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Abstrakt

Predstavujeme analyzu dopadu doménové adaptace zalozené na neuronovych
sitich v astronomické spektroskopii. Doménové adaptace resi problém pouziti
diive ziskanych znalosti na nové data. Analyzu ukazujeme na problému iden-
tifikace kvasari v prehlidce Large Sky Area Multi-Object Fiber Spectroscopic
Telescope pomoci anotovanych dat z prehlidky Sloan Digital Sky Survey.
Pro experimenty jsme vybrali ¢tyfi modely zalozené na neuronovych sitich
pro doménovou adaptaci: Deep Domain Confusion, Deep Correlation Align-
ment, Domain-Adversarial Network and Deep Reconstruction-Classification
Network. Vysledky experiment ukézaly, ze tyto modely nejsou schopné
vylepsit klasifika¢ni pfesnost v porovnani s konvolu¢ni neuronovou siti, kterd
doménovou adaptaci nebere v potaz. S vyuzitim redukce dimensionality,
statistik zminénych metod a chyb v klasifikaci ukazujeme, Ze zvolené metody
doménové adaptace nejsou dostatecné robustni, abychom je mohli aplikovat
na komplexni a nevycisténa astronomicka data.

Klicova slova doménova adaptace, neuronové sité, hluboké uceni, astro-
nomickd spektroskopie, astronomie
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Abstract

We present an analysis of the impact of neural-based domain adaptation in as-
tronomical spectroscopy. Domain adaptation addresses the problem of apply-
ing prior knowledge to a new data of interest. Therefore, we selected a prob-
lem of quasar identification in the Large Sky Area Multi-Object Fiber Spectro-
scopic Telescope survey using labelled data from the Sloan Digital Sky Survey.
We choose to experiment with four neural models for domain adaptation:
Deep Domain Confusion, Deep Correlation Alignment, Domain-Adversarial
Network and Deep Reconstruction-Classification Network. However, our ex-
periments reveal that these model cannot improve classification performance
in comparison to a convolutional neural network that does not consider do-
main adaptation. Using dimensionality reduction, statistics of the selected
methods and misclassifications, we show that the domain adaptation methods
are not robust enough to be applied to the complex and dirty astronomical
data.

Keywords domain adaptation, neural networks, deep learning, astronomi-
cal spectroscopy, astronomy
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CHAPTER ].

Introduction

In this thesis, we ask the question of what is the impact of domain adaptation
based on neural networks in astronomical spectroscopy. Having two different
spectroscopic sky surveys, are we able to extract knowledge from one and apply
it to another with a neural network. To be concrete, we will experiment
with the identification of quasars in the Large Sky Area Multi-Object Fiber
Spectroscopic Telescope survey with quasars identified in the Sloan Digital
Sky Survey.

Previous research in machine learning has shown that domain adaptation
can overcome the problem of analysing data from different distributions in one
experiment while having a sufficient amount of data. Nowadays, astronomy is
facing an avalanche of data, and exponential growth of data transforms science
in general. The vast data sources provide immense potential for discoveries.
However, we need to adapt existing methods or develop new sophisticated
automatic approaches for data analysis. Therefore, we see potential in domain
adaptation by exploiting knowledge extracted in previous problems.

To explore the potential of domain adaptation based on neural networks,
we set the goal of this thesis to be the analysis of the impact of domain
adaptation using data from the Sloan Digital Sky Survey for identification
of quasars in the Large Sky Area Multi-Object Fiber Spectroscopic Telescope
survey.

In the second chapter E, we firstly introduce astronomical spectroscopy,
describe the aforementioned spectroscopic surveys, and we demonstrate why
they are suitable for our problem. In chapter B, we provide a summary
of the theory of domain adaptation in the context of the machine and trans-
fer learning, survey domain adaptation based on neural network and give
an overview of applications of domain adaptation in astronomy. In the chap-
ter Y with experiments, we analyse the impact of domain adaptation on four
models based on neural networks. We suggest future improvements and con-
clude this thesis in the last chapter E






CHAPTER 2

Spectroscopic Sky Surveys

We start with a brief introduction to astronomical spectroscopy to under-
stand the data used in this thesis. Then, we describe quasars because they
are the object we would like to identify in the Large Sky Area Multi-Object
Spectroscopic Telescope survey using the data and labels from the Sloan Digi-
tal Sky Survey. Therefore, we introduce the two large spectroscopic surveys in
the following section. We end this chapter with a comparison of the two sur-
veys to show that they are different, thus suitable for the problem of domain
adaptation.

2.1 Astronomical Spectroscopy

Almost all we know about the universe outside our solar system is based on
the analysis of light. For example, we observe its flux or time variations. [1].
Light is electromagnetic (EM) radiation. Spectroscopy started when Issac
Newton experimented with light decomposition through a prism in 1666.
Next, Thomas Young has shown that light behaves like a wave. However,
EM radiation exhibits also particle nature.

The particles of EM radiation are photons. Photons have no mass but
transport energy and have momentum. Every photon has an associated fre-
quency v of the corresponding EM wave giving it energy by the Planck-—
Einstein relation:

E = hv, (2.1)

where h is the Planck constant and v is the frequency of the photon.
Therefore, a higher frequency means higher energy. All photons in vacuum
move in the speed of light ¢. The frequency v is related to the wavelength A:

v=-—, (2.2)
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Radiation type | Wavelength (m) ‘

v ray 10712
X-ray 10-10
Ultraviolet 1078
Visible 0.5 x 1076
Infrared 10-°
Microwave 102
Radio 103

Table 2.1: Parts of electromagnetic spectrum

where c is the speed of light. We see that the energy of a photon is inversely

proportional to wavelength A by combining equations and gives [2]:
c
E=h—. 2.3
: (23)

Secondly, EM radiation has the wave nature. EM wave also propagates
in the speed of light ¢ and transfers energy. Again the higher the frequency,
the more energy it carries. [3]

EM wave can be decomposed (by a prism or a diffraction grating) as a func-
tion of its wavelength A\. The complete decomposed spectrum of EM radiation
is called the EM spectrum. The visible light is only a tiny part of the com-
plete spectrum of electromagnetic radiation. The complete spectrum consists
of v rays, X-rays, ultraviolet, visible light, infrared radiation, microwaves,
radio waves (see Table @)

Firstly, EM radiation is produced by either heating up matter or by excit-
ing atoms. The blackbody is a physical model of spectral radiation B(\,T).
Max Planck derived the spectral distribution of a black body. Heating trans-
forms into emission of EM radiation at all wavelengths with an energy distri-
bution as a function of a wavelength which only depends on the temperature
and is described by Planck’s law:

2hc? 1

—_—,
A ekacT -1

B\T) = (2.4)

where kg is the Boltzmann constant and h is the Planck constant. This
phenomenon does not depend on the composition of the body but only on its
temperature. The Wien’s displacement law gives the wavelength of maximum
intensity Amax:

)\max — T, (25)
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where b is the Wien’s displacement constant. Accordingly, we can derive
the temperature T' of an object with known wavelength of maximum intesity

Amax:

b

)
>\max

T =

(2.6)

where b is the Wien’s displacement constant. [3]

We consider stars to be black bodies because they are objects hotter than
its environment and emit electromagnetic radiation. Therefore, all EM radi-
ation of a star is determined only by its temperature. The other way around,
with the Wien’s displacement law, we can estimate the absolute temperature
T of a star. [2]

Secondly, EM radiation can be emitted by exciting atoms. Therefore,
EM radiation carries information about stars and planets made of matter
across the universe. The energy carried by EM radiation interacts with matter
in the following ways:

e emission occurs when EM radiation propagates through a gas because
the atoms of the gas might excite and emit EM radiation;

e absorption happens when a gas absorbs wavelengths of the EM radiation.

Fraunhofer was also one of the first to observe dark lines in the solar spec-
trum and David Brewster postulated that the dark lines correspond to ab-
sorption from gas in the way of light travelling towards us. Robert Wilhelm
Bunsen and Gustav Kirchhoff showed that each chemical element has its own
set of spectral lines and Kirchhoff established the three famous laws describing
the three types of spectra:

o the spectrum of a conventional light bulb is a continuous rainbow (called
continuous spectrum);

« if a cloud of gas lies between a detector and a bulb, the cloud can absorb
specific wavelength making what an absorption-line spectrums;

e if a cloud emits light itself, its spectrum is called an emission-line spec-
trum.

Real astronomical spectra are usually a combination of these types. There-
fore, spectroscopy can be used for chemical analysis of the matter. Then,
at the beginning of the twentieth century, the invention of quantum mechan-
ics help us to understand the origin of spectral lines.

We model matter as made of atoms. An atom has a specific number of elec-
trons which are place in particular orbits of the atom. Electrons in an orbit
have a specific energy level. We know from quantum mechanics that an elec-
tron can change energy level by an exchange of energy in the form of a photon.

5
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Figure 2.1: The two-dimensional spectrum of the Sun by NASA.

The energy transfer is not continuous. The energy has to correspond to the dif-
ference in the energy levels precisely. Therefore, the change produces EM ra-
diation with an energy FE in the wavelength A\ according to Planck—Einstein
relation in Equation R.3. Therefore, the specific set of energy levels of an atom
determines if photons are either absorbed or emitted by it, which is a direct
consequence for spectroscopy. [H]

The fact that each atom, ion or molecule possesses a unique set of energy
levels causes emission and absorption lines at specific wavelengths in spectra.
Spectral lines correspond to the wavelengths of light absorbed by chemicals
on the surface of the star. Therefore, positions of emission and absorption lines
can tell us objects composition. We display spectra as bands of light that is
a projection of light that passes through a prism on a wall (see Figure R.1)
called two-dimensional spectra. [3]

More reasonable is to display spectra as graphs of intensities of the light
as the vertical axis and wavelengths as the horizontal axis: called a one-
dimensional spectral profile (see Figure @) [E, H] This representation of an as-
tronomical spectrum can be seen as a one-dimensional image.

