, of the
LinkNet-Inception model trained on images from Las Vegas. Right: activation for layer
”activation 32/Relu:0” of the LinkNet-Inception model trained on images from Las Vegas
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Figure 4.12: Increasing complexity of uncovered features in the Linknet-Inception network
trained on images from Las Vegas. Left: layer ”activation 9/Relu:0”. Middle: layer
”activation 29/Relu:0”. Right: layer ”activation 50/Relu:0”.

Figure 4.13: Examples of visualizations that look like noise generated
for the LinkNet architecture trained on images from Khartoum. Left:
layer ”encoder1/residualBlock0 conv2/Conv2D:0”. Middle: layer ”en-
coder2/residualBlock1/cvbnrelu relu/Relu:0”. Right: layer ”decoder2/c1 relu/Relu:0”.
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Figure 4.14: Sample prediction on img490 from the Las Vegas location. Left: the original
multispectral image. Middle: ground truth mask. Right: predicted mask.

The training of this architecture was fairly quick and it was implemented using Python’s
argparse which simplified the usage of different possible parameters for the training script.
Many different parameters can be tweaked, from learning rate, optimizer, number of
epochs, batch size or loss function, through the size of the image crop on which the net-
work works or number of iterations per epoch, to setting a decaying learning rate or using
different preprocessing for the input images.

The codebase was well written and understandable for simple usage, it was possible to
edit the data generator to read images of only one location without any major setbacks.
This had to be done to reduce the performance bottleneck and to prevent lack of available
storage space since images from the Las Vegas location only take up 40 GB of space.

Before attempting to apply LCA directly to LinkNet on SpaceNet data, the LinkNet
model was trained on the MNIST and CIFAR datasets, at first with fewer layers for faster
and simpler testing, then the whole network. On both of these datasets the network overfit
very quickly, as expected.

Next goal was to apply the LCA method to the chosen baseline solution. This was the
step that required the most work with source code files, as it was necessary to implement
the LinkNet architecture atop of the LCA codebase. At first, usage of the training gen-
erator from the baseline solution was implemented atop of the LCA code. This resulted
in as successful run of the training using SpaceNet data on a simple ResNet model for
validation of the data generator.

Then, small incremental changes were made to an existing ResNet architecture while
verifying proper functionality of the source code and only then a custom LinkNet model
class was created. The LCA codebase did not provide any type of prediction whatsoever
so a script for predicting on the trained model had to be implemented. This script was
verified on the earlier mentioned MNIST and CIFAR10 datasets and simpler architec-
tures. After solving various issues mentioned in Section 4.5, it was finally managed to
train a model which yielded first meaningful predictions. While some predictions looked
reasonably well, example shown in Figure 4.14, other seemed to struggle with segmen-
tation of parking lots, identifying rooftops or similar objects as roads, example of such
prediction is in Figure 4.15. More examples of predictions are in Appendix B.

Since the APLS metric was evaluated on the side of SpaceNet during the challenge,
it is not implemented in the baseline solution. To get a sense of how well or badly the
network performs, the Intersection over Union (IoU) metric, also known as the Jaccard
index, was evaluated. IoU measures the area of overlap of the ground truth and the
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Figure 4.15: Sample prediction on img1036 from the Las Vegas location. Left: the orig-
inal multispectral image. Middle: ground truth mask. Right: predicted mask showing
incorrect classification of the buildings’ rooftops.

predicted segmentation divided by the area of union of the ground truth and the predicted
segmentation. The metric ranges from 0, signifying no overlap, to 1, signifying perfect
segmentation. For two sets, A and B, the IoU is computed as [41]:

IoU =
|A ∩B|
|A ∪B|

The mentioned LinkNet model resulted in IoU score of 0.333 when using classification
threshold 0.2.

4.5 Implementation Issues

While trying to reach the same results as the LCA publication [33], various errors re-
garding installation of the tensorflow-gpu3 python package had to be solved. These errors
were related to installation of correct CUDA4 toolkit, CuDNN5 library, and making sure
python executable was able to locate necessary files.

