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Abstract

This bachelor thesis is dedicated to
a Driver-in-the-Loop vehicle dynamics
simulation, mainly focused towards a re-
alistic driver experience. Theoretical part
lists various state of the art hardware
as well as software simulation alterna-
tives, describing their advantages and li-
abilities. Consequently, practical part
mainly focuses on development of veri-
fication platform for control law valida-
tion, which will be used in automotive
industry. For the purpose of development,
I have modified 6 Degrees of Freedom
flight simulator using driving input pe-
ripherals. The choice of simulation soft-
ware fell upon the LFS game, due to its
supreme vehicle handling qualities and
physical model fidelity. Moreover, I have
developed an interface interconnecting the
Live for Speed (LFS), the modified flight
simulator and two development environ-
ments, Python programming language
and MATLAB/Simulink environment. In
order to verify the implemented interface,
I have designed two control laws, a cruise
control and a yaw damper. Furthermore,
the yaw damper control law underwent
validation testing in three test scenarios:
side wind blow, moose test and measured
racing lap. The test results point towards
higher vehicle stability and predictability,
while having yaw damper system imple-
mented, which suggests that the proposed
design is valid.

Keywords: simulation, motion platform,
LFS, control system, control law,
interface
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Abstrakt

Tato bakalarska prace se vénuje tématu
Driver-in-the-Loop simulaci dynamiky
vozu. V teoretické c¢asti je prehled ruz-
nych alternativnich hardwarovych i soft-
warovych simulatori s vyctem jejich vy-
hod a nevyhod. V praktické ¢asti jsem
se vénoval samotnému vyvoji verifikac¢ni
platformy pro validaci ridicich algoritmu
v automobilovém pramyslu. Pro tento tcel
byl modifikovan 6-osy letecky simulator
na simuldtor dynamiky vozu. Jakozto si-
mulacni software byla zvolena hra LFS,
kterda vynika realisti¢nosti ovladani vozi-
del. Déle bylo navrzeno propojovaci roz-
hrani mezi LFS, modifikovanym simulé-
torem, programovacim jazykem Python
a prostfedim MATLAB/Simulink, ktery
je v oboru rizeni standardem. Pro ovéreni
funkénosti rozhrani byly implementovany
dva ridici zdkony, tempomat a yaw dam-
per, ktery byl nasledné otestovan tremi
experimentalnimi scénari: postranni nara-
zovy vitr, losi test a zavodni kola na cas.
Vysledky vSech experimenti poukazuji na
lepsi predvidatelnost chovani a stabilitu
vozu, tedy lze predpokladat, ze implemen-
tovany ridici systém je validni.

Klicova slova: simulace, pohyblivy
simulator, LFS, ridici systém, fidici
zékon, rozhrani
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Chapter 1

Introduction

The automotive industry is one of the most competitive fields nowadays. Car
manufacturers and their suppliers battle among each other and regulative
bodies, while earnings are decreasing year after year. One of the costliest
action companies must do is hasty development of new and improved products
(picture |1.1). Repetitive prototyping and physical testing combined with
design changes between each attempt consume extreme amounts of time and
resources. Therefore, companies included extensive computer simulations
into their development processes, focusing on every possible field of design:
control systems, drivetrain technologies, combustion efficiency and emissions,
chassis design, steering control etc. A key motivation for using mathematical
models and simulation instead of prototyping and physical testing is cost
reduction and faster time to market. Mathematical models are built to reflect
the real physical system in test scenarios; therefore, their accuracy is of the
utmost importance. Computer simulation allows engineers to test various
designs with little to no expense and prototype only the most promising
iterations, which leads to aforementioned cost reduction. It is important to
note that simulations are only approximations of real physical systems and
some behavioural patterns and dynamics are neglected or even overlooked by
simulation designer, leading to differences between simulated system and real
system dynamics. Hence, simulations are never meant to completely replace
physical measurements and benchmarking, which validates designed system
performance.
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Figure 1.1: V-model describing regular development process of control system [1]

One of the key components of development is vehicle control system. It
determines final dynamics, efficiency and overall “polished” feeling of the car
and consequently, has an immense impact on product success. Companies
developing simulators have aimed to reproduce vehicle dynamics in the
most realistic manner however, driver experience was somewhat left behind
during this process. This led to a unrealistic driving experience during DIL
(Driver-in-Loop) simulations, some of which were caused by unpolished HMI
(Human-Machine Interface, such as input controllers, steering wheels etc.),
visual lag, eye to the center of coordination misalignment (leading to headache
or stomachache). Therefore, the focus of my work is to develop verification
platform for vehicle control system validation, which brings similar driver
experience such as in a real car.
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Chapter 2

Simulators
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Figure 2.1: Graphical demonstration of DIL systems with motion platform and
driving peripherals



2. Simulators

Advanced simulator platforms generally consist of two interconnected parts:
software simulator and hardware simulator (motion platform or any other
haptic feedback devices). Software simulation uses models to study real-world
system behaviour and reaction to specific conditions. Models are usually
represented by a set of differential and algebraic equations, which determine
system dynamics, in this matter, car dynamics. The software can also provide
a graphical interface for humans to interact with, which is necessary for
DIL simulators, where a human operator directly influences a course of
the simulation. For more realistic operator’s experience (necessary for DIL
simulation), HMI (Human-Machine Interface) is included. The HMI usually
consists of feedback devices, such as motorized steering wheel and motion
platform (Graph [2.1). The purpose of a motion platform is to artificially
reproduce similar forces and accelerations on the operator to further improve
simulation fidelity.

There are multiple different options for both software and hardware simu-
lators, each providing different specializations, advantages and drawbacks. In
the next section I will describe various commonly utilized simulators for car
dynamics.