Joseph von Fraunhofer was the first to observe spectra of stars by using
a spectroscope in combination with a telescope. Nowadays, new technologies
have advanced spectroscopic observations (CCD detectors, optical fibres and
computing power). [] Telescopes are giant eyes than can collect much more
light that the eye of a human. A telescope is composed of mirrors and lenses

6
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Figure 2.2: The one-dimensional spectral profile of the first-ever discovered
quasar 3C 273.

that lead light into a spectrograph. A spectrograph contains a diffraction
grating and a charge-coupled device (CCD) camera. Fraunhofer invented diff-
reaction grating based on the wave nature of light. It can disperse the light
collected by a telescope into a spectrum while allowing more excellent disper-
sion than prisms. Diffraction gratings are one of the essential parts of modern
spectroscopes. Then, the dispersed spectrum reveals objects composition,
speed, temperature and more. [4]

Photons carry information about observed objects to a pixel of a CCD
camera in a telescope. CCD cameras require the particle nature of light (elec-
tromagnetic radiation). [2]

An important parameter of a telescope is its field of view and important
parameters of a spectrograph are spectral resolving power, signal-to-noise ra-
tion and full width at half mazximum for our purposes.

Spectral resolving power R expresses the capacity of a telescope to observe
details of a spectrum and is defined as:

A
R=33 (2.7)

where A is considered wavelength and A\ is the smallest visible detail.

7



2. SPECTROSCOPIC SKY SURVEYS

(a) Image of the bright quasar 3C 273 by (b) The jet of the quasar 3C 273 by
ESA /Hubble is licensed under CC BY 4.0. NASA/CXC/SAO/H. Marshall et al|

Figure 2.3: The left image demonstrate the star-like apperant of the QSO
273 while the right image by the Chanda X-ray Obsevatory shows important
details in the powerful jet shooting from the quasar 3C 273.

Signal-to-noise ratio (SNR) determines how much we can trust our measure-
ment concenring the power of the signal in comparison to noise. Full width
at half maximum (FWHM) is the measurement of the width of a spectral line
at the half of its maximum intensity measured from the continuum. FWHM
is determined by the width of a slit which makes the broadening of a line.
A perfect instrument would have an infinitely thin line. [3]

2.2 Quasi-Stellar Objects

Quasi-stellar (star-like) objects (also known as quasars and abbreviated QSO)
are the most luminous active galactic nuclei (AGN). [b]

The physical model is a supermassive black hole surrounded by a gaseous
accretion disk and jets (see Figure @) A QSO generates energy by stress
and friction in the disk outside of the black hole because no light can escape
the event horizon. The energy is in the form of EM radiation is the strongest
in the ultraviolet band. Moreover, QSOs exhibit significant cosmological red-
shift.

QSOs were common in the early universe probably because galaxies have
run out of matter: they stop to be lumionous. Therefore, QSOs help us to
study the early universe.

There are different types of QSOs: radio-loud, radio-quiet, red, broad
absorption-line, type II, optically violent variable, weak emission-line.

8


https://www.spacetelescope.org/images/potw1346a/
https://chandra.harvard.edu/photo/2000/0131/index.html

2.3. Large Spectroscopic Surveys

A typical spectrum of a QSO is redshifted and contains a characteristi-
cal combination of broad and narrow emission lines. A spectrum of a QSO
from SDSS is shown in Figure @

2.3 Large Spectroscopic Surveys

Since the discovery of the first QSO, there has been massive progress in spec-
troscopy, allowing observing a vast amount of spectra and QSOs. It started
with the Bright Quasar Survey, Large Bright Quasar Survey (LBQS) and 2dF
Quasar Redshift Survey. Their significant successors are the Sloan Digital
Sky Survey (SDSS) and the Large Sky Area Multi-Object Fiber Spectroscopic
Telescope (LAMOST) that already contain millions of spectra. We choose
LAMOST and SDSS surveys for our experiments because they offer a large
volume of data suitable for machine learning and for training neural networks
for domain adaptation.

In the two following subsections, we introduce the parameters of their
instruments, their recent data releases and corresponding catalogues of QSOs.

2.3.1 Sloan Digital Sky Survey

SDSS is in operation since 2000, and its telescope is designed to provide both
a photometrically and astrometrically calibrated imaging survey and a spec-
troscopic survey of galaxies and QSOs. [6]

The SDSS survey uses a 2.5 m telescope located at the Apache Point
Observatory, New Mexico (see Figure @) The telescope has 3° field of view
due to its mirror. The original spectrograph of the telescope was able to
obtain 640 spectra with a wavelength coverage 380-920 nm simultaneously
with spectral resolution R ~ 1800. [B, [7]

In 2009, the original spectrograph was upgraded for Baryon Oscillation
Spectroscopic Survey (BOSS). The upgraded BOSS spectrograph covers a wave-
length range 356-1 040 nm with resolving power R ~ 2000 and is capable to
observe 1000 spectra at once. [§]

Recent SDSS Data Release 14 (SDSS DR14) which corresponds to the lat-
est catalogue of QSOs, contains more than one-third of the entire celestial
sphere. The total number of optical spectra in the catalogue is 4 851 200.

The SDSS Data Release 14 Quasar (SDSS DR14Q) catalogue described
in [9] contains 526 356 quasars (contamination is estimated to be about 0.5%).
SDSS provides calibrated spectra covering the wavelength range 3610-10 140 A
at a spectral resolution 1300 < R < 2500 for all the QSOs.

The catalogue defines a QSO as an object with a certain luminosity in a spe-
cific distance and either displaying FWHM > 500 km s~ for least one emission
line having interesting absorption features.
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Figure 2.4: The SDSS telescope at night located in the Apache Point Obser-
vatory, New Mexico, by Patrick Gaulme is licensed under CC BY 4.0.

2.3.2 Large Sky Area Multi-Object Fiber Spectroscopic
Telescope

LAMOST survey was launched in 2012. Its two primary scientific goals are to
explore both extragalactic and intragalactic phenomenons. Therefore, unlike
SDSS, LAMOST also observes a large volume of stars. However, the other
scientific goal of LAMOST is the extragalactic spectroscopic survey of the large
scale structure of the universe and the physics of galaxies. The goal includes
a spectroscopic survey of nearly 10 million galaxies and quasars that will
contribute to the study of the accretion process of massive black holes in AGNs
besides other things. EIE]

The LAMOST is located in Xinglong Station of National Astronomical
Observatory, China. The telescope is a special telescope with a primary mir-
ror made of 37 hexagonal spherical mirrors of total size 6.67 m times 6.05 m.
The large primary mirror makes a field of view of 5°. The focal surface has
4000 fibres connected to 16 spectrographs with 32 CCD cameras. There-
fore, the telescope is capable of observing up to 4000 spectra simultaneously
in wavelength coverage of 370-900 nm with spectral resolution R = 1000
or R = 1500 depending on gratings and camera positions. []

LAMOST Data Release 5 v3 (LAMOST DRS5) is the lastest data release
which has corresponding catalogue of QSOs. The LAMOST DR5 contains
9026 365 optical spectra, and the catalogues of QSOs of interest are DR1 [@],

10
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’ Parameter of an instrument ‘ SDSS BOSS | LAMOST
Wavelength coverage (nm) 380-920 | 356-1040 370-900
Spectral resolution R 1800 2000 1250
Field of view 3° 3° 5°

Table 2.2: We list the parameters of the LAMOST and SDSS instruments to
compare their different parameters. The instrument of SDSS has higher spec-
tral resolution and wider wavelength coverages while LAMOST can observer
bigger areas of the sky.

DR2&3 [12] and DR4&5 [13] that in total contains 42 552 spectra of QSOs.

2.3.3 Comparison of the Spectral Data

Now, we compare the SDSS and LAMOST survey to prove their suitability
for domain adaptation. The surveys are mainly different in term of instru-
ments, sky coverage and targeting strategy.

We summarise the main parameters of instruments of the surveys in Ta-
ble @ We see that LAMOST has lower resolution and shorter wavelength
coverage than SDSS. However, SDSS has a smaller field of view.

Sky coverage is very connected to the targeting strategy or scientific goals.
Figure @ displays sky coverage of both SDSS and LAMOST. We see that
SDSS does not observe our Milky Way galaxy. On the other hand, LAMOST
observes everywhere on the northern hemisphere but is not able to observe
close to zenith due to its construction limits. From the perspective of coverage
of QSOs depicted in Figure @, LAMOST did not observe QSOs in some part
of the sky where QSOs are abundant according to SDSS.

We conclude that the two surveys seem to be suitable for domain adapta-
tion because their instruments create spectra with wavelength range and dif-
ferent resolution. Moreover, observations of SDSS and LAMOST survey has
different distributions.

11
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(a) Sky coverage of SDSS corresponds to its primary scientific goal to observe galaxies and
QSOs. Therefore, it has almost no observations in the area of our Milky Way galaxy.

(b) LAMOST observes both the extragalactic and intragalactic objects. Therefore, its
distribution of observations is almost uniform on the northern hemisphere. An exception is
the surroundings of the zenith due to the telescope construction limits.

Figure 2.5: Comparison of sky coverage of SDSS and LAMOST.

12
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(b) Although LAMOST has observations in similar areas as SDSS, its catalogues contain
an only small amount of QSOs in comparison to SDSS.

Figure 2.6: Sky positions of QSOs listed in either SDSS or LAMOST cata-
logues.