While attempting to evaluate the LCA method on a baseline solution of the SpaceNet
challenge, various issues were encountered. The baseline solution uses Keras API which
works mainly with the keras.layers.Model class and its interface, while the LCA method
is implemented using an older TensorFlow version without Keras so it works with Ten-
sorFlow’s graph definition and session. These different libraries and versions posed many
challenges regarding implementation details and compatibility.

After implementing the LinkNet model atop of the LCA codebase, it was not possible
to verify the model since the prediction always resulted in the whole image being labeled
as ”not road” except for a few pixels. The model was verified on the CIFAR10 and MNIST
datasets, which worked well. Here the longest setback was encountered, not knowing what
caused the prediction to be so off. Finally, different normalization intervals of the input
images were noticed. The images from CIFAR10 and MNIST datasets were normalized
to values between 0 and 1 whereas the SpaceNet generator returns images in range from
-1 to 1. After editing the generator to return values between 0 and 1, the model resulted
in first meaningful predictions.

3https://www.tensorflow.org/guide/gpu
4https://developer.nvidia.com/cuda-zone
5https://developer.nvidia.com/cudnn

https://www.tensorflow.org/guide/gpu
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cudnn
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This model was trained without batch normalization layers for faster training and
easier evaluation, unfortunately, after using the batch normalization layers again, the
trained model predicted almost the whole to be road. Different values of learning rate
combined with different batch sizes were tried in an attempt to see what would have effect
on the result. Changing values of said hyperparameters didn’t affect the prediction much,
only when notably fewer batch normalization layers were used, the prediction was still a
bit blurred but resulted in a meaningful output. The reason behind this issue was not
found.

While trying different values of hyperparameters to find the reason behind mentioned
issue with batch normalization, the LCA method was applied on a model without batch
normalization layers. The computations necessary for the final LCA results can be split
into three steps:

1. Train the model,

2. Compute the gradients of the weights in respect to the loss,

3. Compute LCA

All of these computations demand lot of performance and getting results for only one
model took over six days. Problems with insufficient RAM which couldn’t fit the resulting
values into memory were also encountered. The files containing resulting values together
take up over 400 GB of space and even though not all of them are necessary at once, the
required RAM was still in order of tens of gigabytes.

As all the computations in deep learning are computationally exhaustive, the available
performance for this work was almost always a limitation. From the evaluation of LCA on
the simple dataset, through training of the baseline solution to generating visualizations
using the Lucid library, various errors regarding insufficient memory and storage space
were encountered and overall the computations required for the purpose of this work ran
only very slowly for long periods of time.

4.6 Discussion

While working on this thesis, the author was presented by large amounts of new infor-
mation, most notably the basics behind machine learning and related fields. For the first
time the author also worked with Google Cloud, Google Colaboratory and Amazon Web
Services, even if only with smart parts of these products, it is definitely valuable expe-
rience. Managing multiple platforms at once was, too, an integral part of the work, as
it was necessary to use a PC, Google Colab and a private server all at once in order to
produce required results in sufficient time.

This work shows that the LCA metric provides good insight into the training process
of neural network. Using this interpretability method, it is possible to evaluate multiple
values of hyperparameters and compare various pros and cons of learning with different
values. The downsize of this interpretability method is that it requires a lot of computation
and thus either needs a lot of time or performance to reach some results. With the
implementation provided alongside the LCA paper it is also necessary to execute three
different scripts in order to have the final data from which it is possible to generate various
graphs and visualizations.
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4.7 Future Work

It could be attempted to try more training runs with different hyperparameter values
of the LinkNet model and evaluate these models using the LCA method to obtain more
insights into the training of this architecture. Moreover, the LCA method could be applied
to different models from the baseline solution or even different solutions of the SpaceNet
Road Network Detection challenge. This would result in an overview of efficiency of
submitted solutions.

A new network architecture could be proposed to solve the challenge, taking into
consideration the results of the challenge and the interpretability methods discussed in
this work, a better performing architecture might be invented.