. 2.1 Motion Simulators

To begin with, it is important to state that physical simulators are not
intended to simulate the dynamics of the car itself. Its primary purpose is
to imitate forces, which would impact driver in real-life driving scenarios.
Driving on its own is multi-sensory action; we do not just drive with our eyes,
but hands, legs and especially inner ear with its vestibular system matter
to a great extend. This brings a need for specific machinery in order to
create stimuli for each of our receptors, providing simulation as realistic as
possible. However, this also poses a new potential issue. All stimuli must be
in sync with one another; otherwise, it may result in incohesive feelings for
an operator at best, motion sickness or headaches at worst.

10



2.1. Motion Simulators

B Driver Input

When speaking about driving a car, an immediate association is to driver
input devices. Standard car HMI (Figure 2.2) consists of the steering wheel,
pedals (clutch, brake, throttle), gear shift and handbrake. For the vast
majority of simulation purposes it is not essential to have handbrake and gear
shift, especially given the fact some racing wheels are provided with built-in
shifting paddles. Therefore, I will not be discussing those unnecessary driver
input devices.

Figure 2.2: Skoda Fabia interior with all driver input devices: steering wheel,
pedals, handbrake, gear shift [2]

B 2.1.1 Steering Wheel

The most important input device for drivers is a steering wheel. Simulation
steering wheels consist of a steering wheel (Figure 2.3b)) and a wheel base
(Figure 2.3a) mounted to simulator skeleton. Unlike in a real car, where
motion of steering wheel is carried through systems of shafts and power gears,
electro-hydraulic system or EPS, resulting in final wheel alignment, here
is an electronic position sensor, which determines displacement of steering
wheel. There can be first important difference among competitors and that
is precision and range of this sensor, giving more fluent and smooth steering
input for a driver. Another factor is the range of motion. Especially cheaper
racing wheels do not allow to exceed + 135 degrees of angular displacement,

11



2. Simulators

(a) : Fanatec high end racing simulation wheel base [3]

(b) : Fanatec high-end racing simulator steering wheel [4]

Figure 2.3: Example of driver inputs

whereas more sophisticated wheels allow all the way up to 540 degrees
of steering. Third and last crucial feature is Force Feedback (FFB). Force
feedback emulates forces applied to a steering wheel during a ride. From FFB
can the driver determine, whether the car is about to slip or if he hit a bump
or wheel slid off the track. Quality of this feature is measured by maximal
torque FFB motor can output, response times and customization options.

Pricing options for steering wheels vastly vary. Cheapest options include
basic reading sensors, low range of motion (does not accurately represent real
car steering range and sensitivity) and no FBB functionality. For realistic
simulation it is necessary to have advanced racing wheel, with accurate
position sensors, extensive range of motion and FFB, which enables for
an accurate imitation of forces. Notable brands are following: Logitech,
Thrustmaster, Fanatec, Simucube.

12



2.1. Motion Simulators

B 2.1.2 Pedals

Second essential input device is pedals assembly (Figure 2.4a)). In real cars,

these signals (clutch, brake, throttle) are carried in mechanical, hydraulic or
electric domain respectively. Similarly to steering wheels, pedal displacements
are read by electronic sensors. The rebound of pedals is usually carried out by
a spring, advanced racing pedals allow for specific press force options. Most
sophisticated pedals utilize hydraulic systems , that should feel
much like pedals in real cars however, they do not bring meaningful advantage
for simulation purposes. Commonly, pedals are included in package with
racing steering wheels.

(a) : Thrustmaster pedals with customizable
press force and actuation point [5]

(b) : Tilton 600 hydraulic pedals assembly [6]

Figure 2.4: Example of pedals used for simulation purposes

13



2. Simulators

B Motion Platforms

The main purpose of a motion platform is to increase authenticity of simulation
and improve operator’s experience. For this reason they are built to resemble
real car interior, along with matching peripherals, field of view and last but
not least imitating forces and accelerations real driving would induce.

B 2.1.3 Static Platform

The most fundamental physical driving simulator is a static platform (Fig
ure 2.5). It usually consists of a driving seat and a mounting skeleton.
Skeleton is set with pedals and steering wheels just like in real car. There
are multiple options for visual interface of simulation, mostly utilizing TVs
or PC monitors; nevertheless, there are more advanced options such curved
projectors, which give panoramic image alike human field of view. This setup
does not provide any advantages in terms of realistic feeling of the simulation.
However, it is clearly more cost-effective in comparison with the following
options.

) l PR
r B /,, <

Figure 2.5: Static car dynamics simulator at CTU FEE

14



2.1. Motion Simulators

B 2.1.4 Dynamic Seats

Alternative option available on the market is a racing seat simulator. Its con-
struction strongly resembles static platforms, comprising of a seat, a skeleton
of some kind, with mounts and optional visual and haptic peripherals. The
difference lies in the presence of the motorized skeleton. The most trivial
applications use three prismatic actuators (usually electric linear motors)
to produce three vehicle principal axes (3 DoF); yaw, pitch, roll. Just with
those three angles, it can roughly mimic real car acceleration, deceleration
and centrifugal forces, utilizing gravitational force to stimulate operator’s
vestibular system by tilting directions (backwards for acceleration, forward
for braking, sideways for turning). With the addition of the fourth actuator,
simulator is able to perform heave movement, making it 4 DoF robotic device

(Figure 2.6|) [7].

Figure 2.6: Dynamic seat 4 DoF simulator from Motion - Sim [7]

15



2. Simulators

B 2.1.5 Steward-Gough Platform

Steward-Gough platform, also known as a hexapod, was developed in early
1950s. Platform uses six prismatic actuators mounted in alternating pairs
on both ends, the base and the platform , imparting this con-
struction to total of 6 degrees of freedom. Hence, objects placed on top of
the platform are able to move along x, y, z axes as well as perform yaw,
pitch and roll operations. A great advantage of parallel manipulators is
their precision and sturdiness; however, it lacks in speed and operational
space. For realistic reproduction of forces in a car simulation it is necessary
to have a big operational space, especially in ship movements, sway and
surge, while maintaining sufficient operational space for vehicle principal
angles. Nevertheless, Steward-Gough platform ship movement limits angular
displacements and vice versa ;in this regard is this architecture not optimal.
As a result, some of the high-end simulators use moving base with a hexapod
design simulator mounted on the top, in order to enlarge simulator’s motion

envelope and improve fidelity of the simulation (Figure 2.7b) [g].