13






CHAPTER 3

Domain Adaptation

In this chapter, we survey the current state of domain adaptation using neu-
ral network models in the context of the machine and transfer learning. We
formally define the domain adaptation scenario and categorise it according to
recent surveys by Wang and Deng [14] and Csurka [[15]. From each category,
we select a representative method for our experiments. Then, we introduce
in detail selected methods. We conclude the chapter with applications of do-
main adaptation in astronomy.

3.1 Domain Adaptation in the Context of Machine
Learning

Domain adaptation is a subfield of transfer learning, which is part of machine
learning. Machine learning has a common assumption that training and test
data are independent and identically distributed (IID) that means data are
drawn from the same feature space and the same distribution. [16] When
this assumption does not hold transfer learning or domain adaptation come
into play. Moreover, from the biological point of view the assumption seems
to limit because humans seem to have natural ways to transfer knowledge
from previous experience to new challenges. [[17]

Transfer learning is defined in most papers regarding the survey by Pan
and Yang [18]. There is a more recent survey by Weiss et al. [19] that has the
benefit of containing newer methods than the survey by Pan and Yang [1§].
However, its definition of transfer learning and domain adaptation is the same.

Pan and Yang [18] define transfer learning as the ability of a system to
recognise and apply knowledge and skill learned in previous problems to novel
problems, and they introduce the notion of a domain and a task.

A domain consists of a feature space X and a marginal probability dis-
tribution P(X) (marginal expresses that it is summed over a label space Y).

15
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source target
domain domain

knowledge learning
system

Figure 3.1: Schematic diagram of domain adaptation depicts the fundamen-
tal intuition behind it. A domain adaptation model has to extract as much
knowledge as possible from the source domain and apply it to the target data.

Therefore, a domain is a tuple D = [X, P(X)] of a d-dimensional feature space
X C R? and a marginal probability distribution P(X).

Given a specific domain D, a task consists of a label space and an objec-
tive predictive function which is not observed but learned from training data.
Therefore, a task is also defined as a tuple 7 = [V, P(Y|X)]| where Y is a la-
bel space and P(Y'|X) a conditional probability distribution which we like to
model as closely as possible.

When we are given a transfer learning problem, we have to identify a source
domain and a source learning task, a target domain and a target learning task.
Then, transfer learning aims to help improve the learning of the target predic-
tive function in the target domain using knowledge from the source domain
and the source task, where the domains are different or the tasks are differ-
ent. As we will see, domain adaptation is the case when the source and target
domains are different, while the source and target tasks are the same. [[1§]

For example, we have introduced in Chapter E two domains. The source
domain is the SDSS DR14 and the LAMOST DRS5 is the target domain. We
have shown that the domain have different data distribution mainly because
of their targeting strategies and instruments. The task to identify QSOs is
the same for both SDSS DR14 and LAMOST DRb5 as we defined it.

Lastly, Torrey and Shavlik in [17] warn that sometimes transfer learning
can be harmful. Performance of our machine learning algorithm might suffer
when the source and target domains or tasks are not sufficiently related. When
the usage of source data degrades the performance, the situation is called
a negative transfer. On the other side, when the performance is improved, we
talk about a positive transfer.
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3.2 Theory and Formalization of Domain
Adaptation

Now, we introduce the crucial concept of our work: domain adaptation (DA).
DA is a particular case of transfer learning that leverages data from the source
domain to learn a classifier for a target domain while the tasks are the same.
It is assumed that source and target domains are not identical but related. If
the domains were identical, it would be a standard machine learning problem.
Therefore, there is a distribution discrepancy between the source and target
domains. [[15]

More formally, DA is the scenario of transfer learning when the source
D$ = [X®, P(X?)] and target D! = [X*, P(X?!)] domains are different (D% #
DY), but the source T° and target 7' tasks are the same (7° = T*). The first
condition implies that X* # X*, P(X?) # P(X") or both are true. [18] In our
case, the domains are different because the two archives have different target
selection strategies, and the instruments are different (see Section @)

Based on the condition D* # D!, we categorise DA into homogeneous
and heterogeneous. Homogeneous DA is setting in which the source X°
and target X! feature spaces are the same (X® = X*) while in heterogeneous
DA, the source and target spaces are different (X # X1). [15]

Our case is the homogeneous DA, where the feature spaces are identical
(X = X%). Still, the source and target data have different distributions
(P(X?®) # P(X?")). Therefore, further, we focus on the homogeneous DA
because our spectra can be prepared into the same feature space R36%9,

The second categorisation of DA is according to availability of labels
in the target domain. Wang and Deng [14] distinguish supervised, semi-
supervised and unsupervised DA:

o supervised DA: labelled data in the target domain are present;

o semi-supervised DA: we have only a minimal amount of labelled data
in the target domain while most of the data is unlabelled;

o unsupervised DA: no labelled data are available in the target domain.

We phrase our problem as unsupervised DA because the LAMOST survey
uses different criteria for identification of QSOs than SDSS (see Section @)

Now, we have all the tools to define our homogeneous unsupervised DA
problem. In correspondence with [20], we consider a classification problem
within an input space X with L possible labels from a set Y = {0,..., L —1}.
The source Dy and target D; domains have different distributions over X x Y.
From the source and target domains we have labelled source sample S drawn
IID from D, and unlabelled target sample T drawn IID from D;* (the marginal
distribution of D; over X):
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S = {xi,yi) tier ~ (Ds)", (3.1)
T = {xi}{Zps1 ~ (D), (3.2)

where N = n+n' is the total number of examples (note that the examples
are numbered from 1 to V). Concretely, the input space X is equal to R3659,
y; € Y which is equal to {0, 1} implying L = 2 (0 stands for a non-QSO object
and 1 for a QSO) and a vector x; is an astronomical spectrum (its fluxes
in specified wavelengths).

Further categorisation of methods of DA will help us to separate methods
based on neural networks. Csurka in [15] divides DA into two categories: shal-
low DA methods and deep DA. Shallow DA methods are not based on neural
networks but rather on statistical theory. Deep DA methods are based on
neural networks augmented for DA.

Furthermore, according to Wang and Deng [14], shallow DA methods can
be categorised into two classes. The first class is instance-based DA (the dis-
crepancy is reduced by reweighting the source instances) and the second is
feature-based DA (tries to learn a common shared space in which the discrep-
ancy diminishes). However, shallow DA methods are not interesting for us
because they do not utilise neural networks directly. Still, one possibility is
to use a neural network as a feature extractor. [15]

The following section introduces the other category of deep DA, which
takes advantage of neural networks.

3.3 Neural Networks in Domain Adaptation

Already, Donahue et al. state in the paper on DeCAF [21] that deep neural
networks learn more transferable features that can help with transfer learning.
However, the DeCAF paper also shows that the performance is still affected
by the domain shift. Therefore, there is enough space for specialised deep
architectures for DA.

The group of DA methods using neural networks is called deep DA. Wang
& Deng define it in [14] as methods that utilise deep neural networks to en-
hance the performance of DA. Deep DA architectures can be trained with
backpropagation. Such architectures can be trained with backpropagation
learning domain invariant representation discriminative for a common task.
For example, a network is extended with a particular loss, a domain classifier
or an autoencoder as we will see next.

Approaches to deep DA were initially divided by Csurka in [15] into three
categories according to training loss. Then, Wang and Deng further improve
and detail the categorisation into [14]:

o discrepancy-based DA fine-tunes the neural network with target data to
diminish the domain shift;
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o adversarial-based DA encourages domain confusion by using discrimina-
tors with an adversarial objective; and

o reconstruction-based DA uses data reconstruction auxiliary task to learn
domain invariant features.

We summarise the deep DA methods categorisation in the mind map
of Figure B.2. The mind map also gives further subcategories with some ex-
ample methods. Next, we detail the three categories of DA according to the
survey by Wang and Deng [14].

3.3.1 Discrepancy-based Deep Domain Adaptation

The first category is discrepancy-based deep DA methods that use either la-
belled or unlabelled target data to fine-tune a deep neural network to diminish
the discrepancy between the source and target domains.

The discrepancy-based DA methods are subdivided based on class, statis-
tic, architecture and geometric criterion by [l14]. Class criterion methods
use label information to do DA. For example, the knowledge is transferred
in the form of soft labels or pseudo labels. Statistic criterion methods align
some statistic of the source and target distribution. The most used meth-
ods reduce domain shift with the maximum mean discrepancy, correlation
alignment or Kullback-Leibler divergence. Methods with architecture crite-
rion adjust the network topology in order to learn more transferable features.
The last subcategory is geometric criterion methods which want to dimin-
ish the difference between the source and target distributions based on their
geometrical properties.

We choose to focus on the statistic criterion category in this work be-
cause its methods can be used in an unsupervised fashion, focus straight
on the different source and target distributions and perform very well on two-
dimensional images. We think class criterion subcategory and architecture
criterion subcategories are unsuitable. They focus mostly on supervised DA,
and the geometric criterion gives much worst result in comparison to methods
based on statistic criterion.

The most successful statistic criterion methods are Deep Domain Confu-
sion (DDC) [22], Deep Adaptation Network (DAN) [23], Joint Adaptation
Network (JAN) [24] and Deep Correlation Alignment (Deep CORAL) [25].
DDC is the fundamental method of the statistic criterion subcategory, and
both DAN and JAN are its extensions. Deep CORAL is very similar to DDC,
but it aligns the second-order statistics. To keep things simple, we selected to
experiment with DDC and Deep CORAL. We describe the theory behind them
next.

Deep Domain Confusion (DDC) [22] finds domain invariant representation
while learning to predict class labels. The intuition behind DDC is that learn-
ing representation that minimises the distance between the source and target
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Figure 3.2: This mind map presents categorisation of deep DA divided as we
described it. Moreover, we also show concrete deep DA methods that we have

mentioned.
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Figure 3.3: Schema of Deep Domain Confusion

distributions will help a classifier trained on source labelled data to be directly
applied to the target domain.

