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Instructions

Curriculum learning is a training strategy that can significantly improve the generalization abilities of deep
neural networks. It is based on the paradigm that humans and animals learn much better when training
examples are organized in a meaningful order which illustrates more concepts, and gradually more
complex ones.

1) Review and theoretically describe the state of the art approaches to curriculum learning.
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performance on a suitable data set. Use existing implementations as much as possible.
3) Propose a direction for further improvement of curriculum learning approaches.
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Abstrakt

Umělé neuronové śıtě se běžně trénuj́ı na náhodně seřazených datech. V mnoha
směrech je tento př́ıstup podobný učeńı živých organismů, to však nebývá
náhodné. Lidé použ́ıvaj́ı učebńı plány, podle kterých se jejich učeńı ř́ıd́ı.
V posledńıch letech bylo navrženo mnoho př́ıstup̊u, které maj́ı za ćıl vylepšit
trénováńı neuronových śıt́ı učebńımi plány. Tato práce obsahuje přehled
těchto př́ıstup̊u. Některé př́ıstupy byly implementovány a experimentálně vy-
hodnoceny. Výsledky ukazuj́ı, že úspěšnost r̊uzných učebńıch plán̊u je závislá
na mnoha faktorech.

Kĺıčová slova strojové učeńı, neuronové śıtě, učebńı plán, postupné učeńı

Abstract

Artificial neural networks are usually trained by observing samples from a train-
ing set in a random order. This approach is similar to biological organisms,
but their learning process is hardly ever random. Human supervised learning
utilizes a curriculum that leads the learning process. Many approaches were
proposed to introduce a curriculum to artificial neural networks training in
recent years. This thesis provides an overview of those approaches. Many of
the approaches were implemented and experimentally evaluated. The results
show that different approaches are favorable under different circumstances.

Keywords machine learning, neural networks, curriculum learning, self-
paced learning
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Introduction

Motivation and Objectives

Artificial intelligence (AI) is a rapidly growing field of computer science. Al-
though a goal of creating conscious artificial general intelligence seems to be
far away, we use many applications of the so-called weak AI in our everyday
lives in the form of machine learning models. Artificial neural networks (ANN)
are one of the most favorite of these models. Despite having access to expo-
nentially growing computational power, models are becoming more complex
and there is ever-present need for optimization.

This work investigates one of methods that aim to improve and optimize
training of ANN. A general overview of the method called curriculum learning
is presented in the Chapter 1. Then, related work on the topic is analyzed
in the Chapter 2. Subsequently, many experiments inspired by related work
are reconstructed in the Chapter 3. Finally, obtained results together with
proposed directions for further improvement are discussed in the Chapter 4.

Artificial Neural Networks

ANN are a class of machine learning models that were originally inspired by
a biological brain. These models consist of connected units called artificial
neurons that compute a non-linear function of a weighted sum of its inputs.
The units are usually structured in layers as depicted in Fig. A.

Deep learning goes beyond the biological point of view and generally refers
to a multi-level composition. [1] In the context of ANN, it means stacking mul-
tiple layers on top of each other. The layers that are not directly connected to
any input or output are called hidden. This method creates a deep architec-
ture with many connections parametrizable by their weights and additional
biases.
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Introduction

Despite being inspired by the nature, ANN are a purely mathematical
model that is trained by adjusting connection weights. The adjustment is done
by iteratively propagating model’s output error (i.e. the difference between
a desired and actual outcome of the model) back to its input by a method
known as a backpropagation. Starting at an output layer, model’s error for
every hidden layer is calculated at each step, parameters for that layer are
adjusted according to the error and the process repeats for an adjacent layer
in the direction of an input layer by a so-called chain rule. The amount of
an adjustment for each parameter is usually calculated by a gradient descent,
i.e. adjusting by the greatest change of the model’s underlying mathematical
function. [1]

A training of ANN is traditionally done by providing a sequence of training
samples from a training set. The samples are usually grouped to randomly
sampled mini-batches for reduced computational complexity. At each iteration
an error for a mini-batch is calculated and parameters are updated. This
approach replaces an actual gradient by its approximation; therefore, it is
known as stochastic gradient descent (SGD). [2]

Figure A: A simplified illustration of an ANN structure
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Training Improvement

Training Improvement

Many methods for improvement of training aspects of ANN were developed.
For example, ADAM optimizer [3] replaces SGD for faster learning. One
of the main goals of machine learning is to reduce generalization error, the
ability of a model to correctly predict previously unseen data. Methods such
as data augmentation [4], weight regularization [5] and dropouts [6] address
this problem.

Curriculum learning is a technique that aims to improve a training per-
formance by studying an order of training samples provided to ANN. Exper-
iments in related work show that usage of a curriculum has a positive effect
both on speed of training and quality of results. However, adoption of CL in
a real-world usage is still slow.
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Chapter 1
Curriculum Learning

Animals learn much better when task are assigned to them in a meaningful
order. For example, shaping introduced by Skinner [7] is reinforcement of
positive approximations to a desired outcome. Each subsequent task becomes
a closer approximation for a final task. This idea is routinely exploited in
animal training. [8]

Early work connected cognitive science and machine learning by showing
that shaping could be beneficial for machine learning algorithms. The basic
idea was to start small by learning easier tasks or subtasks and gradually
increase difficulty. [9] Similar idea of a guided learning process was proposed
in robotics. [10]

Curriculum learning (CL) for ANN training was formalized by Bengio [11].
He showed that a very simple hand-picked multi-stage curriculum can improve
generalization error and convergence speed of a machine learning model on
natural language processing (NLP) and computer vision (CV) tasks. Easy
samples were strictly emphasized in his work.

On the other hand, human teaching experiments focused on a learning
example selection and presentation were conducted. The results suggest that
combination of shaping and a kernel-based coverage model (i.e. sampling from
a complement of already learnt examples) achieves the greatest gains. Select-
ing examples near a decision boundary was confusing for human learners. [12]
In further work, it was observed that extreme strategies (e.g. picking a distant
example and gradually moving towards a decision boundary) are more com-
mon in human learning. This observation is consistent with CL principles. [13]

1.1 Original Definition

Bengio introduced a hypothesis that a well-chosen curriculum strategy can act
as a continuation method [14], i.e. it can help to find a better local minima
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1. Curriculum Learning

of a non-convex training criterion. His experiments in addition showed, that
curriculum strategies appear to operate like a regularizer, their effect is most
visible on the test set. [11]

Continuation methods are family of strategies that ensures that local op-
timization spends most of its time in a well-behaved region of space. The
idea behind this approach is to construct new cost functions over the same
parameters. Newly constructed cost functions are designed to be increasingly
difficult. [1] This approach can also be viewed as optimizing of a smoothed
objective and gradually reducing the smoothness.

Figure 1.1: Smoothing of an objective function [15]

To apply a continuation method to a training problem we can utilize a se-
quence of intermediate training sets ordered from a training set with easy
to optimize samples to a final set of training samples. A curriculum can be
viewed as such a sequence. Each training sample is given a weight on the
beginning of a training or during a reweighting. Weights favor easy to learn
examples first, gradually introducing more difficult examples by increasing
their weight. [11]
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1.2 Understanding of Difficulty

It is not always clear how to address the concept of difficulty. A human learner
has a different point of view than a machine learning algorithm such as ANN.
Therefore, sorting a training set by hand may not reflect the true difficulty
and cannot be optimal. Many approaches to this problem were proposed in
related work.

