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Abstrakt

Tato disertačnı́ práce se zabývá časoprostorovými procesy a jejich aplikacemi na dva
reálné problémy. Prvnı́m z nich je proces korespondence mezi úřady a soukromými os-
obami, respektive mezi úřady navzájem, v České republice, s cı́lem zı́skat co nejvı́ce in-
formacı́ užitečných pro logistiku těchto úřadů. V práci se zaměřujeme jak na modelovánı́
tohoto procesu, tak na hledánı́ závislostı́ mezi různými typy korespondence. Na data
přitom nahlı́žı́me jako na realizaci časoprostorového bodového procesu, přičemž ukazu-
jeme, že známé modely jako např. Coxův proces nebo Poissonovo rozdělenı́ nelze v této
situaci použı́t, tudı́ž je potřeba využı́t méně standardnı́ch přı́stupů. Analýza pouze časové
části procesu se pak provádı́ metodou change point, lineárnı́m regresnı́m modelem a vek-
torovým autoregresnı́m modelem.

Druhý studovaný jev je z oblasti neurozobrazovánı́. Neuronálnı́ aktivace různých
oblastı́ mozku jsou popsány jako časoprostorový bodový proces. Přı́mé měřenı́ neu-
ronálnı́ho signálu je však velmi obtı́žné, široce použı́vanou neinvazivnı́ technikou pro
nepřı́mé pozorovánı́ neuronálnı́ aktivity je tak funkčnı́ magnetická rezonance (fMRI).
Singál BOLD (blood-oxygen-level-dependent) měřený v fMRI je modelován jako lineárnı́
konvoluce neuronálnı́ho signálu a funkce hemodynamické odpovědi. V našı́ práci
představujeme přı́stup indexace složek směsi (MCI) jakožto novou metodu pro odhad
neuronálnı́ho signálu. Dále je představen softwarový nástroj BRAD vyvinutý pro odhad
neuronálnı́ho signálu z neurozobrazovacı́ch dat. Nakonec ukazujeme užitečnost aplikace
MCI pro odhad efektivnı́ konektivity v oblasti mozku.

Klı́čová slova: časoprostorový proces, vı́cerozměrné časové řady, odhad neuronálnı́
aktivity, dekonvolučnı́ metody, funkce intenzity, K-funkce, párová korelačnı́ funkce, bod
změny, Dantzig Selector, LASSO, upravené Akaikeova informačnı́ kritéria, Bayesovská
informačnı́ kritéria, efektivnı́ konektivita, funkčnı́ zobrazovánı́ magnetickou rezonancı́,
hemodynamická odpověd’.
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Abstract

In this thesis, the theory of spatiotemporal processes is applied to the analysis of two
real-world phenomena. One of them is the process of submissions to municipalities in the
Czech Republic. The aim of the analysis is to find out as much as possible of potentially
useful information for municipalities functioning. We focus on the modelling of the pro-
cess and finding helpful consistent patterns in the data. A wide range of approaches is
used in this task. We start from modelling of the process as a spatiotemporal point pattern
and show that generally used approaches, such as modelling using the Cox process, or
modelling using the Poisson distribution, cannot be applied for this task. The analysis of
the temporal part of the process is carried out through the change point techniques, linear
regression model and vector autoregressive model.

The second studied phenomena arise in the neuroimaging field. Neuronal activations
of different brain regions are described as a spatiotemporal point process. However, the
direct measurement of the neuronal signal is extremely difficult. Instead, the functional
magnetic resonance imaging (fMRI) is a widely used non-invasive technique for indi-
rect observation of neuronal activity. The blood-oxygen-level-dependent (BOLD) signal
measured in fMRI is modelled as a linear convolution of the neuronal signal and the
hemodynamic response function. We present the Mixture Components Inference (MCI)
approach as a new method for neuronal signal estimation. Also, the software tool BRAD,
developed for estimation of the neuronal signal from neuroimaging data, is presented in
this thesis. Moreover, we show the usefulness of application the MCI to the estimation of
effective connectivity between brain regions.

Keywords: spatiotemporal point process, multivariate time series, neuronal activity
estimation, deconvolution methods, intensity function, K-function, pair-correlation func-
tion, change point, Dantzig Selector, LASSO, adjusted Akaike Information Criterion,
Bayesian Information Criterion, effective connectivity, functional magnetic resonance
imaging, hemodynamic response.
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Introduction

In probability theory, a stochastic process is a mathematical object, defined as a collection
of random variables. These processes are widely used as models of systems that vary in
a random manner. Thus, stochastic processes have applications in such disciplines in
modern science as physics, biology, economy, chemistry and many others.

A stochastic process is a general notion and there is a lot of types of random pro-
cesses that are different, for instance, by state space, or index set, and so on. In this work,
we concentrate on a specific type of random processes, namely spatiotemporal point pro-
cesses. Spatiotemporal point process is a random collection of points where each point
represents the time and location of an event. In other words, it is a process of the form
{(xi, ti), i = 1, . . . ,n} where each xi denotes the location and ti the corresponding time of
occurrence of an event.

In this thesis, two real-world processes are studied. Both of them can be considered
as spatiotemporal point processes, however, the origin of data and their measurements are
very different. Therefore, the tasks concerning the datasets are distinct, which leads to the
diversity of methods of data analysis. The goal of this thesis is to study the data according
to particular tasks using tailored statistical and data analysis methods.

The first one of the studied processes is the socio-economical process of submissions
to municipalities in the Czech Republic. One of their main attributions is the processing
of different submissions like forms, documents, emails, letters, submissions sent through
data boxes, etc. The information about sent and obtained correspondence of the set of
municipalities is studied. The geographical coordinates of the sender, as well as the date
of submission, are known. The dataset for a particular municipality typically covers daily
observations during a few years. Every submission can be considered as a point that has
spatial and temporal coordinates, thus, these data form a spatiotemporal point process.

There are various approaches to analysing performances of municipalities, see for in-
stance [Hulianytskyi and Omelianchyk, 2012], [Parkinson and Roseland, 2002], [Giroux
and McLelland, 2003], [López and Peters, 2010]. The data studied in this thesis were
first analysed in [Lechnerová and Lechner, 2010], where the economic importance of the
data for public administration is explained in detail. The authors analyse the evolution of
the municipality communications in time, finding trends and seasonal components. Then
in [Lechnerová and Lechner, 2013], spatial distribution and interactions of municipalities
are studied. However, blank spots are still present in understanding the behaviour of the
underlying process. Therefore, we got the datasets from the authors of these two articles
for further analysis. The main aim of our work with this data is to find out as much as
possible of potentially useful information for municipalities functioning. We focus on the
modelling of the process and finding helpful consistent patterns in the data.
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The second studied process comes from neuroscience. Some of the most important
cells in the human brain are neurones - electrically excitable cells that communicate with
each other and form an extremely complex system. It is excessively difficult to measure,
analyse and model the whole brain activity on the neuronal level. Thus, in many studies,
the neurones are studied at the level of regions of interest (ROI) in the brain, which are
larger structures of the neurones are organised into (see, for example, [Poldrack, 2007],
[Etzel et al., 2009]). We can talk about the electrical activity of a single neuron, that can
be described by firing times. With some simplification, it is reasonable to discuss also
the ROI activation times. Since every ROI has its separate space position in the brain,
the neuronal activations of the brain regions can be considered as a spatiotemporal point
process.

Information about the neuronal activity can be useful in various studies of brain struc-
ture and functioning. Specifically, a common way to characterise the brain is to estimate
the connectivity of the neuronal system. Thus, the knowledge of the activations of brain
regions can be used for the brain effective connectivity analysis.

However, direct measurement of the neuronal signal corresponding to a particular
brain part is extremely complicated. Measuring the precise signal would require an in-
vasive procedure. For example, intracranial electroencephalography (EEG) can be used
for that. The non-invasive scalp EEG suffers from a poor spatial resolution and requires
solving the inverse problem for reconstruction signals from deeper brain regions. Nev-
ertheless, there are methods of indirect measurements, such as functional magnetic reso-
nance imaging (fMRI), that is a useful instrument for noninvasive imaging of brain activ-
ity. The most common approach to fMRI measurement is using the Blood Oxygenation
Level Dependent (BOLD) contrast. The BOLD-signal can be approximately modeled
as a linear convolution of the neuronal signal with the hemodynamic response (see, for
example, [Heeger and Ress, 2002]).

Despite that fMRI-BOLD signal is not directly the neuronal signal, it is widely used
for the estimation of brain connectivity. Very often, the correlation of the measured signal
is used for that (functional connectivity, see, for example, [Hlinka et al., 2011]). However,
it has a set of well-known disadvantages. The first one is based on the fact that the BOLD
signal does not measure the neuronal activity directly and there are no proofs in the liter-
ature that functional connectivity is an appropriate way to characterise the connections in
neuronal system. Other problems of this method are connected with the correlation itself.
For example, such a matrix has false positive links and undirected connections.

The most famous approach to brain activity and effective connectivity estimation that
is aimed to solve the described problems, is Dynamic Causal Model (DCM). The newest
versions of this model are described in [Frässle et al., 2017], [Yao et al., 2018]. A range
of alternative approaches to effective connectivity estimation from the BOLD signal is
studied. For example, the partial correlation or the precision matrix can be used instead
of the correlation, and the Granger causality based methods can be useful. A detailed
review can be found in [Smith et al., 2011].

Regarding the estimation of the neuronal signal itself, the paradigm-free mapping
(PFM) approach was presented in [Gaudes et al., 2013]. However, the method proposed
by authors is supposed to find the neuronal activation corresponding to a single stimuli
during the resting state, which is a relatively strict assumption for real-world tasks.

10
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In this thesis, we focus on an alternative approach to the neuronal activity estimation
problem and discuss the effective connectivity estimates. We represent the BOLD signal
as a convolution of the neuronal signal with a fixed hemodynamic response and assume
sparsity of the neuronal activity.

The thesis is organised as follows. Chapter 1 includes basic theoretical notions and
results used in this work. In Chapter 2, the submissions process analysis is described.
First, the description of the data is given in Section 2.1. Then, the continuous and discrete
domain modelling results are discussed in Section 2.2 and Section 2.3 respectively. The
submission subgroups analysis is presented in Section 2.4. Chapter 3 is devoted to the
neuroimaging data analysis. In Section 3.1, the problem context is discussed; Section 3.2
contains the description of the data-related questions. In Section 3.3, the newly developed
method of neuronal activity estimation is presented. Section 3.4 includes the effective
connectivity estimation results. In Section 3.5, the description of the developed software is
given. The thesis is finishing with the Discussion and Conclusions sections, and Appendix
section where the technical details are presented.
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Chapter 1

Theoretical background

1.1 Space point processes
Definition 1.1.1. Let (Ω,F ,P) be a probability space. Point process (see for instance [Stoyan
et al., 1995]) X is a measurable mapping from (Ω,F ) to (N,N ), where N is a system
of locally finite subsets of Rd with the σ -algebra N = σ({x ∈ N : ](x∩A) = m} : A ∈
B,m ∈ N0), where B denotes bounded Borel sets.

Definition 1.1.2. Let Y be a point process on Π⊆ Rd . Given some space M, if a random
”mark” mξ ∈M is assigned to each point ξ ∈ Y , then Z = {(ξ ,mξ ) : ξ ∈ Y} is called a
marked point process with points in Π and mark space M.

Definition 1.1.3. A point process X on Rd is called stationary point process, if its distri-
bution is invariant under translations. It means the distribution of X + s = {x+ s : x ∈ X}
is the same as that of X for any s ∈ Rd .

Definition 1.1.4. Let us denote the number of points of the process X in the set A by
X(A). A locally finite diffusion measure µ on B satisfying µ(A) = EX(A) for all A ∈B
is called an intensity measure.

Definition 1.1.5. If there exists a function λ (x) for x ∈ Rd such that µ(A) =
∫

A λ (x)dx,
then λ (x) is called an intensity function. If λ (x) = λ is constant, then the constant λ is
called intensity.

Definition 1.1.6. A point process X on Rd is called a homogeneous point process, if its
intensity function is constant λ (x) = λ . Otherwise, X is said to be inhomogeneous.

Here, I denotes the indicator function.

Definition 1.1.7. Let X be a point process on Rd . Then

αk(A) = E
( 6=

∑
u1,...,uk∈X

I{(u1, . . . ,uk) ∈ A}
)
,A ∈B

is called the k-th order factorial moment measure. If αk(.) has a density with respect
to the Lebesgue measure on (Rd)k, then this density is called the k-th order intensity
function of X and denoted by λ (k).

12



1.1 Space point processes Theoretical background

Remark: The 1st order intensity function λ (1) of X is the intensity function λ (x) from
Definition 1.1.5.

Theorem 1.1.1. (Campbell’s theorem.) Suppose that X has the k-th-order intensity
function λ (k)(u1, . . . ,uk). Then for an arbitrary integrable Borel-measurable functions
h : (Rd)k→ [0,∞), it holds

E
6=

∑
x1,...,xk∈X

h(x1, . . . ,xk) =
∫
Rd
· · ·
∫
Rd

h(u1, . . . ,uk)λ
(k)(u1, . . . ,uk)du1 . . .duk.

Definition 1.1.8. Let X be a point process on Rd . If there exist the first and the sec-
ond order intensity functions λ (u) and λ (2)(u,v), respectively, then the pair-correlation
function (also called g-function) is defined by

g(u,v) =
λ (2)(u,v)
λ (u)λ (v)

, u,v ∈ Rd.

If the point process X is stationary with the intensity λ (x)= λ > 0, the pair-correlation
function could be written as a function of single argument, i.e.

g(u,v) =
λ (2)(u,v)
λ (u)λ (v)

=
λ (2)(0,v−u)

λ 2 = g(u− v), u,v ∈ Rd.

Definition 1.1.9. Let X be a point process on Rd with the well-defined pair-correlation
function g(x,y), x,y ∈ Rd . The process X is called the second-order intensity re-
weighted stationary (SORIS), if there exists a function g′ : Rd → R such that
g(x,y) = g′(y− x), x,y ∈ Rd.

Definition 1.1.10. Let X be a point process on Rd and suppose that X has the intensity
function λ (x). Suppose that the measure

K (B) =
1
|A|

6=

∑
x,y∈X

I{x ∈ A,y− x ∈ B}
λ (x)λ (y)

, B⊆ Rd

does not depend on the choice of A ⊆ Rd with 0 < |A| < ∞. Then X is said to be the
second order intensity re-weighted stationary and K is called the second order reduced
moment measure.

The stationarity of X implies the second order intensity re-weighted stationarity. If
the pair correlation function exists and it is invariant under translations, then we have the
second order intensity re-weighted stationarity and

K (B) =
∫

B
g(x)dx, B⊆ Rd.

Definition 1.1.11. Let X be a stationary point process on Rd with the intensity λ > 0.
Let A ∈Bd

0 be an arbitrary set with positive Lebesgue measure |A|. The reduced second
order moment function (K-function) is defined by

K(r) = E
6=

∑
x,y∈X

I{x ∈ A,‖ x− y ‖≤ r}
λ 2|A|

, r ≥ 0.

13



1.2 Spatiotemporal point processes Theoretical background

For stationary process X with the existing λ (2), it holds that

K(r) =
∫

B(0,r)
g(x)dx, r ≥ 0.

Thus K(r) =K (B(0,r)), where B(0,r) is the ball with the radius r and with the center in
the origin.

Definition 1.1.12. Consider a stationary point process X0 on Rd with the intensity λ > 0
and let f : Rd → [0,1] be a function on Rd . Point process X is a thinned version of X0
with the retention function f (x) (inhomogeneity function), if it is defined by

X = {x ∈ X0 : U(x)< f (x)},

where U(x) are independent, identically distributed random variables, U(x)∼Uni f orm[0,1],
U(x) are independent from X0.

Definition 1.1.13. Poisson point process is a point process Φ, satisfying:

• for any finite collection {An} of disjoint sets in Rd , the numbers of points in these
sets, Φ(An), are independent random variables,

• for each A⊂Rd such that µ(A)< ∞, Φ(A) has Poisson distribution with parameter
µ(A), i.e. P[Φ(A) = k] = µ(A)k

k! e−µ(A), k = 0,1,2, . . . .

Definition 1.1.14. Let P = {p1, p2, . . . , pn}, pi ∈ R2 ∀i = 1, . . . ,n, 2 ≤ n < ∞, such that
pi 6= p j, i 6= j, ∀i, j = 1, . . . ,n, be a set of generator points. Denote the location of the point
pi as (xi1,xi2), and the corresponding vector as~x. Voronoi region of pi is the convex set

Vi =V (pi) = {~x |‖~x−~xi‖≤ ‖~x−~x j‖∀ j : i 6= j},

where ‖.‖ is the usual Euclidean distance.
Voronoi tessellation of P is the union of Voronoi regions V = ∪n

i=1Vi.

1.2 Spatiotemporal point processes
Definition 1.2.1. Spatiotemporal point process X is a random countable subset of R2×R,
where the point (u, t) ∈ X corresponds to the point u ∈ R2 in space, occurring at the time
t ∈ R.

The process X is assumed to have no multiple points.
We assume the process X has the first and the second-order intensity functions λ and

λ (2) such that ∫
h1(u, t)λ (u, t)du = E ∑

(u,t)∈X
h1(u, t),∫ ∫

h2((u, t),(v,s))λ (2)((u, t),(v,s))du = E ∑
(u,t),(v,s)∈X

h2((u, t),(v,s)),

for arbitrary Borel functions h1 : R2×R→ R+, h2 : (R2×R)× (R2×R)→ R+.
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1.3 Shot-noise Cox process Theoretical background

Definition 1.2.2. The spatial and the temporal projection processes of the process X are
defined as follows:

Xsp = {u : (u, t) ∈ X(W × [0,T ])} and Xtm = {t : (u, t) ∈ X(W × [0,T ])}, respectively,

where W × [0,T ] is an observation window.

Remark: Here, W ⊂ R2, |W | > 0 and [0,T ] is a bounded time interval, T > 0. It is
assumed that in the point process X , any pairs (u, t) and (v,s) are distinct, i.e. P(u 6= v) =
1, and P(t 6= s) = 1, thus we may disregard multiple points in the observed projections
Xtm and Xsp.

The existence of the first and the second-order intensity λ and λ (2) implies the exis-
tence of the first and second-order intensity functions for the projection processes. They
could be obtained as

λtm(t) =
∫

W
λ (u, t)du, λ

(2)
tm (t,s) =

∫
W

∫
W

λ
(2)((u, t),(v,s))dudv,

λsp(u) =
∫ T

0
λ (u, t)dt, λ

(2)
sp (u,v) =

∫ T

0

∫ T

0
λ
(2)((u, t),(v,s))dt ds.

In Chapters 1 and 2, we assume the separability of the first-order spatiotemporal intensity,
i.e.

λ (u, t) = λ1(u)λ2(t), (u, t) ∈ R2×R+,

where λ1 and λ2 are non-negative functions. Then, the first-order intensity could be rep-
resented as

λ (u,s) =
λsp(u)λtm(s)∫

W×[0,T ]λ (u,s)d(u,s)
.