DDC optimises loss function that includes both prediction error and do-
main confusion loss to learn domain invariant representation. The invariant
representation is achieved by incorporating an adaptation layer into a deep
convolutional neural network (CNN) with a domain confusion loss computed
via mazimum mean discrepancy (MMD). MMD is a standard distribution
distance metric which is empirically approximated by:

n N
MMD(S,T) = | Y p0x) o D0 olxi)| (33)
=1 i=n+1

where ¢ : X — Z is a feature extractor from the data space X to a feature
space Z that operates on both source and target data points x; € X.

Using the adaptation layer with the domain loss function, DDC claims
to learn a representation that is both domain invariant but still offers strong
semantic separation enabling to learn a robust label classifier. Therefore,
the goal of DDC is to minimise a loss that incorporates both domain confusion
loss and classification loss:

Lppc = Lc(S) + AMMD?(S, T), (3.4)

where L stands for classification loss on the labelled source data .S and to
control the strength of domain confusion, DDC introduces a hyperparameter A
(A = 0.25 in experiments of DDC).

In comparison with DDC, Deep Correlation Alignment (Deep CORAL)
uses correlation alignment (CORAL) instead of MMD. CORAL aligns second-
order statistics of the source and target distributions. Then, Deep CORAL is
a deep neural network that incorporates the differentiable CORAL loss.
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Figure 3.4: Schema of Deep Correlation Alignment

CORAL loss is defined as the distance between covariances of the source
and target features extracted from a layer of a deep neural network:

Loomar(5,T) = 751C(8) - ()3, (35)

where || - ||% is the squared matrix Frobenius norm and the function C
return a covariance matrix of a given set:

1

ST PAPa= D) AT (36)

Al

where A is a set of examples that are either the source sample S or the tar-
get sample T and D, is a design matrix corresponding to the set that is a
matrix where each row is an example. The 1 is a column vector with all
elements equal to 1.

The final composed loss consist of a classification loss Lo and the CORAL
loss:

C(Da) =

Lpeep cORAL = Lc(5) + ALcoraLn(S,T), (3.7)

where A is a trade-off hyperparameter similar to the one in the DDC loss
in Equation @

Note that Deep CORAL does not introduce an adaptation layer but uses
a layer that is already in the network. The CORAL loss can be even applied
to several layers.

3.3.2 Adversarial-based Deep Domain Adaptation

Adversarial-based deep DA utilises a domain discriminator that tries to dis-
tinguish whether a sample comes from the source or target domain. If we
can confuse the discriminator, we will also achieve domain confusion through
the adversarial objective.
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The adversarial deep DA methods are divided into generative and non-
generative models by [14]. Generative models create synthetic target data
according to source data while keeping source data labels. These models are
usually based on Generative Adversarial Network (GAN) [26]. Rather than
generating synthetic examples, non-generative models learn via an adversarial
objective a feature extractor that produces domain invariant representation
of an example.

We explore the second non-generative subcategory because we think that
proper representation is satisfactory, and we consider synthetic data genera-
tion as overkill for our task.

Domain-Adversarial Neural Network (DANN) [20] is the fundamental algo-
rithm of non-generative deep DA. Other methods like Adversarial Discrimina-
tive Domain Adaptation (ADDA) [27] built on the idea of DANN. Therefore,
we are convinced that DANN is the right model to try to our problem in our
hands.

Domain-Adversarial Neural Network (DANN) [20] is an adversarial repre-
sentation learning approach for domain adaptation. It is based on the idea
that useful features for DA cannot discriminate between source and target
domains while maintaining discriminative properties for a classification task.

DANN combines a feature extractor, label predictor and domain classifier
is a single architecture and can be trained with a standard backpropagation
learning algorithm. Because of that, DANN proposes a gradient reversal layer
(GRL) that can be incorporated in almost any feed-forward neural network.
Using the GRL, DANN jointly optimises feature extractor and two discrim-
inative classifiers. The first discriminative classifier is a label predictor that
predicts classes and the second is a domain classifier that discriminates be-
tween source and target domains.

The feature extractor is trained jointly to minimise a classification loss
and maximise the loss of the domain classifier. Thus, the domain classifier
and feature extractor are learning in adversarial fashion to encourage domain
invariant features.

To define the learning objective let G ¢(-;0y) be the neural network feature
extractor with parameters 6;, Gy(-;6,) be the label predictor with parame-
ters 0, that takes features from Gy as inputs and outputs class probabilities,
and G4(+;04) be the domain classifier with parameters 6. Training DANN is
optimising prediction loss and domain loss:
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by finding the saddle point 0 I éy, 0, that satisfy:

(8,0,) = argmin E(6;,0,,04), (3.9)
01,0y

04 = argmax E(05,0,,04). (3.10)
04

where L, is a classification loss, £; is a domain loss, A is a trade-off hy-
perparameter and d; is a binary variable (a domain label):

ifi e {1,...
1 ifie{n+1,...,N}.

The DANN paper shows that saddle points can be found using gradient
updates similar to stochastic gradient descent (SGD):

oLy, oLl
] —u( Y-\ d) (3.12)
U a0; " 005
oLk
6, 0y ,uae (3.13)
oLy
9d — 9d — u)\ aed . (3.14)

However, the update in Equation has subtraction in it instead of an ad-
dition. DANN overcomes the substruction by incorporating the GRL R(z)
between the feature extractor and domain classifier. The GRL has no param-
eters, and during forward propagation, the GRL acts as identity:

R(z) = =z. (3.15)
However, in backpropagation, it negates the gradient:

dR
-1 1
dz ’ (3.16)
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Figure 3.5: Schema of Domain-Adversarial Neural Network

where I is the identity matrix, and z is the representation produced by
the feature extractor G(-,60f). Now, DANN can seamlessly work with SGD
because the objective to be optimised with gradient descent is transformed
into:

1 n
E(0f,0y,0a) = - > Ly (Gy(Gy(xi;05),0y), i)
=1

- A (Tll, i ﬁd(Gd(R(Gf(Xu ef))’ ad)v dl)
=1

N
+% > £d(Gd(R(Gf(Xi§ef))agd),di)) . (3.17)
i=n+1

The GRL changes the update to version fully compatible with SGD:

oL, oL
y d
— 0 — . 1
0 0 ,u(agf +)\69f> (3.18)

3.3.3 Reconstruction-based Deep Domain Adaptation

The last group of methods is based on a data reconstruction auxiliary task.
The reconstructor forces to find a shared representation of the source and
target domains.

According to [14], subcategories are encoder-decoder and adversarial recon-
struction. The more uncomplicated encoder-decoder category exploits stacked
autoencoders [28] or stacked convolutional autoencoders [29] to do the re-
construction task. Omn the other hand, the methods based on adversarial
reconstruction use cyclic mapping obtained via a GAN discriminator [26].
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Furthermore, we explore the encoder-decoder methods that are a good fit
for our problem because they are not that complicated as GAN-based method
of the second subcategory.

It all started with Stacked Denoising Autoencoder (SDA) [30] and it ex-
tension marginalised SDA (mSDA) [31] for DA on text sentiment analysis
data. While SDA and mSDA are base on fully-connected networks, Deep
Reconstruction-Classification Network (DRCN) [32] uses stacked convolutional
autoencoder for the reconstruction task on images. Moreover, Domain Sepa-
ration Networks (DSN) [33] is based on the same idea as DRCN. However, it
uses three separate encoders to model shared representation and also private
specific representations of the source and target data. We choose to exper-
iment with DRCN because it is designed for image data while being more
straightforward than DSN.

Deep Reconstruction-Classification Network (DRCN) [32] is a CNN that
learn both supervised source labelled classification and unsupervised target
data reconstruction. The encoder is shared between both task, but decoding
parameters are separate. The data reconstruction task is an auxiliary task
supposed to help to learn good feature representation beneficial for the DA
scenario. The intuition behind DRCN is that good representation for DA
should capture both the properties for classification and the data structure
(reconstruct well the target domain).

DRCN is composed of a label predictor for classification and a convolu-
tional autoencoder for target data reconstruction. Let define F, : X — Y
as the label predictor and F;. : X — X is the data reconstructor. The two
functions are composed of three components:

e an encoder feature mapping G : X — Z;
e adecoder Gg: Z — X; and

e a classificator G;: Z = Y

where Z is a latent feature space to which DRCN encodes data. Given
the above component, the classification pipeline is F.(+;0.) = G;(Gc(-;6¢);0;),
and the reconstruction pipeline is F,.(+;0,) = Ga(Ge(+;0.);64) where 6, =
{0c,0,} are parameters of the classificator and 6, = {604,0.} are parame-
ters of the reconstructor. Note that 6. is shared between the label predictor
and the autoencoder.

The model is jointly optimised for classification and reconstruction tasks.
Therefore, the learning objective of DRCN contains classification and recon-
struction loss, respectively:
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Figure 3.6: Schema of Deep Reconstruction-Classification Network

n

L(S) =D le(Fu(xi;00), i), (3.19)
=1
N
Lo(T)= Y L(Fr(xi;0r), %), (3.20)
i=n+1

where [, is a form of classification loss and [, is a reconstruction loss,
for example, the squared loss:

I = ||x; — Fr(x;)]|3. (3.21)

By combining the terms and , DRCN aims to minimise the fol-
lowing objective:

LDRCON = )\ﬁC(S) + (1 — )\)ﬁT(T), (3.22)

where A € [0,1] is a hyperparameter of the trade-off between the two loss
functions. The objective @ can be optimised with SGD.