Easy examples can simply be characterized as being less “noisy”. An ex-
ample is considered noisy if it falls on the incorrect side of the decision surface
of a Bayes classifier as shown in Bengio [11].

The concept of a scoring function was formalized in Hacohen et al. [16].
Two types of scoring functions were defined: (i) Transfer scoring function,
which uses another model for example weighting. (ii) Self-thought scoring
function, which uses the learner itself trained on uniformly selected samples.
In both cases classifier confidence score for each sample is used for weight-
ing. This approach requires additional preparations and prolongs the whole
training process.

Transferring difficulty from another model was proposed in many works.
The idea is related to transfer learning, but unlike in transfer learning it is
not the instance representation which is being transferred but the weighting of
samples. [17][18][19] In other words, another model is presented that predicts
sample easiness (i.e. the weight) for the learner.

So far, we discussed hand-picked or fixed curriculums based on prior knowl-
edge. Several ways for curriculum automatization were studied and are closely
connected to methods related to CL. Those methods use a feedback from
a learner during a training process to change weights of training samples, e.g.
self-paced learning and hard example mining. [20][21]

A data-driven curriculum was proposed in Jiang et al. [17]. This type
of approach uses a machine learning model as a teacher that predicts weighs
based on features given to him by a learner. The teacher is given a prior knowl-
edge by pre-training and then it is updated multiple times during a training
of the learner.

A measurement of difficulty by rate of increase in network complexity was
studied in Graves et al. [21]. Many learning progress signals were defined
and experimentally studied with variable results. Furthermore, it was shown
that guiding a learner through intermediate easier tasks is more likely to yield
better results. [22]

7



1. Curriculum Learning

1.3 Related Methods

Many authors relate to CL in a broader context of a learning process that uti-
lizes any form of curriculums i.e. weighting of samples. [21][17] Some authors
hold strictly to the original CL definition that defines curriculum by prior
knowledge, either given to a learner by a human teacher, another machine
learning model or the learner itself trained on the same data without use of
a curriculum. [19] The term CL in the following text is used in the broader
meaning that is in my opinion consistent with Bengio’s original work.

Bengio encouraged an active reweighting method during the learning pro-
cess. At any point during the learning process some examples can be con-
sidered “too easy”, while other can be considered “too difficult”. He stated,
that easy examples do not help to improve the model further, while difficult
examples are too hard to assess at the given point.

1.3.1 Self-Paced Learning

Self-paced learning (SPL) can be viewed as such a reweighting method. In
many real-word applications weighting of samples beforehand might be diffi-
cult or computationally intricate. SPL refers to a method where the curricu-
lum i.e. weights of samples are determined by the learner itself. In context
of human education system, it would refer to a student that chooses what to
learn. [23]

This approach iteratively selects a set of easy examples to train on and
updates all sample weights at each iteration by the result of the selected
examples. Sample is considered easy if it is easy to predict its true output.
Similarly, easy examples are the ones whose correct output can be predicted
easily. [23]

SPL determines a scoring function based on a loss with respect to the
current hypothesis i.e. current progress of the training, while CL by the
original definition scores each sample by its loss with respect to the target
hypothesis i.e. previous finished training. [16]

In the original definition of CL, a curriculum is given to the learner be-
forehand and remains fixed. While in SPL the curriculum is updated at each
iteration by a learner progress. CL has advantage of a prior knowledge usage,
but it is not flexible to the learning process from optimization perspective. On
the other hand, SPL is limited in the usage of prior knowledge. Proposed self-
paced curriculum learning (SPCL) method joins the two described approaches
and refers to “instructor–student” collaboration. This method uses both prior
knowledge and evolving information from the student. [24]
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1.3. Related Methods

1.3.2 Hard Example Mining

It was shown that emphasizing difficult training examples can speed up learn-
ing process. The method was originally called bootstrapping and was used for
training SVM models with a main idea of selecting examples that give false
positive results. [25] The method is now called hard example mining in the
newer work related to ANN.

The original idea of hard example mining for ANN was to hold two training
sets, one to train on and one to iteratively select false positive examples from.
The automatic method proposed in Shrivastava et al. [26] is similarly to SPL,
it is based on the current loss for each data sample. Contrary to SPL, examples
with a higher loss are given more weight during a training.

1.3.3 Active Learning

Active learning deals with a problem in which unlabeled data are common but
manual labeling is expensive. The key idea of active learning is that a learner
can achieve better results when it is trained on data it chooses by itself. An
outside oracle (e.g. a manual annotator) is iteratively used to provide labels
for unlabeled samples when requested by the learner. [27]
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Chapter 2
Related Work

This chapter analyses technical details of many methods that are used to
implement curriculum learning in related work. The methods are divided
into the following sections based on the type of curriculum they use.

Transfer learning methods utilize another pre-trained model as a curricu-
lum with a prior knowledge (Section 2.1).

Automated curriculum methods determine a curriculum during a model’s
training process (Section 2.2).

Subtask selection methods use a curriculum to select an appropriate task or
a label to train on and are mostly studied in the context of reinforcement
learning (Section 2.3).

2.1 Transfer Learning

Methods based on transfer learning use another machine learning model to
predict sample difficulty before the actual learning process begins. There is an
additional computation needed for acquiring an order of samples beforehand.
As described in recent Weinshall’s work [16] the transfer can be done from
a more powerful learner (e.g. big pre-trained model) or the same student
model can be pre-train with uniformly selected samples as it is normally done
(i.e. self-taught method). Once an order of samples is acquired, a student
model is trained on gradually more difficult samples.

Let (2.1) denotes a training set, where xi ∈ Xd is a single sample, yi ∈ [K]
is its corresponding label and a mini-batch B ⊆ X denote a subset of X. The
standard training is done by presenting a learner with a sequence of uniformly
sampled mini-batches [B1, . . . ,BM ] which is a variant of SGD. [16]
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2. Related Work

X = {Xi}Ni=1 = {(xi, yi)}Ni=1 (2.1)

2.1.1 Scoring Function

Difficulty of samples (xi, yi) is measured by its loss with respect to a set of op-
timal hypotheses. Scoring function is defined as f : X→ R. A sample (xi, yi)
is said to be more difficult than a sample (xj , yj) if f(xi, yi) > f(xj , yj). In
general, a scoring function encodes a prior knowledge and defines a curricu-
lum. In Hacohen et al. [16] the confidence scores of a pre-trained classifier
model are used as a scoring function.

Two additional control curriculums are defined in [16] for comparison and
examination of learning progresses.

Anti-Curriculum uses a scoring function f ′ = −f , training samples are
sorted in descending order (i.e. harder examples are chosen before easier
ones). This corresponds to the principle of hard example mining.

Random-Curriculum uses a scoring function where training samples are
randomly scored.

2.1.2 Source Models

The following models to transfer sample difficulty from were proposed.

Simple Classifier Motivated by a lower time consumption, a less powerful
model can be used as a curriculum source. Simple classifiers based on
the multinomial logistic regression, support vector machines (SVM) or
a multilayer perceptron (MLP) were studied. [18][20]

Pretrained Large Model In [16] a pre-trained Inception network on Ima-
geNet dataset was used to obtain scores for every sample in a training
set that was used to train a simpler custom CNN classifier.