1.3 Shot-noise Cox process
Definition 1.3.1. Suppose that Λ = {Λ(x)|x ∈W} is a nonnegative random field such that
x→ Λ(x) is a locally integrable function almost surely. If conditionally given Λ, X is a
Poisson process on W with the intensity function Λ, then X is said to be a Cox process
driven by Λ.

Definition 1.3.2. Let X be a Cox process on Rd driven by

Λ(x) = ∑
(c,γ)∈Φ

γ k(c,x),

where k(., .) is a kernel function (non-negative integrable function such that∫
R2 k(u)du = 1), and Φ is a Poisson process on R2×R+ with a locally integrable in-

tensity function. Then X is called a shot-noise Cox process (SNCP).

Definition 1.3.3. A spatiotemporal shot-noise Cox process X is a Cox process with the
driving field Λ, given by

Λ(u, t) = ∑
(r,v,s)∈Φ

r k((u, t),(v,s)), (u, t) ∈ R2×R+,

where Φ is a Poisson process on R+×R2×R+ with an intensity measure U and k is a
kernel function.
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Remark: The shot-noise Cox point process X is a stationary spatiotemporal process,
if the measure U is of the form U(d(r,v,s))= γV (dr)dvds (γ > 0, and V (dr) is an arbitrary
measure on R+,

∫
R+ min(1,r)V (dr)< ∞), and the kernel function k((u, t),(v,s)) = k(v−

u,s− t).
In case of V (dr) = δ1(dr) being a Dirac measure concentrated in 1, X is a Poisson

cluster process with centers coming from the stationary Poisson process on R2×R+ with
the intensity γ . Then the clusters are independent conditionally on the position of cluster
centers with Poisson distributed number of points. The described procedure allows us to
obtain a class of Neyman-Scott processes.

1.4 Non-parametric estimates
For a homogeneous point process X on Rd , a non-parametric estimate of the intensity λ is
obtained as λ̂ = X(W )

|W | . Such estimate is unbiased. For an inhomogeneous point process,
the non-parametric estimate could be obtained as the kernel smoothing with the kernel
function hb with the bandwidth b > 0 and the edge correction factor ωb,W (x) as

λ̂ (u) = ∑
x∈X∩W

hb(u− x)
ωb,W (x)

, u ∈W.

Here, the edge correction factor is given by ωb,W (x) =
∫

W hb(u − x)du, so that∫
W λ̂ (u)du = X(W ). Note, that ωb,W (x) < 1 for all x that are laying close to the ob-

servation window boundary.
For a spatiotemporal point process X , the estimate of the first-order intensity could be

obtained by

λ̂ (u, t) =
λ̂sp(u)λ̂tm(t)

X(W × [0,T ])
.

A non-parametric estimate of the K-function for the homogeneous point process and
SORIS point process could be obtained as

K̂(r) =
1
|W |

6=

∑
x,y∈X∩W

I{‖ x− y ‖≤ r}
ω(x,y)λ̂ (x)λ̂ (y)

, r ≥ 0,

where λ̂ (.) is the estimate of the intensity function and ω(x,y) is an edge correction factor.
In this work, we used two types of edge corrections for the estimates of K-function:

• Border edge correction

K̂(r) =
6=

∑
x,y∈X∩W

I{x ∈W	r,‖ x− y ‖≤ r}
|W	r|λ̂ (x)λ̂ (y)

, r ≥ 0,

where W	r =W 	B(0,r) = {w ∈W : B(w,r)⊆W}, and B(w,r) is the ball with the
center in w and with the radius r, B(w,r) = {x ∈ R2 : |x−w|< r}.
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• Translation edge correction

K̂(r) =
6=

∑
x,y∈X∩W

I{‖ x− y ‖≤ r}
|W ∩W + x− y|λ̂ (x)λ̂ (y)

, r ≥ 0,

where W + x = {w+ x|w ∈W}.

A non-parametric estimate of the pair-correlation function for the homogeneous or
SORIS point process X can be computed as

ĝ(r) =
1
|W |

6=

∑
x,y∈X∩W

hb(‖ x− y ‖ −r)

σdrd−1ω(x,y)λ̂ (x)λ̂ (y)
, r ≥ 0.

An unbiased non-parametric estimate of the K-function for a spatiotemporal point process
can be calculated as

K̂(r,τ) =
1

|W ||T |

6=

∑
(u,t),(v,s)∈X

I{‖ u− v ‖≤ r, |t− s| ≤ τ}
λ̂ (u, t)λ̂ (v,s)ω((u, t),(v,s))

.

Here, ω((u, t),(v,s)) is an edge correction factor, border or translation edge correction, as
defined above. Further, the unbiased non-parametric estimates for the K-functions of the
process projections are

K̂sp(r) =
1
|W |

6=

∑
u,v∈Xsp

I{‖ u− v ‖≤ r}
λ̂sp(u)λ̂sp(v)ω(u,v)

, K̂tm(τ) =
1
|T |

6=

∑
t,s∈Xtm

I{|t− s| ≤ τ}
λ̂tm(t)λ̂tm(s)ω(t,s)

.

1.5 Autoregressive and vector autoregressive model
Definition 1.5.1. Suppose that (Ω,F ,P) is a probability space and T ⊂ RK , K ≥ 1. A
vector stochastic process is a collection of K-dimensional random vectors {Xt(ω), t ∈T}
that depend on the real parameter t, where ω ∈ Ω is an elementary random event. For
each fixed ω ∈ Ω, {Xt , t ∈ T} is a real function called the realisation of the stochastic
process.

Definition 1.5.2. A time series is a realisation {Xt , t ∈ T} of 1-dimentional stochastic
process where index parameter t is interpreted as time. A multivariate time series is a
realisation of vector stochastic process.

Definition 1.5.3. Let {Yt ∈R : t = 1, . . . ,T} be a time series. The p-th order autoregres-
sive model AR(p) is defined by

Yt = b0 +
p

∑
k=1

bkYt−k + et ,

where {bk ∈ R,k = 0, . . . , p} are coefficients of AR-model, and et ∼ N(0,σ2
u ) is a white

noise.
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Definition 1.5.4. Let {Yt ∈ Rn : t = 1, . . . ,T} denote a multivariate time series. The p-th
order vector autoregressive model VARn(p) is defined by

Yt = B0 +
p

∑
k=1

BkYt−k + et ,

where Yt ,ut ∈ Rn, for t = 1, . . . ,T , each Bk represents a coefficient matrix of dimension
n×n, et ∼ N(0,Σu) is a white noise and p denotes the maximal lag length.

1.6 Sparse regression
In this section, we focus on sparse regression methods. Let us define the linear regression
problem

y = Hs+ e, (1.1)

where y is the dependent variable (n× 1 vector), H is a n×m regressors matrix, n ≥ m,
e is a n× 1 vector of an additive Gaussian noise and s is a sparse m× 1 vector of linear
regression coefficients to be estimated.

Definition 1.6.1. The Ordinary Least Squares (OLS) estimate of an unknown vector s in
(1.1) is the maximum likelihood estimate:

ŝ = (HT H)−1HT y.

Definition 1.6.2. LASSO (least absolute shrinkage and selection operator) is a sparse
linear regression estimator that was proposed in [Tibshirani, 1996]. It is a regression
analysis method that performs variable selection by estimating the parameter vector s
through the optimization problem:

ŝ = argmin
s

[
λ‖s‖1 +‖y−Hs‖2

2

]
, (1.2)

where λ ≥ 0 is a tuning parameter and ‖.‖p is a norm in Lp-space, i.e. ‖x‖p =
(

∑
N
i=1 |xi|p

)1/p.
Note that this is an instance of convex optimization and also of quadratic programming.

Definition 1.6.3. Dantzig Selector is a sparse linear regression estimator that was pro-
posed in [Candes and Tao, 2007]. It is formulated as follows:

ŝ = argmin
s
‖s‖1, ‖HT (y−Hs)‖∞ < λ , (1.3)

where λ ≥ 0 is a tuning parameter, ‖x‖∞ = supn |xn|.

Note, that the optimization problem (1.2) can be reformulated in a form similar to
Dantzig Selector:

ŝ = argmin
s
‖s‖1, ‖y−Hs‖2

2 < λL, (1.4)

where λL ≥ 0 is a tuning parameter. It was shown that solution sL of the problem (1.4)
with a given parameter value λL is always a feasible solution for the problem (1.3) with the
same parameter, i.e. ‖HT (y−HsL)‖∞ < λL, but possibly not the optimal one. Similarity
of LASSO and Dantzig Selector estimators were discussed, for instance, in [James et al.,
2009], [Bickel et al., 2009], [Asif and Romberg, 2009].
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1.7 Selection criteria
In the model selection context, we assume that for given data, we obtain a set of candidate
models. The selection criteria inform us about the relative quality of the candidate models,
generally by finding a compromise between accuracy of the data fit and model parsimony.
The model with the lowest value of the selection criteria among all of the tested models
would be considered the best model.

The Akaike Information Criteria (AIC) is defined as

AIC =−2lnL+2k,

where L is the maximised value of the likelihood function of the model, and k is the
number of estimated model parameters.

The Bayes Infromation Criteria (BIC) is defined as

BIC =−2lnL+ k lnN,

note that it also takes into account the sample size N.
In practice, the adjusted Akaike Information Criterion (AICc) is recommended to

be used instead of AIC (see [Hurvich and Tsai, 1989], [Burnham and Anderson, 2004])
when k is large relative to sample size N. It is defined as

AICc = AIC+
2k(k+1)
N− k−1

.

Clearly, that AICc converges to AIC for N→ ∞.

Usage of these criteria for LASSO problems is discussed in [Zou et al., 2007]. For
LASSO and Dantzig Selector, AIC and BIC have the form

λ
AIC = min

λ

[
N ln(‖y−Hŝ(λ )‖2

2)+2k(λ )
]
,

λ
BIC = min

λ

[
N ln(‖y−Hŝ(λ )‖2

2)+ k(λ ) lnN
]
,

where ŝ(λ ) is the solution of (1.2) and (1.3), that corresponds to λ , y is the measured
signal, H is the matrix of regressors, k(λ ) is the number of non-zero parameters in ŝ(λ )
(see [Zou et al., 2007]). Comparison of using the AIC and BIC to Dantzig Selector in
deconvolution tasks in neuroimaging was discussed in [Gaudes et al., 2013].

1.8 Deconvolution
Definition 1.8.1. Convolution ? of two functions h(.),s(.) : R→ R is defined as

y(t) = (h? s)(t) =
∫

∞

−∞

h(τ)s(τ− t)dτ =
∫

∞

−∞

s(τ)h(τ− t)dτ, t ∈ R.

For real valued functions h(.) and s(.) defined on Z, the convolution is given by

y(n) = (h? s)(n) =
∞

∑
i=−∞

h(i)s(n− i) =
∞

∑
i=−∞

s(i)h(n− i), n ∈ Z.
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Deconvolution is an inverse problem that is concerned with the restoration and/or re-
construction of information from known data. In terms of Definition 1.8.1, deconvolution
is an algorithm-based technique for estimation of s, when y and h are known. Note, that in
real-life tasks, y is usually known up to white noise e: y = h? s+ e. Then, deconvolution
also can be used as a denoising procedure.

Definition 1.8.2. Toeplitz Matrix is an n× n matrix Hn = {hk, j, k, j = 0,1, . . . ,n− 1},
where hk, j = hk− j, i.e. a matrix of the form

Hn =


h0 h−1 h−2 . . . h−(n−1)
h1 h0 h−1 . . . h−(n−2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
hn−1 hn−2 hn−3 . . . h0

 .
Note, that in discrete case for finite vectors h and s, the convolution equation y = h? s,

can be rewritten in the matrix form as y=Hs, where H is the Toeplitz matrix, correspond-
ing to the kernel h = (h0,h1, . . . ,hn−1), h−i = 0, i = 1, . . . ,n. The most known deconvo-
lution approach is the Ordinary Least Squares (OLS) estimate, which is the maximum
likelihood estimate of the unknown vector s:

ŝ = (HT H)−1HT y.
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Chapter 2

Submissions analysis

2.1 Data description
The municipalities in the Czech Republic provide both local government and delegated
powers of government. The scope of delegated powers is different for different munici-
palities. They are divided into three categories depending on this scope: municipalities
performing basic scope of delegated powers (the first type), municipalities with autho-
rised municipal office (the second type; performing in addition for example environment
and landscape protection and including registry office and building authority), and mu-
nicipalities with extended powers (the third type; including in addition for example trade
licensing office). The numbers of the municipalities according to their extent of delegated
powers are shown in Table 2.1.

The data stemming from the electronic records management systems kept by the mu-
nicipalities are examined. The original data include the information about the date of
sending or receiving the submission, addressee of a sender, agenda and way of commu-
nication. The information is anonymised by the provider so that we have no specific ad-
dresses but only postcodes (ZIP codes) at our disposal. Therefore we identify the spatial
position of the communicating subject by position of an appropriate post office. The co-
ordinate system of the unified trigonometric cadastral network (S-JTSK) converted into

Extent of delegated powers Number
Total number of Municipalities in the Czech Republic 6253

Municipality of type I. 5660
Municipality of type II. 388
Municipality of type III. 205

Municipality with Registry Office 1230
Municipality with Building Authority 618

Table 2.1: The numbers of municipalities according to their extent of dele-
gated powers, state for 1’st of January 2014, Source: Czech Statistical Of-
fice. Small Lexicon of Municipalities of the Czech Republic – 2014. Avail-
able from WWW: https://www.czso.cz/csu/czso/small-lexicon-of-municipalities-of-the-
czech-republic-2014-2hzarbj7wx.
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Description Value
Amount of unique time points 2 229

The most frequent time point (amount) 38
The most frequent time point (%) 0.02%

Amount of unique space points 323
The most frequent space point (amount) 7 412

The most frequent space point (%) 37%

Total number of spatiotemporal points 20 268
Amount of unique spatiotemporal points 10 805

The most frequent spatiotemporal point (amount) 24

Table 2.2: Characterization of dataset Municipality 1.

kilometres with the shifted origin is used in order to optimise numerical calculations.
Also, we consider the submissions to be divided into five groups according to the way of
their processing as follows:

• type 1: electronic guaranteed (containing mainly data boxes),

• type 2: electronic non-guaranteed (containing mainly emails),

• type 3: paper forms sent by classical mail,

• type 4: personal submissions,

• type 5: others.

Within the preprocessing of the data, we omit weekends and public holidays and we
check postcodes with respect to sources provided by Czech Post. Further, we exclude
communication with subjects outside the Czech Republic. The amount of discarded data
(including unidentified senders or addressees) is below 1.5%.

The analysis is based on a collection of 36 datasets, more precisely on data from 18
randomly chosen municipalities of different types, each containing both the sent and the
received submissions. For the presentation of the results, the received submissions of one
particular municipality are chosen as an example (called ”Municipality 1” in the sequel).
The dataset contains 20 268 spatiotemporal points, that belong to the time interval from
the 21st of January 2002 till the 30th of December 2011. It contains 2 229 working days
during this interval. The maximal number of submissions per day is 38. The dataset also
contains information about 323 different municipality positions (see also Table 2.2). The
municipality, providing the data, (in sequel, the main office) is located at (-23.09, 6.15).
According to the coordinates, the municipality is situated in Nová Ves nad Lužnicı́. Note
that the behaviour of the remaining time series is very similar.
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2.2 Continuous domain modelling
As seen from Figure 2.1, we may expect point clusters in the process, especially in the spa-
tial variable. Our first approach is to use an inhomogeneous spatiotemporal Neyman-Scott
process (see for instance [Moller and Waagepetersen, 2004]) for modelling the cluster
point process that would fit the data. The inhomogeneous spatiotemporal Neyman-Scott
process it is the Poisson process driven by a random intensity function

Λ(u, t) = ∑
(v,s)∈Φ

γ f (u, t)k1(v−u)k2(s− t), (u, t) ∈ R2×R, (2.1)

where Φ is a stationary Poisson process with an intensity κ > 0, k1 : R2→R and k2 : R→
R are probability density functions, whose shape should be chosen or estimated from the
data, and whose width corresponds to the typical cluster size. Also, γ > 0 is an arbitrary
constant and f : R2×R→ [0,1] is an inhomogeneity function whose larger values mean
higher intensity in the corresponding spatial and temporal coordinates, and vice versa.
Just note that the process X is an example of a Cox process (see Section 1.3).

2.2.1 Intensity estimates
In our work, we use the estimates of the first-order intensity λ̂ (u, t) for the calculating
the estimate of the K-function and the pair-correlation function. Their form could help
us to identify clusters in the process and also to find the typical size of the cluster. There
are several methods for estimating spatial and temporal intensity (see for instance [Chiu
et al., 2013], [Daley and Vere-Jones, 2003] or [Moller and Waagepetersen, 2004]). The
ones we use in this section are described below.

In this chapter, the estimate of spatiotemporal intensity function is considered in the
product form of estimates of spatial and temporal intensity functions (see [Prokešová and
Dvořák, 2014]), i.e.

λ̂ (u, t) =
λ̂sp(u) λ̂tm(t)
X(W × [0,T ])

, (2.2)

where W denotes the spatial observation window (i.e. the area of the Czech Republic),
[0,T ] is the observed time interval, and λ̂sp and λ̂tm denote spatial and temporal first-order
intensities, respectively.

In this section, we study a few different first-order intensity estimates λ̂sp and λ̂tm.
Our goal is to estimate the K-function using these estimates. We believe that the suitable
estimate has the next property: the value of integral

∫
W λ̂sp(u)du is a satisfactory approx-

imation of the total number of points |X(W × [0,T ])|. This property is used to compare
different intensity estimates.

Edge corrections

Border edge correction factor is required because the observed data are given for bounded
observation window, while the pattern itself is theoretically assumed to extend out of the
observation window. So we need the correction to compensate the lack of information. In
this work, we apply two different types of edge correction for the K-function and the pair
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Figure 2.1: Municipality 1, received submissions. Spatial projection of all submissions
(left) and temporal evolution of the numbers of particular submission types per month
(right) in the time period January 2002 - December 2011.

correlation function: border and translation edge corrections. This section provides some
technical details of corresponding calculations.

Border edge correction is based on the set W	r =W	b(0,r)= {w∈W : b(w,r)⊆W}.
However, we work with geographical boundary of the Czech Republic, so construction
of W includes a problem of approximation of the ’cut’ observation window W	r for each
value of r, which is a time-consuming procedure. Also, it could be time consuming
to check whether a point u ∈W	r if W	r is not a convex set. Therefore, in this work,
we define W the smallest convex polygon which contains all of the process points (see
Figure 2.2).

The border is constructed using the following procedure:

• From the set of space points, choose the one with the smallest y-coordinate (u0).
This point is the first vertex of the polygon.

• Choose a vertical ray, starting from u0 and going upwards. Start rotating it clock-
wise, until it hits a point of the process. Denote this point by u1.

• Continue rotating the ray from the new point u1, until we touch the next point,
denote it by u2.

• Continue in this procedure until we have a convex polygon.