3.4 Previous Applications of Domain Adaptation
in Astronomy

As we have shown in Section @, DA is of great interest to astronomers be-
cause of different instruments, measurements and observation distribution.
Therefore, we survey the current state of DA in astronomical applications
in this section.

If we have a common set of observed stars in both archives (supervised
DA), then we can map them and learn a transfer function. Ho et al. [34] did ex-
actly that because they found a common set of 9952 spectra in both APOGEE
and LAMOST archive. Using the common set, they trained the Cannon
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method [35], and they used the model to transfer some stellar physical pa-
rameters from APOGEE to LAMOST.

In the case, when there is no common set (unsupervised DA) Gupta
et al. [36] experimented with subspace alignment [37] and kernel mean match-
ing [38] followed by active learning [39]. In the case of subspace alignment,
the negative transfer occurred while the kernel mean matching seems very
promising in the task of supernova classification. However, they observed that
those shallow methods (subspace alignment and kernel mean matching) are
not sufficient on their own, and the active learning phase is crucial. Neverthe-
less, active learning requires human expert interaction, so it is not automatic
and depends on domain knowledge.

Then, Vilalta et al. [40] extended the work of Gupta et al. [36]. Vilalta
et al. used a supervised mazimum a posteriori (MAP) approach to learning
a prior on the model parameters from a spectroscopic source domain and then
use this prior distribution to learn a model in a photometric target domain.
Concretely, Vilalta et al. put a prior on the number of layers of a neural
network and then used active learning.

Richards et al. [41] faced a similar situation, as Gupta et al. Richards et al.
introduce the problem as sample selection bias [42] or covariate shift [43] when
different distributions generate the source and target data. That is precisely
the problem we have defined as DA. Richards et al. experimented with random
forest in combination with three DA methods: importance weighting [42],
co-training [44] and active learning [39]. Active learning works best while
importance weighting and co-training achieve negative transfer.

It seems that active learning is crucial to achieving good result on as-
tronomical data when using shallow DA methods. We speculate that it is
the nature of scientific data that makes shallow DA method unusable on its
own.

Next, we describe a supervised deep DA approach that shown to work well
on astronomical data. Therefore, we think neural network DA methods should
be promising in astronomy. The term transfer learning has been recently used
in the context of deep learning. However, transfer learning in the context of
deep learning means something more concrete than what we defined as trans-
fer learning previously. Transfer learning in the context of deep learning is
the specific situation when a pre-trained deep neural network model is taken,
and its last layers are retrained with the target domain data.

Ackermann et al. [45] employed a deep CNN with the transfer learning
approach in the context of deep learning to detect galaxy merges from two-
dimensional images. They took the pre-trained Xception CNN [46] and fine-
tuned its last layers with images of galaxy merger labelled in a citizen science
Galaxy Zoo project [47]. This transfer learning approach allowed them to
lower the best error rate so far by 15%.

Next application of deep DA method in astronomy is Deep Variational
Transfer (DVT) [48]. DVT is a semi-supervised model based on variational
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autoencoders [19] and mixture models. They encode the source and target
data into a shared latent space and identify clusters with the labelled target
data. They experimented with light curves (time series of light intensity)
of stars.

This section shows that applications of deep DA in astronomy are minimal.
Therefore, our work will be almost the first to explore the ideas of deep DA
in astronomy with huge potential to discover either a new tool for astronomy
or a new challenge for deep DA.
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CHAPTER 4

Experiments with Deep Domain
Adaptation

In previous chapters, we have selected suitable astronomical data, surveyed
and chosen suitable deep domain adaptation methods. Now, we carry out
experiments with the DDC, Deep CORAL, DANN and DRCN on astronomical
spectra from the SDSS and LAMOST spectroscopic sky surveys.

Firstly, we create the source and target datasets for experiments. Then, we
use PCA, t-SNE and UMAP to reduce the data to two-dimensions, so we can
visualise the data and investigate distributions of both the source and target
data. Thirdly, we introduce a CNN baseline model which serves as a bench-
mark for comparison of the performance of the deep domain adaptation meth-
ods. Finally, we employ four deep domain adaptation methods and evaluate
the adapted results to see if astronomical spectroscopy can benefit from deep
domain adaptation.

4.1 Data Preparation

Our data of source domain consists of 4 851 200 optical spectra from the SDSS
DR14 catalogue and the corresponding SDSS DR14Q catalogue of 649 791
spectra of 526 356 QSO objects (we have to distinguish an object and a spec-
trum because each astronomical object could be observed multiple times hav-
ing multiple spectra). Both catalogues are introduced in Subsection .
However, 20279 spectra of QSOs cannot be identified because there is a bug
in the SDSS DR14Q catalogue. Therefore, we can identify only 629 512 spec-
tra of all QSOs. Next, we need to cross-match the SDSS DR14 and DR14Q
catalogues to merge the data stored in individual FITS files with QSO labels.
The cross-matching is based on a triplet of a plate number, a Modified Julian
Date of observation and a fibre number that is unique to each spectrum. Ad-
ditionally to the 20279 spectra of QSOs lost due to the bug in the DR14Q
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catalogue, we were unable to cross-match 55 QSOs with the SDSS DR14 cat-
alogue. Therefore, we have 629 457 spectra of QSOs for which we have actual
data in FITS files and not only metadata in catalogues.

The complement to the source domain in domain adaptation is the tar-
get domain. We selected data from LAMOST DR5 to be target domain
data for reasons described in Subsection . The LAMOST DR5 general
catalogue contains 9026 365 spectra, and the complete catalogue of QSOs
has 42552 spectra. Again, we cross-matched the LAMOST DR5 catalogue
and the catalogue of QSOs according to a quartet of a plan identifier, a local
Modified Julian Date (one less the Modified Julian Date), a spectrograph iden-
tifier and an identifier of fibre. We were able to cross-match 31755 spectra
of QSOs with the general catalogue effectively losing 10 797 spectra of QSOs.
We believe that LAMOST has sound reasons for not including those spectra
in the LAMOST DR5 catalogue.

However, the labels of QSOs from LAMOST are incompatible with la-
bels from SDSS because the criteria of what is a QSO are different in SDSS
and LAMOST (see Section @) For us, the ground truths are labels of SDSS
DR14Q catalogue while the labels of LAMOST serves only for evaluation
purposes, not for training. Therefore, there might be spectra truly QSOs
in LAMOST not yet identified by LAMOST biasing our performance metrics.

Having assigned labels of QSOs to individual spectra, we need to extract
the spectra from individual FITS files because learning of neural networks
requires datasets to be in the form of design matrices. A design matrix con-
tains a different example (a spectrum) in each row. In contrast, each column
of the design matrix corresponds to a different feature (a measurement of flux
in a specific wavelength). [50]

Fortunately, SDSS and LAMOST spectra have a common wavelength grid
in logarithmic wavelengths evenly space by 0.0001. Although all spectra have a
common wavelength grid, the minimal and maximal wavelengths are different
for each spectrum. Figure displays histograms of minimal and maximal
wavelengths of all LAMOST spectra. In this work, we aim to find QSOs
in the LAMOST DR5. Therefore, we would like to keep as many spectra as
possible from the LAMOST DR5. To keep all spectra from the LAMOST DR5,
we have to select wavelength range starting at 3839.7244 A (3.5843 in log-
arithmic wavelength) which is the maximum from minimal wavelengths and
ending at 8914.597 A (3.9501 in logarithmic wavelength) which is the min-
imum from maximal wavelengths. The selection gives us a wavelength grid
of 3659 logarithmically-spaced wavelengths (each spectrum is a real vector
of R36%9).

Given the selected grid of wavelengths, we will lose some SDSS spectra
because not all of them have all measurements in the range. Figure shows
the cumulative histogram of how many spectra we will keep for cuts in differ-
ent wavelengths. We see that significant drops are behind the selected min-
imal and maximal wavelengths that mean we will keep most of the spectra.

32



4.1. Data Preparation

107 5
10° 5

105 1 9

Frequency

10* 4 9

103 1 9

] | ]
3700 3750 3800 8950 9000 9050 9100
Minimal wavelength (A) Maximal wavelength (A)

Figure 4.1: Two plots showing histograms of minimal and maximal wave-
lengths of all LAMOST spectra. The maximal wavelength from all the mini-
mal wavelengths is 3839.7244 A. Cutting in a lower wavelength would mean
a loss of almost 100000 spectra. The situation is very similar for maximal
wavelengths, where the minimum is 8 914.597 A. Therefore, the most suitable
range of wavelength is to choose these two wavelengths as starting and ending
points.

Precisely, the cut will drop 34487 spectra from our source dataset includ-
ing 1949 spectra of QSO. Therefore, the source dataset has 4816 713 spectra
with 627 508 spectra of QSOs that can enter learning of a neural network.

The original sizes of data are unnecessary for experimenting with deep do-
main adaptation on astronomical spectra. We store each spectrum as a vector
of 3659 single-precision floating-point number (4 bytes). The storage setting
gives that the SDSS source dataset has about 70.5 GB and the LAMOST
target dataset 132.1 GB. Data of such size usually cannot fit into memory,
and access to a disk significantly slows learning on a GPU.

Therefore, we have subsampled the data to the size of ImageNet [@] We
believe that the size of ImageNet is reasonable because ImageNet is the dataset
that enables the superiority of deep neural network in computer vision. Im-
ageNet has 1 million training examples, 50 thousand validation examples
and 100 thousand testing examples. Accordingly, we randomly subsampled
of source and target datasets obtaining training sets of size 1 million and val-
idation sets of size 50 thousand. At the same time, the rest of the data would
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Figure 4.2: The selected wavelength range will inevitably cause a loss of some
SDSS DR14 spectra. This figure shows cumulative histograms of the number
of spectra and its dependence on minimal and maximal wavelengths. We see
that both cuts are before the big drop is the count of spectra.

serve as testing sets. We summarise sizes of datasets with the corresponding
number of QSOs in Table @ Table @ shows a significant class imbalance
in the LAMOST DR5, where QSOs are very rare (less than 0.4%).