(a) : Steward-Gough platform CAD schematic [§]

/ﬁ

-
Y ~q010""

. th e \E

%

(b) : Toyota hexapod architecture 6 DoF simulator with moving
base for motion envelope extension [9]

Figure 2.7: Steward-Gough platform with alternating pair mounting
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2.1. Motion Simulators

B 2.1.6 Advanced Linear Actuator Simulators

Simulators falling into this category are engineered specifically to perform car
dynamics simulations. Design requirements are forced to maximal authenticity
and realistic driver perception. To achieve these specifications, simulators use
linear actuators in configuration that allows maximum acceleration, speeds
and displacements in all possible directions. This is especially important for
sway and surge movements, where it does not rely just on gravity and tilt
to stimulate the vertebral system of an operator, but the platform itself can
considerably move, hence produce acceleration forces. This is allowed by
vastly bigger motion envelope in comparison with Steward-Gough platform.
State of the art simulators can move up to £1.5 meters in sway and surge
directions, 30 degrees in yaw, whereas heave, roll and pitch motion envelopes
are less important, therefore restricted by design. Another advantage beyond
responsiveness is non-parallel construction of actuators. This results in an
independence of particular degrees of freedom, which does not limit motion
envelope as drastically as with the hexapod design. On the other hand,
construction like this usually requires a substantially greater number of
actuators than hexapod’s six, some manufacturers use up to 13 actuators for
their top of the line simulators. Prize tags for simulators belonging to this
category are in millions of Euros; however, an investment like this is justified
since more than 25 major carmakers have their own [10] [11].

Figure 2.8: aVDS vehicle dynamics simulator from AB Dynamics developed for
motorsport customers. Simulator uses 13 actuators, granting it 6 DoF [I1]

17



2. Simulators

. 2.2 Software Simulators

No motion or static platform can ever be useful without input signals to its
peripherals and actuators. To provide particular signals, it is necessary to
run computer simulation of car dynamics. This simulation runs in discrete-
time with requirement to have iterations faster than real-time, giving us
ability to calculate an additional control law for the system. The system in
a computer simulation is represented by a mathematical model, which is built
from differential and algebraic equations. In order to obtain an authentic
simulation, it is necessary to have a high fidelity model with well identified
parameters. Simulations with such model can currently get substantially
close to a real-life behavior of a system, providing engineers a powerful tool
for prototyping and validating the design.

There are various computer simulators available on the market, each of
which generally allows user to simulate car driving simulation. Vast majority
of simulators have broader applications, giving tools to design and test specific
car systems such as chassis, suspension, engine, gearbox, exhaust system etc.

18



2.2. Software Simulators

B 2.2.1 IPG CarMaker

One of the world’s most profound software simulators is IPG CarMaker
. CarMaker focuses on all car design aspects, including vehicle
dynamics, powertrain, ADAS (Advanced driver assistance systems) and AD
(Autonomous Driving). In order to thoroughly examine system behavior, there
are broad sets of fully automated scenarios, evenets and maneuvers included
for each of these branches, including extreme condition tests. Powertrain
simulations also include hybrid and electrical drives, braking simulations, real
driving emission and fuel consumption tests as well as drivetrain efficiency.
ADAS are currently one of the most growing segments of a car development
and it grows in importance year after year. Some of ADAS are even obligatory
(by EU regulations), such as ESC (Electric Stability Control), which helps
to control car in dangerous states and conditions (slippery road, high speed
maneuvers). CarMaker has licensed EuroNCAP automated test, which covers
various scenarios and technologies, including AEB, FCW, LDW, LKA, SLIF,
MSA, ISA. The IPG’s software also includes tools to create vehicle dynamics
control law, supports real data import, such as road maps. It also enables to
use sensor simulations, namely LIDAR, radar, speed, acceleration sensors etc.
AD developers can use any of foregoing ADAS or sensory inputs; moreover,
CarMaker also packs semantic segmentation data for neural network training
and deployment [12].

CLOSED
LOOP

wIiTe Test
7~ Automation

Virtual
Prototype

i

//. % =L
B mﬂ bl

Integration Platform,

Figure 2.9: iPG CarMaker marketing picture diplaying various usage options of
CarMaker software portfolio [13]
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2. Simulators

B 2.2.2 dSpace

dSpace company focus is to provide compact and complex simulation plat-
form, covering every possible requirement. They not only provide simula-
tion software, but also mechanical testbench units and a hardware for HIL
(Hardware-in-the-Loop) simulations (Figure 2.10)), including customizable I/O
for sensors and processing units. Their software portfolio supports drivetrain
and transmission optimizations, chassis design and testing, engine simulations.
Alike CarMaker, dSpace solutions include automated testing in various condi-
tions and scenarios, EuroNCAP virtual proving grounds, sensor simulations
(LIDAR, radar, cameras), smart car development tools (semantic segmen-
tation, ADAS, AI model training). Also, the powertrain designer includes
options for fully electrical or hybrid driven vehicles, vehicle dynamics include
multi-body systems such as trucks and special models for a motorsport car
development. dSpace simulation hardware uses parallel computing, graphic
cards and FPGAs in order to provide real-time simulations; however, it is
not required to use proprietary dSpace simulation software with it [14].