Self-Taught For the self-taught scoring function a source classifier is the
learner itself. It is trained on uniformly sampled mini-batches first (i.e.
the vanilla method) and its confidence score is used as a scoring func-
tion for each sample. After obtaining the scores the learning process is
restarted. [16]

2.1.3 Pacing Function

As defined in [16] a pacing function gϑ : [M ] → [N ] is used to acquire a se-
quence of subsets X′1, . . . ,X

′
M ⊆ X of size |X′i| = gϑ(i), from which mini-

batches {Bi}Mi=0 are sampled uniformly. Each Xi contains the first gϑ(i) train-
ing data samples sorted by the scoring function in ascending order (i.e. from
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2.1. Transfer Learning

easiest to hardest). Importantly, the implementation of CL in [16] balances
each Xi by picking the same number of samples from each class in a training
dataset X to avoid bias.

The pacing function can be any function gϑ : [M ]→ [N ], but only mono-
tonically increasing staircase functions were studied so far. The functions were
for simplicity limited to staircase functions; a step defines a set of learning it-
erations during which gϑ is constant. Each pacing function is defined by the
following hyper-parameters.

• step length – a number of iterations in each step

• increase – an exponential factor used to increase the size of the data
used for sampling mini-batches in each step

• starting percent – a fraction of the data in the initial step

The three pacing functions that were used in [16] are illustrated in Fig-
ure 3.1 and described below.

Fixed Exponential Pacing has a fixed step length and exponentially in-
creasing data size in each step.

gϑ(i) = min(starting percent · increaseb
i

step length
c) ·N (2.2)

Varied Exponential Pacing is the same as fixed exponential pacing while
allowing step length to vary.

Single Step Pacing simplifies a staircase function to a single step function,
resulting in fewer hyper-parameters.

gϑ(i) = starting percent · increase1[i<step length] ·N (2.3)

Alternatively, the choice of a subset can be done by introducing a custom
distribution that is used to sample each Bi as it was done in Chang et al. [20].

13



2. Related Work

Figure 2.1: Illustration of three pacing functions from [16]

2.1.4 Curriculum Learning Method

The pseudocode for the learning method that was used in [16] is given in
Alg. 1.

Algorithm 1: Curriculum learning method
Input: pacing function gϑ, scoring function f , data X.
Output: sequence of mini-batches

[
B′1, ...,B

′
M

]
.

sort X according to f , in ascending order;
result← [];
for all i = 1, ...,M do
size← gϑ(i);
X′i ← X [1, ..., size];
uniformly sample B′i from X′ ;
append B′i to result;

end for
return result;

2.2 Automated Curriculum

The curriculum method described in Section 2.1 uses a prior knowledge to
sort training samples. Many researchers tried to remove the need of spending
additional time on pre-training of another model. The following text describes
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work of [17][20] which are both based on association of weight to each training
sample on the fly, therefore, partially or fully eliminating time required for
the pre-training.

Weight vi for the i-th training sample is determined during a learning
process of a student model by a curriculum function that acts similarly to the
scoring function described in section 2.1.1. Overview of different curriculum
functions is given in section 2.2.3.

2.2.1 Weighted Loss Function

As defined in Eq. (2.4) a model’s loss function is modified to account for dif-
ferent sample weights vi, where W are the parameters in the model, lossi(W )
is the prediction loss and λR(W ) is the regularization term of the model. [20]

L =
∑

i

vi · lossi(W ) + λR(W ) (2.4)

The training samples are therefore given different emphasis for the model’s
parameters update during SGD.

2.2.2 Mini-Batch Sampling

Alternatively, to the approach described in Section 2.1.3, mini-batches can
be sampled on the fly using sample weights. Two baseline sampling methods
were defined in Chang et al. [20].

Uniform (SGD-Uni) Given a training dataset D = (xi, yi)i, for uniform
sampling with replacement, the probability of selection each sample is
equal Ps(i|D) = 1

|D| .

Scan (SGD-Scan) This method scans through training samples in each epoch
and picks samples uniformly without replacement. The sampling proba-
bility Ps(i|Se,D) is ( 1

|D|−|Se|)1i/∈Se
, where 1 is an indicator function and

Se is the set of samples that were already used in the current epoch.

Different sampling methods examined in [20] that use a prediction history
are described below. The prediction history of classifying the i-th training
sample to its correct class p(yi|xi) at each iteration before the current the
t-th iteration is stored as Ht−1

i . H =
⋃

iH
t−1
i , p̄Ht−1

i
(yi|xi) is the average

probability of classifying the i-th sample into its correct class yi over all stored
p(yi|xi) in Ht−1

i , and εD is a smoothness constant. It is possible to safe
memory by storing only the recent history if the training dataset is large. [20]
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Sampled by Easiness (SGD-SE) selects easier samples with higher proba-
bility as shown in Eq. (2.5), where a hyper-parameter εD is a smoothness
constant that prevents hard samples from never being selected again.

Ps(i|H,Se,D) ∝ p̄Ht−1
i

(yi|xi) + εD (2.5)

Sampled by Difficulty (SGD-SD) oppositely selects harder samples with
higher probability.

Ps(i|H,Se,D) ∝ 1− p̄Ht−1
i

(yi|xi) + εD (2.6)

Sampled by Prediction Variance (SGD-SPV) balances exploration and
exploitation by drawing training samples based on their estimated pre-
diction variance plus its confidence interval.

Ps(i|H,Se,D) ∝ ŝtd
conf
i (H) + εD (2.7)

where ŝtd
conf
i (H) =

√√√√v̂ar(pHt−1
i

(yi|xi)) +
v̂ar(pHt−1

i
(yi|xi))2

|Ht−1
i | − 1

Sampled by Threshold Closeness (SGD-STC) is a simpler and more di-
rect approach to the selection of samples where the probability is close
to the decision threshold.

Ps(i|H,Se,D) ∝ p̄Ht−1
i

(yi|xi)
(
1− p̄Ht−1

i
(yi|xi)

)
+ εD (2.8)

The training method from Chang et al. [20] is described in Alg. 2. Use of
initial burn-in epochs eb is recommended for learning basic patterns from the
data. During the burning epochs training samples are sampled and weighted
uniformly from the whole training dataset. This is a hyper-parameter of all
automated CL methods and it is usually set to 10–20 % of total training
epochs. [17]

2.2.3 Curriculum Functions

Curriculum functions are used to obtain weights for each sample in a mini-
batch on the fly. The functions utilize different strategies and have different
inputs based on a chosen implementation. Implementations from [17][20] are
described in the following subsections. The functions are incorporated directly
into the main training loop and they are computed after the loss for each sam-
ple is obtained in each iteration. Sample weights calculated by a curriculum
function are used to weight an overall loss for the whole mini-batch that is
then used to update parameters in SGD.
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2.2. Automated Curriculum

Algorithm 2: SGD Training with Sample Emphasis
Require: Training data D, Batch size |B|, Number of class |C|, # epochs
E, # burn-in epochs eb

Ensure: NN
Initialize all weights W in NN
Hi ← { 1

|C|} for all training sample i
vi ← 1 for all training sample i
t← 1
for epoch e← 1...E do
Se ← ∅
for each iteration do

if e > eb then
Sample B according to Ps(i|H,Se,D)

else
Sample B uniformly from D

end if
Weight sample i by vi for all i in B
Update parameters W in NN
for i in B do
Hi ← Hi ∪ {pt(yi|xi)}
Se ← Se ∪ {i}
Update Ps(i|H,Se,D) and vi.

end for
t← t+ 1

end for
end for

2.2.3.1 Prediction History

Similarly, to the sampling functions described in section 2.2.2 there were cor-
responding weighting functions defined in Chang et al. [20]. Methods are
illustrated by a toy example in Fig. 2.2.