The advantages of this border are:

• It is easy to compute the convex polygon area, using the Shoelace Theorem
(see for instance [Rhoad et al., 1991])

A =
n

∑
i=1

(xi+1 + xi)(yi+1− yi)

2
,

where (xn+1,yn+1) = (x1,y1). Here, the (xi,yi), i = 1, . . . ,n are points of the con-
structed boarder.

• It is easy to construct W	r.
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Figure 2.2: The borders of the observation window W , used for the border edge correction
(left), and the geographical border, used for the translation edge correction (right).

• It is easy to check, whether an arbitrary point (x0,y0) lies inside the polygon W	r. If
the equation of the n−th edge is Anx+Bny+Cn = 0, then values Anx0 +Bny0 +Cn
have the same sign for all n iff (x0,y0) lies inside W	r and different signs for the
outside points.

Translation edge correction uses an intersection area of the original observation win-
dow and the translated one |W ∩ (W + x)|, where W + x = {w+ x|w ∈W}. For approxi-
mation of the area, we use the matrix M consisting of 0 and 1. Each element of this matrix
M(i, j) corresponds to the rectangle in geographical coordinates (xi,xi+∆x)×(yi,yi+∆y)
with a known area δ = ∆x∆y, and the element M(i, j) = 1 if the corresponding part
(xi,xi +∆x)× (yi,yi +∆y) at least partly lies in the Czech Republic. Otherwise, M(i, j) =
0. Hence, the normalized total sum of the elements of M is approximately equal to the
geographical area of the Czech Republic:

|W |= δ ∑
i, j

M(i, j).

In this case, since M corresponds to W , the sifted window (W + x) can be approxi-
mated by the matrix Mx, whose elements corresponds to the territory of Czech Republic
translated on x. Then, the area of |W ∩ (W + x)| can be estimated as the sum of products
of corresponding elements of original and shifted matrices:

|W ∩ (W + x)|= δ ∑
i, j

M(i, j)Mx(i, j).

Spatial intensity

Kernel smoothing. The procedure of kernel smoothing is one of the methods of first-order
intensity estimation.

λ̂sp(u) = ∑
x∈Xsp

hsp
b (u− x)
ωb,W (x)

, u ∈W,

where Xsp is the spatial projection of the process X , Xsp = {u |(u, t) ∈ X}. Here, the edge
correction factor is given by ωb,W (x) =

∫
W hsp

b (u− x)du. However, the obtained estimate
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λ̂sp depends on the chosen kernel bandwidth b, which selection is an important task be-
cause its influence on the result is relatively high.

Parametric model. The parametric model of the spatial intensity is based on the as-
sumption that two parts play important role in the submission process intensity. The first
part represents a population density in the Czech Republic, the second one assumes that
intensity of mailing depends on the distance from the main office. Given this, we suggest
to apply the following model of the parametric intensity:

λ (u;β ) = β0λ0(u)max[1,λ1(u;β )], β = (β0,β1,β2)> 0, u ∈W,

where β = (β0,β1,β2) is a parameter vector, λ0(u) corresponds to the population per km2

in some region close to u, λ1(u;β ) corresponds to the average number of submissions
per month between the municipality, corresponding to the u coordinate, and the main
municipality. One of the possible models for λ1(u;β ) is a parabolic function

λ1(u;β ) = β1−
||u−u0||2

β 2
2

, β1,β2 > 0,

where u0 represents coordinates of the main office. To estimate the parameters β , we use
a maximum pseudo-likelihood estimate (PMLE), see for instance [Schoenberg, 2005],
defined as

β̂ = argmax
β

L(β ), L(β ) = exp{−
∫

W
λ (u;β )du} ∏

xi∈Xsp

λ (xi;β ).

Remarks:

• It is reasonable to maximise lnL(β ) instead of L(β ) since

lnL(β ) =−
∫

W
λ (u;β )du+ ∑

xi∈Xsp

lnλ (xi;β ) =

=−
∫

W
(β0λ0(u)max[1,λ1(u;β )])du+ ∑

xi∈Xsp

ln(β0λ0(xi)max[1,λ1(xi;β )]) =

=−β0

∫
W

λ0(u)[1+(λ1(u;β )−1)+]du+

+ ∑
xi∈Xsp

{lnβ0 + lnλ0(xi)+ ln(max[1,λ1(xi;β )])}=

=−β0

∫
W

λ0(u)du−β0

∫
W

λ0(u)(λ1(u;β )−1)+ du+

+|Xsp| lnβ0 +∑
i∈I

ln
Ni

|Wi|
+ ∑

xi∈Xsp

ln(max[1,λ1(xi;β )]),

where N0 =
∫

W λ0(u)du, λ0(xi;β ) = Ni
|Wi| , Wi is partition of W: ∀xi ∈ Xsp :

∃!xi ∈ Wi, ∑i∈I Wi = W , and Ni is the number of people, living at Wi, i.e.
∑i∈I Ni = N0.
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2.2 Continuous domain modelling Submissions analysis

Note that ∑i∈I ln Ni
|Wi| does not depend on β , so it does not have an influence on the

maximizing.
The Riemann approximation can be used for computation of the integral∫

W
λ0(u)(λ1(u;β )−1)+ du = ∑

i∈I

Ni

|Wi|
(λ1(xi;β )−1)+|Wi|= ∑

i∈I
Ni(λ1(xi;β )−1)+.

Finally,

β̂ = arg max
β

[−β0N0 + |Xsp| lnβ0−β0 ∑
i∈I

Ni(λ1(xi;β )−1)++

+ ∑
xi∈Xsp

ln(max[1,λ1(xi;β )])].

• Ni is known from the data, and N0 can be estimated as the population of the Czech
Republic. For the calculations, we use N0 = 10 625 449, that corresponds to begin-
ning of 2018, and was taken from the website of Czech Statistical Office
(https://www.czso.cz/csu/czso/domov).

• In the calculations of λ0(xi) =
Ni
|Wi| instead of the area of the ”i-th-post-code terri-

tory” |Wi|, we use the area of a corresponding Voronoi-cell |Ci| (see Definition 1.1.14).
So, λ0(xi) =

Ni
|Ci| . For the Voronoi tessellation, we use all post codes in the Czech

Republic.

Model based on Voronoi tessellation. Another way to estimate the spatial intensity is
to use the Voronoi tessellation as follows. Note, that spatial projection of the process X
can be defined also as Xsp = {(xi,yi) ∈W, i ∈ Isp}, where Isp is the index set of spatial
points with at least one point of the pattern. In the data, there are multiple points in many
spatial coordinates (xi,yi), therefore to each coordinates (xi,yi), we assign the number
n(sp)

i of points lying in these coordinates. Then the estimate of the spatial intensity is
given by

λ̂sp(u) = ∑
i∈Isp

n(sp)
i
|Ci|

I{u ∈Ci}, (2.3)

where {Ci, i ∈ Isp} is the system of cells of the Voronoi tessellation built over the points
Xsp on the observation window W .

Note that we got a maximum pseudo-likelihood estimate, that provides us with an
interesting property that integral of the intensity over the whole observation window W is
equal to the number of points, i.e.

I =
∫

W
λ̂sp(u)du = ∑

i∈I

n(sp)
i
|Ci|
|Ci|= ∑

i∈I
ni = |Xsp|.

Temporal intensity

Kernel smoothing. As in the case of space first-order intensity, the first estimate of the
temporal intensity is also done with a kernel smoothing procedure

λ̂tm(t) = ∑
x∈Xtm

htm
b (t− x)
ωb,W (x)

, t ∈ [0,T ].
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2.2 Continuous domain modelling Submissions analysis

Here, the edge correction factor is given by ωb,W (x) =
∫

W htm
b (t− x)dt.

Model based on the average periods
For estimation of temporal intensity, methods for estimating trends of time series (see

[Green, 2011]), are employed since the data are recorded day by day. Analogously to the
approach above, we denote

Xtm = {t |(u, t) ∈ X}= {ti ∈ [0,T ], i ∈ Itm},

the temporal projections of the process X , where Itm is the index set of temporal points
with at least one point of the pattern, and assign the number of points n(tm)

i to each time ti.
Then we construct the periodogram, see [Green, 2011], which is a tool using for finding
the importance of frequencies (periods) in the data. From this as well as from the nature
of the data, it is obvious that the most important time period in the data is one month and
the second important period is one week. Further, when looking at the temporal evolution
of the data in detail, we can observe different behavior in different working days caused
probably by the fact that the office hours of the selected municipality are Mondays and
Wednesdays. Therefore we divided the days into two groups:

A = {1,3} that corresponds to {Monday, Wednesday},
B = {2,4,5} that corresponds to {Tuesday, Thursday, Friday}.

Let t ∈ {0,1, . . . ,T} and consider functions m(t) and d(t) describing to which month
and (working) day t corresponds, namely

m(t) = 1 if t is a day in January, . . . ,m(t) = 12 if t is a day in December, (2.4)

and analogously

d(t) = 1 if t corresponds to Monday, . . . ,d(t) = 5 if t corresponds to Friday. (2.5)

Then denote Mk = {t ∈ {0, . . . ,T} : m(t) = k} for k = 1, . . . ,12 the set of days belonging
to the month k, and DA = {t ∈ {0, . . . ,T} : d(t) ∈ A} and DB = {t ∈ [0,T ] : d(t) ∈ B}
are the sets of days belonging to the day group A and B, respectively. Estimate of the
temporal intensity is then

λ̂tm(t) = ym(t)+ yd(t), t ∈ [0,T ], (2.6)

where the functions ym(t) and yd(t) are defined as

ym(t) =
12

∑
k=1

I{t ∈Mk}
]({0, . . . ,T}∩Mk)

T

∑
s=0

n(tm)
s I{s ∈Mk},

where n(tm)
s is the number of points which time coordinate is equal to s. Here ym denotes

the average number of submitions in a single day of the month corresponding to t, and

yd(t)=
∑

T
s=0(n

(tm)
s − ym(s))I{s ∈ DA}

]({0, . . . ,T}∩DA)
I{t ∈DA}+

∑
T
s=0(n

(tm)
s − ym(s))I{s ∈ DB}

]({0, . . . ,T}∩DB)
I{t ∈DB},

which can be interpreted as the mean deviation of the day t from the monthly average
with respect to the type of the day A or B, respectively.

28



2.2 Continuous domain modelling Submissions analysis

Figure 2.3: Comparison of different types of space intensity estimates. From left to right:
kernel smoothing estimate, parametric estimate, and Voronoi tessellation estimate. The
rows represent two different scales: the upper one shows full estimates with a dominating
peak in the main office, the lower figures provide more details on the rest of the territory.

Numerical results

In this section, numerical characteristics of different intensity estimates are provided.
Firstly the kernel smoothing estimate of space intensity is tested. The uniform kernel
of width 80km is used for the estimation. The Riemann approximation of the integral of
λ̂sp(u) over all u ∈W is equal to 23 167, which is quite close to the actual point number.
This occurs due to the ability of the translation edge correction to compensate for the
lack of information about the process outside of the observation window. The estimate
is suitable, however, while working with the kernel smoothing estimates, we noticed that
the results are very sensitive to the width of the kernel, making us try another approach of
intensity estimation.

Next model is the parametric one. The estimated number of points, calculated using
this model, is extremely high (861 088), which makes such approach useless. The third
intensity estimate is based on Voronoi tessellation. This approach has two main advan-
tages. The first one is that Riemann integral of it over all points in observational window
W is equal exactly to the real number of points, so the estimate is appropriate. The second
advantage is an absence of any parameter, that should be chosen.

For the time projection, two different estimates of first-order intensity were used. The
first one is the kernel smoothing estimate, that is calculated using the Epanechnikov ker-
nel k(u) = 0.75(1− u2)I{|u| ≤ 1} of the width 50. Conclusions are very similar to the
spatial case. The intensity estimate looks suitable enough due to the value of Riemann
approximation of the integral

∫
[0,T ] λ̂tm(t)dt, however it is dependent on the kernel width.

An alternative temporal intensity estimate is produced with the method of the average
periods (grouped by working day and month). As well as the Voronoi tessellation based
estimate, this one does not need any parameter selection. The comparison of the different
types of intensity estimates is shown in Figure 2.3. The comparison of two estimates of
the temporal intensity is shown in Figure 2.4.
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Figure 2.4: Comparison of the different types of time intensity estimates. The left picture
corresponds to the kernel smoothing estimate, the right one represents the method of the
average periods.

2.2.2 K-functions and pair-correlation functions
In this section, estimates of the K-function and the pair-correlation function are studied.
For the smoothing kernel approach in space, these characteristics are obtained using both
translation and border edge corrections. Corresponding boundaries of the observation
window W are depicted in Figure 2.2. The comparison of the estimates of K-function and
pair-correlation function, obtained for data, with the classical Poisson process, are shown
in Figures 2.5 and 2.6. The K-function for the Poisson process is Ksp(r) = πr2 for the
2D-case (space) and Ktm(t) = 2t for 1D-case (time). The pair-correlation function for the
Poisson process is also known and equal to 1 for both space and time.

The comparison of the functions estimated from the data with the Poisson process,
can give more information about the real process. Namely, if the estimated K-function
lies above the K-function for Poisson process, it means that data form a clusters, while
the process whose K-function lies below the Poisson process’ K-function is regular. The
similar conclusions can be done for the pair-correlation function. Also, it is important to
note that the typical sizes of clusters r corresponds to the rapid increase of K̂(r).

In our pictures, the estimates of the K-function and pair-correlation function for the
data are shown in red color, and black color corresponds to the Poisson process. In the
presented example, the uniform kernel with the width 80 is used for the space projection,
and Epanechnikov kernel k(u) = 0.75(1−u2)I{|u| ≤ 1}with the width 50 is used for time
projection.

As one can see in the pictures, the weakness of the border edge correction lies in a
non-monotonous K-function. This occurs due to the main office being located quite close
to the border, causing situation when, for some radius r, a large number of points appears
out of the restricted observation window W	r. Hence, the estimate will be based only on
the small number of points and becomes unreliable. The translation edge correction does
not have this issue. Therefore, we chose it in the sequel.

For the both types of edge correction, the clustering in the spatial projection process
Xsp can be seen. Both the estimates of the K-function lie above the curve of the Poisson
process which means that the clusters are present in the data. The analogous pictures for
the K-function and pair correlation function of the temporal projection process Xtm are
provided in Figure 2.7.
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Figure 2.5: Comparison of the estimates for the K-function by different types of the edge
correction. The left figure corresponds to the border edge correction, the right one to
the translation edge correction. The black parabolic line correspond to the K-function of
Poisson process.
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Figure 2.6: Comparison of the estimates of the pair-correlation function of space projec-
tion by different types of the edge correction. The left figure corresponds to the border
edge correction, the right one to the translation edge correction.
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Figure 2.7: Comparison of the K-function (left) and the pcf (right) for the classical Pois-
son process (black) and temporal projection process (red). Intensity estimate is based on
the kernel smoothing.
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Real Data
Classical Poisson Process

Real data-classical PP

Figure 2.8: Left: spatiotemporal K-function estimated from the data (red) compared to the
theoretical K-function for the Poisson point process with corresponding intensity (blue).
Right: differences between these two functions. Spatial units are kilometers, temporal
units are days.

For the temporal projection process, the K-function and the pair correlation function
are very close to the corresponding characteristics of the classical Poisson process. K-
function and pair correlation function, based on average periods estimate are similar to
the estimates, based on the kernel smoothing: close to the characteristics of the classical
Poisson process. However, analysing only projections and its characteristics can be in-
sufficient, and a spatiotemporal K-function is needed in order to make a conclusion about
the clustering in space or in spatiotemporal.

Finally, the estimates obtained with the Voronoi tessellation and method of the average
periods are chosen as the best ones for the spatial and temporal intensities respectively.
These estimates are used to get the empirical estimates of the spatiotemporal K-function.

As seen from Figure 2.8, the spatiotemporal K-function estimated from the data lies
above the theoretical K-function for the Poisson process which indicates the presence of
clusters in the data. However, the most important jump is in the point (0,0) which corre-
sponds to the distance 0 km in space and 0 days in time. Thus the conclusion is that the
pattern has clusters as expected, but their typical scale is less than 1 km in the space and
less than 1 day in time. Since the temporal part of the data is recorded in days and spatial
part is given by the coordinates of ZIP codes of the municipalities, typically located in the
distance of many kilometers from each other, we cannot model the clusters themselves.
The clusters are formed by events with the same spatial and temporal coordinates due to
the rather rough discretization. Hence it is not possible to infer the precise scale of the
clusters from the data.

2.3 Discrete domain modelling
In this section, we focus on discrete modelling. We consider the data to be a realisation of
the point process placed on a discrete lattice where the points of the lattice (called knots in
the sequel) are given by the cartesian product of the spatial positions (coming from a finite
set) and dates of the submissions. First, we study the dependence between the spatial and
temporal parts of the process, and then, we focus on modelling of the number of points in
the knots of the lattice.
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2.3.1 Testing independence of spatial and temporal coordinates
Information about the independence of the spatial and temporal parts of the process is
of great benefit since, in the case of independence, we can analyse spatial and temporal
projections independently on each other. Otherwise, we must consider them together.

Consider the hypothesis H0 : ”Spatial position of points is independent of their tem-
poral coordinate.” In order to test it, we deal with the process as couples of spatial and
temporal coordinates, i.e.

X = {(ξ , t),ξ ∈ S, t ∈ {0, . . . ,T}},

where S is the set of spatial positions of ZIP codes. The data form a realisation of such
process represented as a collection of N points ξi = (xi,yi) with the associated (random)
times ti, i = 1, . . . ,N, so

X = {(ξ1, t1), . . . ,(ξN , tN)}.
For testing the null-hypothesis, we use so-called mark independence test which works as
follows. Suppose that the process is characterised by some properties (for instance the
number of lattice knots with more than one point etc.), called characteristics or statistics
in the sequel. We simulate the a given number of permutations of times with respect to
the spatial coordinates. The main idea is that in the case of independence, both the per-
muted patterns and the data have similar characteristics. Using mathematical terminology,
denote {π(1), . . . ,π(N)} a uniform random permutation of the numbers {1, . . . ,N} and

X̃ = {(ξ1, tπ(1)), . . . ,(ξN , tπ(N))}

the corresponding pattern with permuted times. Further, consider K independent uniform
permutations π1, . . . ,πK , which produce the patterns X̃1, . . . , X̃K . Using these patterns, we
can construct the empirical 95%-confidence intervals for arbitrary statistics under the null
hypothesis. Thus, if the value of the corresponding statistic calculated from the original
dataset lies outside this interval, we reject the null-hypothesis and vice versa.

For our purposes, we chose the following statistics:

• T1 – the number of knots of the lattice with at least one point,

• T2 – the number of knots of the lattice with more than one point,

• T3 – the average number of points in a knot in the set of knots with at least one
point,

• T4 – the average number of points in a knot in the set of knots with more than one
point.