(b) : dSpace testbench solutions cover steering, braking,
motion platforms as well as radar and sensoric testing

Figure 2.10: Examples of dSpace hardware products [15]
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2.2. Software Simulators

B 223 CarSim

Mechanical Simulation develops a commercial simulation software VehicleSim.
One of its branches focuses on car simulation, hence the name CarSim.
CarSim supports MIL, SIL, HIL, DIL real-time simulations and can work
as a standalone software, thus has its own computation engine. This can be
particularly useful for low budget projects. Nevertheless, CarSim does not
include library of automated tests for significant time savings, but developers
can build their own scenarios such as U-turn maneuver. The simulator
also provides vehicle sensor simulations and interactive traffic, chassis and
suspension designer with analysis. Car dynamics is customizable in various
points, namely tyres, engine, suspension, ESC, powertrain controllers all the

way to drive train controllers (Figure 2.11)) [16].
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Figure 2.11: CarSim graphical interface with speed, trajectory and vertical tyre
forces graphs [17]
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2. Simulators

B 224 Adams

Adams is a simulation software aimed to represent high fidelity physics
in computational models. Its main focus is towards multi-body dynamic
systems (Figure 2.12)), distribution of loads and forces affecting each of
the system’s parts. Unlike any other simulators mentioned in this chapter,
Adams performs calculations concerning material distress and durability,
NVH (Noise Vibration Harness) and flexible body integration. On the other
hand, Adams also includes a Control systems designer, allowing it to simulate
vehicle dynamics and design control laws. Adams is usually paired with
FEA (Finite Element Analysis) computations; however, in comparison with
standard CAD material durability test, Adams can display change of material
distress during the full range of motion of the system. Furthermore, NVH
analysis can be crucial, especially if there is a risk of resonance within the
system therefore, Adams provides a tool set to examine its model’s frequency
responses (including high frequencies) without need for prototyping [18§].
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Figure 2.12: Adams multi-body simulation of car engine, steering and suspension
systems [I§]
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2.2. Software Simulators

B 2.2.5 Panthera

Panthera is software real-time simulator with SIL, HIL. and DIL integration.
Developers can utilize its very own physics engine or use Panthera as visual-
ization interface for any of the previously mentioned simulators. Furthermore,
Panthera supports sensor simulations for AD and ADAS development
and is capable of interconnection with arbitrary motion platform
simulators and force feedback devices. Cruden (mother company) also pro-
vides motion platforms , including their own peripherals all very
focused on realistic HMI. Hence Cruden simulation solutions were previously
used for subjective and objective vehicle assessments, driver behavior and
perception research as well as research for autonomous driving handover
moments [19].

(b) : Panthera Steward-Gough motion platform simulator [21]

Figure 2.13: Panthera software and hardware simulation products
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2. Simulators

B 226 rFpro

rFpro aims specifically for vehicle dynamics, ASAS and AD control systems
development. It enables engineers to use supervised learning for AD neural
networks ; however, its solution brings various specific con-
ditions into play, such as weather, noised input due to car realistic tilting,
shadows and light reflections. On top of it, rFpro provides real digital public
road twins from all over the world , including racetracks, which
are remodeled yearly; therefore, proving grounds are always up to date. rFpro
is capable of traffic and pedestrian simulations, sensory simulation and chassis
design, all in real-time execution [22].

(a) : rFpro lidar real road scan taken in Germany

(b) : rFpro tool kit includes semantic segmentation for netral network
training purposes

Figure 2.14: rFpro ADAS development tools [23]
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2.2. Software Simulators

B 2.2.7 Live for Speed (LFS)

LFS on its own is a racing game than anything else. For this reason, one of
its core attributes is a gameplay, which makes driving cars more realistic in
comparison with any previously mentioned simulation platforms. However, it
also brings disadvantages, such as there are no automated test or any tools
available. There is no option to remodel in-game cars and their respective

physics, apart from minor car setup tuning (Figure 2.15). For the purpose
of ADAS development the game is lacking direct torque inputs, there are no

sensory simulations or AD tools to speak of. Nevertheless, driving experience
is sufficient for a objective handling quality testing and live telemetry data
allows for implementation of basic control laws on this platform.

FZ50 GTR setups

‘name
[default]
Colours
name

4P LFS

New setup

CVUT FEL

New colours
Delete Rename

Driver  Out
Fuel Out

Force  (Off
Susp off

<« » Drop Info

Engine : 3.6 litre flat 6 / Rear wheel drive Strategy (Fuel copacity : 100.0 litres)
Power : 365 kW (490 bhp) @ 8102 rpm Fuel load ot start : 247

Torque : 503 Nm (371 Ibft) @ 5246 rpm Fuel to add in pit stop : 57

Total mass : 1100 kg (2424 Ibs) Tyre change : if wear > 107
Power-weight : 332 W/kg (452 bhp/ton) Handicaps

Weight distribution : 37.5F 62.5R

Transmission : H-pattern gearbox

Figure 2.15: LFS in-game car setup, allowing to customize braking, suspension,
tyre and steering profiles
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Chapter 3

Concept, HW and SW Tools

For the purpose of creating a verification platform for vehicle control system
validation, I needed to build interconnection interface between each individual
component of the simulator (Figure 3.1), namely driver input devices (steering
wheel and pedals), motion platform, software simulation, audiovisual output
as well as MATLAB/Simulink environment. For a successful interface imple-
mentation it is necessary to understand simulation hardware and software
specifications as well as the features, both of which will be discussed in the

following chapters.

Audiovisual ouput

Software simulator

Motion packet

Motion platform

Adiovisual signals

/x}
\—/

Steering wheel

Steering wheel position

Live telemetry

Simulink

Driver inputs

Pedals compression

Pedals

Figure 3.1: Simulator interconnection
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3. Concept, HW and SW Tools

. 3.1 Simulator Hardware and Software

CTU FEE has a static vehicle dynamics simulator and a 6 DoF Steward-
Gough platform, which is customized to work as flight simulator (Figure 3.2).
My goal was to modify Steward-Gough platform to work as a vehicle dynamics
simulator, while using the LFS game as a software simulator. Furthermore,
I selected a steering wheel and a pedals as driver input devices, excluding
any other real car counterparts.