Weighted by Easiness (SGD-WE) sets the weight vi for each sample ac-
cording to Eq. (2.9), where εD is a hyper-parameter smoothness constant
and ND is a normalization constant that makes the average of vi equal
to 1.

vi = 1
ND

(p̄Ht−1
i

(yi|xi) + εD) (2.9)

Weighted by Difficulty (SGD-WD) oppositely emphasizes harder sam-
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ples by giving them higher weights.

vi = 1
ND

(1− p̄Ht−1
i

(yi|xi) + εD) (2.10)

Weighted by Prediction Variance (SGD-WPV) similarly to Eq. (2.7)
gives weights to the samples based on balancing exploration and ex-
ploitation.

vi = 1
ND

(ŝtd
conf
i (H) + εD) (2.11)

Weighted by Threshold Closeness (SGD-WTC) similarly to (2.8), the
weighting can be viewed as multiplying SGD-WD and SGD-WE to-
gether.

vi = 1
ND

p̄Ht−1
i

(yi|xi)(1− p̄Ht−1
i

(yi|xi)) + εD (2.12)

2.2.3.2 Self-Paced Learning Curriculum

This section describes an approach that was originally described in Kumar
et al. [23] and implemented in Jiang et al. [17]. Self-paced learning is like
SGD-WE that was described above, except it does not provide weights in the
continuous space. A sample is either considered for training in the current
iteration or it is not.

Formally, given a training set D = (xi, yi)i of size n ∈ N, an objective func-
tion gs(xi,w) parametrized by w ∈ Rd and L(yi, gs(xi,w)) a m-dimensional
column vector that denotes a loss over m classes. Self-paced learning intro-
duces a latent weight variable v ∈ Rn×m, and optimizes the objective de-
scribed in Eq. (2.13). Where ‖ · ‖2 is the l2 norm for weight decay and the
other model optimizations like augmentation, dropouts etc. are included in gs.
Vector vi ∈ [0, 1]m×1 represents the latent weight variable for the i-th sample
in the training set; in scalar form represented as vi. Function G represents
a curriculum that is parametrized by λ.

min
w∈Rd,v∈[0,1]n×m

F(w,v) =

1
n

n∑
i=1

vT
i L(yi,gs(xi,w)) +G(v;λ) + θ‖w‖22 (2.13)

When w is fixed, vk = arg minv F(vk−1,wk) is computed using the most
recently updated wk at the epoch k and the optimal v can be derived by Eq.
(2.14). The equation (2.14) explains self-paced learning [23]; the i-th sample
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Figure 2.2: A toy example from [20] that compares different methods in a two-
class logistic regression model. An optimization path is visualized as the
red line in (c), (e) and (g). Example shows that SGD-WPV can train more
accurate model in noisy conditions.

19



2. Related Work

(a) No curriculum (b) Self-paced learning (c) Hard example mining

Figure 2.3: Curriculum functions from [17]

with a loss smaller than λ is considered as “easy” and it is selected for the
training i.e. v∗i = 1, otherwise it is considered as “hard” and it is not selected
i.e. v∗i = 0. The hyperparameter λ controls a pace of the learning.

v∗i = 1(`i ≤ λ),∀i ∈ [1, n], (2.14)

2.2.3.3 Hard Example Mining Curriculum

In the examined work of Jiang et al. [17], the hard example mining was exactly
opposite to the self-paced learning; therefore, the harder samples are selected
for training.

In [17] both self-paced learning and hard example mining are implemented
with a use of a model’s overall loss moving average. In a self-paced learning
implementation, a sample is considered for the training if its actual loss is
smaller than the moving average; for hard example mining the opposite is
true as depicted in 2.3.

2.2.3.4 Data Driven Curriculum

The curriculums in the previous sections are defined by a mathematical func-
tion. The functions had to be assembled beforehand by a human teacher.
Therefore, they are called predefined curriculums. The novel method described
in [17] removes this fixed dependency and defines a curriculum that is learnt
from a training data, therefore, it is called data-driven curriculum. In [17] the
data-driven curriculum is represented in a form of a machine learning model
called MentorNet and the trained model is called StudentNet.

The goal of this approach is to teach a MentorNet model weights of each
sample. Features passed to a MentorNet model are defined by the actual state
of a student model at each training iteration. The features for each mini-
batch are current sample losses, sample labels and training epoch progress
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Figure 2.4: MentorNet architecture [17]

percentage, output of a MentorNet model are weights for each mini-batch
sample (Fig. 2.4).

MentorNet is updated together with a learning model StudentNet using the
SPADE algorithm (Alg. 3). The training of MentorNet is done by obtaining
Θ∗ in Eq. (2.15) where zi = φ(xi, yi,w) are input features for the i-th training
sample. A data-driven curriculum can be obtained by using SGD on a Men-
torNet model with another dataset and therefore acquiring a prior knowledge;
then it can be updated multiple times during a StudentNet training. [17]

gm(zi; Θ∗) = arg min
vi∈[0,1]

F(w,v), ∀i ∈ [1, n] (2.15)
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Algorithm 3: SPADE for minimizing objective with a curriculum ((2.13))
Input : Dataset D, a predefined G or a learnt gm(·; Θ)
Output: The model parameter w of StudentNet.
Initialize w0,v0, t = 0;
while Not Converged do

Fetch a mini-batch Ξt uniformly at random;
For every (xi, yi) in Ξt compute φ(xi, yi,wt);
if update curriculum then

Θ← Θ∗, where Θ∗ is learnt by training a MentorNet
if G is used then

vt
Ξ ← vt−1

Ξ − αt∇vF(wt−1,vt−1)|Ξt

else vt
Ξ ← gm(φ(Ξt,wt−1); Θ) ;

wt ← wt−1 − αt∇wF(wt−1,vt)|Ξt ;
t← t+ 1

return wt
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2.3 Subtask Selection

There was another approach to curriculum learning proposed and imple-
mented in recent work of Graves et al. [21]. Instead of weighting training
samples, it weights tasks that should be learnt. Each dataset label is consid-
ered as a separate task, e.g. learning to recognize a digit 9 should be consid-
ered as a single task. However, Graves used artificially generated datasets to
evaluate the experiments in his work. The tasks in the datasets were design
to have hierarchically increasing difficulty. The usage of a curriculum in this
setup makes perfect sense. A similar approach was used in Pentina et al. [28].