Numerical results

In order to test the independence of time and spatial coordinates, we simulate K = 1000
permutations and construct the 95% confidence interval for the given statistics T1,. . . , T4.
The results are shown in Table 2.3. Independence of space and time coordinates was
rejected, thus we conclude that there are interactions between space and time coordinates.
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Statistics q0.025 q0.975 Data Conclusion
T1 11 347 11 455 10 805 Reject
T2 4 027 4 148 4 040 Not reject
T3 1.77 1.79 1.88 Reject
T4 3.14 3.19 3.34 Reject

Table 2.3: Testing independence between time and spatial coordinates. The second and
the third column introduces the quantiles for the corresponding statistic calculated from
1000 simulated permutations, the fourth column is the value calculated from the data.

Statistics q0.025 q0.975 Data Conclusion
T1 19 457 19 706 10 805 Reject
T2 8 056 8 244 4 040 Reject
T3 2.41 4.26 1.88 Reject
T4 4.43 4.50 3.34 Reject
T5 47 310 48 336 20 264 Reject

Table 2.4: Testing the hypothesis that the number of points in the knots of the lattice
has Poisson distribution with the parameter λ̂ (ξ , t) given by (2.2). The second and the
third column introduces the quantiles for the corresponding statistic calculated from 100
simulations, the fourth column is the value calculated from the data.

2.3.2 Modeling the number of points by Poisson distribution
As seen from the numerical results above, we cannot work with space and time separately,
so we still consider the process of points on the lattice. Now, we are interested in the
distribution of the number of points in the knots of the lattice. The natural beginning
of this study is testing the hypothesis that they have the Poisson distribution with the
parameter given by the intensity of the corresponding knot. Thus, we consider the process
represented as

X = {(ξ1, t1,η1), . . . ,(ξN , tN ,ηN)},

where ηi are independent random variables having the Poisson distribution with the pa-
rameter λ̂ (ξi, ti)), and λ̂ (ξ , t) is the intensity estimate (2.2) described in Section 2.2.

In order to check the model, we apply again the empirical test based on a construction
of 95% envelopes for the statistics T1, . . . ,T4 mentioned above. Since in this case, the
intensity plays an important role, we moreover observe the statistic T5 describing the total
number of points.

Numerical results

In Table 2.4, there are shown the results for testing Poisson distribution of the number of
points in the knots of the lattice. The confidence intervals were constructed from only 100
simulations because the calculations are more time-consuming than in the case of testing
independence. It is seen that this null-hypothesis was rejected in all cases.
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Statistics q0.025 q0.975 Data Conclusion
T1 10 603 11 067 10 805 Not reject
T2 3 943 4 137 4 040 Not reject
T3 1.85 1.90 1.88 Not reject
T4 3.30 3.39 3.34 Not reject
T5 19 959 20 674 20 264 Not reject

Table 2.5: Testing the hypothesis that the number of points in the knots of the lattice
has distribution estimated empirically for 24 combinations of the month and the type of
working day (12 months and 2 types of working days) through the statistics T1, . . . ,T5.
The second and the third column introduces the quantiles for the corresponding statistic
calculated from 39 simulations, the fourth column is the value calculated from the data.

2.3.3 Modeling the number of points by empirical distribution
In this section, we focus on the empirical distribution of number of points. We work with
the collection of independent random variables η ′(ξ ,m(t), d̃(t)) where ξ is the spatial
position, m(t) is defined above by (2.4), and d̃(t) = A if t ∈ A and d̃(t) = B if t ∈ B
is the type of working day. Thus for each spatial position ξ , 24 empirical distributions
(corresponding to 12 months and 2 different groups of day) are to be estimated.

We use two approaches for simulation-based goodness-of-fit testing. The first one is
again the construction of confidence intervals for the statistics T1, . . . ,T5. The second one
is construction of the confidence intervals for the following quantities:

• the mean number of points per day in a given month (for instance in January), ex-
pressed as a difference from the overall mean number of points per day (regardless
of the month),

• the mean number of points per day for a given day of week (for instance for Mon-
days), expressed as a difference from the respective monthly averages (for instance
Mondays in January contribute by the difference from the January average).

Note that the second set of quantities corresponds to the computation of yd(t) above where
we consider five groups (Monday, . . . , Friday) instead of two (A, B).

Numerical results

The results based on empirical distributions are represented in Table 2.5. Since the sim-
ulation is very time-consuming in this case, only 39 simulations were used. Recall that
the model is based on the empirical distributions of 24 combinations of the month and the
type of working day for each space point. As seen from the obtained results, it fits the
data well.

In order to check the model from another point of view we also construct the confi-
dence regions for the mean number of points per day in a given month and for the mean
number of points per day for a given day of the week, as defined above, see Table 2.7 and
Table 2.6. The results indicate that the fitted model describes the temporal dynamics of
the data rather well.
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Month q0.025 q0.975 Data Conclusion
January -0.16 0.79 0.31 Not reject

February 0.17 1.33 0.69 Not reject
March -0.71 0.17 -0.26 Not reject
April -0.64 0.49 0.04 Not reject
May 0.28 1.66 1.06 Not reject
June -0.39 0.76 0.35 Not reject
July -0.62 0.32 -0.26 Not reject

August -1.53 0.06 -0.85 Not reject
September -1.11 -0.04 -0.53 Not reject

October -0.47 1.13 0.29 Not reject
November -0.56 0.31 -0.10 Not reject
December -1.37 -0.45 -0.91 Not reject

Table 2.6: Testing the hypothesis that the number of points in the knots of the lattice
has distribution estimated empirically for 24 combinations of the month and the type of
working day (12 months and 2 types of working days). The mean number of points per
day in a given month, expressed as a difference from the overall mean number of points
per day, is considered here. The second and the third column gives the quantiles for the
corresponding statistic calculated from 39 simulations, the fourth column shows the value
calculated from the data.

Day q0.025 q0.975 Data Conclusion
Monday 1.58 2.12 2.28 Reject
Tuesday -1.56 -1.00 -1.53 Not reject

Wednesday 1.39 2.19 1.41 Not reject
Thursday -1.53 -0.95 -0.93 Reject

Friday -1.45 -0.95 -1.24 Not reject

Table 2.7: Testing the hypothesis that the number of points in the knots of the lattice
has distribution estimated empirically for 24 combinations of the month and the type
of working day (12 months and 2 types of working days). The mean number of points
per day for a given day of week, expressed as a difference from the respective monthly
averages, is considered here. The second and the third column gives the quantiles for the
corresponding statistic calculated from 39 simulations, the fourth column shows the value
calculated from the data.
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2.3.4 Modeling the number of repetitions by other distributions
In the analysis described above, we take into account both the spatial and temporal coor-
dinate of the process and try to fit the distribution of the number of submissions sent from
each municipality. Since it was not successful, in this section we concentrate on temporal
projection only.

First, the Poisson distribution is tested. As demonstrated in the Table 2.8, for most
of the municipalities, the null hypothesis about the Poisson distribution of the number of
submissions is rejected. The behaviour of the number of submissions can be compared to
the behaviour of the number of insurance claims. So, we use the experience of the insur-
ance companies, where the gamma distribution is used to model the number of insurance
claims, mainly because it is a fairly flexible positive-skewed distribution with convenient
mathematical properties. Therefore, we try to approximate the distribution of the number
of submissions per month by gamma distribution Γ(α,β ). Since the gamma distribution
with the specific parameters can be close to the normal distribution, the further hypothesis
about the Gaussian distribution is tested.

The parameters for Poisson and Gaussian distributions are estimated as the average
number of submissions per month and their standard deviation. The situation with the
gamma distribution is different. Let us discuss the estimation of the gamma distribution
parameters. The density of gamma distribution Γ(α,β ) is

f (x) =
xα−1e−x/β

β αΓ(α)
, x > 0,

where α > 0 and β > 0 are the shape and the scale parameters, respectively. The esti-
mation of the parameters requires usage of numerical methods. More information about
parameters estimation can be found for instance in [Bowman and Shenton, 1988].

A straight forward way is to use the moments method, but its efficiency is low. An-
other method is the maximum likelihood estimate (MLE). The equations for MLE esti-
mates of α and β are

n−1
n

∑
i=1

logXi = log β̂MLE +ψ(α̂MLE), X̄ = α̂MLE β̂MLE ,

or equivalently
Rn = log α̂MLE −ψ(α̂MLE), β̂MLE = X̄/α̂MLE ,

where X̄ is the average of the data, Rn = log(X̄/X̃), X̃ is the geometric mean of the
sample data, and ψ(α) = d

dα
logΓ(α). However, it is known that MLE of the shape

parameter is significantly biased, especially for small samples (see for instance [Choi and
Wette, 1969], [Johnson et al., 1994], [Anderson and Ray, 1975]). Therefore, we use a
modification of MLE.

There are exist various modifications of MLE (see for instance [Stacy, 1973], [Prad-
han and Kundu, 2011], [Yanagimoto, 1988]). We use the approach described in [Zhang,
2013], which reduces the bias and improves the efficiency of the estimate. The parameters
α and β are estimated as

α̂
∗
MLE =

n
n+4.6

α̂MLE +
0.54

n+4.6
, β̂

∗
MLE = β̂MLE ,
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Poisson distribution In; p-value Out; p-value
municipality1 0.0000 0.0000
municipality2 0.0000 0.0000
municipality3 0.1013 0.1151
municipality4 0.0000 0.0000
municipality5 0.0000 0.0000
municipality6 0.0000 0.0000
municipality7 0.4394 0.0223
municipality8 0.0000 0.0000
municipality9 0.0000 0.0147

municipality10 0.0000 0.0000
municipality11 0.0000 0.0000
municipality12 0.2867 0.0000
municipality13 0.0000 0.0000
municipality14 0.0001 0.0000
municipality15 0.0000 0.0000
municipality16 0.0000 0.0000
municipality17 0.0001 0.0000
municipality18 0.0000 0.0000

Table 2.8: Number of submissions per month obtained by (”In”) and sent from (”Out”)
analysed municipalities fitted by Poisson distribution and tested by Pearson χ2 test.

while the values 4.6 and 0.54 are obtained as the regression coefficients from the equation

E(α̂MLE)−α ≈ aα

n
+

b
n

for minimising the bias of the estimate α̂ .

Numerical results

We study the distribution of the number of submissions per one month without taking into
account the space coordinates. Even when there are trends in evolutions of different types
(see Fig. 2.1), we may suppose that their sum has approximately constant trend, so the
distribution is independent of time.

For each dataset, we estimate the corresponding parameters and using the Pearson
Chi-square test, we test the null-hypothesis about the Poisson, gamma and normal distri-
butions. The results are shown in Table 2.8 for Poisson distribution, in Table 2.9 for the
gamma distribution and in Table 2.10 for the normal distribution. Taking into account the
number of tested hypotheses, the threshold for the p-value using the Bonferroni correc-
tion (see for instance [Armstrong, 2014], [Bonferroni, 1936]) is 0.0005. Thus, as can be
seen from the results, the number of submissions per month can be fitted by normal or
gamma distribution for most of the municipalities.
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Gamma distribution In; p-value In; α̂ In; β̂ Out; p-value Out; α̂ Out; β̂

municipality1 0.0000 12.67 14.70 0.0000 655.56 0.50
municipality2 0.0904 11.08 27.45 0.0134 2.84 167.23
municipality3 0.0934 4.76 2.98 0.3726 2.12 2.81
municipality4 0.0010 15.44 17.79 0.5249 8.32 33.01
municipality5 0.4398 11.02 5.15 0.1120 3.88 7.32
municipality6 0.0000 10.25 409.86 0.0000 2.21 1,700.24
municipality7 0.0133 14.78 1.70 0.1769 4.35 3.32
municipality8 0.0000 1.23 20.60 0.9161 1.04 13.74
municipality9 0.0012 1.70 25.19 0.4981 1.77 7.37

municipality10 0.1661 8.19 3.69 0.4062 2.45 8.07
municipality11 0.0000 2,106.39 0.50 0.0000 1,320.52 0.50
municipality12 0.0000 66.20 1.37 0.4159 0.47 42.17
municipality13 0.0206 4.27 5.43 0.0000 16.85 0.50
municipality14 0.0000 4.75 53.11 0.0000 17.61 19.86
municipality15 0.0296 14.65 106.18 0.0072 22.83 83.00
municipality16 0.0293 20.41 7.80 0.0454 4.14 75.27
municipality17 0.0855 12.14 6.65 0.3438 11.75 7.49
municipality18 0.1985 27.81 11.85 0.0107 1.36 87.26

Table 2.9: Numbers of submissions per month obtained by (”In”) and sent from (”Out”)
the analysed municipalities fitted by gamma distribution and tested by Pearson χ2 test.

Gaussian distribution In; p-value Out; p-value
municipality1 0.0000 0.2955
municipality2 0.0255 0.0000
municipality3 0.0001 0.0000
municipality4 0.6763 0.0030
municipality5 0.0024 0.0000
municipality6 0.0321 0.2073
municipality7 0.0000 0.0000
municipality8 0.8947 0.7384
municipality9 0.9703 0.1588

municipality10 0.4520 0.0000
municipality11 0.0038 0.0000
municipality12 0.7475 0.2296
municipality13 0.0000 0.0135
municipality14 0.9530 0.0010
municipality15 0.2056 0.2124
municipality16 0.3857 0.9944
municipality17 0.1487 0.1512
municipality18 0.3364 0.2964

Table 2.10: Numbers of submissions per month obtained by (”In”) and sent from (”Out”)
the analysed municipalities fitted by Gaussian distribution and tested by Pearson χ2 test.

39



2.4 Submissions subgroups analysis Submissions analysis

2.4 Submissions subgroups analysis
In this part, we worked with the temporal projection of the data as multivariate time series.
Each point in the dataset has its submission type, which describes the medium of commu-
nication used for submission. There are five subgroups/types of submissions: electronic
guaranteed and non-guaranteed, postal, personal and other. We denoted subgroups of sub-
missions per each medium by type1-type5 or t1− t5 respectively. Thus, our process Xtm
now can be denoted as {t1(i), t2(i), t3(i), t4(i), t5(i), i = 1, . . . ,n}.

The main idea is the following. Since in the last years, there were changes in laws,
especially the obligation to keep data boxes from the beginning of 2010, first, we detect
whether there are significant changes in behaviour of the time series
{t1(i), t2(i), t3(i), t4(i), t5(i), i = 1, . . . ,n}. Then we focus on the series after the last change
and using linear regression methods, we find a model of their mutual dependences. Fi-
nally, we fit the model for the number of submissions per month.

2.4.1 Change points
There is a wide class of change point detection methods and approaches (see for in-
stance [Antoch et al., 2000], [Hawkins and Deng, 2010], [Mahmoud et al., 2007]). In
our study, we test whether the parameters of linear regression describing the particular
submissions types are changed during the observed period. We use a flexible change
point detection technique. The method assumes that the number of submissions in time
has partly linear trends. Thus, we test the null-hypothesis that there are no changes in
the linear regression parameters against the hypothesis that there exists one change. The
advantages of such an approach is simplicity of the method and easy calculations while
the assumption of the linear trend is not too binding, because we care of the change points
only and not of the trend itself. In general, the null hypothesis is formulated as

H0 : Yi = a+bxi + ei, i = 1, . . . ,n,

while the alternative hypothesis is

HA : ∃m ∈ {2, . . . ,n−2} : Yi = a+bxi + ei, i = 1, . . . ,m,

Yi = a0 +b0xi + ei, i = m+1, . . . ,n,

where a 6= a0 or b 6= b0 are the coefficients of linear regression, Y = {Y1, . . . ,Yn} is the de-
pendent variable, x= {x1, . . . ,xn} is the explanatory variable and the noise e= {e1, . . . ,en}
is formed by i.i.d. random variables with the mean Eei = 0 and the variance var ei = σ2 >
0. In our case, the dependent variable Y = t j, j = 1, . . . ,5, is used for the numbers of
particular submission types and the explanatory variable x is time [in months], i.e. xi = i,
i = 1, . . . ,n.

Denote

Xk =

1 x1
. . . . .
1 xk

 , Xo
k =

1 xk+1
. . . . . . .
1 xn


and

χ
2
k =

1
σ2 (âk− â0

k , b̂k− b̂0
k)
(
(XT

k Xk)
−1 +(X0

k
T

X0
k )
−1)−1

(âk− â0
k , b̂k− b̂0

k)
T ,
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where âk, â0
k , b̂k and b̂0

k are estimates obtained by least squares under the alternative with
m = k, and AT denotes transposition of matrix A. Then under the null-hypothesis, for the
maximum-type test statistics, it holds (see [Antoch et al., 2000]) that

P
(

max
2≤k≤n−2

{χ2
k }>

(
x+bn

an

)2)
≈ 1− exp{−e−x}, x ∈ R1,

where
an =

√
2loglogn and bn = 2loglogn+

1
2

logloglogn.

In the case that we reject the null-hypothesis, we are interested in estimation of the
change point m and the parameters of linear regression. The estimate of the change point
m is defined as

m̂regr = argmin{
k

∑
i=1

(Yi− âk− b̂kxi)
2 +

n

∑
i=k+1

(Yi− â0
k− b̂0

kxi)
2; k = 1, . . . ,n},

where âk, b̂k and â0
k , b̂0

k are least squares estimates of a, b and a0, b0 based on Y1, . . . ,Yn.
Note that this approach is suitable for detecting and estimating parameters of a model

with not more than one change point. However in our case, we would like to obtain more
change points, because we focus on whether there is a change at the beginning of 2010,
independently on whether the change is the most important. There are methods that allow
to detect more change points in the time series (see e.g [Antoch et al., 2000] or [Eichinger
and Kirch, 2018]), but they are based on very time-consuming calculations. Therefore, we
use the following simplification: for all time series, we detect three change points using
the basic algorithm three times – for whole observed period, and for the parts before
and after the first detected change point. We are aware that we eliminate the situations
when both the second and the third change points lie before or after the first change point,
respectively, but this simplification is satisfactory for our purposes.

Numerical results

Change point detection is applied to all types of submissions. The results for Municipal-
ity 1 for the most important types, i.e. for type 1 and type 3, in the whole time period
from January 2002 to December 2011 are shown in Fig. 2.9.

Further in this section, we deal only with the time period from January 2007 to De-
cember 2011, since we have not enough data for types 1, 2, 4 and 5 till December 2006
(see Fig. 2.1). For each type, we observe the proportions of municipalities (in %) in which
the change point occurred in a given quarter, while we consider all municipalities together.
As seen from Table 2.11 and Fig. 2.10, the most frequent change point appears in the third
quarter of 2009 for types 1 and 3. It can be explained by establishing data boxes, because
in this period, electronic submissions signed by an advanced electronic signature (type 1)
started to repress the classical post (type 3) and personal submissions (type 4).
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Figure 2.9: Linear approximation (orange line) of the number of submission of the types
1 and 3 (blue line) after application of change points detection.