Visualization
skeleton —
Visualization
setup  ——
Steering
whee
—— Car seats
¢ Simulator
PLC and frame
circuit breakers
- Actuator
Frequen
auency Synchronous
changer
motor
Simulator

base

Figure 3.2: Construction of the motion platform used for development
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3.1. Simulator Hardware and Software

B 3.1.1 Motion Platform

The only available motion platform at CTU FEE is 6 DoF Steward-Gough
flight simulator. Flight simulator physical construction is outlined in the
The entire construction weights approximately 700 kg and a max-
imum load reaches 2 000 kg. The motion simulator power supply demands
400V /32A 5-pin outlet, peek input power reaches 6kW. A hexapod architec-
ture (described in subsection 2.1.5) operates with six linear actuators, all of
which are regulated by a Programmable Logic Controller (PLC) circuit
ure 3.3). The PLC regulates motors actions using their immediate position,
nine control signals from simulation PC and a washout filter. Control signals
from PC are the following: Cartesian acceleration, aircraft principal axes,
angular velocities with respect to aircraft principal axes hereinafter, these
signals will be referred to as a Motion Packet (MP for short). Communica-
tion between the simulation PC and the PLC is utilized via User Datagram
Protocol (UDP), since there is no need for safe, lossless communication. On
the other hand, the great emphasis is placed on a speed and responsiveness of
the motion platform, hence a minimization of transfer overhead is important.

A washout filter performs high pass filtration of Motion packet signals;
therefore, output is only sensitive to substantial input changes. Consequently,
it provides self-aligning utility of the simulator, where simulator slowly returns
to home position, thus preparing it for next fast actuation. Motion envelope
of Steward-Gough platform is limited to the following constrictions: yaw —
445 degrees, pitch and roll — £+ 30 degrees, and Cartesian movement in all
axes + 30 cm.

Figure 3.3: PLC unit on the right, circuit breakers on the left
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3. Concept, HW and SW Tools

B 3.1.2 Steering Wheel and Pedals

As previously discussed in [subsubsection 2.1}, it is very important to choose
fitting driving wheel and pedals to accompany motion platform. Main consid-
eration points in decision-making process were: FFB feature, sufficient motion
range (car-like motion range), build quality, responsiveness and price. As
a result, I chose Thrustmaster T300 GT RS, which includes a steering wheel,
a wheel base as well as driving pedals . The wheel base supports
Force Feedback, which is induced by a industry grade BLDC motor. Position
measurements are provided by a Hall effect sensor. Its motion envelope ranges
4540 degrees. Included Thrustmaster T3PA pedals provide customizable
press force; however, actuation is only linear, nevertheless this does not pose
any significant problem for simulation authenticity. Lastly, the steering wheel
is planted with 17 buttons and two paddles for sequential shifting nevertheless,
during simulation, only automatic gear shift will be used.

(b) : Pedals

Figure 3.4: Driver input peripherals Thrustmaster T300 GT RS set [24]
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3.1. Simulator Hardware and Software

B 3.1.3 Audiovisual Appliances

The CTU FEE flight simulator uses setup of 3 Samsung 55" TVs (Figure 3.5),
providing high resolution (3820x2160 px) and refresh rate of 60 Hz. Further-
more, this setup provides spacious, 160 degrees wide FOV (Field of View),
which helps to isolate operator and increase simulation fidelity. On the other
hand, simulator does not provide surround sound system to improve its im-
mersiveness. Sound is provided through TV’s loudspeakers, which is sufficient
for vehicle dynamics verification platform [25].

Figure 3.5: 3 TV visualisation setup

B 3.1.4 Software Simulator - LFS/Simulink

As a software simulator I chose Live for Speed (LFS). LFS in one of the
most popular game racing simulators within amateur race-sim community,
especially for its very accurate driving experience as well as the fact, that
LFS is available as freeware, unlike many other commercial software solu-
tions. Unfortunately, game does not allow to create or to modify car models;
therefore, it is our job to provide vehicle dynamics model to work alongside
with it (in Simulink enviroment), whereas in any other commercial software
simulators, there is model designer or even pre-built car model twins. Models
which will be used in the future are SingleTrack an TwinTrack models made
by Ing. Denis Efremov, at CTU FEE.
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Chapter 4

LFS Customization and Interconnection

. 4.1 LFS Customization with Developers

As indicated earlier, the LFS is a racing simulator game. Game has its in-built
simulator features called OutSim and InSim [26]; however, their interface is
vastly limited. I cannot modify or even inspect a mathematical model; there
are only a few output signals informing about the state of the vehicle and
input signals are limited just to driver inputs, which unfortunately is less
than optimal for control purposes. Hence, I contacted game’s developers to
work some of these issues out.

Developers did not want to share their mathematical model of vehicles
with us; however, they were willing to broaden output signal packets. I will
be further referring to these packets as OutSimPackets, OSP for short. Due
to a game graphics development, they also refused to improve input signals
situation, but they have shown interest in working on this issue afterwards.
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4. LFS Customization and Interconnection

Currently, these signals can be obtained through live-telemetry (content of
OutSimPackets):

® Time'

® Angular velocities!

® Aircraft principal axle angles!

® Acceleration in global coordinates!
® Velocity in global coordinates’

® Position in global coordinates’

® Driver input signals

® Motor and drivetrain signals

B Distance measurement

® Wheel signals

Driver input signals consist of Throttle, Brake, Steering, Clutch and Hand-
brake signals, however, as previously mentioned, my simulator will not be
utilizing the clutch nor the handbrake input options. Motor and drivetrain
signals include: Current gear, Engine angular velocity and Maximal torque at
instant velocity (fully compressed throttle pedal). Wheel signals are obtained
for all four wheels in the following order: left rear, right rear, left front and
right front wheel. For each particular wheel, available signals are the follow-
ing: Suspension deflection, Steer, X Force, Y Force, Vertical Load, Angular
Velocity, Lean relative to road, Air Temperature, Slip Fraction, Touching,
Slip Ratio and Tangent of slip angle.