In [21][29] an adversarial multi-armed bandit is used to select tasks.
A training problem has N tasks to solve as a N -armed bandit. At each
iteration the bandit plays one of the tasks and gets a reward. The reward
is computed by one of many proposed progress signals. The progress signals
are computed from an observed difference in a loss for current training sam-
ples (i.e. loss-driven progress signals) or as a change in the student’s network
complexity (i.e. complexity-driven progress signals).

Like in Graves et al. [21], automated curriculum learning was used in
context of deep reinforcement learning (RL). [30] A RL agent is guiding itself
through a set of hierarchically connected subtasks that it should solve. The
hardest tasks presented to the agent are composition of easier atomic tasks.
Reward shaping for RL was also studied in Justesen et al. [31].

2.4 Natural Language Processing

Curriculum learning was successfully used for natural language processing
(NLP) applications. In most cases CL helps to deal with a huge dataset by
selecting a subset of samples to train on. [32][33]
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Chapter 3
Experiments

Based on work of [16][17][20] a unified framework for an evaluation of cur-
riculum learning was developed. The code was reused from the previous
implementations and rewritten into modern Tensorflow 2 [34] library. The
implementation details of the framework and its parts are described in the
Section 3.1.

Many curriculum learning approaches described in Chapter 2 were imple-
mented and experimentally evaluated. The results for the self-taught curricu-
lum are provided in Section 3.2.1 and the results for the automated curricu-
lum methods are provided in Section 3.2.2. Furthermore, inspired by Jiang et
al. [17], experiment with noisy and corrupted data were examined in 3.2.3.

3.1 Implementation Details

The experiments were implemented with the following tools.

Python 3 is an interpreted, high-level, general-purpose programming lan-
guage that is widely used for machine learning purposes.

Tensorflow 2 is an open-source library for computing and servers as a back-
end for machine-learning applications. [34]

Keras is an open-source neural-network library. It is designed for fast exper-
iments with deep neural networks. [35]

The implemented framework consists of the following interchangeable parts.
Each part is represented by a Python function or a class with potential ar-
guments. It is easy to implement new methods using this implementation
approach.

25



3. Experiments

Figure 3.1: The pacing function that was used for the training.

The training algorithm of the implemented framework is described in Sec-
tion 3.1.1.

Datasets represent loaders for different data that are used for training, they
are implemented as a function. List of the examined datasets is provided
below and more details about the datasets are provided in Section 3.1.2.

• MNIST dataset [36]
• CIFAR10 dataset [37]
• SVHN dataset [38]
• MNIST ERASED99 noisy dataset (see Section 3.1.2.2)
• MNIST CORRUPTED40 corrupted dataset (see Section 3.1.2.3)

Models represent a student model implemented as a Python function that
returns a Keras model. The following models were implemented, details
can be found in Section 3.1.3.

• Normal model – a CNN model implementation from [16]
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• Simple model – a simplified CNN model implementation like the
normal model with fewer convolution layers

Data samplers are responsible for sample selection into the current mini-
batch at each training iteration. Data samplers are implemented as
a Python class with an optional initialization for acquiring a prior knowl-
edge and a recalculation at the end of each training epoch. The following
data samplers were implemented and tested.

• Automated data sampler – A sampler that selects samples for train-
ing by their current progress indicators (e.g. the predicted history)
on the fly as described in Section 2.2.2 and implemented in Chang
et al. [20]. The calculation is done by a sampling function passed
to the sampler class as an argument. The number of mini-batches
selected for each epoch remains constant.
• Pre-trained curriculum model sampler – Implementation of a sam-

pler that pre-trains a given model passed as an argument (see Sec-
tion 2.1). A self-taught method was implemented; a sampler model
and a student are the same model (Section 2.1.2). The order of
samples selected for training is given by a scoring function passed
as an argument. The number of mini-batches selected for each
epoch is given by a pacing function passed as an argument.

Sampling functions are used for selecting samples into mini-batches on the
fly in the automated data sampler. The following functions were imple-
mented.

• Sampled by Easiness (SGD-SE) emphasizes easy samples using the
prediction history during selection given Eq. (2.5)
• Sampled by Difficulty (SGD-SD) emphasizes difficult samples using

the prediction history during selection given Eq.(2.6)
• Sampled by Prediction Variance (SGD-SPV) balances exploration

and exploitation given Eq. (2.7)

Scoring functions are used in a pre-trained curriculum model sampler for
ordering of training samples (see Section 2.1.1). The following functions
were implemented.

• Curriculum selects easy samples first based on model’s confidence
intervals
• Anti-Curriculum is opposite to the curriculum scoring
• Random-Curriculum selects random samples
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Pacing functions are used for determining a size of training set in a pre-
trained curriculum model sampler (see Section 2.1.3). The fixed expo-
nential pacing function (Eq. (2.2)) was implemented and used in the
experiments. The progress of the function is shown in Fig 3.1.

Mentors are used for obtaining mini-batch samples’ weights in the auto-
mated curriculum methods (see Section 2.2). A mentor is implemented
as a Python class with an optional initialization and a method for obtain-
ing the weights based on mini-batch descriptors (i.e. learning progress,
sample losses, sample labels) as was done in Jiang et al. [17]. Only
a predefined curriculum mentor was implemented as described in Sec-
tion 2.2.3.4.

Curriculum functions are used as a parameter function in a predefined cur-
riculum mentor for computing mini-batch sample weights on the fly for
an automated curriculum as it was described in Section 2.2. The follow-
ing functions were implemented and evaluated.

• Baseline curriculum weighs all samples uniformly

• Self-paced learning uses the implementation of SPL that was de-
scribed in Section 2.2.3.2

• Hard example mining was implemented as opposite to the SPL
method similarly to [17]

• Weighted by Easiness (SGD-WE) uses the sample prediction his-
tory and it is computed by Eq. (2.9)

• Weighted by Difficulty (SGD-WD) uses the sample prediction his-
tory and it is computed by Eq. (2.10)

• Weighted by Prediction Variance (SGD-WPV) uses the sample pre-
diction history and it is computed by Eq. (2.12)

3.1.1 Training Algorithm

The whole algorithm that was implemented is a combination of Alg. 1, Alg. 2
and Alg. 3; the implementation is described in Alg. 4. The SGD training step
was unwound by a Tensorflow’s GradientTape; the unwinding made possible
for a more precise acquisition of mini-batch descriptors that are passed to
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a Mentor for sample weights evaluation.

Algorithm 4: The training algorithm of the implemented framework
Input: Sampler, StudentModel, Mentor, LossFunction, iterations.
Output: Trained StudentModel.
iteration← 0;
while iteration < iterations do
batch← Sampler.getBatch();
labels← batch.labels;
predictions← StudentModel.evaluate(batch);
losses← LossFunction(predictions, labels);
weights←Mentor.getWeights(iteration, losses, predictions, ...);
weightedLoss← mean(weights · losses);
gradients← get gradients with respect to weightedLoss;
gradient descent step on StudentModel parameters with gradients;
iteration← iteration+ 1;

end while
return StudentModel;

3.1.2 Datasets

3.1.2.1 MNIST

MNIST is a widely used dataset that contains small images of handwritten
single digits between 0 and 9. The images are monochromatic; each image
has 28× 28 pixels. The training set for this dataset contains 60, 000 samples
and the testing set has 10, 000 samples. Random samples from the dataset
are illustrated in Fig. 3.2.