Moreover, the Lucid library could be used including its more advanced functions such
as different objectives to take a look deeper into the model. Lucid’s transformations could
be implemented to make the resulting visualizations less prone to noise from different
effects of batch normalization layers.



Chapter 5

Conclusion

The aim of this work was to evaluate various interpretability methods on a deep neural
network. In order to accomplish this, numerous state-of-the-art publications and research
papers were studied and summarized. Based on the acquired knowledge, two selected
interpretability methods, the Loss Change Allocation (LCA) and activation maximization,
were evaluated. The evaluation was performed on both simple datasets and the SpaceNet
dataset, as intended. The LCA method was thoroughly evaluated on various smaller
networks, most notably a network consisting of three fully-connected layers. The initial
findings were confirmed in an experimental evaluation on a deep network on the SpaceNet
dataset. Activation maximization was evaluated using an open-source library in order to
present more visually pleasing results and in an attempt to uncover hidden features of
the network.

The initial task of designing and evaluating deep neural network as a solution to the
SpaceNet Road Network Detection challenge was fulfilled only partially since a baseline
solution, only with tweaked parameters, was used instead of a custom architecture in
order to focus on the evaluation of selected interpretability methods. Due to the lack
of available resources the training of the network was run for only a short time. Since
the training was not run for many epochs, a lower performance than that of presented
solutions of the SpaceNet challenge is expected and thus the results of the network were
not compared to those of the original competition.

This work has demonstrated the viability of a new interpretability method for neural
networks, the Loss Change Allocation (LCA) method, and shown that it can provide
valuable insights into the training process of both shallow and deep neural networks.
Different impacts of hyperparameters, especially learning rate and batch size, on the
training process were discussed and interpreted using outputs of the aforementioned LCA
method.

The functionality of a baseline solution of the SpaceNet Road Network Detection
Challenge has been verified prior to applying the LCA method to this model. Furthermore,
the Lucid library was used in an attempt to interpret said model and uncover its learned
features using interpretability method called activation maximization.

Lastly, this work contains introductory chapters discussing the basics of neural net-
works and the field of interpretability which should be comprehensible even to those with
no prior knowledge in these exact fields.
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Appendix A