1Signals available in unmodified OutSimPacket
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4.2. Interconnection Layout

B 4.2 Interconnection Layout

A complete LFS platform is built as a DIL control system validator. System’s
model in our case is of two kinds, one is an in-game model and the second one is
built inside a Simulink environment. The goal in this case is to create a duplex
bridge between those two models. LF'S model is inaccessible; therefore, we
are trying to fit our Simulink model as closely as possible to the LFS one.
Simulink model uses operator’s actions and LFS’s signals as an input and
creates an output, which a represents reshaped driver input. Consequently,
I need to build a signal bridge from LFS to Simulink and afterwards create
DI device emulator. As a result, I have created a Drive-by-wire system. LFS
signals also need to control motion platform described in [subsection 3.1.1.
Furthermore, it is necessary to read driver input (DI) signals, possibly while
preserving FFB functionality; however, interface I have created is not capable
of doing so. Audiovisual interconnection proposed in [Figure 2.1]is handled by
LFS itself; hence, this part is not discussed entirely.

First iteration of LFS interface:

Motion platform Driver peripherals
Motion packets Driver Input
OSP . OSP + DI
LFS Python bridge Simulink

Emulated peripheral sigk Shaped driver inputs

Input emulator

Figure 4.1: Iterconnection of LFS to Simulink

This interconnection layout (Figure 4.1)) served mainly as a proof of concept.
Python block acts as a bridge between every part of the interface. It utilizes
three UDP connections, one as an input from LFS, two as an output for
motion platform and Simulink. Driver input signals are sent along with the
OSP to a Simulink envirnoment via UDP.
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4. LFS Customization and Interconnection

B 4.3 Connection of LFS to Python and Simulink

All of the OSP signals can be sampled once every game frame with a minimal
delay between consecutive packets of 10 ms. Game itself is currently running
at around 110-120 Frames per Second (FPS). As a result, we can expect
worst case scenario of 20 ms offset between packets during uncompromised
operation of the simulator. Nevertheless, it is important to point out, that
this software does not provide real-time features; therefore, any in game lag
will delay new data reads. A complete OutSimPack contains 82 variables and
is 272 bytes long. LFS game allows access to this data via UDP protocol,
giving fast, nonetheless unreliable interconnection. Speed and reliability are
further improved by utilization of LAN (Local Area Network). Consequently,
I measured an approximate delay introduced by an UDP connection, which
was found out as insignificant (2 ms).

In order to read the data in Python, I used two other libraries, socket
and struct. The socket library facilitates transmission via UDP and TCP
protocols. Usage of the library is straightforward. I created a socket object
with specified IP address, port and standard parameters. Afterwards, I can
read data in the loop. Read itself is in a blocking mode, meaning that we
read data whenever it is available; however, the program is stuck on that
instruction up until the data is provided. This is not an issue of any kind,
since the Python bridge has almost only one purpose, resulting in a simple
single-threaded application. The data read from LF'S are serialized, hence the
need for struct library. The struct library provides formatted data parsing,
separating all the values by their data types.

Pseudo code of the reading loop:
socket_in = socket.init(IP_addressl,portl)
socket_out = socket.init(IP_address2,port2)
repeat until(socket.timeout){

outsim_data = socket.read()
data = unpack(outsim_data)

data = handle data()
socket_out.sendto(data)

}

Reading data in Simulink (Figure 4.2) is similar to the same process in
Python. To do so, I used the UDP-receiver block provided by the Simulink
Real-Time package. Just as with Python, data received are serialized; there-
fore, I used the byte-unpack block from the same package. Furthermore,
byte-unpack output is a user specified formatted vector. As a result, all live
telemetry data are accessible in both Python and Simulink environments,
giving a user higher flexibility in logging and testing.
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4.4. Connection of the Motion Platform

Message|——P» Unpack

UDP Receive

Length E

Figure 4.2: Simulink simplified schematic for data receiving and parsing

. 4.4 Connection of the Motion Platform

In [subsection 3.1.1]I shortly described the operation of the motion platform,
including a communication interface. As previously mentioned, to control the
motion platform it is necessary to have an access to motion packet signals,
namely vehicle principal axes angles, angular velocities with respect to the
same axes and accelerations relatively a car body system. LFS OSP however,
includes only accelerations in global coordinate system, therefore I needed to
perform coordinate system transformation by a rotation [27]. The transform
is applied to every incoming packet and it uses signals of acceleration and
aircraft principal axes. Mathematical representation is as follows:

Te Zg
Ye| =Rg - |yg (4.1)
Ze 2Zg

where x4, Y4, 24 refer to xyz coordinates of global coordinate system, z.,
Ye, zc refer to xyz coordinates of the car body coordinate system and angles
«, B, v refer to yaw, roll and pitch respectively.

Rotation matrix is unable to fit in one page, due to it’s size and therefore
it is listed in an appendix section under term [Mathematical appendix

Motion platform, as any other robotic device, carries a risk of harm to its
operator. Because of this, it was strictly necessary to properly handle Motion
packets to avoid any accidents. MP are handled in steps: units conversion,
factoring, limiting and rounding. The unit conversion changes angular signals
from a radian scale to a degree scale. Factoring multiplies acceleration values
by a factor of 0.4 and angular velocities by a factor of 0.1. These steps were
undertaken to slow down motion platform’s movement and therefore avoid
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4. LFS Customization and Interconnection

shaky and unstable bahavior. Limiting suppresses signals under user defined
thresholds within platform’s motion envelope. Lastly, rounding is performed
in order to minimize a "floating" movement in static position, caused mostly
by a floating point operation precision.

B 45 Sstatic Binary Data

Although live data telemetry provides up to 82 signals, some key variables
about vehicle are still missing, for example the mass, type of drive train etc.
I will call these variables static car data (SCD) and they can be parsed out of
binary file created by game in garage menu. Static car data, as name suggests,
does not change during the course of the simulation. Static car data is
valuable, because it provides key components for a car’s model identification,
hence it can vastly improve model fidelity [28].

Static data includes details regarding;:
® Car construction

® Aerodynamics

® Motor and drivetrain

B Brakes

® Wheels

Car construction variables comprise of body matrix and center of gravity
vectors, moment of inertia matrix, weight, wheelbase and weight distribution.
Aerodynamics data provide information about drag and lift of body, undertray,
front and rear spoilers. Motor and drivetrain variables include maximal torque
and power at particular RPM (Rotation per Minute), number of gears, torque
split and efficiency, drive type (fwd, rwd, all-wheel) and final drive ratio.
Brake info consists of brake strength and brake balance variables. Wheel
data contains description for each particular wheel alone. It consists of a tyre
type, width and height, unsprung mass, spring constant, damping coefficients
for rebound and compression, anti-roll, cam, caster, inclination, toe in, scrub
radius, moment of inertia and suspension deflection.