Changes ratio Type 1 Type 2 Type 3 Type 4 Type 5
1 quarter 2007 0 % 0 % 5 % 13 % 10 %
2 quarter 2007 14 % 7 % 14 % 12 % 0 %
3 quarter 2007 17 % 13 % 0 % 6 % 0 %
4 quarter 2007 0 % 0 % 13 % 7 % 17 %
1 quarter 2008 0 % 0 % 0 % 13 % 0 %
2 quarter 2008 14 % 0 % 17 % 6 % 8 %
3 quarter 2008 20 % 12 % 8 % 0 % 0 %
4 quarter 2008 0 % 7 % 0 % 0 % 0 %
1 quarter 2009 11 % 6 % 8 % 10 % 0 %
2 quarter 2009 0 % 0 % 12 % 0 % 0 %
3 quarter 2009 100 % 6 % 37 % 5 % 8 %
4 quarter 2009 11 % 5 % 13 % 17 % 7 %
1 quarter 2010 21 % 9 % 3 % 4 % 8 %
2 quarter 2010 7 % 0 % 6 % 3 % 0 %
3 quarter 2010 16 % 0 % 9 % 13 % 0 %
4 quarter 2010 12 % 0 % 15 % 14 % 12 %
1 quarter 2011 12 % 4 % 12 % 3 % 0 %
2 quarter 2011 3 % 0 % 6 % 6 % 7 %
3 quarter 2011 5 % 7 % 0 % 0 % 13 %
4 quarter 2011 0 % 0 % 0 % 0 % 0 %

Table 2.11: The proportions of municipalities (in %) in which a change point occurred in
the given quarter (for all municipalities together) in the time period from January 2007 to
December 2011.

42



2.4 Submissions subgroups analysis Submissions analysis

2007 2008 2009 2010 2011 2012
0.0

0.2

0.4

0.6

0.8

1.0
Change points ratio

type1

type2

type3

type4

type5

Figure 2.10: Ratios of change points in the data from January 2007 to December 2011.

2.4.2 Linear analysis of type dependencies
The second task is to find dependencies among the particular types. For this purpose, we
first calculate the correlations and consequently, we try to make linear analysis in which
different types are employed. All calculations are done for two time periods: for the whole
time period and after the beginning of 2010, when all municipalities had to establish data
boxes.

The correlation coefficient for each pair of types is calculated by the Spearman rank
correlation (see [Zar, 2005]) instead of classical Pearson correlation because the data do
not have normal distribution and may include outliers. The Spearman rank correlation is
defined as the Pearson correlation coefficient between the ranked variables:

rs =
cov(rgX ,rgY )

σrgX σrgY

,

where X and Y are random variables, rgX and rgY are corresponding ranked variables,
cov(rgX ,rgY ) and σrgX ,σrgY are covariance and standard deviations, respectively, of the
ranked variables.

Finally, we provide a model of dependencies among the types. As mentioned above,
we use the linear regression. Since the most important changes came with the obligation
of data boxes, which belong to the type 1, we focus on modelling dependence of the type 1
on the other types while we observe its dependence on the most correlated types.

Numerical results

The result from Subsection 4.1 led us to the idea that the type 1 and type 3 are dependent.
However, it may lead to other dependencies among the types, too. Therefore, we first cal-
culate the correlation coefficients. The coefficients for the whole time period from January
2002 to December 2011 are introduced in Table 2.12. It is seen that most of them are sta-
tistically significant according to the Spearman rank correlation test at 1% level. Indeed,
the coefficient of correlation between the types 1 and 3 is negative which confirm our idea
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Figure 2.11: The number of all submission types per month from January 2010.

Type 1 Type 2 Type 3 Type 4 Type 5
Type 1 1
Type 2 0.627506 1
Type 3 -0.556731 -0.516369 1
Type 4 0.951819 0.592018 -0.588156 1
Type 5 -0.261033 -0.196822 0.00386004 -0.144088 1

Table 2.12: Spearman’s rank correlations of submission types in the time period January
2002 - December 2011. Significant correlations are marked by blue color.

that establishment of data boxes caused increase of the number of electronic submissions
signed by an advanced electronic signature and decrease of the number of physical sub-
missions. The coefficients for the time period from January 2010 to December 2011, i.e.
for the period after establishing data boxes, are different, see Table 2.13. In this period, the
significant correlation coefficients are only that ones between the types 1 and 3, 1 and 4,
and 3 and 4. Moreover, comparing to the whole time period, the most of the correlation
coefficients are positive which implies similar behaviour of the mentioned types.

For better imagination of the behaviour, we draw the scatter plots of significantly
correlated pairs of types of submissions, see Fig. 2.12. Since the type of dependence is
not very clear, we try to fit the model of linear dependence. We focus on modelling the
dependence of type 1 on type 3, further on the dependence of type 1 on types 3 and 4 and
finally, we compare it to the model of dependence of type 1 on all the types 2-5, i.e. we fit
the models t1 = at3 +b, t1 = at3 +bt4 + c and t1 = at2 +bt3 + ct4 +dt5 + e, respectively.
The fitted models are

t1 = 0.55t3 +23.24, (2.7)
t1 = 0.23t3 +0.45t4 +14.13, (2.8)
t1 = 1.30t2 +0.31t3 +0.25t4−3.58t5 +9.98. (2.9)

However, according to 95%-level confidence intervals, only the first model has the coef-
ficients significantly different from zero, while the corresponding adjusted coefficient of
determination is R2 = 0.68. Comparing of the first model to the data is graphically shown
in Fig. 2.13.
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Type 1 Type 2 Type 3 Type 4 Type 5
Type 1 1
Type 2 0.0113386 1
Type 3 0.824392 -0.206803 1
Type 4 0.840155 -0.0509917 0.873085 1
Type 5 0.187405 -0.234895 0.333468 0.271567 1

Table 2.13: Spearman’s rank correlations of submission types in the time period January
2010 - December 2011. Significant correlations are marked by blue color.
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Figure 2.12: Scatter plots of all combinations of the correlated types 1, 3 and 4 in the time
period January 2010 - December 2011.
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Figure 2.13: Comparing the data (blue line) and the fitted models (red line) of dependence
of the type 1 on the type 3 in the time period January 2010 to December 2011.
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2.4.3 Vector autoregressive models
Let us recall that the process is denoted as {Yi = (t1(i), t2(i), t3(i), t4(i), t5(i)), i = 1, . . .n}.
The main goal is to build a suitable model for the submissions of the type 1, i.e. electroni-
cally guaranteed ones, using data on previous values of this and another submission types.
We focus on the electronically guaranteed submissions because it is a new type, appeared
after the law changes in 2010, and it is important to understand its dynamics itself and in
connection with the other types.

In this section the vector autoregressive approach (see Definition 1.5.4) is applied to
model the type 1 submissions. We are working with the first equation from the system of
five equations of VAR(p) model, and denote aforementioned type 1 model as VAR1(p).

In our case, p is the number of months before the time point i from the model, and co-
efficients can be interpreted as impact indicators of lagged types 1-5 on the function t1(i).
These coefficients are estimated using two methods. The first one is the ordinary least
squares approach (OLS, see Definition 1.6.1), the second one is using the Dantzig Selec-
tor method for estimation of the sparse matrix of the coefficients (see Definition 1.6.3).
The adjusted Akaike Information Criteria was used as the selection criteria for Dantzig
Selector. Note, that the VAR-system can be rewritten as the linear regression system of
equations as

y = vec(Y ) = (L′⊗ IK)β +vec(E), (2.10)

where⊗ is a Kronecker product, Y :=(Y1, . . . ,YT ), Lt :=(Yt , . . . ,Yt−p+1), L :=(L0, . . . ,LT−1),
E := (E1, . . . ,ET ) is noise, and β is the vector of coefficients, that is to be estimated.

While using the VAR(p) models, the number of models parameters needed to be esti-
mated is K2 p coefficients for complete VAR(p) model with K variables. Based on the data
nature, it can be reasonable to try the VAR(1), VAR(3) and VAR(12) models (according to
month, a quarter of a year, and year period in submission system). However, to estimate
such number of parameters, the data should be much longer. Thus, we are working only
with VAR(1) model.

As the model quality characteristics, the adjusted coefficient of determination is used:

R2 = 1− SSres/(n− k)
SStot/(n−1)

,

where SSres and SStot are residual and total sum of squares, respectively, n is the number
of observations, and k is the number of explanatory variables in the model (not including
the constant term). It is important to note, that the models build on the whole data, but the
R2 coefficient is calculated only for the period after establishing the data boxes.

Numerical results

Our dataset includes 113 time points and K = 5 variables. As mentioned above, the
data are too short for estimation the VAR model with the order higher than 1. Thus, we
calculate the VAR(1) model for 5 variables using OLS and Dantzig Selector+AICc (DSA)
approach. The principal difference between the approaches is getting a dense matrix for
the OLS and a sparse one for the DS. The obtained matrices of the coefficients are shown
in Figure 2.14 as an image for better visualisation. The obtained models for all variables
are:

tOLS
1 (i) = 0.47t1(i−1)+1.99t2(i−1)−0.001t3(i−1)+0.26t4(i−1)−0.32t5(i−1),
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Figure 2.14: Type 1. VAR(1) model that includes all submission types. In the top panel,
the matrix of coefficients are presented, in the lower ones, the corresponding comparison
of the model and real data for type 1 are shown.

tDSA
1 (i) = 0.59t1(i−1)−0.01t3(i−1)+0.22t4(i−1).

As seen from Figure 2.14, the main diversity between the models is the inclusion of
types 2 and 5. The sparse model does not include them, while in the full model they
are involved with relatively high coefficients. This can be explained by the low number
of submissions of those types and their low impact on type 1, and other types as well.
Thus, it makes sense to build a VAR model including only the 1st, 3rd, and 4th types and
compare the results with a model including all the variables. For three variables (types
1,3,4) the matrices of coefficients are presented in Figure 2.15 and the obtained models
are:

tOLS
1 (i) = 0.6t1(i−1)−0.005t3(i−1)+0.22t4(i−1),

tDSA
1 (i) = 0.45t1(i−1)−0.008t3(i−1)+0.30t4(i−1).

Note that the coefficient of determination for DSA is higher than for OLS for the
model including all of the variables. It is because the model is constructed on all of
the data, but the corresponding metrics is calculated only for the period, where type 1 is
non-zero. As seen from the comparison of the coefficient of determination, it is useful
to include in the model only three variables, instead of five. It does not make the model
worse and the number of estimated parameters are much less. Also, we would like to
stress, that an advantage of the VAR model is the possibility to model all of the types at
the same time. An example of type 3 model is presented in Figure 2.16.
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Figure 2.15: Type 1. VAR(1) model that includes 1, 3 and 4 submission types. In the
top panel, the matrix of coefficients are presented, in the lower ones, the corresponding
comparison of the model and real data for type 1 are shown.

Finally, we use the coefficient of determination to compare the linear regression model
described in Section 2.4.2 with the VAR(1) model. The comparison of the linear and
vector autoregressive models for the other municipalities is shown in Table 2.14. There
are shown results for modelling type 1 using type 3 and type 4 (and type 1 for VAR). Only
the datasets, that have at least 5 submissions of type 1 per month are included. Also, for
VAR models we exclude too short datasets (less than 3 points for one parameter). Based
on the results, presented in the table, we can speculate that VAR tends to give better
models, even though we have too few datasets to make final conclusions.
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Figure 2.16: Type 3. VAR(1) model that includes all submission types, comparison of the
model and real data for type 3 is shown.

LR VAR(1) OLS VAR(1) DSA
Municipality In Out In Out In Out
municipality1 0.7830 0.12 0.91 0.77 0.91 0.77
municipality2 0.4939 0.20 0.62 0.70 0.62 0.70
municipality4 0.3038 0.21 -0.07 0.21 -1.88
municipality5 0.4235 0.15 0.15
municipality6 0.2466 -0.01
municipality8 -0.1095
municipality9 -0.0040 0.08

municipality10 0.3016 0.35 0.31
municipality11 0.0105 0.65 0.58 0.83 0.58 0.83
municipality12 -0.2061 -0.24
municipality14 -0.0675 0.16
municipality15 0.3194 0.21 -0.26 -0.73 -0.26 -2.36
municipality16 0.1810 0.03
municipality17 0.2337 -0.04
municipality18 0.0484 0.01 -0.05 -0.13 -0.10 -0.20

Table 2.14: Comparison of the adjusted coefficient of the determination for VAR(1) mod-
els (OLS and DSA) and linear regression (LR). Only type 3 and 4 are included for mod-
elling (and type 1 for VAR). In this table, the missing values mean that the corresponding
time series were too short to fit the model.
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Chapter 3

Brain activity analysis

3.1 Context of the problem
Several techniques can be used for the measurement of human brain activity in the neu-
roimaging field. The most known are electroencephalography (EEG), functional magnetic
resonance imaging (fMRI), magnetoencephalography (MEG), brain positron emission to-
mography (PET). All of these methods can be applied in specific conditions and have
its benefits and restrictions. For example, the most popular and affordable is EEG that
records directly the electrical activity of the brain and can detect changes over millisec-
onds. However, it has such disadvantages as, for instance, low spatial resolution, poor
signal-to-noise ratio or poorly measured activity that occurs below the upper layers of the
cortex. In contrast to EEG, the fMRI technique is a useful instrument for noninvasive
imaging of brain activity that has a high spatial resolution (typically in mm), but a low
temporal resolution (typically in seconds). The pictures of EEG recording setup and MRI
scanner are shown in Figure 3.1.

In this chapter, we concentrate on data obtained with the fMRI. The most common
approach to fMRI measurement is the use of the Blood Oxygenation Level Dependent
(BOLD) contrast [Ogawa et al., 1990], which was shown to reflect the changes in the local
brain activity due to human mental operations [Ogawa et al., 1992]. From an engineering
point of view, BOLD fMRI provides an indirect measurement of neural activity. BOLD
response can be modeled as a linear convolution of the hemodynamic response function

Figure 3.1: An EEG recording setup (the left panel) and MRI scanner (the right panel).
National Institute of Mental Health, Klecany, Czech Republic.
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(HRF) with an input signal corresponding to the underlying neuronal activity.
In many experimental situations, timing of the brain activation is assumed to be known

a priori. In particular, when a reliable experimental stimulation of brain activity is ap-
plied. However, the a priori assumption of knowing the temporal profile of brain acti-
vation is a very strong one and in many cases unrealistic. This has motivated the devel-
opment of methods that allow the estimation of activation time series without such prior
information.

As long as the BOLD-signal can be viewed as a convolution of a neuronal signal and
a hemodynamic response function, increases in neuronal activity can be expected to be
represented in the BOLD-signal as delayed and smoothed activations. Therefore, to obtain
an estimate of the underlying brain activity, one may attempt to revert the operation of the
convolution kernel; in other words, to deconvolve the BOLD-signal in order to estimate
the neuronal activity. Of course, this requires at least an approximate knowledge of the
hemodynamic response function.

In [Gaudes et al., 2011] the authors present a method for mapping the brain’s re-
sponse to a single stimulus in space and time without prior knowledge of the paradigm
timing, which they refer to as ’paradigm-free mapping’ (PFM). This method is based
on a deconvolution of the measured time series, which assumes a given linear hemody-
namic response, and uses the ridge regression algorithm (see [Hoerl and Kennard, 1970]).
In [Gaudes et al., 2013], an alternative sparse regression technique is proposed for the
use in paradigm-free mapping. In particular, a promising new approach is based on the
Dantzig selector estimator, solved via a homotopy procedure, together with the statistical
model selection criteria. The methods presented in [Gaudes et al., 2011] and [Gaudes
et al., 2013] are implemented in the software 3dPFM for AFNI, that is designed to iden-
tify brief BOLD events in resting state fMRI data. It is based on the linear convolution
model and deconvolves a HRF for each fMRI voxel and estimates the neuronal-related
signal.

Furthermore, in [Wu et al., 2013], the authors propose a blind hemodynamic de-
convolution to recover the neuronal signal from the resting state of fMRI based on an
extracted region-specific HRF. An improvement of the mentioned procedural data is re-
ported in [Wu and Marinazzo, 2015]. In [Aggarwal et al., 2015], the authors propose a
voxel-based method for joint estimation of the underlying activity signal and of the HRF.
In [Sreenivasan et al., 2015] the authors present a nonparametric deconvolution method
based on homomorphic filtering to estimate the neuronal signal from the fMRI signal.

So far, only the activity of one brain region was discussed. But measuring the whole
brain opens wide opportunities to more general brain investigation. The common way
to characterise brain activity is to estimate the connectivity of the neuronal system and
analyse its graph properties. Brain connectivity in fMRI is a widely discussed topic. For
the connectivity estimation, the functional connectivity (correlation of measured BOLD
signals) is the most known approach. For recovering also the direction of the interac-
tions, effective connectivity methods such as the Granger causality are recommended to
be applied instead.

However, the connectivity structure estimated from the BOLD signal is not equivalent
to the one of the original neuronal signal. Thus, to obtain the correct causality network,
the analysis should be performed on the estimated source signal. The detailed discussion
of this topic can be found in [Valdes-Sosa et al., 2011], [Friston, 2011], [Friston, 2009].
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3.2 Data
In this chapter, we study the BOLD-signals measured using the fMRI. We assume that the
data has the form of a collection of BOLD-signals, each of them is an average signal of
one ROI. We estimate the neuronal activity for each ROI separately, and then use obtained
data to estimate the effective brain connectivity.

3.2.1 Data model
We measure the BOLD signal denoted by y, which is represented as a vector of the
length N. The BOLD signal is modeled as a result of a hemodynamic response to the
local brain activity. We assume that the neuronal activity can be described by a sparse
vector of activations. We do not assume any additional information about stimuli timing.
In mathematical notation we assume that the measured signal is a result of the convolution
of neuronal activity and the HRF:

y = h? s+ e, y(n) =
L−1

∑
i=0

h(i)s(n− i)+ e(n), n ∈ {1, ..,N}. (3.1)

Here ? denotes the convolution, y,s,e are N× 1 vectors denoting the original signal, the
brain activity and the noise, respectively. The vector h denotes the HRF, its length is L <
N. In the described model, we assume that e is a white noise, which is independent and
identically distributed in each time point. In the matrix form, the model can be rewritten
as

y = Hs+ e, (3.2)

where H is the Toeplitz convolution matrix N×N corresponding to the HRF h (see [Gray,
2006]).

In practice, the BOLD signal values output by the MRI scanner have a generally arbi-
trary scale and offset. Due to potential spontaneous neuronal activity fluctuations, estab-
lishing a proper baseline corresponding to ’no substantial activity’ is a methodologically
and even conceptually problematic task. Indeed, some level of ongoing ’baseline’ activity
can be expected, while we are aiming to detect the deviations from this baseline. As es-
timating the baseline value from the data itself also poses additional challenges, we have
taken the heuristic approach of shifting the signal so that its relative range (minimum and
maximum) around the zero value corresponds to that of the convolution kernel; alterna-
tively just re-scaling the signal to have minimum 0 and maximum 1 gives comparable
results. This is practically equivalent to assuming that the underlying (sparse) neuronal
signal contains only positive activations (albeit of unknown amplitude). Note that such
assumption is common in the field and often explicitly used in the model and optimization
procedure definitions, see e.g. [Hernandez-Garcia and Ulfarsson, 2011, Bush and Cisler,
2013]. Of course, delineating the limits of both its conceptual and practical validity would
require much deeper discussion of the nature of brain activity.
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3.3 MCI

3.3.1 Basic idea: Bayes classifier
The main idea of our proposed approach is to utilize the information available in the
observed data and the derived signals (namely the ordinal least square estimate of the
brain activity and the family of regularized estimates) within a Bayesian inference tool
that would separate the true activations from false positives due to observational noise.