The last step of data preparation is min-max scaling of each spectrum
into the [—1;1] range:

x; — min(x;)

~1, (4.1)

S —9
X max(x;) — min(x;)

where x; € R3% is a spectrum as defined in Chapter E and functions
min(-) and max(-) returns the smallest and the largest element of a given
vector, respectively.

There are two benefits of the min-max scaling. Firstly, the data will be
in a suitable range for the learning of neural networks which will stabilise
learning. Secondly, the scaling will remove intensity properties of spectra,
leaving us only with the spectrum shape which we want to use for identification

of QSOs.
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4.2. Dimensionality Reduction

’ Name Number of QSO spectra ‘ Total spectra
SDSS DR14 629457 (12.98%) 4851200
usable SDSS DR14 627508 (13.03%) 4816713
SDSS training set 130904 (13.09%) 1000000
SDSS validation set 6552 (13.10%) 50000
LAMOST DR5 v3 31755 (0.35%) 9026 365
LAMOST training set 3517 (0.35%) 1000000
LAMOST validation set 190 (0.38%) 50000

Table 4.1: Summary table of sizes of the source and target dataset together
with train and validation splits. The validation splits serve for models com-
parison and hyperparameter optimisation. The second row shows the number
of spectra after the cut into a unified range of wavelengths. The table shows
the imbalance of the LAMOST target data that contains only a tiny amount
of identified QSOs.

4.2 Dimensionality Reduction

In this section, we investigate the structure of joint data space of source
and target datasets with three dimensionality reduction methods: principal
component analysis, t-Distributed Stochastic Neighbor Embedding and Uni-
form Manifold Approximation and Projection (UMAP). We would like to get
an idea of how well are the source and target data mixed, if there are some
separate clusters or the data are rather continuos.

To avoid visualisation overwhelmed with data points, we sampled 2500
spectra from the source training set and 2500 spectra from the target train-
ing set. The spectra are min-max scaled, not standardised because the relation
between features is meaningful, and we do not want to suppress the relation-
ship.

Principal component analysis (PCA) is a simple linear machine learning
algorithm that is used either for visualisation or feature extraction by dimen-
sionality reduction. PCA learns a representation whose features are uncor-
related with each other and selects features with the largest variation. [p0]
We show the visualisation obtained with PCA in Figure §.3. The plot shows
that source data tent to concentrate in the middle while the target data are
on the edges. However, no regions are containing only the source or target
data. Moreover, in the middle extending to the right, there is a kind of line
component.

t-Distributed Stochastic Neighbor Embedding (t-SNE) [62, 53] is a popular
method for visualisation of high-dimensional data. The t-SNE method is non-
linear, iterative and performs different transformations of different regions. A
tunable hyperparameter of t-SNE is perplexity which is a guess about the num-
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Figure 4.3: The first two principal components of 2500 source and 2500 tar-
get data points. The projection shows that source data concentrate more
in the middle while the target data seem to cluster on the edges.

ber of neighbours of a data point. Typically, the optimal value is between 5
and 50.

We reduce dimensionality for perplexities from {5, 10, 30,50, 100}. The best
result was for the value 50, and the result is shown in Figure §.4. The t-SNE
embedding has a similar structure as Figure m of PCA. There are mostly
source data in the centre and target data around it. However, the separa-
tion between the centre and edges seems to be larger. Still, there is the line
component extending downward this time.

t-SNE is often used in the papers presenting a deep domain adaptation
methods to show how feature extracted from a higher layer in an adapted
network are better mix when a domain adaptation method is employed. But,
when a network is not adapted the source and target data can be easily visually
separated in a t-SNE visualisation.

Uniform Manifold Approximation and Projection (UMAP) [@] is a non-
linear dimensionality reduction algorithm based on manifold learning and
ideas from topological data analysis. It achieves visualisations similar to t-
SNE, but it is significantly faster. Visualisation with UMAP is displayed
in F@He and has a very similar structure to t-SNE embedding in Fig-
ure
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Figure 4.4: Embedding of t-SNE of the same data as in the reduction
with PCA shows the very similar result as PCA. However, there is more
notable central sort of line component extending downward.

4.3 Baseline: Results without Deep Domain
Adaptation

Now, we are ready for training of neural networks. However, before we dive
into deep domain adaptation, we will train a classical convolutional network
which will serve as a baseline to which we can compare results of networks
augmented for deep domain adaptation.

As the baseline, we choose LeNet-5 [@] convolutional neural network,
which was initially used to recognise handwritten digits of MNIST [@] We
have chosen the architecture of LeNet-5 because it is the simplest model used
in the DANN paper [@] Thus, we will not need to create our architecture
for the DANN experiment. However, the network is designed for process-
ing of two-dimensional images while a spectrum is a one-dimensional image.
Therefore, we have to substitute the two-dimensional convolutions with one-
dimensional convolutions. Moreover, we increased the kernel size and stride
of pooling layers from 2 to 16 so that the output of the convolutional layers
is reasonably big. If we left the original pooling layers, the input to the first
fully connected layer would be of size 43872 in comparison to the original
input size 768 for the MNIST dataset. The kernel size and stride of 16 will
reduce the input size of our network to 672. Figure displays the final
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Figure 4.5: UMAP projection to two-dimensions confirms the previous visual-
isation with PCA and t-SNE. The source data tend to concentrate in the mid-
dle while the target data are mostly out of the centre, and there is the line
component extending away from the centre.

architecture, which we implemented in PyTorch [@] like all other models.

Donahue et al. showed in the Deep Convolutional Activation Feature (De-
CAF) paper [@] that features extracted from a deep CNN can be repurposed
to novel tasks if the network was trained on a large fixed set in a fully super-
vised fashion, which means that it can be used for domain adaptation on its
own. Therefore, we can expect that our CNN trained on the SDSS will be
able to find features beneficial for domain adaptation. Still, the DeCAF paper
shows that a deep CNN cannot remove domain bias completely. Therefore,
there is a space for improvement with deep domain adaptation.

We trained our augmented LeNet-5 on batches of size 64 for 20 epochs
with the Adam optimiser [57] in its default setting and used the binary cross
entropy loss defined as:

M
BCB(6) =~ Y lwlogli + (L) log(1— g, (4.2)

where 0 are parameters of a model, M is the batch size, y; € {0,1} is
the true label, and §; € [0, 1] are the model predictions of the ith example
in the batch. Furthermore, we initialised the weights and biases following
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4.3. Baseline: Results without Deep Domain Adaptation

convl ooll conv2 ool2 fcl fc2 fe3
5-32 1 Vo6 7 548 1 6% F—] 100 1 100 (—f 1
ReLU ReLU ReLU ReLU sigmoid

(a) The architecture of our LeNet-5 contains two one-dimensional convo-
lutional layers and three fully-connected layers. Both convolutional layers
have a kernel size of 5 and are followed by a pooling layer. The first one
has 32 and the second 48 channels. The two first fully-connected layers
have outputs of sizes 100. All activation are ReLU except for the last one,
which is sigmoid because our classification problem is binary.

convl ooll conv2 ool2 fcl fc2 fe3
5-32 ’1’6 6 ] 548 11)6 16 1 100 100 | 1
ReLU - ReLU - ReLU ReLU sigmoid

(b) The architecture DDC is almost the same as our LeNet-5. It has only a fully-
connected adaptation layer (bottleneck) of output size 64 inserted after the first
fully-connected layer.

convl conv2

532 [— R0 | 548 1160

ReLU - ReLU -
gradient fc4 fcb
reversar — 100 [ 1
layer ReLU sigmoid

(¢) The architecture of DANN is composed of a feature extractor (white),
label predictor (blue) and domain classifier (green) with the GRL layer.

convl 1 conv2
5-32 | —| ll’gow | 5-48
ReLU - ReLU
conv4 conv3
5.39 upsamplel | 548
None poo) ReLU

(d) The architecture of DRCN contains an encoder (white), decoder
(green) with an upsampling layer and classifier (blue).

Figure 4.6: Diagrams of all architectures used in our experiments. Note that
the architectures are designed in such way that the classificator is the same
for all models (minor exception is the adaptation layer in DDC).
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(b) The source Fi score is gradually improving while the target Fy
score suffers.

Figure 4.7: Our LeNet-5 is properly learning on the source data. However, it
is unable to transfer knowledge to the target domain.
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Xavier initialisation [5§]. That is weights of our neural network are sampled
from uniform distribution U:

V6 V6
u <_ Vin + out’ Vin + 0ut> ’ (43)

where in is the number of input units of a layer and out is the number
of output units and biases are set to zero.

Before the analysis of results of LeNet-5, we define performance metrics
commonly used for imbalanced datasets: recall r, precision p and Fy score is
the harmonic mean between precision and recall:

TP
L 4.4
"T (TP + FNY’ (44)
TP
S L — 4.
P= TP+ FP)y (45)
i) 2y (4.6)

Tl pl r+p’

where r is recall, p is precision, TP is the number of correctly classified
QSOs, FN is the number of QSOs incorrectly classified as non-QSOs, and FP
is the number of non-QSOs classified as QSOs. When precision and recall are
perfect, F score reaches its best value one, and at worst can be zero.

Figure @ displays the training progress of our LeNet-5. We see that
the network has converged and is not overfitting because the gap between
the training and validation loss is small. The source F} score in gradually
improving meanwhile, the target F} score suffers.