SCD can be obtained with a dedicated Python script or in a Matlab m-file.
Python script creates a .mat file with parsed SCD as well as a text file with
all variables and their names. Matlab m-file parser read entire SCD, whereas
python parser reads only data requested by my co-workers.
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4.6. Custom Mounting of Driver Input Devices and Driver Input Reading

B 46 Custom Mounting of Driver Input Devices
and Driver Input Reading

In previous chapters I have discussed importance of driver input devices and
thoughts behind my choice of Thrustmaster T300 series. Thrustmaster racing
wheel base is usually mounted with included table clamp however, motion
platform does not provide any surface to utilize this feature. Hence I proposed
cooperation with two CTU FME emplyees, Ing. Tomas Sommer Ph.D. and
Ing. Martin Helmich. Key requirements for the design was minimal conversion
(between plane and vehicle peripherals) time and effort. As a result, we came
up with modular design custom mounts for both pedals and racing wheel

base(Figure 4.3)). Material used for production was chipboard.

Driver input signals are read by two different methods, depending on
environment you want to capture the data with. For python DI signals I used
pygame library API, which locates all input devices plug into computer and
is capable of reading operations. Read data can be afterwards transmitted to
Simulink, if necessary. On the other hand, if we want to access DI signals
from Simulink directly, we can make use of Joystick block from Real Time
Simulink library. Joystick block is capable of reading all four DI axes as well
as buttons, just like its python implemented counterpart.

B 4.7 DI Peripheral Emulator

Closing DIL loop is executed by a DI peripheral emulator. Current LFS
interface limits signals, which we can modify, namely steering, throttle, brake,
handbrake and clutch (DI signals). This severally limits our options in terms
of a control law design however, LFS developer with whom I have worked
with, was interested in further expansion of a LF'S game towards simulation
utilization. As a result of these limitations, I have created peripheral emulator
using vJoy (Virtual Joystick) API written by Shaul Eizikovich [29]. Emulator
is necessary, because we need to read DI signals from real peripherals, shape
them in desired manner by control law and then impose them on the LFS
game. Connection between Simulink and emulator is done by UDP protocol.
Current version of an emulator does not provide FFB functionality, therefore
it hinders simulation fidelity. This is definitely place for an improvement.
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4. LFS Customization and Interconnection

(b) : Custom mount for pedals

Figure 4.3: Built custom mounts for driver input devices
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Chapter 5

Control Design

B 51 Yaw Damper

The application of simulator and its interface is mainly for control system
validation. Thus, I have created simple control design, in order to showcase
interconnection capabilities. Yaw damper originated in aircraft industry and
it was used to mitigate roll and yaw oscillations during Dutch roll operation.
In my case, yaw damper is designed to damp sudden vehicle cornering motion,
which would generally lead to uncontrollable vehicle behaviour [30] [31].

Yaw damper utilizes yaw rate OutSim signal to reshape steering driver input
for simulation. This leads to feedback control law as shown in [Figure 5.1,

Vehicle model

Steering

Yaw rate Steering driver input

Velocity

WO filter

Figure 5.1: Yaw damper control law schematic

Washout filter (WO filter) is a high pass filter, whose function is to detect
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5. Control Design

quick changes in a signal. Yaw rate signal is filtered with WO filter and
thereby loses its low, desirable, driver induced frequencies. Consequently,
filtered signal is reshaped by two gain blocks, one of which ensures negative
feedback loop and the second creates progressive yaw damping strength based
on vehicle velocity, hence faster the car drives, stronger the damping effect
gets.

B 52 Control system Experiments

Yaw rate damper underwent three different testing scenarios: simulation of
unexpected input error (for example strong sideways wind), moose test and
racing laps. Test driver during all tests was myself, car used was FZ 50 GTR.
All tests were conducted using motion platform and previously described
interface.

B 5.2.1 Auxiliary Features

Firstly, for a more convenient usage, I have created toggle switch button
assigned to one of the steering wheel buttons. It allows to change between
directly read or reshaped input signals (by control system) during simulation
runtime. Toggle button is based on finite state automaton design.

Secondly, in order to standardize the conditions, I have also created simple
cruise control system, which controls throttle pedal to keep constant speed
during experiments. Cruise control is regulated with PI controller and it
provides zero steady state error, however during certain maneuvers, speed
may differ from set point by up to 3 km/h.

B 5.2.2 Unexpected Input Error Experiment

This experiment is designed as analogy to strong sideways wind blow. In real
world scenario, wind would pull the steering towards one side and driver’s
natural reaction is to counter its movement and optimally carry on in previous
driving lane. Steering input is visualized in [Figure 5.2. Because of similarity
of responses, I have spread both experiments one second apart from one
another, so results do not overlap with each other. To properly validate yaw
damper effectiveness, steering input error is introduced at same speed for
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5.2. Control system Experiments

Graph displaying steering input during experiment
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Figure 5.2: Graph of input steering signal in time

both raw and controlled system. Testing speed during this experiment was
150 km/h.

Results show (Figure 5.3)), that yaw damper controlled system is capable of
containing input error, thus vehicle does not lose its stability. Unlike controlled
system, raw system loses its stability around 8.5 sec in the test. Due to crash of
the vehicle, raw system test was also ended sooner, explaining the discrepancy
in test duration. Furthermore, raw system does not accomplish test scenario
even at lower speeds (above 90 km/h), whereas controlled system is capable
of handling even more demanding requirements (greater input error, higher
maneuver speed).