3.1.2.2 MNIST ERASED99

A custom dataset was derived from the MNIST dataset by randomly applying
black (e.g. zero value) rectangles to 99 % of the dataset samples. The rect-
angles have a random length and width equal to 25–75 % of the whole image.
The dataset was generated only once, and it was used for all methods in the
related experiments.

3.1.2.3 MNIST CORRUPTED40

Labels of 40 % of the samples from the MNIST dataset were changed to
uniformly distributed labels. Therefore, simulating heavily corrupted training
data. The dataset was generated only once.
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Figure 3.2: MNIST dataset [36]

3.1.2.4 CIFAR10

CIFAR10 is a computer-vision dataset that contains 10 classes of everyday
objects. The dataset consists of a 60, 000 training sample subset of a larger
dataset; it has 6, 000 images per class. The training set contains 50, 000 sam-
ples and the testing set has 10, 000 samples. Images has 3 color channels and
32× 32 pixels. Sample images are illustrated in 3.3.
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Figure 3.3: CIFAR10 dataset [37]

3.1.2.5 SVHN

The Street View House Numbers (SVHN) is a real-world image dataset for
machine learning. The dataset contains small cropped and centered images of
single house numbers. [38] There are 73257 training samples and 26, 032 testing
samples. Each sample has 32× 32 RGB pixels. The SVHN is more challeng-
ing than MNIST, because the images are more distorted with different shoot
angles, colors and fonts as illustrated in Fig. 3.4.
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Figure 3.4: SVHN dataset [38]

3.1.3 Student Models

Two models were evaluated in the experiments. Both models are convolutional
neural networks with a widely used architecture inspired by VGG [39]. The
first model is taken from the work of [16] for direct comparison and it is
called a normal model. The second model is its simplified version with fewer
convolution layers and therefore less parameters; it is called a simple model.
The models’ architectures can be seen in Fig 3.5, categorical cross-entropy
from the Tenserflow library was used for the loss function.

32



3.1. Implementation Details

Both models utilize dropouts as described in [6] and weight regulariza-
tion [5]. Data augmentation was implemented in the evaluation framework
and can be used with curriculum learning in general. It is not a part of the
results provided in this work because of possible bias it might presents to the
results.

An SGD optimizer implementation from Keras library was used for train-
ing. The best learning rate was determined by preliminary experiments on
the baseline learning method (without CL) and it was fixed during the whole
learning process for all experiments. It should be noted that learning rate
tuning in combination with CL is very challenging as described in Hacohen et
al. [16].

3.1.4 Experiment Evaluation

Experiments were computed on Nvidia GPUs GTX 1080 Ti with 11GB mem-
ory and Titan V100 with 32 GB memory.

Training time is compared by a number of iterations, i.e. the number of
processed mini-batched by the learner in SGD. It is assumed that a single
SGD iteration takes a constant time on a given machine. The implemented
curriculum learning methods do not introduce a huge overhead over training
via keras.fit function. Although, keras.fit might be better optimized in
the Tensorflow/Keras code, there were not any deviation in the training times
or quality of the results observed.

The number of training epochs is fixed, because the CL implementation
uses a learning progress for sample weight computation (300 epochs were used
for most of the experiments). Burn-in epochs were set to 10 %.

The measurements for every method were run 5 times and the mean val-
ues across those measurements are provided in the results. The tables contain
mean accuracies measured at the last epoch on train and test sets. The re-
sults are provided as a mean ± a standard error of the mean (mean ± SE).
Furthermore, the mean of the best observed value for each measurement on
a test set is also provided.

The lines in the provided plots are for better readability and clearness
smoothed by scipy.ndimage.gaussian filter1d with a sigma parameter
equal to 2.

The baseline method in the experiments denotes a training without any
form of curriculum learning. Samples are picked uniformly from the train-
ing set and they are all provided with a uniform weight of 1. This method
corresponds to the vanilla method that was used in Hacohen et al. [16].
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(a) Simple model (b) Normal model

Figure 3.5: A visualization of the CNN models that were used for the experi-
ments.
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3.2 Results

3.2.1 Self-Taught CL

The first experiment run the simple model on the MNIST dataset. Results
for self-taught curriculum methods are plotted in Figure 3.6, all the results
can be found in Table 3.1. The examined methods have different training
paths and results. The steps of the pacing function are visible in the training
accuracies. There is a huge dip in the training accuracy of the self-taught
method (green line) caused by the introduction of the most distorted training
samples to the model. The self-taught method struggles to reach competitive
test accuracies, this might be due to the late introduction of harder samples
during the training. On the other hand, the anti-curriculum method has
low accuracies on the training set, but it can extract information from harder
samples and its test accuracy is better than baseline during the whole training.
The random curriculum has similar result to the baseline once it sees all the
training samples at the end of the training. The illustration of easy and hard
samples identified by the pre-training is depicted in Figure 3.7

The second experiment used the normal model on the MNIST dataset,
results are in Figure 3.8 and Table 3.2. The random method has again sim-
ilar results to the baseline. The self-taught method (green line) again yields
worse results than other methods. In contrast to the simple model, the anti-
curriculum method does not have a better accuracy on the test set than the
baseline.

The third experiment was conducted on the CIFAR10 dataset using the
normal model, results are in Figure 3.9 and Table 3.3. We can again see the
dip in a self-taught method train accuracy at the end of the training. The
random and self-taught methods have lower accuracies on the test data than
the baseline. The anti-curriculum method has even lower test accuracy.

The fourth experiment examined the SVHN dataset using the normal
model, results are in Figure 3.10 and Table 3.4. The random and self-taught
methods have test accuracies close to the baseline, the anti-curriculum has
worse accuracy than the other methods. The samples sorted by the pre-
training are illustrated in Figure 3.11.

3.2.2 Automated CL

The fifth experiment examined the automated curriculum methods on the
MNIST dataset with the simple model. The results can be found in Figure 3.12
and Table 3.1. The self-paced method struggles to train well. This happens
because the sample weighting in this method is not continuous and at some
point it converges to train only on easy samples. The hyper-parameters for
this implementation of self-paced learning from Jiang et al. [17] were obtained
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Table 3.1: Results on the MNIST dataset using the simple model. The re-
sults are presented in percentages as mean ± SE, see Section 3.1.4 for more
information.

Method Train accuracy Test accuracy Test best result
Baseline 99.676± 0.00787 99.424± 0.02182 99.498± 0.01985
Self-paced 97.608± 0.03046 98.790± 0.01483 99.052± 0.00735
Hard example 99.672± 0.01337 99.422± 0.01393 99.486± 0.02821
SGD-WE 99.501± 0.01574 99.435± 0.02592 99.495± 0.01765
SGD-WD 99.832± 0.00773 99.482± 0.01908 99.528± 0.00969
SGD-WPV 99.770± 0.03018 99.467± 0.02728 99.537± 0.01797
Self-taught 98.737± 0.01150 99.213± 0.01931 99.233± 0.04333
Anti 99.929± 0.00276 99.482± 0.01250 99.533± 0.02057
Random 99.511± 0.02459 99.373± 0.01453 99.430± 0.01155

Table 3.2: Results on the MNIST dataset using the normal model.