LCA results for different
hyperparameters
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Figure A.1: LCA of MNIST-FC, learning rate = 0.1, batch size = 125, 6600 iterations.
Left: Count of parameters that helped each iteration. Right: Count of iterations each
parameter helped.
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Figure A.2: Loss of MNIST-FC, learning rate = 0.1, batch size = 125, 6600 iterations.
Differences in loss per iteration and sum of the differences are shown in orange. Actual
loss in given iteration is in blue, but it is covered by the orange sum.
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Figure A.3: LCA of MNIST-FC, learning rate = 0.1, batch size = 250, 3300 iterations.
Left: Count of parameters that helped each iteration. Right: Count of iterations each
parameter helped.
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Figure A.4: Loss of MNIST-FC, learning rate = 0.1, batch size = 250, 3300 iterations.
Differences in loss per iteration and sum of the differences are shown in orange. Actual
loss in given iteration is in blue, but it is covered by the orange sum.
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Figure A.5: LCA of MNIST-FC, learning rate = 0.1, batch size = 500, 1650 iterations.
Left: Count of parameters that helped each iteration. Right: Count of iterations each
parameter helped.
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Figure A.6: Loss of MNIST-FC, learning rate = 0.1, batch size = 500, 1650 iterations.
Differences in loss per iteration and sum of the differences are shown in orange. Actual
loss in given iteration is in blue, but it is covered by the orange sum.
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Figure A.7: LCA of MNIST-FC, learning rate = 0.01, batch size = 125, 6600 iterations.
Left: Count of parameters that helped each iteration. Right: Count of iterations each
parameter helped.
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Figure A.8: Loss of MNIST-FC, learning rate = 0.01, batch size = 125, 6600 iterations
Differences in loss per iteration and sum of the differences are shown in orange. Actual
loss in given iteration is in blue, but it is covered by the orange sum..
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Figure A.9: LCA of MNIST-FC, learning rate = 0.01, batch size = 250, 3300 iterations.
Left: Count of parameters that helped each iteration. Right: Count of iterations each
parameter helped.
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Figure A.10: Loss of MNIST-FC, learning rate = 0.01, batch size = 250, 3300 iterations.
Differences in loss per iteration and sum of the differences are shown in orange. Actual
loss in given iteration is in blue, but it is covered by the orange sum.
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Figure A.11: LCA of MNIST-FC, learning rate = 0.01, batch size = 500, 1650 iterations.
Left: Count of parameters that helped each iteration. Right: Count of iterations each
parameter helped.
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Figure A.12: Loss of MNIST-FC, learning rate = 0.01, batch size = 500, 1650 iterations.
Differences in loss per iteration and sum of the differences are shown in orange. Actual
loss in given iteration is in blue, but it is covered by the orange sum.
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Figure A.13: LCA of MNIST-FC, learning rate = 0.001, batch size = 125, 6600 iterations.
Left: Count of parameters that helped each iteration. Right: Count of iterations each
parameter helped.
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Figure A.14: Loss of MNIST-FC, learning rate = 0.001, batch size = 125, 6600 iterations.
Differences in loss per iteration and sum of the differences are shown in orange. Actual
loss in given iteration is in blue, but it is covered by the orange sum.
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Figure A.15: LCA of MNIST-FC, learning rate = 0.001, batch size = 250, 3300 iterations.
Left: Count of parameters that helped each iteration. Right: Count of iterations each
parameter helped.
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Figure A.16: Loss of MNIST-FC, learning rate = 0.001, batch size = 250, 3300 iterations.
Differences in loss per iteration and sum of the differences are shown in orange. Actual
loss in given iteration is in blue, but it is covered by the orange sum.
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Figure A.17: LCA of MNIST-FC, learning rate = 0.001, batch size = 500, 1650 iterations.
Left: Count of parameters that helped each iteration. Right: Count of iterations each
parameter helped.
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Figure A.18: Loss of MNIST-FC, learning rate = 0.001, batch size = 500, 1650 iterations.
Differences in loss per iteration and sum of the differences are shown in orange. Actual
loss in given iteration is in blue, but it is covered by the orange sum.



Appendix B

Examples of predictions on SpaceNet
dataset

Figure B.1: Sample prediction on img731 from the Las Vegas location. Left: the original
multispectral image. Middle: ground truth mask. Right: predicted mask.

Figure B.2: Sample prediction on img1082 from the Las Vegas location. Left: the original
multispectral image. Middle: ground truth mask. Right: predicted mask.
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Figure B.3: Sample prediction on img1083 from the Las Vegas location. Left: the original
multispectral image. Middle: ground truth mask. Right: predicted mask.

Figure B.4: Sample prediction on img635 from the Las Vegas location. Left: the orig-
inal multispectral image. Middle: ground truth mask. Right: predicted mask showing
incorrect segmentation for parking lots and a shopping mall roof.

Figure B.5: Sample prediction on img795 from the Las Vegas location. Left: the orig-
inal multispectral image. Middle: ground truth mask. Right: predicted mask showing
incorrect segmentation for parking lots.
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Figure B.6: Sample prediction on img601 from the Las Vegas location. Left: the original
multispectral image. Middle: ground truth mask. Right: predicted mask showing incor-
rect segmentation for empty parking lots, note that emptier parking lots generally lead
to worse results.

Figure B.7: Sample prediction on img704 from the Las Vegas location. Left: the original
multispectral image. Middle: ground truth mask. Right: predicted mask showing an
above average result for segmentation of parking lots, probably due to a lot of parked
cars.

Figure B.8: Sample prediction on img629 from the Las Vegas location. Left: the original
multispectral image containing roads heavily covered by trees. Middle: ground truth
mask. Right: predicted mask.
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