The results® of our baseline are quite good on the source domain because
the source F score is 0.9397 (the source recall is 95.82% and the source pre-
cision is 92.19%). However, the target F score is 0.2294 (the target precision
is 13.48% and the target recall 76.84%). That is an inferior result for the
target data in the light of source performance. We see that there probably is
a considerable domain discrepancy, and, therefore, an opportunity for domain
adaptation.

4.4 Experiments with Deep Domain Adaptation
We set the baseline result with classical CNN. Now, we apply four deep domain

adaptation methods to the same data to analyse if astronomical spectroscopy
can benefit from domain adaptation based on neural networks.

!Note that all metrics (F1 score, precision, recall and confusion matrices) were computed
on either the source or target validation sets in our experiments.
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4. EXPERIMENTS WITH DEEP DOMAIN ADAPTATION

’ Predicted class ‘ Actual class ‘ ’ Predicted class ‘ Actual class ‘
QSO | non-QSO QSO | non-QSO
QSO 6278 532 QSO 146 937
non-QSO 274 42916 non-QSO 44 48 873

(a) Confusion matrix for the source domain. (b) Confusion matrix for the target domain.

Table 4.2: Confusion matrices of the baseline model for the source and target
validation sets. We see the enormous error on the target domain where the
model predicts 937 non-QSOs as QSOs and cannot identify 44 QSOs.

We start with two discrepancy-based approaches, which are DDC and Deep
CORAL. Then, we continue with DANN, which is an adversarial-based do-
main adaptation method and with reconstruction-based DRCN. We conclude
with the evaluation and comparison of results.

4.4.1 DDC: Deep Domain Confusion

First deep domain adaptation method is Deep Domain Confusion (DDC).
DDC reduces the domain discrepancy (maximises domain confusion) by ex-
tending classification loss of a neural network with the MMD loss (see Equa-
tion @) The MMD loss is enforced on the adaptation layer that serves as
an information bottleneck for domain confusion. More details on DDC are
in Subsection .

To select the size and placement of the adaptation layer, we followed
the same procedure as in the DDC paper [22]. Firstly, we took the LeNet-5
trained in previous Section and extracted features from the first and sec-
ond fully-connected layer (the last fully-connected layer has a trivial width)
for all validation examples. Then, we computed MMD between the source
and target data at each layer with the extracted features. The intuition is to
place the adaptation layer after a layer with the smallest MMD because low
MMD means more domain invariant features. We measured that the MMD
at the first fully-connected layer is 50.70, while MMD at the second fully-
connected layer is 53.33. Therefore, we will place the adaptation layer after
the first fully-connected layer. Secondly, we have to optimise the width of the
adaptation layer. Therefore, we trained the LeNet-5 with the adaptation layer
of sizes from {4, 8,16, 32,64}, excluding the low width of 2 and not exceeding
the output size of the previous layer. The stepping is the power of two as
in the original paper. Figure @ plots the resulting MMD values for different
setting and shows that the width 64 is the best.

The final architecture of our DDC network is in Figure . It is the base-
line CNN with the adaptation layer of width 64 after the first fully-connected
layer.
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Figure 4.8: We employed the same methodology to optimise hyperparametes
as the original paper of DDC. Therefore, we compute the MMD for different
sizes of adaptation layers. The scatter plot show that the size of 64 is the best
closely followed by the size of 8.

’ Predicted class ‘ Actual class ‘
QSO | non-QSO
QSO 148 1138
non-QSO 42 48672

Table 4.3: Confusion matrix of DDC for target data

Furthermore, we set the trade-off parameter A between the binary cross
entropy loss and the MMD loss to 0.25 as in the DDC paper and trained
the network in the same way as described in the previous Section (Xavier
initialisation, Adam optimiser, batch size 64 and 20 epochs).

The training of DDC proceeded similarly to the baseline. Moreover, we see
that MMD is also minimalised in the bottom plot of Figure @ On the other
side, if we train the network without enforcing MMD loss (A = 0), then
the MMD is growing, as shown in the top plot of Figure 4.9.

Although, training run as expected, DDC achieved an unfortunate result
in comparison to baseline. The Fj score on the source data is 0.9354 and 0.2005
on the target data that is lower than the baseline in both cases. Precision
on target is 11.51%, and the only improvement is the recall of value 77.89%,
but the decrease in precision is probably caused by that.
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Figure 4.9: This plot illustrates that enforcing the MMD loss has the ex-
pected effect. On the other hand, without the MMD loss, the MMD between
the source and target domain gradually grows.

4.4.2 Deep CORAL: Deep Correlation Alignment
Deep Correlation Alignment (Deep CORAL) is very similar to DDC. DDC

aligns means of the source and target distributions with MMD loss while Deep
CORAL aligns correlations with CORAL loss (see Equations @ and @)
Moreover, Deep CORAL applies the CORAL loss straight to a layer in a net-
work not creating an adaptation layer. We implemented Deep CORAL with
inspiration from the original coded and followed all the steps described in the
corresponding paper [25].

Originally, the architecture underlying Deep CORAL is AlexNet [59]. There
the CORAL loss was put on the last layer that has ten output units. How-
ever, our neural network has to have one output unit, so applying CORAL
loss to it does not make sense. Therefore, we applied the CORAL loss_to
the second fully-connected layer of our LeNet-5 architecture in Figure .
Then, we optimised the trade-off between classification and CORAL loss A
from {0.5,0.1,0.05,0.01,0.005,0.001, 0.0005,0.0001}. The best is A = 0.0005,
which makes the classification loss and the CORAL loss of similar magnitude
as suggested by the paper (see Figure ) Furthermore, we used the same
batch size of value 128 as in original experiments of Deep CORAL. The archi-
tecture is initialised in the same way as our baseline and optimised with Adam
for 20 epochs.

2 Available from: https://github.com/visionlearninggroup/CORAL
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(a) The original paper states that the classification loss

and the CORAL loss should be almost the same at the end of the train-
ing. We show in this plot that the similarity can be achieved by setting
A = 0.0005.

Correlation alignment
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(b) The CORAL statistic without enforcing the CORAL loss grows sig-
nificantly in comparison to the scenario in the plot above when the net-
work is trained with the CORAL loss.

Figure 4.10: Training of Deep Correlation Alignment
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’ Predicted class ‘ Actual class ‘
QSO | non-QSO
QSO 147 835
non-QSO 43 48 975

Table 4.4: Confusion matrix of Deep CORAL for target data

Firstly, we trained our Deep CORAL with A = 0 to see how the CORAL
grows. Figure shows the same behaviour of CORAL without enforcing
the minimisation of correlation loss as in the original paper. Then, we exper-
imented with the best A = 0.0005 and obtained the training progress in Fig-
ure . However, the results are unsatisfactory, as in the case of DDC.

Source data F} score is 0.9396 that is almost the same as baseline. There is
a small but insignificant improvement in the target F} score, which is of value
0.2509 (the target precision is 14.97% and the target recall is 77.37%). These
values are gains, but they are too small, and the model with such small pre-
cision is useless for identification of QSOs.

4.4.3 DANN: Domain-Adversarial Neural Network

Domain-Adversarial Neural Network (DANN) is an adversarial-based domain
adaptation method. Our DANN architecture is depicted in Figure . It
consists of a feature extractor, a predictor and a domain classifier that acts
adversarially against the feature extractor enforcing domain invariant repre-
sentation. Further details are in Subsection .

We code and schedule hyperparameters of DANN according to the origi-
nal implementation® and the two papers where DANN was published [20, 60].
Therefore, we implemented the learning rate schedule for SGD with momen-
tum:

o
= 4.7
Mp (1 + ap)/j ( )

where p is the training progress linearly changing from 0 to 1 in every
iteration, initial learning rate pg = 0.01, @ = 10 and § = 0.75. Furthermore
we also implemented the domain adaptation parameter A from Equation @
that starts at 0 and grows to 1 with the schedule:

2

= v

~1, (4.8)

where p is again the training progress and v that was set to 10 as in the orig-
inal paper.

3 Available from: http://sites.skoltech.ru/compvision/projects/grl/
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Figure 4.11: We could not converge DANN while keeping the F} score low
even though we did hyperparameter optimisation.

Note that binary cross entropy loss is used for both the classification
and domain loss. The optimiser is SGD with the learning rate schedule
and momentum 0.9, the network is initialised as our baseline model, and
the batch size is 128 where the first half is source domain data and the second
half is the target domain data.
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’ Predicted class ‘ Actual class ‘
QSO | non-QSO
QSO 142 648
non-QSO 48 49162

Table 4.5: Confusion matrix of DRCN for target data

Although following the original implementation as closely as possible and do-
ing hyperparameter optimisation of v € {0.1,0.3,1, 3,10} we were not able to
get reasonable results with DANN. We infer from Figure that if gamma
is high, the training will diverge. On the other hand, if gamma is low F} score
regress.

4.4.4 DRCN: Deep Reconstruction-Classification Network

The last deep domain adaptation model is Deep Reconstruction-Classification
Network (DRCN) which uses a reconstruction of target data as an auxiliary
task. Intuition is that the auxiliary task will enforce the network to capture
also the structure of target data space. More detail are provided in Subsec-
tion .

We followed the original i1rnplelrne1r1tationB of DRCN [32]. There is one big
difference between the original paper and the official paper that is the order
of training loops. The paper states that the network in an epoch should firstly
be trained for classification task and then for reconstruction task. The imple-
mentation does it the other way around. We choose the working implementa-
tion and trained for reconstruction first.

According to the implementation, we used Adam optimiser with batch
size 128 for 20 epochs and Xavier initialisation. The trade-off parameter A
was set to 0.5. Figure shows that the network is able to learn a good
representation that can suppress noise while maintaining important spectral
lines.

However, achieving poor results with previous methods, we did not suppose
to get a better result now. The source F; score is 0.9393 and the target F}
score 0.2898, which is better than baseline but the development of the F}
score in Figure suggest no significance. Target precision is 17.97% which
is the best so far, but target recall 74.74% is the worst.