Method Train accuracy Test accuracy Test best result
Baseline 99.850± 0.00677 99.568± 0.01960 99.634± 0.01166
Self-paced 98.807± 0.01692 99.318± 0.02782 99.398± 0.01855
Hard example 99.854± 0.00596 99.548± 0.01393 99.618± 0.00800
SGD-WE 99.775± 0.00710 99.596± 0.01208 99.640± 0.01225
SGD-WD 99.926± 0.00238 99.594± 0.01077 99.634± 0.00980
SGD-WPV 99.920± 0.00551 99.560± 0.01095 99.624± 0.00510
Self-taught 99.086± 0.00080 99.463± 0.01548 99.483± 0.00750
Anti 99.971± 0.00493 99.565± 0.01848 99.613± 0.01181
Random 99.726± 0.01208 99.577± 0.02333 99.607± 0.00667

Table 3.3: Results on the CIFAR10 dataset using the normal model.

Method Train accuracy Test accuracy Test best result
Baseline 95.940± 0.03805 85.604± 0.11818 85.874± 0.06485
Self-paced 76.659± 0.21056 77.046± 0.21951 78.276± 0.15128
Hard example 91.988± 0.09756 84.434± 0.13269 84.714± 0.15766
SGD-WE 92.711± 0.10738 85.290± 0.09965 85.484± 0.06185
SGD-WD 97.064± 0.02439 85.426± 0.14137 85.656± 0.15911
SGD-WPV 95.885± 0.06499 85.706± 0.09469 86.006± 0.10003
Self-taught 85.327± 0.09849 83.143± 0.17169 83.323± 0.15301
Anti 94.068± 0.11847 79.237± 0.25360 79.827± 0.10039
Random 92.640± 0.08442 83.250± 0.15961 83.360± 0.12373
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3.2. Results

Figure 3.6: Results of the self-taught curriculum methods on the MNIST
dataset using the simple model.

by a grid search and the method with the best results is presented in the
plots. The SGD-SPV and SGD-WD methods scored much higher accuracies
than the baseline method for this experiment.

The sixth experiment used the MNIST dataset and the normal model,
results are in Figure 3.13 and Table 3.2. In this experiment the SGD-WE
method scores the best results, although, it is comparable to the baseline.
Emphasizing harder samples in this experiment does not help to improve the
test accuracies, but test accuracies rise slightly faster.

The seventh experiment used the CIFAR10 dataset and the normal model,
results are in Figure 3.14 and Table 3.3. In this experiment only the SGD-
SPV method has slightly better results than the baseline. The other methods
have much worse test accuracies. Again, the accuracies of the methods that
emphasizes harder samples rise faster.
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3. Experiments

(a) Samples scored with the highest weight.

(b) Samples scored with the lowest weight.

Figure 3.7: Selected samples for the MNIST dataset and the self-taught
method. Each column corresponds to one label. There are corrupted labels
for a few digits in the unmodified dataset (e.g. the fourth column corresponds
to digit 3).
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3.2. Results

Figure 3.8: The results of the self-taught curriculum methods on the MNIST
dataset using the normal model.

The eight experiment was conducted on the SVHN dataset and the normal
model, results are in Figure 3.15 and Table 3.4. In this experiment only the
SGD-SPV method has slightly better results than the baseline. The other
methods have much worse test accuracies. Again, the accuracies of the meth-
ods that emphasizes harder samples rise faster.

3.2.3 Noisy and Corrupted Data

Like in the work of [17][20] the experiments on corrupted datasets were con-
ducted. The datasets are described in Section 3.1.2.

The ninth experiment run on the MNIST CORRUPTED40 dataset and
the simple model using the self-taught curriculum methods. The results can
be found in Figure 3.16 and Table 3.5. Training on easier samples (green
line) yields the same results as the baseline. The random and anti-curriculum
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3. Experiments

Figure 3.9: The results of the self-taught curriculum methods on the CIFAR10
dataset using the normal model.

methods have much worse results.

The tenth experiment on the MNIST CORRUPTED40 dataset and the
simple model using the automated curriculum methods. The results can be
found in Figure 3.17 and Table 3.5. The SGD-WE method (weighted by
easiness) yielded the best results for the MNIST CORRUPTED40 dataset,
the SGD-SPV has almost similar performance in this experiment.

The eleventh experiment on the MNIST ERASED99 dataset and the sim-
ple model using the self-taught curriculum methods. The results can be found
in Figure 3.18 and Table 3.6. All the self-taught methods are strictly worse
than the baseline in this experiment.

The twelfth experiment on the MNIST ERASED99 dataset and the simple
model using the automated curriculum methods. The results can be found in
Figure 3.19 and Table 3.6. Emphasizing harder samples gives better result in
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3.2. Results

Figure 3.10: The results of the self-taught curriculum methods on the SVHN
dataset using the normal model.

this experiment. The SGD-WPV method has the best test accuracies for the
MNIST ERASED99 dataset. These results are similar to the results on the
clean MNIST dataset. This might be due to the fact, that there is still 1 %
of clean samples which is enough for the network to successfully train on.
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3. Experiments

Table 3.4: Results on the SVHN dataset using the normal model. The re-
sults are presented in percentages as mean ± SE, see Section 3.1.4 for more
information.

Method Train accuracy Test accuracy Test best result
Baseline 98.711± 0.01491 94.935± 0.03190 95.108± 0.04072
Self-paced 89.129± 0.05245 91.124± 0.06166 92.480± 0.06338
Hard example 98.649± 0.02151 95.001± 0.04456 95.127± 0.03779
SGD-WE 97.301± 0.02004 95.202± 0.02648 95.263± 0.02215
SGD-WD 99.331± 0.01373 95.068± 0.05430 95.158± 0.02945
SGD-WPV 98.899± 0.02367 95.109± 0.07434 95.267± 0.02384
Self-taught 94.596± 0.03660 94.779± 0.06014 94.851± 0.04393
Anti 99.008± 0.02862 92.995± 0.08985 93.092± 0.10519
Random 97.481± 0.03234 94.418± 0.03633 94.564± 0.09567

Table 3.5: Results on the MNIST CORRUPTED40 dataset using the simple
model.

Method Train accuracy Test accuracy Test best result
Baseline 63.367± 0.02060 99.010± 0.04159 99.166± 0.01860
Self-paced 64.035± 0.02903 98.448± 0.03397 98.982± 0.03121
Hard example 10.167± 0.07673 10.290± 0.01393 97.950± 0.03847
SGD-WE 63.385± 0.01457 99.222± 0.01463 99.244± 0.01166
SGD-WD 63.150± 0.01762 98.426± 0.04202 99.152± 0.01393
SGD-WPV 63.493± 0.00875 99.144± 0.01939 99.228± 0.01114
Self-taught 63.114± 0.01150 99.000± 0.04726 99.036± 0.04333
Anti 67.892± 0.13442 92.030± 0.28378 92.530± 0.12288
Random 67.141± 0.10637 94.563± 0.12347 95.956± 0.12347

Table 3.6: Results on MNIST ERASED99 dataset using the simple model.