The starting point is a basic estimate of the brain activity ξ = (ξ1, . . . ,ξN), ξ j ∈ R
(think of e.g. the OLS solution ŝOLS), that is typically not a sparse vector. We assume, that
its (non-zero) elements correspond to activations caused by one of two possible reasons:
neuronal response (true activation) or noise (false activation). Then we try to apply a
naive Bayes classifier for two classes on the vector ξ .

Now, let us discuss the Bayes classifier in more detail. Let g : R→ {1, . . . ,M} be
the function (classifier), which returns the number of mixture component (class) g(ξ ) ∈
{1, . . . ,M} for each possible value of the observed characteristics ξ ∈ R. In our case,
there are two classes, i.e. M = 2, g(ξ j) ∈ {1,2}, where g(ξ j) = 1 corresponds to the
conclusion ’ j-th element falls to a true activation component’, and g(ξ j) = 2 corresponds
to the conclusion ’ j-th element falls to a false detection component’. The Bayes classifier
is of the form

gB(ξ j) = arg max
m=1,2

pm
j f m(ξ j),

where j ∈ {1, . . . ,N} indexes the classified elements of the vector, ξ j ∈ R are the basic
(OLS) estimate values, pm

j are the probabilities for j-th activation to fall to the m-th class,
and f m denotes the probability densities of the characteristic ξ , provided it falls within
the class m. Thus, the classifier gB(.) for each j-th activation compares the posterior prob-
abilities of the element belonging to a neuronal activation or noise. Details and properties
of such a classifier can be found, for instance, in [Rish, 2001] and [Hand and Yu, 2001].

However, true values of the probabilities pm and the densities f m(x) are usually un-
known a priori. Instead, we may need to obtain some estimates p̂m and f̂ m(x) from data.
We suggest two approaches to obtain such estimates. First, by using the Gaussian mix-
ture model, described in [McLachlan and Peel, 2000]. It is based on the assumption of
the normal distribution of all mixture components. This approach is well-known, and its
main advantage is a developed theory and existence of software tools for the automatic
estimation of all the parameters of the model. For our purposes, it is important to estimate
both of the needed elements, probability vectors p̂m and component densities f̂ m(x).

The second approach is based on utilizing a model with varying concentrations (MVC)
for estimating the component densities, and a heuristic procedure based on LASSO/Dantzig
Selector algorithms for approximating the probabilities. Using this concept enables us,
not only to disregard the assumption about the normality of the component distributions,
but it also allows for utilizing element-specific prior probabilities – that are in the present
scenario informed by the regularized regressions solutions. The detailed description of
this concept is provided below and its block-scheme is shown in the left panel of Fig-
ure 3.2.
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Figure 3.2: Left panel: Block-scheme of proposed MCI approach. Right panel: scheme
of simulations.

3.3.2 MVC-based density estimates
In the classical finite mixture model, the mixing probabilities, and therefore the probabil-
ity densities of all features ξ j, are supposed to be the same for all the observed objects j
( [McLachlan and Peel, 2000]):

f j(ξ j) = f (ξ j) =
M

∑
m=1

pm f m(ξ j).

As a generalization of this approach, the model with varying concentrations (MVC)
was proposed ( [Maiboroda and Sugakova, 2012]). According to this model, mixing
probabilities pm

j , m ∈ {1, . . . ,M}, j ∈ {1, . . . ,N}, vary for different objects j, while still
satisfying the condition: ∀ j : 0≤ pm

j ≤ 1, ∑
M
m=1 pm

j = 1. Then the distribution for the j-th
object can be modelled as

f j(ξ j) =
M

∑
m=1

pm
j f m(ξ j).

In MVC, the mixing probabilities pm
j are supposed to be known, whereas the den-

sities of components f m are assumed to be unknown and estimated from the data. For
estimation of the parameters, we use the kernel estimate

f̂ m(x) =
1

bmN

N

∑
j=1

am
j K
(x−ξ j

bm

)
,

where K(.) is a kernel function and b is the kernel width and am
j are the weights, aimed

to distinguish the m-th component and suppress the influence of other components on it
(see [Maiboroda and Sugakova, 2012] for details). The parameters are obtained using
estimates developed in [Maiboroda, 2008] and [Doronin and Maiboroda, 2015]. Classi-
fication of components of mixture are discussed in [Sugakova, 2006] and in [Autin and
Pouet, 2012].

In particular, when one denotes the inner product of two vectors a = (a1, ...,aN), and
b = (b1, ...,bN) by 〈a,b〉= 1

N ∑
N
i=1 aibi and defines the matrix
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ΓN = (〈pl, pm〉N)M
l,m=1.

Note that this matrix is further assumed to be invertible, with γkm being the km-minor
of ΓN . Then the weights are given by:

ak
j =

1
detΓN

M

∑
m=1

(−1)m+k
γkm pm

j .

For the specific case of two-components, the weights am
j are given by:

a1
j =

(1−〈p1,1〉)p1
j +(〈p1, p1〉−〈p1,1〉)

〈p1, p1〉− (〈p1,1〉)2 ,

a2
j =
〈p1, p1〉−〈p1,1〉p1

j

〈p1, p1〉− (〈p1,1〉)2 , j = 1, ...,N.

The kernel width bm is estimated using the Silverman’s rule-of-thumb (see, for exam-
ple, [Hardle et al., 2006]):

bm ≈ 1.06σ̂mN−1/5,

where σ̂m and µ̂m are the estimated standard deviation and mean of the m-th component
given by σ̂2

m = 1/(N−1)∑
N
j=1 am

j (ξ j−µm)
2, and µ̂m = 1/N ∑

N
j=1 am

j ξ j, respectively.

3.3.3 Probability estimates
As it was described above, for the classification of signal values s j, we also need to set the
probability pm

j that it belongs to the true or false activations class. In this section, we pro-
pose a heuristic procedure based on the numerical solutions of the optimisation problems
with a regularisation parameter. Particularly, we work with the homotopy algorithms for
LASSO (1.2) and Dantzig Selector (1.3) estimators.

Let us denote s(λ ) such solution of (1.2) (or (1.3)) that corresponds to a parameter’s
value λ . Then, the support of s(λ ) and its sign vector can be defined as

B(λ ) = supps(λ ) = { j|1≤ j ≤ N, s(λ ) j 6= 0},

sgn(λ ) = {sgn(s(λ ) j), j = 1, . . . ,N}.

For both mentioned estimators, the particular solution s(λ ), its support B(λ ) and sign
vector sgn(λ ) are specified by the parameter value λ . For the LASSO problem, it was
shown in [Efron et al., 2004], that for a given response vector y, there is a finite sequence
of λ ’s, called transition points (see [Zou et al., 2007]),

λ0 > λ1 > · · ·> λK = 0, such that:

• for all λ > λ0, solution of the optimization problem (1.2) corresponds to the trivial
solution, i.e. its support is the empty set B(λ ) = /0;

• the value λK = 0 corresponds to the ordinary least squares solution;
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• for λ values from the interval Im := (λm+1,λm), the solutions of (1.2) are constant
with respect to λ in terms of their supports and sign vectors;

Bm := B(λ ), sgnm := sgn(λ ) ∀λ ∈ Im.

In other words, there is a sequence Bm, m = 0, . . . ,K of subsets of indices j, j = 1, . . . ,N
that correspond to nonzero coordinates of s(λ ) for ∀λ ∈ Im. Thus, for each j = 1, . . . ,N
there is a set of intervals Im, where the j lies in the corresponding solution support Bm:

I j := ∪{m: j∈Bm}Im = ∪{m: j∈Bm}(λm+1,λm).

Further, let us denote the union of all intervals Im as I := ∪K
m=0Im = (0,λ0). Then we

propose to estimate the probability ω j that j-th activation comes from the true neuronal
signal as

p̂1
j =
|I j|
|I |

=
∑

K−1
m=0(λm−λm+1)I{ j ∈Bm}

λ0
.

This approach corresponds to the idea, that more frequent appearance of non-zero activa-
tion estimate in the solution sets means higher probability for this moment to correspond
to a true neuronal activation. While the probabilistic interpretation of this ’relative oc-
curence in the solution set’ is clearly heuristic, it is reasonably motivated as the LASSO
operator is assumed to detect true variables among the noise.

Numerically, the set of transition points and corresponding sets of solutions for LASSO
can be obtained by the homotopy algorithm LARS, presented in [Efron et al., 2004]. For
Dantzig Selector, there is an available homotopy algorithm Primal-Dual Pursuit, which
was presented in [Asif and Romberg, 2009]. Note that the Primal-Dual Pursuit produces
a finite sequence of so-called critical values of the parameters, that includes the points of
changes in the support or sign vectors of the solutions; without loss of generality, these
critical values can be considered as the transition points.

Thus, the probability p1
j for j-th activation to come from true activation, can be ap-

proximated based on the numerical solution of the optimisation problem with regulari-
sation parameters. Then, the probability p2

j = 1− p1
j , and the densities f 1(.), f 2(.) can

be estimated. Finally, this information is enough to build the classifier and separate the
components of vector ξ on true and noisy activations.

3.3.4 Simulation study
To assess the standard methods as well as the newly proposed methods, we use numer-
ical simulations. We generate a signal y = s ? h+ e using HRF h, while parametrically
varying the the properties of the signal s and noise e. Then, LASSO and Dantzig Selector
with AIC/AICc/BIC selection criteria are used to estimate the input signal s. These esti-
mates compared with two approaches based on Bayes Classifier: GMM and the proposed
method MCI. To assess the quality of the obtained estimates, several measures are used.
General scheme of simulations is shown in right panel of Figure 3.2.

The HRF kernel is obtained using the function spm hrf(.) in the SPM toolbox (The
Wellcome Dept. of Cognitive Neurology, University College London), setting scan repeat
time (RT) to 2.5s. To define the level of added noise e, we use the Signal-to-Noise Ratio
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Figure 3.3: Example of a simulated and estimated signal. The simulated neuronal signal
is shown in red, the simulated measured BOLD signal is shown in blue, the estimated
neuronal signal is shown with thick black lines.

(SNR), SNR = σs?h
σe

, where σs?h and σe are standard deviation of BOLD signal and noise,
respectively. For our simulations, we use several values of SNR in range [1.5,4.5].

The input signal s was simulated as a vector of the length N, that consists of K non-
zero activations (value 1) and N −K zero values. Positions of non-zero elements are
chosen uniformly in the range [1, . . . ,N].

The value of the selection criteria depends on the length of the signal N and number
of non-zero elements K. Thus, we explore the estimates for several different noise levels
and multiple numbers of true non-zero coefficients.

We denote the number of true negatives as T N, true positives as T P, false negative
and false positive as FN and FP, respectively. To assess the model quality, we use several
measures: Jaccard index, sensitivity, and specificity. The Jaccard index ( [Jaccard, 1901])
is a similarity measure, defined as

JI =
T P

T P+FP+FN
.

JI takes values in the range [0,1], where 1 corresponds to perfect agreement. This sim-
ilarity coefficient was also discussed in [Gower, 2004], [Kosub, 2016], or [Willett et al.,
1998].

Sensitivity, or true positive rate, is the probability of a positive test decision given that
the true value is positive. Specificity is a probability that a test result will be negative
when the condition is not present (true negative rate):

SNS = T PR =
T P

T P+FN
, SPC = 1−FPR =

T N
FP+T N

,

SNS and SPC take values in range [0,1], where 1 corresponds to perfect specificity/sensitivity.

Numerical results

In this section, we present the numerical results of the simulation study. Figure 3.3 shows
an example of a simulated signal and the obtained estimates. The red peaks are marks of
the non-zero components of the simulated signal, the blue line is a noisy convolution of
the corresponding simulated vector, thick black peaks are the obtained estimates (by the
MCI DS method).
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Detected Events: DS AICc
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Detected Events: MCI DS
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Detected Events: BC GMM
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Figure 3.4: Comparison of the deconvolution methods on simulated data on the number of
detected events, Jaccard index (JI), sensitivity (SNS), and specificity (SPC). Time series
length is N = 300, the number of non-zero peaks is shown on the x-axis, the noise level
on the y-axis. Estimation methods are shown in different rows: DS AICc, MCI DS and
BC GMM.

Our simulations show that DS/LASSO with AIC/BIC tends to mark almost all possible
elements as non-zero, in other words, extremely over-estimates the signal. Figures that
demonstrate corresponding results can be found on Figure 3.5. Thus, further results in
this section are presented for DS AICc, MCI DS, and Bayes classifier based on GMM
components (BC GMM).

Figure 3.4 shows the averaged results for 100 simulations for varying noise levels and
activation density. The matrix contains 7 noise levels, increasing from top to bottom on
the y-axis, and a different number of peaks on the x-axis (from the smallest to the highest
values).

Each row of the Figure corresponds to one of three compared methods: DS AICc,
MCI DS and BC GMM. Every column shows one of the characteristics of the estimates:
number of detected non-zero events, Jaccard index, sensitivity and specificity. Clearly,
BC GMM works comparably good only for very sparse signals. Also, this method tends
to over-estimate the signal for higher noise.

The other two methods show generally better results. DS AICc tends to slightly over-
estimate the number of detected events for higher SNR and less sparse signals. Otherwise,
the method performs relatively well and gives stable results for the presented parameters.
The Jaccard index is typically about 0.6, which is much better than the results of BIC or
uncorrected AIC.

Concerning MCI DS, it fails for extremely sparse signal (only one activation from 300
points) for any SNR, which happens due to inability to estimate the distribution of true
activations using only one point. However, for other parameters settings it shows good
results. In particular, the quality of obtained estimates by MCI DS is even better than that
of DS AICc, mainly in terms of the Jaccard index.
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Detected Events: DS AIC
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Detected Events: LASSO AIC
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Figure 3.5: Comparison of DS and LASSO with standard selection criteria and MCI
results.
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3.3.5 N-back experiment
We included the data of 89 measurement sessions in total. For each measurement, we
work with the single time series that corresponds to the BOLD-signal of the motor cor-
tex. The detailed description of data acquisition and preprocessing is presented in Ap-
pendix 3.6.

According to the task, a subject should press the button during the experiment in the
case of adherence to certain conditions. For each subject, we have the button presses
timing, which is supposed to be the true activations of the motor cortex. All subjects
had the same experimental design that give us a possibility to determine the general true
activations signal and to average the measured BOLD signal in order to decrease noise.
Also, the analysis of each subject apart was done.

Figure 3.6: Primary motor cortex component.

In this section, we compare the standard approaches DS and LASSO with the selection
criteria AIC, AICc, BIC, and our method MCI DS and MCI LASSO. To test that we
use a suitable HRF kernel, we have first applied the forward model using the standard
HRF function available in the SPM software, as well as its versions shifted by 1 TR
backward and forward. The theoretical signal obtained using the forward shifted HRF was
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Figure 3.7: Selection of appropriate heamodynamic response function (HRF) using a
forward model on real data from the N-back experiment. Left: the default and shifted
HRF. Comparison of the averaged measured BOLD signal with the convolution of the
true activations vector and the original HRF (middle) and shifted HRF (right).

more correlated with the real signal than the one using the original HRF (see Figure 3.7),
suggesting that our data were more in line with this shifted HRF. Note that the shape
and delay of HRF varies in principle across subjects, brain regions as well as acquisition
protocols, causing extra degrees of freedom in fMRI analysis, however estimating the
HRF is outside the scope of the current work, so we just fix it heuristically to the shifted
version of the standard template.

In the next step, we applied all mentioned methods to compare the results using the
quality measures discussed in Section 3.3.4. Then, Figure 3.8 shows the comparison of
the random classifier with the discussed methods for original and shifted HRF. As can be
seen, all of the methods for shifted HRF significantly differ from the random classifier,
while for original HRF their results are comparable with it.

JI SNS SPC
DS BIC 0.07 0.07 1.00
DS AIC 0.35 0.87 0.41
DS AICc 0.31 0.46 0.81
MCI DS 0.51 0.61 0.92
LASSO BIC 0.00 0.00 1.00
LASSO AIC 0.42 0.94 0.45
LASSO AICc 0.11 0.12 0.96
MCI LASSO 0.49 0.78 0.73

Table 3.1: Comparison of the deconvolution techniques on the group-level real data signal
with shifted HRF.

The results of activations signal estimation for the combined signal is shown on Fig-
ure 3.9. DS BIC-estimate is almost a trivial vector. It contains only true activations, but
only two of them. Conversely, the DS AIC-estimate includes a lot of true detections,
which gives the high sensitivity, but also it contains a lot of false detections. Remain two
estimates both are better, and MCI DS shows higher values of all three quality character-
istics.

Figure 3.10 shows the receiver operating characteristic curve (ROC-curve) for DS and
LASSO approaches run on the combined signal. Numerical results for the shifted HRF
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Figure 3.8: Comparison of the performance of the analysed methods with random classi-
fier. For shifted HRF, the discussed methods show the results significantly different from
the random one (confidence interval: [0.005,0.995]).
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Figure 3.9: Application of the analysed methods to the group-level real data signal. The
measured BOLD-signal is shown in blue, the theoretical activations in red, and the esti-
mated activations in black.
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Figure 3.10: ROC curve of the Dantzig Selector and LASSO solutions for the group-level
real data signal. Colored points specify the particular selection procedures.
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Figure 3.11: Comparison of deconvolution methods on individual-subject level.

are shown in Table 3.1. As it was described above, both of these methods generates
the set of possible solutions on which the selection procedure should be applied. Thus,
Figure 3.10 shows the ROC-curves with all discussed selection criteria. Also, the points
corresponding to the MCI DS and MCI LASSO are marked on the graph, in order to
compare the methods. The results demonstrate that the point corresponding to the MCI
LASSO method lies close to optimal LASSO solution, and for DS the MCI performs
much better than DS with the optimal selection technique.

Figure 3.11 shows the quality of estimates of each subject’s time series. It contains the
marks of different colors for analysed methods. The black and green points that mark DS
AIC and DS BIC methods form almost the same clouds and demonstrate that most of all
estimates contain too many positive detections. The blue crosses mark the DS AICc and
show a lot of estimates with too few true positive detections. The rest of the blue crosses
forms a cloud that has an intersection with all other methods. The red color is used for
MCI DS estimates, and this cloud lies apart from the DS AIC and BIC and demonstrates
more appropriate estimates in terms of true and false positive rates. Numerical results are
shown in Table 3.2.

63



3.4 Brain connectivity Brain activity analysis

JI SNS SPC
DS BIC 0.14(0.12) 0.37(0.38) 0.72(0.38)
DS AIC 0.14(0.11) 0.26(0.25) 0.86(0.24)
DS AICc 0.30(0.04) 0.86(0.12) 0.30(0.11)
MCI DS 0.33(0.05) 0.56(0.12) 0.72(0.10)

Table 3.2: Summary performance characteristics (Jaccard index, sensitivity, specificity)
for subject-level analysis. Mean (std) is shown for each method.