4.5 Discussion of Experiments

We summarise the results of our baseline and deep domain adaptation meth-
ods in Table @ We do not include the performance of DANN because we

4 Available from: https://github.com/ghif/drcn
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Figure 4.12: Although the final F} score of DRCN is higher than the F} score
of LeNet-5, the full progress shows that the result is not significant.
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Figure 4.13: The two spectra reconstructed with the convolutional autoen-
coder in DRCN shows that the training was successful. The autoencoder can
reduce noise in the spectra while still keeping track of spectral lines.
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| Method Source Fy | Target Fi | Precision (%) | Recall (%) |
Baseline 0.9397 0.2294 13.48 76.84
DDC 0.9354 0.2005 11.51 77.89
Deep CORAL 0.9396 0.2509 14.97 77.37
DRCN 0.9393 0.2898 17.97 74.74

Table 4.6: Summary table of results of experiments

were not able to train it correctly even though we did hyperparameter opti-
misation. Table @ clearly shows that domain adaptation based on neural
networks cannot significantly improve performance in comparison to baseline
when applied to astronomical data. We would expect an increase in a metric
of at least 5% as in the original paper of the deep domain methods on standard
academical datasets.

Domain adaptation did not succeed, although the distributions of the source
and target domain are different. We prove the difference in Subsection ,
where we compared the two surveys. Furthermore, we confirmed the dis-
crepancy with dimensionality reduction techniques. All three PCA, t-SNE
and UMAP shows that the data does not occupy a single cluster, but the
SDSS spectra_concentrate_in the centre and LAMOST spectra on the edges
(see Figures #1.3, @ and @)

Also, the deep domain adaptation method behaved correctly. DDC kept
the MMD between the source and target distributions low, as shown in Fig-
ure @ Deep CORAL achieved the same with the CORAL metric for dis-
tribution difference (see Figure ), and DRCN learnt the auxiliary re-
construction task that is supposed to support domain adaptation (see Fig-
ure ) Moreover, hyperparameter optimisation cannot improve the per-
formance of the deep domain adaptation methods.

Allin all, we hypothesise the problem is in the data. Therefore, we visualise
the incorrect classification of the baseline (the errors were almost the same
for all the methods). In Figure and Figure , we display random
spectra from source false positives and source false negatives, respectively.
At the same time, we display target false positives and target false negatives
in Figure and Figure @, respectively. The rest of random spectra is
in Appendix .

We believe the misclassifications are evidence for our conclusion that prob-
lem is in our imperfect datasets. The incorrectly classified examples are QSOs
not yet identified by a catalogue of the surveys. There are also spectra incor-
rectly classified as QSOs by the official catalogues. Moreover, there are spectra
with artefacts (for example, missing measurements at paricular wavelengths,
wrong extraction from CCD chip). However, the original deep domain adap-
tation methods are trained on well-prepared and clean data. For example, all
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data in the MNIST [b5] or USPS [61] are well-defined digits, and the same ap-
plies to the Office dataset [62] commonly used as a domain adaptation bench-
mark. Such well-formed datasets provide a comfortable environment for basic
research. On the other side, they do not resemble the real world or scientific
situation. That is a big issue for the application of such method to scientific
data. As we have shown, astronomy provides such a volume of data that is
impossible to make clean. Therefore, we need either robust machine learning
algorithms or automatic procedures that clean data possibly also based on
machine learning. However, by cleaning the data, we might lose some inter-
esting objects with strange physical properties. Maybe, the imperfect data
problem is the reason why previous applications of domain adaptation in as-
tronomy used active learning (a human expert) after domain adaptation (see
Section B.4).
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(d) Spectrum spec-1992-53466-0317 has no visual features of a QSO.
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Figure 4.14: The first part of sample of source false negatives resembles that
the CNN incorrectly classifies some true QSOs. However, there are also spectra
not clearly QSOs.
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(e) Spectrum spec-0769-54530-0502 is a QSO probably not yet identified by SDSS.

Figure 4.15: The first of part sample of source false positives shows that they
contain a significant amount of QSOs not yet in the catalogues of QSOs of the

SDSS.
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as a QSO.

Figure 4.16: The first part of sample of target false negatives reveals they
contain spectra not clearly QSOs from the visual perspective.
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(e) Spectrum spec-56344-GAC088N41V3_sp08-176 contains bad pixels.

Figure 4.17: The first part of sample of target false positives resembles that
they contain spectra with bad pixels and a QSO that is not yet identified.
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CHAPTER 5

Conclusion

Our goal was to analyse the impact of domain adaptation based on neural
networks in spectroscopic sky surveys. Therefore, we firstly introduced astro-
nomical spectroscopy. Then, we defined quasars because their identification
is the task of our domain adaptation setting. To have the domain adap-
tation setting complete, we introduced the SDSS as the source domain and
the LAMOST survey as the target domain. We showed that these two do-
mains are suitable for domain adaptation because of their different instrument
and distribution of observations.

Next, we surveyed domain adaptation. Firstly, we put it into the con-
text of the machine and transfer learning, and we formally defined it. Sec-
ondly, we distinguished the shallow and deep domain adaptation. The deep
domain adaptation category is based on neural networks, thus, further, we
focused on it, and we presented its three subcategories: discrepancy-based,
adversarial-based and reconstruction-based domain adaptation. We selected
four appropriate methods DDC, Deep CORAL, DANN and DRCN. DDC and
Deep CORAL are representatives of the discrepancy-based category, DANN
of adversarial-based methods and DRCN is based on reconstruction. We ex-
plained why we think they are fundamental to experiment with and give the in-
tuition and mathematics behind them.

The thing left was to explore their impact of the quasar identification task
from astronomical spectra. Therefore, we briefly introduced data preparation
(actually we spend a significant amount of time with data preparation). We
followed with dimensionality reduction using PCA, t-SNE and UMAP that
demonstrated a visually notable distribution discrepancy between the source
and target domain. To have a baseline model to compare the deep domain
adaptation methods to, we used the LeNet-5 CNN trained only on the source
domain. Its result states that it can be robust classifier on the source domain
but is not able to classify well on the target domain as we expected due to
distribution difference. We continued with the central experimental part of our
thesis. We applied the four deep domain adaptation methods to the data using
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5. CONCLUSION

both the source and target data.

However, the experiments proved that none of DDC, Deep CORAL, DANN
and DRCN could achieve a significant improvement on the target data. That
happens, even though dimensionality reduction indicate domain discrepancy
and, for example, the training of DDC keeps MMD of the two distribution
low in comparison when the MMD loss is not enforced. Therefore, we inves-
tigated the data in order to analyse what causes the inability of deep domain
adaptation methods to improve performance. Our astronomical dataset con-
tains a lot of problematic samples (for example, not identified quasars or bad
spectra). On the other hand, the original deep domain adaptation methods
are based on well-prepared and clean data.

That is a big issue for the application of such method to scientific data. As
we have shown, astronomy provides such a volume of data that is impossible
to make clean and labelled. Therefore, we need either robust machine learning
algorithms or precise procedures that clean data possibly also based on ma-
chine learning. However, by cleaning the data, we might lose some interesting
objects with strange physical properties.

5.1 Future Plans

From the research point of view, the result is positive as it opens discovery op-
portunities because algorithms verified on the well-formed academical dataset
like MNIST cannot be directly applied to complex and dirty scientific data.
However, we see the future as full of such complex data that we are unable to
clean.

Therefore, in future, we plan to make a more detailed statistical analysis
of our results and try to make direct consequences for deep domain adapta-
tion methods. The improvements can be either in the form of new robust
architectures or novel learning algorithms. Another possibility is to focus
on automatic preprocessing algorithms based on machine learning that will
be able to filter the data so that they can work with the original deep domain
adaptation methods.
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APPENDIX A

Misclassifications

Random spectra for the source and target false positives and false negatives.
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A. MISCLASSIFICATIONS
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Figure A.1: The second part of sample of source false negatives
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Figure A.2: The third part of sample of source false negatives
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Figure A.3: The second part of sample of source false positives
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Figure A.4: The third part of sample of source false positives
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Figure A.5: The second part of sample of target false negatives
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Figure A.6: The third part of sample of target false negatives
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Figure A.7: The second part of sample of target false positives
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Figure A.8: The third part of sample of target false positives
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APPENDIX B

Acronyms

AGN Active galactic nuclei

APOGEE Apache Point Observatory Galactic Evolution Experiment
BOSS Baryon Oscillation Spectroscopic Survey
CDD Charge-coupled device

CORAL Correlation Alignment

CNN Convolutional neural network

DA Domain adaptation

DANN Domain-Adversarial Neural Networks
DDC Deep Domain Confusion

DeCAF Deep Convolutional Activation Feature
DRCN Deep Reconstruction-Classification Network
EM Electromagnetic

FITS Flexible Image Transport System

FWHM Full width at half maximum

GPU Graphics processing unit

GRL Gradient reversal layer

IID Independent and identically distributed

LAMOST Large Sky Area Multi-Object Fiber Spectroscopic Telescope
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B. ACRONYMS

QSO Quasar, Quasi-stellar object

SDSS Sloan Digital Sky Survey

SGD Stochastic gradient descent

SNR Signal-to-noise ratio

t-SNE t-Distributed Stochastic Neighbor Embedding

UMAP Uniform Manifold Approximation and Projection
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APPENDIX C

Contents of Enclosed CD

README .md .. .uueeeeeeeeeeeeeeeeeeanns file with CD contents description
Ethesis pAf thesis text in PDF format
T 2 directory of source codes
tlatex .................... directory of TEX source codes of the thesis
experiments................. directory of source codes of experiments
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