Method Train accuracy Test accuracy Test best result
Baseline 92.526± 0.06761 98.903± 0.02404 98.990± 0.01732
Self-paced 80.642± 0.06752 96.606± 0.01667 97.410± 0.01527
Hard example 91.410± 0.04796 98.883± 0.03283 98.937± 0.00333
SGD-WE 90.765± 0.02896 98.697± 0.07126 98.753± 0.06227
SGD-WD 94.097± 0.02624 98.893± 0.06064 99.017± 0.00882
SGD-WPV 92.822± 0.03386 98.943± 0.01202 99.050± 0.01528
Self-taught 87.861± 0.02246 98.550± 0.02887 98.650± 0.04041
Anti 94.133± 0.06765 98.067± 0.02604 98.193± 0.01764
Random 91.580± 0.04304 98.527± 0.06766 98.617± 0.03844
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3.2. Results

(a) Samples scored with the highest weight

(b) Samples scored with average weights

(c) Samples scored with the lowest weight

Figure 3.11: Selected samples for the SVHN dataset and the self-taught
method. Each column corresponds to one label. There are distorted sam-
ples in the dataset.
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3. Experiments

Figure 3.12: The results of the automated curriculum methods on the MNIST
dataset using the simple model.
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3.2. Results

Figure 3.13: The results of the automated curriculum methods on the MNIST
dataset using the normal model.
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Figure 3.14: The results of the automated curriculum methods on the CI-
FAR10 dataset using the normal model.
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3.2. Results

Figure 3.15: The results of the automated curriculum methods on the SVHN
dataset using the normal model.
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3. Experiments

Figure 3.16: The results of self-taught curriculum methods on
MNIST CORRUPTED40 dataset using the simple model.
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3.2. Results

Figure 3.17: The results of the automated curriculum methods on
MNIST CORRUPTED40 dataset using the simple model.
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3. Experiments

Figure 3.18: The results of self-taught curriculum methods on the
MNIST ERASED99 dataset using the simple model.
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3.2. Results

Figure 3.19: The results of the automated curriculum methods on
MNIST ERASED99 dataset using the simple model.
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Chapter 4
Discussion

First, it should be noted that uniform weighting (i.e. the baseline method) is
a very strong benchmark. It was possible to reproduce some results of related
work in the experiments. Although, same experiments with a slightly different
setup produced completely different outcomes. Results of curriculum learning
approaches vary among the reviewed related work. The experiments in this
work confirms this fact as there were dramatical differences among the tested
methods.

It is clear from the experiments that success of a curriculum learning
method is dependent on the dataset distribution and student’s capabilities.
These dependencies should be further investigated in future work to fully un-
derstand curriculum learning principles. The following rules are derived from
the results of the experiments in this work.

• Emphasizing harder samples speeds up training. All the experiments
show swift rise in test accuracies in the beginning of the training while
using the SGD-WD method.

• Emphasizing harder samples works better for less capable students. This
behavior was observed in the fifth and the twelfth experiment using the
simpler model.

• Emphasizing easy samples works better on corrupted datasets. This was
observed in the experiments on the corrupted datasets.

Learning rate tuning is a challenging task in curriculum learning as was
noted in Hacohen et al. [16]. Our experiments were limited to a fixed rate
that was determined by preliminary experiments. This approach might not
be ideal and further investigation of learning rate setting while using CL might
be beneficial. There were no differences in the observed accuracies while using
the Adam optimizer in the preliminary experiments.
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4. Discussion

Both automated and self-taught methods for curriculum learning provided
similar results given the same experiment setup. The overall better auto-
mated methods’ results in the experiments might be caused by the usage of
universal pacing function and a fixed learning rate for the self-taught meth-
ods. Additional time required for the hyper-parameter tuning and the need
for a pre-training are a big disadvantage of the self-taught methods described
in Hacohen et al. [16] and a disadvantage of all transfer-learning based ap-
proaches in general. Automated methods are much easier to use, especially,
the methods based on the prediction history are easy to implement and deliv-
ered decent results in the experiments.

The SGD-WPV method that balances exploration and exploitation worked
as good or better than the baseline in almost all experiments. I suggest exam-
ining this bandit-like approach in future work since it might lead to a general
automated curriculum learning method. Moreover, it is consistent with find-
ings in human teaching experiments where an unexplored space was divided by
a kernel-based approach and exploration was conducted on top of this divided
space in Basu et al. [12].

Bandit-like approaches are also common in related curriculum learning
work addressing deep reinforcement learning problems. [21] In my opinion,
curriculum learning used in this context might be much more beneficial and
significant since it was shown that there are unsolvable tasks without a use of
a curriculum in this field. [30]

Curriculum learning was studied on datasets with corrupted labels. [17][20]
The experiments in this work confirm that emphasizing easy samples leads to
better generalization on corrupted datasets. On the other hand, as was shown
in Szegedy et al. [40], deep artificial neural networks have nonintuitive charac-
teristics. The experiments on the distorted dataset MNIST ERASED99 did
not bring any reasonably interpretable results considering that the emphasiz-
ing of easy samples unexpectedly produced worse results than the opposite.

As I have already proposed, examining the training dataset properties and
learning a curriculum from the observations might be crucial for future work.
The curriculum should be correlated with the dataset and the student itself.
The similar conclusion was given in Hacohen et al. [16]. Here, the data-driven
approach introduced in Jiang et al. [17] might be useful.

Regarding the technical details, curriculum learning does not bring a huge
overhead over a classical neural network training. The overhead and pro-
longation of training time are mostly caused by a lack of code optimization.
Especially, the mini-batch sampling based on the current student progress is
a big slowdown because the mini-batches cannot be prepared beforehand.

As it is not possible to pinpoint the best general curriculum learning
method, for now, it is encouraged to find the best working curriculum for
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a particular task by the trial and error method. It would be nice to imple-
ment basic automated curriculum learning methods for emphasizing samples
by difficulty in the Keras library so that everyone can easily experiment to
find the best working curriculum for a given problem.
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Conclusion

This work investigated one of the techniques that aim to increase accuracy
of training deep artificial neural networks. Detailed description of curriculum
learning was provided. Different approaches to introduce a curriculum to the
training process of ANN models were analyzed. Subsequently, technical details
of curriculum learning implementations in related work were provided.

A unified framework for curriculum learning evaluation was implemented
in this work according to the description provided in Section 3.1. The transfer
learning-based method was implemented in the self-taught variant, many au-
tomated curriculum learning methods based on weighting of training samples
on the fly were implemented.

The conducted experiments partially confirmed findings of related work.
On the other hand, some of the extended experiments provided contrary re-
sults. It was observed that a curriculum is highly dependent on a given task.
The most consistent results were observed while using the automated method
that balances exploration and exploitation.

The automated curriculum learning methods were recommended for wide
use since they are easy to use and were shown to boost accuracies in the
provided experiments.
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Appendix A
Acronyms

AI Artifical Intelligence

ANN Artifical Neural Network

CL Curriculum Learning

CNN Convolutional Neural Network

CV Computer Vision

MLP Multilayer Perceptron

NLP Natural Language Processing

RL Reinforcement Learning

SE Standard Error

SPCL Self-Paced Curriculum Learning

SPL Self-Paced Learning

SVM Support Vector Machines
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Appendix B
Contents of Enclosed CD

src.........................source codes of the implemented framework
commands...................example commands for running the training
text..........................................the thesis text directory

thesis.pdf...........................the thesis text in PDF format
thesis.tex................................source code of the thesis
images ..................................... images used in the text
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