3.4 Brain connectivity
Let’s say that the brain’s spatial domain is divided into a set of non-overlapping modules
that show some homogeneity relative to information provided by image modalities, such
as anatomic delineations, cytoarchitecture, or task-based fMRI activations. Such modules
are commonly known as regions of interest (ROI). Under the assumption that regions of
interest are linked, the connectivity matrix evaluation became an interesting task. Such
a matrix is supposed to be a suitable approximation of interaction structure of the brain
dynamics and can be used for finding the behaviourally or clinically relevant markers.

There are a few different approaches to define what does the ”connection” means.
According to [Friston, 2011], three types of connectivity can be estimated: structural,
functional and effective. The anatomical links are regarded as structural connection; the
statistical dependencies define the functional connectivity, and the effective connectiv-
ity is the causal interactions between the ROIs. Usually, the functional connectivity is
estimated by calculation of the correlation between the BOLD-signals corresponding to
ROI, while the other methods that assume any type of model in regions connection, are
commonly said to be effective connectivity. This section is devoted to the effective con-
nectivity matrix estimation.

As shown in [Hlinka et al., 2011] and [Hartman et al., 2011], the linear Pearson cor-
relation coefficient is sufficient as a functional connection estimate even when comparing
to the nonlinear approaches. However, it is problematic to distinguish the direct and indi-
rect links according to the correlation coefficient. Thus, we are looking for a method that
estimates the connectivity matrix including only the direct links.

Since using of the Pearson correlation coefficient is said to be an acceptable approx-
imation of the functional connectivity, we can assume that the linear model on a short
time-scale can be sufficient for estimation of the effective connectivity. In this section, we
apply the vector autoregressive model for measurement of the connectivity matrix.

Thus, for M ROIs, we measure the BOLD-signal of the length n. Obtained data can
be represented as the multivariate time series {yi ∈RM, i = 1, . . . ,n} where y j

i is the value
of BOLD-signal of the j-th ROI in the i-th moment, and each vector y j, j = 1, . . . ,M is
assumed to fulfill (3.1). Therefore, we consider the existence of multivariate time series
{si ∈RM, i = 1, . . . ,n}, that directly describes the neuronal activity corresponding to mea-
sured {yi ∈ RM, i = 1, . . . ,n}. Its true values are unknown, however using the technique
described in Section 3.3, the estimated signals can be obtained from the BOLD-signals.

We assume that the time series {si ∈RM, i = 1, . . . ,n} can be fitted by VAR(1) model.
In terms of equation (1.5.4), we handle the matrix B1 as an estimate of effective connec-
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tivity. The matrix obtained in this way does not have the problem of the presence of the
high coefficients that would correspond to the indirect links.

The healthy human brains are assumed to have a typical structure, that is relatively
stable across people. Therefore, the estimated connectivity matrices can be used for the
analysis of the brain network similarity. We demonstrate the classification of the group
that consists of healthy subjects and schizophrenics, based on their estimated connectivity
matrices.

3.4.1 Classification by effective connectivity
Schizophrenia is a serious mental disorder in which people interpret reality abnormally.
Schizophrenia involves a range of problems with cognition, behaviour or emotions. It is
characterized by a wide range of symptoms and connected with structural and functional
brain changes. In this section, we study the data of 245 healthy subjects and 100 patients
with the Schizophrenia diagnosis.

The description of data acquisition and preprocessing is presented in Appendix 3.7.
Our analysis is done using a parcellation based on Craddock atlas with 30 ROIs. Thus,
we work with the dataset (400 time points)×(30 ROIs) for each subject. The number of
ROI is chosen because of the number of parameters to be estimated. The total length
of the measurements for each patient is 400 points, thus it is impossible to estimate the
connectivity matrix based on much more detailed brain parcellation.

For each subject j, j = 1, . . . ,345, we estimate the neuronal activity {ŝ j
i ∈ RM, i =

1, . . . ,n} using the MCI for deconvolution of the measured BOLD time series. Then,
to obtain the connectivity matrix B j, we run the VAR(1) model using the arfit package
in MATLAB (see [Neumaier and Schneider, 2001]). Healthy controls are divided into
two subgroups, HC0 = {1, . . . ,145} and HC = {146, . . . ,245}; the patients subgroup is
formed as P = {246, . . . ,345}. The first subgroup HC0 is used for the estimation of the
effective connectivity matrix BHC that is meant to be typical for healthy people. This
matrix is computed as an average over the mentioned subgroup of subjects,

BHC =
1
|HC0| ∑

i∈HC0

Bi.

Average connectivity for groups HC and P are shown in Figure 3.12. The data from the
rest of healthy subjects HC and patients P are used for the comparison of the similarity
of the typical matrix BHC and subjects’ matrices B j, j ∈ HC∪P. By the similarity of two
matrices M1 and M2, we mean the Pearson correlation between the two vectors M1(:),
M2(:) formed by reshaping the matrices in the same way for both of them. Such similarity
coefficient is calculated for both healthy and patients groups:

r j = r(BHC(:),B j(:)), j ∈ HC∪P,

where r(., .) denotes the Pearson correlation coefficient. The groups {r j, j ∈ HC} and
{r j, j ∈ P} are compared via the Wilcoxon test which shows the statistically significant
difference between median values with p < 0.05. Also, the set of classifiers g(.,rthr)
are build based on it according to the rule g(r j,rthr) = I{r j < rthr}, j ∈ HC ∪ P; if
g(r j,rthr) = 1 then subject r j is classified as a patient. Here, the set of thresholds rthr
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Figure 3.12: Real data example, Schizophrenia detection. Typical connectivity of healthy
controls and patients.
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Figure 3.13: Real data example, Schizophrenia detection. Comparison of the similarity
of connectivity matrix with the typical one in groups of healthy controls and patients.

is {r j, j ∈ HC∪P}. The corresponding histograms and obtained receiver operating char-
acteristic (ROC) curve are shown in Figure 3.13. The best accuracy of this ROC curve is
ACC = T P+T N

T P+T N+FP+FN = 0.71 with corresponding sensitivity SNS = T P
T P+FN = 0.83 and

specificity SPC = T N
T N+FP = 0.42. Thus, the results show that the effective connectivity

matrices, obtained by the described procedure, are meaningful and can be sensitive to the
changes in brain neuronal activity that corresponds to Schizophrenia disease. Remark that
also other machine learning methods can be used for classification, possibly with better
results. However, even the proposed naive approach shows useful results.

3.5 BRAD: Software for brain activity detection
In this section, we describe the software BRAD with its user interface and examples of
usage. The tool is written in MATLAB 2016b, the sources and few data examples can be
downloaded here: htt ps : //github.com/BRADso f tware/BRAD v1/.
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3.5.1 Noise filtering
The software includes an option to apply noise reduction before applying the deconvolu-
tion procedure. The Wiener filter is used to remove noise from the signal. It is a linear
filter used for estimating the desired process from the observed noisy process. Applica-
tion of the Wiener filter requires knowledge of the spectra of the noise and of the targeted
signal. In our work, instead the spectra we use its data-driven estimates. Let us discuss
this in more detail.

Formally, the Wiener filter provides an estimate of the signal z from the observed
signal y by finding a function g(n) such that z(n) = (g? y)(n). Let us denote the Fourier
transformation of y as Y ( f ), let G( f ) be the Fourier transformation of g, and let Z( f ) be
the Fourier transformation of z. Let Szz( f ) = |Z( f )|2 and Syy( f ) = |Y ( f )|2 be the power
spectral densities (PSD) of z and measured signal y respectively. Also, let See( f ) be the
PSD of the noise e. Then Z( f ) = G( f )Y ( f ) and G( f ) can be found as

G( f ) =
Szz( f )

Szz( f )+See( f )
, f ∈ [0,2π).

In the Wiener filter application approach, See( f ) and Szz( f ) are supposed to be known,
but they are principally unknown in our situation. Thus, we use the following procedure
to estimate the mentioned spectra: due to the linearity of the Fourier transformation and
the zero correlation between z and e, we can represent the PSD of the noisy signal y as a
sum of the spectral densities of the noise e and of the clean signal z:

Syy( f ) = Szz( f )+See( f ).

Here, Syy( f ) is supposed to be known: it could be estimated from data or it could be
uploaded by the user.

The vector e is supposed to be white noise; thus, its PSD is flat: See( f ) = b, b ∈ R.
Furthermore, we can estimate Szz( f ) based on a assumed form of HRF: let h be the kernel
of the HRF and Shh( f ) be its PSD, then Ŝzz( f ) = a ∗ Shh( f ), where a ∈ R is the scaling
parameter. In this way we obtain the expression

Syy( f ) = a∗Shh( f )+b, a,b ∈ R.

Then, the estimate of G( f ) can be calculated as

Ĝ( f ) =
Shh( f )

Shh( f )+b/a
, f ∈ [0,2π).

Finally, the filtered signal is estimated as the inverse Fourier transformation of Ĝ( f )Y ( f ).

3.5.2 User interface and data visualisation
The presented software BRAD (BRain Activity Detection) consists of functions and Graph-
ical User Interface (GUI) written in MATLAB. The functionality of GUI is organised into
several panels within the main frame (see Figure 3.15).

The panel ’Import data’ allows uploading the input data. GUI also includes the panel
’Load’ which can be used for loading any previously saved templates. The panel ’Save’

67



3.5 BRAD: Software for brain activity detection Brain activity analysis

includes three buttons. They allow to save the input settings (’Save input settings’ button),
to save all information (’Save calculations’ button), and to save the deconvolved signal
without complementary information (’Save deconvolved signal’ button).

The panel ’Calculations’ contains the settings of the requested calculations. Here
the user can select which type of signal will be used (filtered, not filtered), and which
methods of the deconvolution should be applied (OLS, LASSO, DS). After uploading the
data and filling the settings, the user should press the button ’Calculate’ to carry out the
computations.

The graph located in the center of the frame contains a visualisation of the data. The
BOLD-signal and the estimated signal are shown here in blue and red color respectively.
The BOLD-signal is shown as a continuous line, the neuronal activity signal is shown
as a dashed line. In the chart title there is a short description of the current signals. It
contains the following information: whether is the BOLD-signal filtered, which deconvo-
lution method is used, which selection criteria is used and how many peaks the estimated
signal has. The panel ’Deconvolution methods’ contains three buttons for deconvolution
methods described above and a selection criteria for them. For each of the methods, it is
possible to show the continuous estimate (’All Peaks’) and various approaches to choose
the sparse estimate. For all three methods it is possible to choose predefined amount of
peaks (’Known Peaks Amount’). Also, for the LASSO and the Dantzig Selector the stan-
dard selection criteria AIC and BIC are implemented, together with the selection criteria
based on the theory of mixtures of components (MCI).

The panel ’Signal type’ allows selecting the use of the filtered or the non-filtered
signal. The ’Whole Brain Level’ button provides the possibility to analyse multivariate
(voxel-level) time series.

The special panel ’Movie’ allows to analyse the signal in terms of videoframes ex-
tracted from a stimulation material. It allows to show different sets of frames: the current
one (corresponding to the cursor) using the button ’Show the frame’; the current and the
previous one; the frame corresponding to a particular time index; all frames correspond-
ing to positive peaks in deconvolved signal; all frames from a time interval. The images
are shown in an additional window. The scheme of BRAD is shown in Figure 3.14.

3.5.3 User inputs
To analyse the data, the user needs to upload one or more types of data inputs. This can
be done using the panel ’Import data’.

• Measured signal (necessary). It is a ’.dat’ file which contains one time series. The
time series is supposed to be a measured BOLD-signal represented by a numerical
column vector. It should be done using the button ’Import data’. The uploaded
signal is rescaled to the range [0,1].

• Shape of the HRF (optional). It is also a ’.dat’ file which contains a time series
defining the shape of the hemodynamic response function represented by a numer-
ical column vector. Its length should be shorter than the length of the output signal.
Moreover, the corresponding Toeplitz matrix should not be singular. Note that if
the matrix is badly conditioned, some numerical problems may appear.
The button ’Import HRF’ should be used to upload the data. There is a possibility
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Figure 3.14: Block-scheme of the provided software BRAD. Firstly, the user should up-
load the data (measured BOLD-signal is necessary; hemodynamic response function,
power spectral density and video are optional). Then the user should specify calcula-
tion settings (if a filtering of the BOLD-signal is needed, which filtering method should
be used, which deconvolution methods should be used). After that, the estimates of the
source signal are calculated. Obtained estimates can be visualized or/and saved.

to use the default kernel, which is saved in the file ’hrf.dat’. We include an useful
example together with the software.

• Spectrum (optional). In case of the selection of filtering the signal, an estimate of its
power spectral density is needed. The user should specify whether it is preferable
to use the default power spectral density, to estimate the spectrum from the BOLD-
signal, or if the power spectral density should be uploaded. In case of uploading, the
file should be in the ’.dat’ format and should contain the numerical vector-column
with length equal to the BOLD-signal length.

• Video (optional). In many cases, the BOLD signal is measured during visual stim-
ulation of the subject. For the interpretation of the estimated signal s, it is useful to
inspect the corresponding stimulus content. In BRAD we implemented two options
for this: to upload the collection of frames or to upload the full video. It can be done
using the buttons ’Import frames’ or ’Import movie and exact frames’ respectively.
The sampling rate and frame rate is requested to be entered for analysis using visual
information.

Further, the panel ’Load’ could be used for uploading the data. For the whole brain
level deconvolution, a 4D-matrix (3D + time) of real numbers in ’.mat’ file is requested.
Moreover, a gray-matter mask is needed (3D-matrix in ’.mat’ file).
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Figure 3.15: Flashing checkerboard experiment. The figure shows the result of a BRAD
run: the estimate of the neuronal activity during cycles of flashing checkerboard and
black screen stimulation. BOLD-signal (blue line) shows 12 cycles, estimated neuronal
signal (the red one) corresponds to the reaction to the flashing checkerboard condition.
Average lengths of detected blocks of peaks is in line with the real length of the flashing
checkerboard blocks.

3.5.4 Flashing checkerboard experiment
We use measurements from one healthy subject, female, age 39 years. The paradigm
of the experiment consisted of alternating cycles of blocks of a flashing checkerboard
and blocks with a black screen, (12 blocks of each). Duration of the rest blocks was 25
seconds; flashing blocks had duration 26s, 28s, and 32s (4 blocks of each). We study the
BOLD time series that corresponds to the primary visual cortex. The detailed description
of data acquisition and preprocessing is presented in Appendix 3.8.

We used the MCI for the estimation of the neuronal signal, with no filtering applied.
The estimated signal clearly shows 12 blocks of peaks (which correspond to 12 waves in
the BOLD-signal) and 12 calm periods. An average block of the detected peaks contains
10− 13 activations, corresponding to 25− 32.5s. The demonstration of measured and
estimated signals, obtained using BRAD, is presented in the Figure 3.15.

3.5.5 Movie experiment
In this experiment 84 healthy subjects took part, mean age/±std: 30.83/± 8.48 years.
We study the BOLD signal that corresponds to the occipital fusiform gyrus. The detailed
description of data acquisition and preprocessing is presented in Appendix 3.9. We mea-
sured the brain activity during watching a movie (part of classical western ”The Good,
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the Bad and the Ugly”: uninterrupted 10-minute segment 16:48-26:48). The experiment
setup including the movie selection was motivated by the work of Hasson et al. [Hasson
et al., 2004], who proposed the use of a ’reverse-correlation’ method to infer the func-
tional relevance of a given region based on the content of a rich audiovisual stimulation
material common in the moments corresponding to highest activation.

The resulting average time series of the occipital fusiform gyrus, selected from the
Harvard-Oxford cortical atlas, was then used in the BRAD toolbox. For the underlying
signal estimation, the Dantzig Selector was used; extraction of 16 peaks was selected. The
result is shown in Figure 3.16. The fusiform face area is known to increase activity dur-
ing presentation of visual stimuli containing faces (see [Kanwisher et al., 1997], [Haxby
et al., 2000]). Therefore the detection of frames containing faces in many cases seems
to be in line with the expectations, similarly as in the previous work using the reverse-
correlation approach [Hasson et al., 2004]. However, as faces of various form appear
relatively densely in the movie, proper statistical inference, that would probably include
some permutation scheme (which should also take into account the autocorrelation of
both the movie and brain activity time series) would be needed for more robust neuropsy-
chological interpretation.
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Figure 3.16: Movie experiment. The left picture shows an estimate of the neuronal ac-
tivity during watching the segment of western ”The Good, the Bad and the Ugly” when
selection of 16 peaks was requested by the user. The measured BOLD-signal representing
the occipital fusiform gyrus is shown by the blue line, the estimated signal is shown in
red color. The right picture demonstrates frames from the movie which correspond to the
detected peaks of neuronal activity.
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Discussion

In studying of the socio-economical process of the submissions to municipalities in the
Czech Republic, the main goals of the analysis are the characterisation of the data and
building the model. Our analysis shows that the process of submissions to the munici-
palities can be described by the spatiotemporal point process with the discrete space and
time domains, and the point of the spatiotemporal lattice of possible process value can be
observed more than once with the non-zero probability. What actually happens, is the spe-
cific lattice points appear, corresponding for example to Prague or Brno municipalities,
by tens and hundreds in the datasets.

We realised that the process of correspondence behaviour is very difficult in the sense
that it can be described neither by classical models of point processes like Poisson pro-
cess or cluster processes and their easy modifications, nor using Poisson distribution for
modelling repetitions of points in the same time and spatial coordinates. Therefore we
had to focus on empirical distributions which according to our opinion seems to be a
good way. It could be potentially interesting, to compare the empirical distributions be-
tween the data from different municipalities. However, the available datasets are not large
enough for such an analysis.

The change point analysis is proposed for the detection of the process changes. The
analysis shows, that the proposed modified classical technique of change point detection,
gives a reasonable result for such type of data. However, the assumption about the partial
linearity of the data is not always the best one. Additionally, using the non-linear trends
can be very useful. Moreover, there are approaches for the change point detection in real
time. We did not try such methods, but we suppose that such a technique, can be also
useful for effective administration.

Regarding the submissions subgroups analysis, we show that the autoregressive mod-
els give reasonable results in modelling of the number of submissions of different types.
We provide such analysis with the lag 1 month, but based on the origin of the data, we
suppose that bigger lags, like 3 months or 12 months, can also be very useful. However,
such analysis would need much longer observations, than we have. The second potentially
weak spot of this model is big differences in the number of submissions of the particular
type. Because of that, the coefficients of the VAR model can be poorly interpreted; to
avoid this problem, the types can be normalised before the analysis.

Finally, the rejection of the hypothesis about the independence between spatial and
temporal coordinates suggests that the analysis of the dependencies between the munic-
ipalities or the cumulative geographical regions can be potentially interesting. To make
this analysis better, it would be preferable to estimate the VAR model, or at least apply
the Granger causality, but this also needs much more data.

The second part of the work is dedicated to neuroimaging data analysis. This thesis
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is devoted to the application of the mathematical instruments to the data, thus we do
not discuss the correctness, assumptions, and problems of the used models, specifically,
the modelling of the BOLD signal and the hemodynamic response itself. For interested
readers, we refer to [Ogawa et al., 1992].