Graph of yaw rate dependancy on steering input signal
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Figure 5.3: Graph displaying vehicle’s yaw rate as well as steering input for raw
and yaw damper systems

On this particular scenario, input signal filtration did not introduce any
measurable delay; however, it may not always be the case. Depending on
filter design, we may expect either constant time delay (using FIR filter) or
variant time delay with peek at cut-off frequency (using IIR filter).
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5. Control Design

B 523 Moose Test

Moose test is standardized scenario test for vehicles, probing roll stability
and maneuverability of the car. Test map used for my experiment
was built by my colleague Adam Konopisky and it is based on ISO 3888-2
Passenger Cars [32]. Width of the car used was 2 m, spacing of cones 2.5 m.
Maneuver were done at speed of 65 km/h, however unlike in traditional
moose test, where throttle is released at the beginning of the first cone
set , I have maintained speed with cruise control system, hence
putting extra emphasis on car steering dynamics at speed.

el
A B = Costrol |
gt d
f
N <

Figure 5.4: Moose test LFS custom map made by Adam Konopisky

My experiment consisted of 25 rides for both raw and yaw dampen systems.
Each cone hit is undesirable event (1 negative point), hitting concrete wall is
considered a highly dangerous event.

a = 1.1 x vehicle width + 0L25m
b = vehicle width = 1L0m

| 10m __|_ 13.5m 4 1lm b 12.5m 4 | it 12m
r . il Ral

Figure 5.5: ISO standard moose test layout [32]

46



5.2. Control system Experiments

Both raw and yaw dampened systems had very similar performance, having
on average 6.48 and 6.44 points respectively. Despite having almost same
average value, there was significant difference in standard deviation, with raw
system having value of 4.43 points, whereas yaw dampen system’s standard
deviation was 2.69 points. Furthermore, driving without yaw damper resulted
in total of five crashes with concrete walls; however, while using yaw damper
control, I managed to avoid any collision with walls. This may lead to
conclusion that, driving with yaw damper is more predictable and consistent.
Neonetheless, reliability of the testing method is flawed, having no expert
driver to fully prove this statement. I believe that given more time to perfect
this maneuver experiment, I would have been able to improve results for both
systems, therefore I would call this experiment as inconclusive.

B 5.2.4 Racing Laps

Lastly, I have tried using a yaw damper to enhance my racing performance.
Selected race track was Blackwood, 3.3 km long lap with a dominant flat
stretch. Driving a car with the yaw damper felt considerably safer and more
reliable, yielding a better performance in every single trial race. An average
lap time for raw system was 1:25.25 sec, whereas an average lap time for
yaw damper implemented system was 1:22.28 sec.The yaw damper seems to
improve lap time by a 3.5 %, giving a clear edge over uncontrolled system.
Although I must point out, that as in the previous experiment, the test driver
was no professional driver, therefore results may not be conclusive.
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Chapter 0

Future Development Options

While working on this bachelor thesis, I have stumbled upon a few potential
improvements of the developed interface, which are out of scope of this work
due to the lack of time. These options are great opportunities for a future
development, and they may considerably enhance this work’s value.

Firstly, my interface does not natively support FFB functionality. The FFB,
as was mentioned previously, is of a high importance, nonetheless the de-
veloped interface solely relies on the proprietary Thrustmaster peripheral
application to provide this functionality.

Secondly, there is a lot of room for a User Interface (UI) development.
I must admit, the Ul was never a priority of this work; however, it is not
an excuse for a spartan-looking interface currently implemented. This may
potentially lead to problems during future troubleshooting of any upcoming
issues.

Next opportunity for an improvement comes from a motion platform. The
motion platform safety limits do not allow for exact representation of driver
impacting forces, hence I need to finely tune limitations to deliver a realistic
experience, while still preserving simulator’s safety. With a lack of any
experience in this field, I do not believe that I am capable of solving this task
on my own.

Lastly, the greatest improvement possibility lies in broadening the coop-
eration with the LFS game developers. I have already established a line of
communication and the developer, with whom I have been working together,
was open to further collaboration.
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Chapter 7

Conclusions

My bachelor thesis was guided by four following objectives:

® Review of vehicle dynamics simulation software and platforms

® Modification of the existing simulation platform to a vehicle dynamics
simulator and its interlinkage with a simulation software

8 Vehicle dynamics control system development

® Verification of the developed systems

The first goal was met in the theoretical part of the work, where I briefly
listed and introduced various simulation software and hardware options,
including motion platforms.

In order to fulfil the second goal, I have chosen specific driver peripherals
and worked on designing custom mounts for them. Importantly, I did not
construct the mounts myself, as I had been helped by Ing. Tomas Sommer
Ph.D. and Ing. Martin Helmich, both from CTU FME.

Furthermore, I have developed interconnection interface between a simula-
tion software LFS and both Python and MATLAB/Simulink environments.
Introduced interface provides live telemetry consisting of 82 signals and allows
for a control law designing. Unfortunately, the interface capabilities are
hindered, due to an inability to influence any other signals than the driver
input.
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7. Conclusions

Subsequently, I have designed two control laws to showcase the interface
functionality. Implemented algorithms were a cruise control system and a yaw
damper, providing with a set speed control and a increased car stability
respectively. The primary purpose of the cruise control system was purposely
developed, in order to further control test conditions for the yaw damper
probing. Consequently, I have experimented with the yaw damper control
system, examining it’s behaviour in three test scenarios: Unexpected input
error test, Moose test and racing laps. The Moose test map was built by
Adam Konopisky and I have only conducted my control law tests on it. The
results of the test have shown meaningful improvement in predictability and
stability of the test vehicle, suggesting that proposed control law is both
valid and effecting. On the other hand, testing conditions and, most notably,
unprofessional driver, could negatively impact credibility of the test results.
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Appendix A

Mathematical appendix

Matrix mentioned in [Equation 4.1]is listed by indices due to its size.

R 1 = cos(a) cos(B) sin(y) — sin(a) cos(7y)
(

Ry 2 = sin(a) sin(f) sin(y) + cos(e) cos(7)
Ri3 = cos(f) sin(v)
Ry 1 = cos(a) cos(f)
R 2 = sin(«a) cos(p)
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