In this thesis, we introduce a method for improvement of the estimates of neuronal ac-
tivity from the BOLD signal. It works by applying additional postprocessing on the result
of standard regularization-based deconvolution methods, such as LASSO and Dantzig
Selector. Notably, it outperforms both the standard application of the Bayes informa-
tion criterion and Akaike’s information criterion, as well as its improved variant. We
demonstrate the advantages of this method both in numerical simulations as well as in
experimental data, where the activation of the motor cortex occurring during a complex
cognitive task is studied. More accurate estimates, obtained with the proposed method,
suggest that the approach may further improve the detection of neuronal activation that
can not be directly recorded or controlled in other datasets.

The method is dealing with the challenges of the common overfitting or underfitting
of the data that occurs to regularization methods combined with standard model selection
criteria. It is combining the information contained in the solutions rather than select single
one, which shows a good performance both in simulations and in a real dataset example.
The future work would involve attempting its efficient combination with some other di-
rections recently taken up in the field, namely spatial regularization ( [Karahanoğlu et al.,
2013], [Farouj et al., 2017] or [Hernandez-Garcia and Ulfarsson, 2011]), change sparsity,
HRF estimation ( [Aggarwal et al., 2015]), and further processing.

Sparse linear regression methods are not the only way for deconvolution in this field.
Here are few other families of approaches described in the literature: the cubature Kalman
filtering [Havlicek et al., 2010], activelets (wavelets designed using prior knowledge on
the hemodynamic response function form [Khalidov et al., 2011]), spatiotemporal HRF
deconvolution [Aquino et al., 2014] or nonparametric hemodynamic deconvolution of
fMRI using homomorphic filtering [Sreenivasan et al., 2015]. However, as the outlined
MCI approach relies on being combined with an initial method providing a parameterized
family of solutions (in this thesis, we used the LASSO and Danzig Selector as examples
of such families), we leave open the question of how it relates and could synergize with
them. We can speculate that the key idea of combining model outputs using e.g. Bayesian
approaches instead of crisp model selection within a constrained parametric family may
be applicable to other schemes, as long as these involve selection among model parame-
terized model families.

The timing of local neuronal activations can be important on its own, for example,
in studying of cortical response to unpredictable mental events [Gaudes et al., 2011], or
can be used for obtaining meta-analytic interpretation of the brain activation patterns [Tan
et al., 2017]. In [Allan et al., 2015] has been proposed that functional connectivity in
MRI is driven by spontaneous BOLD events detectable by deconvolution methods. Also,
the use of deconvolution as an intermediate step to estimate effective connectivity has
been discussed in [Wu et al., 2013]. Similarly, the dynamics of deconvolution-based
brain activation patterns can be further explicitly modelled to fit sparse coupled hidden
Markov models [Bolton et al., 2018] characterizing the large-scale brain dynamics. Last
but not least, the development of deconvolution approaches is relevant also in the context
of functional near-infrared spectroscopy [Santosa et al., 2019, Seghouane and Ferrari,
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2019] and quantitative susceptibility mapping [Costagli et al., 2019].
With respect to the evaluation of the effective connectivity in our work, there are

alternative approaches discussed in the literature. The effective connectivity estimate
using DCM is proposed and discussed in [Friston et al., 2011] and [Lohmann et al., 2012].
In [Frässle et al., 2017], the newest regressive DCM is presented. Another alternative
model, based on Granger causality, is discussed, for example, in [Marinazzo et al., 2011]
and in [Friston et al., 2014]. A comparison of algorithms, including a newly developed
method for causal inference in large networks, is presented in [Kořenek and Hlinka,
2020].

Regarding the last part of the thesis describing the software for deconvolution, there
are currently several limitations of the presented tool BRAD. For instance, the list of the
included deconvolution methods is not meant to be complete. They were selected as typ-
ical examples of the existing methods. We present the standard method (OLS), the sparse
approaches discussed earlier (LASSO and Dantzig Selector) with AIC and BIC. Also,
MCI is included in the software as a newly developed approach to estimate construction.
Another methods also may be useful, and the modular architecture of the software tool
allows their easy and efficient inclusion in the tool at a later stage of development in future
or by other labs.

The current version of BRAD only allows presentation of the visual content of the
stimuli. However, as an example extension, the module for stimulation using different
modalities, audio stream, or visualisation of more general stimuli can be included. There
are several noise filtering choices implemented in the presented software. However, the
list is not complete. Other options, for example, such as band-pass filtering with a prede-
fined pass-band, could be added.
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Conclusion

This thesis is dedicated to the application of statistical analysis and mathematical mod-
elling to real-data tasks. We present two projects from very different fields, but both of
them can be described as the spatiotemporal point processes. The analysis is done us-
ing a wide range of methods that differ from task to task and depend on the question to
be answered. Some of the approaches, specifically, the vector autoregressive model, are
applied for both processes, but with different goals and results.

The first studied phenomenon is the process of submissions to municipalities in the
Czech Republic that can be described by a spatiotemporal point process, where the geo-
graphical coordinates of sender and day of submission are the spatial and temporal coor-
dinate of the point, respectively. For the analysis, we use the classical as well as modified
data analysis methods. Every time, we formulate the reason for the particular method’s
usage and show the problematic moments of its application.

Our main practical results of the analysis are: we show that the VAR(1) model can
be a good approximation of the number of submissions per month; the approach allows
modelling the total number of submissions or to focus on the selected subgroup. Also, we
propose the change point detection technique that is applicable for this data and easy for
the implementation.

The second studied process is brain neuronal activity, measured by blood oxygenation
level-dependent (BOLD) signal measured by functional MRI. For this neuroimaging data,
we present a new deconvolution method, the Mixture Component Inference (MCI) ap-
proach that allows extracting the timing of neuronal activations from the measured fMRI
signal. This result is promising as a general exploratory technique and can be useful in
various tasks, for example, for filtering the fMRI data on voxel-level or for estimation
of neuronal activity in experiments with complicated design. Further, we describe the
technique that allows estimating the effective brain connectivity from the fMRI signal
based on the neuronal activations obtained using the proposed MCI approach. Finally, we
present a software tool BRAD for the estimation and analysis of human brain neuronal
activity.
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Appendix

3.6 N-back experiment

Subjects
The real data example includes the data of 56 subjects (24 males and 32 females, age =
33.66± 10.97) that performed fMRI recording with n-back task as a part of a complex
study with repeated psychiatric, neuroanatomical and neuropsychological evaluation. All
subjects have been recruited for the study based on the following exclusion criteria: his-
tory of mental disorder, history of neurological disorder, presence of any artificial objects
that would interfere with the magnetic resonance imaging. All volunteers signed Informal
consent approved by the Ethic committee of National Institute of Mental Health (Czech
republic). The data set of 89 MRI sessions in total was analyzed, including data from
repeated sessions (6 months apart) in 25 subjects (2 visits for 17 subjects and 3 visits for
8 subjects).

N-back task
The n-back task is a continuous performance task commonly used for assessment of work-
ing memory performance [Gazzaniga, Michael S.; Ivry, Richard B.; Mangun, George R.
(2009). Cognitive Neuroscience: The Biology of the Mind (2nd ed.).]. The subject is
presented with a sequence of stimuli, and the task requires indicating when the current
stimulus matches the one from n steps earlier in the sequence. If the task load factor n
equals 2 or more, the working memory buffer needs to be updated continuously to keep
track of what the current stimulus must be compared to. The spatial n-back task paradigm
applied in this study presents the stimulus (blue square presented on black background)
that appears in one of the 9 possible positions (3x3 matrix) on the screen during each turn.
The tasks consisted of two alternating conditions: 0-back and 2-back. Each condition was
presented in four sessions (eight sessions in total, sequence order: 0-2-0-2-0-2-0-2). The
paradigm required the subject to recall the spatial position of the blue square a) in initial
position for the 0-back session and b) two turns back for 2-back session, and press the
button during the experiment based on these rules specific for each of the n-back condi-
tions. Importantly, for the purpose of this study, we did not distinguish between the two
conditions (0- and 2-back) or the correctness of the subjects’ responses, we simply con-
sidered/analysed all events of button presses recorded for each subject. For each subject,
we have the button presses timing, which is assumed to correspond to the true activations
of the motor cortex. As all subjects had the same experimental design, we can also carry
out a group level analysis, setting as group ground-truth as button presses present in at
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least 80% of subjects (71 of 89)] and to average the measured BOLD signal in order to
decrease noise. Also, the analysis of each subject separately was done. On average the
subjects responded by button press 44.63 times (SD = 6.18, min = 27, max = 58). Most
of the responses were correct, on average 5 of the responses were incorrect.

fMRI acquisition and preprocessing
Brain images were obtained using Siemens Prisma 3T MR machine. Functional T2*-
weighted images with BOLD contrast were acquired with voxel size 3x3x3 mm, slice
dimensions 64x64 voxels, 32 axial slices, repetition time 2000 ms, echo time 30 ms, flip
angle 70◦.

The data pre-processing was done using SPM8 toolbox (The Wellcome Dept. of Cog-
nitive Neurology, University College London) in Matlab (The MathWorks, Inc.). In order
to minimise head motion effects, functional volumes were spatially realigned, and the
slice-time correction was used to fix acquisition delays. This was followed by normaliza-
tion of functional volumes into the standard anatomical space using a template provided
by SPM toolbox and spatial smoothing with 8 mm FWHM kernel.

An independent component analysis was performed in order to extract time series cor-
responding to the primary motor cortex, which was done using GIFT toolbox (MIALAB,
Mind Research Network) in Matlab. The number of independent components was es-
timated using the minimum description length criteria. Independent components were
decomposed with an Infomax algorithm (see [Bell and Sejnowski, 1995]) with default
settings. A component representing the primary motor cortex was selected by visual in-
spection, see Figure 3.6. Its time series was further analysed. Moreover, on each of the
mentioned time series the outlier correction was carried out using Tukey’s test (see [Tukey,
1977]) and the re-scaling discussed in Section 2.1 was applied. To check that good cor-
respondence of the stimuli and the estimated neuronal activations was not caused by any
motion artefact related to the motor activity during the button press, we did the decon-
volution for all the ICA components with all the methods and compared the results with
stimuli. A significant match of the estimate to the real stimuli was found only for two
components that overlapped with motor cortex; the unilateral component, that showed
higher agreement with the stimulus, was selected for subsequent analysis.

3.7 Schizophrenia
We study the data of 245 healthy subjects and 100 patients with the Schizophrenia di-
agnoses. Scanning was performed with a 3T MR scanner (Siemens; Magnetom Trio)
located at the Institute of Clinical and Experimental Medicine in Prague, Czech Repub-
lic. Functional T2*-weighted images with BOLD contrast were acquired with voxel size
3×3×3mm. GE-EPIs (TR/TE = 2000/30 ms) comprised axial slices acquired contin-
uously in descending order covering the entire cerebrum. A three-dimensional high-
resolution T1-weighted image (TR/TE/TI = 2300/4.6/900 ms, voxel = 1×1×1mm3) cov-
ering the entire brain was used for anatomical reference.

Initial data preprocessing was done using the SPM12 toolbox (Wellcome Department
of Cognitive Neurology, London, UK), CONN toolbox (McGovern Institute for Brain
Research, MIT, USA) and FSL routines (FMRIB Software Library v5.0, Analysis Group,
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FMRIB, Oxford, UK). CONN’s default preprocessing pipeline (defaultMNI) contains the
functional realignment and unwarping, slice-timing correction, structural segmentation
into white matter and cerebrospinal fluid and structural normalization to the MNI space,
functional normalization to the MNI space, outlier detection, and smoothing with 8mm
kernel size.

3.8 Flashing checkerboard
We use measurements from one healthy subject, female, age 39 years. The brain images
were obtained using a Siemens Prisma 3T MR machine. Functional T2*-weighted images
with BOLD contrast were acquired with a voxel size 3x3x3 mm, slice dimensions 64x64
voxels, 44 axial slices, repetition time 2500 ms, echo time 30 ms and flip angle 80◦.

All preprocessing steps were carried out using the SPM8 toolbox (The Wellcome
Dept. of Cognitive Neurology, University College London) in the Matlab (The Math-
Works, Inc.) environment. Functional volumes were spatially realigned to minimise head
motion effects and slice-time corrected to fix any acquisition delays. This was followed by
normalization of functional volumes into the standard anatomical space using a template
provided by the SPM toolbox and a spatial smoothing with 8 mm FWHM kernel.

In order to extract the time series corresponding to primary visual cortex, an indepen-
dent component analysis was performed using the GIFT toolbox (MIALAB, Mind Re-
search Network) in Matlab. The number of independent components was estimated using
the minimum description length criteria. Independent components were decomposed with
the Infomax algorithm (see [Bell and Sejnowski, 1995]) with the default settings. We se-
lected a component representing the primary visual cortex by visual inspection. Its time
series was futher analysed.

3.9 Movie experiment
In this experiment 84 healthy subjects took part, mean age/±std: 30.83/±8.48 years. The
brain images were collected using a Siemens Trio 3T MR machine. The high-resolution
3D anatomical T1-weighted image which consisted of 224 sagittal slices was acquired
with TR = 2300 ms, TE = 4.63 ms, flip angle = 10◦, FOV 256x256, image matrix size
256x256, voxel size = 1x1x1 mm. The functional T2*-weighted images with blood oxy-
genation level-dependent (BOLD) contrast were acquired with voxel size 3x3x3 mm, slice
dimensions 64x64 voxels, 44 axial slices, repetition time 2500 ms, echo time 30 ms and
flip angle 90◦.

The preprocessing pipeline consisted of the same blocks as in the flashing checker-
board experiment but in a slightly different order. The preprocessing was performed us-
ing the CONN toolbox (The Gabrieli Lab. McGovern Institute for Brain Research, MIT)
which uses standard SPM modules. Functional volumes were slice-time corrected, spa-
tially realigned, normalised into MNI space and spatially smoothed with 8 mm FWHM
kernel. The subject-specific anatomical T1 image was used for the purpose of the indirect
normalization of the functional volumes into the MNI space and to create a mask of the
white matter (WM) and the cerebrospinal fluid (CSF). These masks were used as regions
from which average signals were extracted.
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The CONN toolbox performed denoising of the original fMRI signal using the av-
erage signal of WM, CSF as well as six motion parameters to minimise their possible
confounding effect. The signal was band-pass filtered using a Butterworth filter (0.004-
0.1 Hz). The resulting average time series of the occipital fusiform gyrus, selected from
the Harvard-Oxford cortical atlas, was then used in the BRAD toolbox.

3.10 BRAD
Supplementary materials (tool BRAD, documentation and data examples) can be found
online at htt ps : //github.com/BRADso f tware/BRAD v2/.
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mogeneous Space-Time Shot-Noise Cox Processes. Methodology and Computing in
Applied Probability, 16(2):433–449.

[Rhoad et al., 1991] Rhoad, R., Milauskas, G., and Whipple, R. (1991). Geometry for
Enjoyment and Challenge. McDougal Littell; New Edition edition.

[Rish, 2001] Rish, I. (2001). An empirical study of the naive Bayes classifier. Technical
report, IBM Research Division Thomas J. Watson Research Center.

[Santosa et al., 2019] Santosa, H., Fishburn, F., Zhai, X., and Huppert, T. J. (2019). In-
vestigation of the sensitivity-specificity of canonical- and deconvolution-based linear
models in evoked functional near-infrared spectroscopy. Neurophotonics, 6(2):1 – 10.

[Schoenberg, 2005] Schoenberg, F. P. (2005). Consistent parametric estimation of the
intensity of a spatial–temporal point process. Journal of Statistical Planning and In-
ference, 128(1):79 – 93.

[Seghouane and Ferrari, 2019] Seghouane, A. and Ferrari, D. (2019). Robust Hemody-
namic Response Function Estimation From fNIRS Signals. IEEE Transactions on
Signal Processing, 67(7):1838–1848.

[Smith et al., 2011] Smith, S. M., Miller, K. L., Salimi-Khorshidi, G., Webster, M., Beck-
mann, C. F., Nichols, T. E., Ramsey, J. D., and Woolrich, M. W. (2011). Network
modelling methods for FMRI. NeuroImage, 54(2):875 – 891.

[Sreenivasan et al., 2015] Sreenivasan, K. R., Havlicek, M., and Deshpande, G. (2015).
Nonparametric hemodynamic deconvolution of fMRI using homomorphic filtering.
IEEE Transactions on Medical Imaging, 34(5):1155–1163.

86



BIBLIOGRAPHY BIBLIOGRAPHY

[Stacy, 1973] Stacy, E. W. (1973). Quasimaximum likelihood estimators for two-
parameter gamma distributions. IBM Journal of Research and Development,
17(2):115–124.

[Stoyan et al., 1995] Stoyan, S., Kendall, W. S., and Mecke, J. (1995). Stochastic Geom-
etry and its Applications. Second Edition. John Wiley & Sons.

[Sugakova, 2006] Sugakova, O. (2006). Classification of components of a mixture. The-
ory of Probability and Mathematical Statistics, 72:157–166.

[Tan et al., 2017] Tan, F. M., Caballero-Gaudes, C., Mullinger, K. J., Cho, S.-Y., Zhang,
Y., Dryden, I. L., Francis, S. T., and Gowland, P. A. (2017). Decoding fMRI events
in sensorimotor motor network using sparse paradigm free mapping and activation
likelihood estimates. Human Brain Mapping, 38(11):5778–5794.

[Tibshirani, 1996] Tibshirani, R. (1996). Regression shrinkage and selection via the
LASSO. Journal of the Royal Statistical Society Series B-methodological, 58(1):267–
288.

[Tukey, 1977] Tukey, J. W. (1977). Exploratory Data Analysis. Addison-Wesley Pub-
lishing Company.

[Valdes-Sosa et al., 2011] Valdes-Sosa, P. A., Roebroeck, A., Daunizeau, J., and Fris-
ton, K. (2011). Effective connectivity: Influence, causality and biophysical modeling.
NeuroImage, 58(2):339 – 361.

[Willett et al., 1998] Willett, P., Barnard, J. M., and Downs, G. M. (1998). Chemical sim-
ilarity searching. Journal of Chemical Information and Computer Sciences, 38(6):983–
996.

[Wu et al., 2013] Wu, G.-R., Liao, W., Stramaglia, S., Ding, J.-R., Chen, H., and Mari-
nazzo, D. (2013). A blind deconvolution approach to recover effective connectivity
brain networks from resting state fMRI data. Medical Image Analysis, 17(3):365 –
374.

[Wu and Marinazzo, 2015] Wu, G.-R. and Marinazzo, D. (2015). Retrieving the hemo-
dynamic response function in resting state fMRI: methodology and applications. PeerJ
PrePrints, 3:e1317v1.

[Yanagimoto, 1988] Yanagimoto, T. (1988). The conditional maximum likelihood esti-
mator of the shape parameter in the gamma distribution. Metrika, 35(1):161–175.

[Yao et al., 2018] Yao, Y., Raman, S. S., Schiek, M., Leff, A., Frässle, S., and Stephan,
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• Pidnebesna, A., Helisová, K., and Staněk, J. (2018). Statistical analysis of depen-
dencies among submissions to municipalities in the Czech Republic. Information
Bulletin of the Czech statistical society, 29(3):1–19.
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