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Abstrakt

Semi-supervizované uceni se vyznacuje tim, ze vyuziva i dodatecné informace
z neostitkované c¢asti trénovacich dat. Tato prace porovnava dva algoritmy
semi-supervizovaného uceni hlubokych neuronovych siti na realnych malwa-
rovych datech. Jednim z nich je metoda Pseudo-labeling. Ta vyuziva neostit-
kované vzorky klasifikované s vysokou jistotou, jako by tak byly skutecné
oznacené. Druhy pristup je zalozen na zachovani konzistence vysledku neuro-
nové sité za ruznych okolnosti. Byl implementovan jeden takovy algoritmus,
[T-model, ktery porovnava vystupy sité pro rizné pozménéna vstupni data.
Pro srovnéani jsou také uvedeny vysledky plné supervizovaného uceni, které
pouziva pouze ostitkované vzorky. Presnost predikce téchto metod je vyhod-
nocena v zavislosti na pomeéru velikosti ostitkované ¢asti trénovacich dat.

Klic¢ova slova Strojové uceni, Semi-supervizované uceni, Hluboké neuronové
site, Detekce malwaru, Pseudo-labeling, IT-model
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Abstract

Semi-supervised learning is characterized by using the additional information
from the unlabeled data. In this thesis, we compare two semi-supervised algo-
rithms for deep neural networks on a large real-world malware dataset. Specif-
ically, we evaluate the performance of a rather straightforward method called
Pseudo-labeling, which uses unlabeled samples, classified with high confidence,
as if they were the actual labels. The second approach is based on an idea
to increase the consistency of the network’s prediction under altered circum-
stances. We implemented such an algorithm called II-model, which compares
outputs with different data augmentation and different dropout setting. As
a baseline, we also provide results of the same deep network, trained in the
fully supervised mode using only the labeled data. We analyze the prediction
accuracy of the algorithms in relation to the size of the labeled part of the
training dataset.

Keywords Machine learning, Semi-supervised learning, Deep neural net-
works, Malware detection, Pseudo-labeling, II-model
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Introduction

One of the application domains that pay the most attention to the progress
of and new developments in machine learning is malware detection. Vendors
of antivirus software cannot keep up with the increasing number of malicious
programs and their increasingly sophisticated obfuscation and polymorphism
without using more and more advanced machine learning methods, most im-
portantly, methods for anomaly detection, classification and pattern recogni-
tion.

The most successful machine learning methods for classification and pat-
tern recognition definitely include artificial neural networks (ANN), especially
deep networks. However, they have a high number of degrees of freedom,
thus requiring a large amount of labeled training data, whereas most of the
data for malware detection is unlabeled because its labeling requires expensive
involvement of human experts. One possible way how to tackle the lack of
training data is semi-supervised learning. In a narrow sense, this means super-
vised learning that simultaneously to labels also uses some information from
additional unlabeled data, in a broad sense any combination of supervised
learning and unlabeled data, e.g., unsupervised learning followed by super-
vised learning. In the context of malware detection, however, research into
semi-supervised ANN learning is only emerging [1, 2]. The results reported in
this thesis are a small contribution to it.

In the first chapter, we briefly outline the theory of machine learning and
its types and describe artificial neural networks. The next chapter focuses
on related work. Its first part is about semi-supervised learning, especially
of neural networks. The second part is about the use of neural networks
in malware and network intrusion detection. The third chapter deals with
the details of our implementation of Pseudo-labeling and II-model. The core
of the work is in the fourth chapter, where we present our experiments and
their results. We test our implementations on a simple dataset, and then we
thoroughly evaluate them on real-world malware data.






CHAPTER ].

Overview of Theory

Artificial intelligence (Al) is a field of computer science that focuses on solving
a wide range of complex problems using machines. The progress of Al goes
hand in hand with the development of computers. With the rise of computing
power, more problems became solvable using computer programs, including
the area of artificial intelligence. Especially in the last decade, Al gains mas-
sive attention.

The research in artificial intelligence can be divided into several areas in-
cluding reasoning, planning, natural language processing, robotics, computer
vision, and machine learning. For the following brief introduction to machine
learning methods related to this thesis, we used the sources [3, 4, 5, 6, 7.

1.1 Machine Learninng

In a broad sense, machine learning concerns algorithms, that are able to learn.
In other words, to extract relevant information or knowledge out of input data
and find a generalization that can be used later. Machine learning algorithms
are often based on the idea of improving their performance gradually during
the learning process. That is achieved by iterative optimization of a particular
objective function that specifies the goals of learning. There are several main
types of machine learning algorithms, according to how they handle the input
data, we describe them below.

1.1.1 Supervised Learning

In supervised learning, the algorithm learns from input data with assigned la-
bels for every sample. The training data consist of an input and a correspond-
ing desired output. The task is to create a mapping function, aka model, that
for an arbitrary input, produces the correct output. The challenge of model
construction is to make it capable to generalize to the new unseen data, in-
stead of just memorizing the training dataset. The most common problems
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1. OVERVIEW OF THEORY

in supervised learning are classification and regression. In classification, the
task is to assign the input sample to one of the given categories. While the
outcome of the regression model is usually a real number or a vector. We will
focus the most on the classification in this thesis because we will be solving a
classification problem in the application part. There is a large number of ap-
proaches to supervised machine learning, such as Naive Bayes, k-NN, decision
trees, Support Vector Machines, or neural networks.

1.1.2 Unsupervised Learning

Unsupervised learning means that the model learns to gain knowledge about
the structure and patterns in the input data without knowing the correspond-
ing output. In unsupervised learning, some similarity measure among the data
samples is often used or modeling their probability density. This type of learn-
ing includes problems like clustering, dimensionality reduction, or anomaly
detection. Notable methods used to solve these tasks are k-means, hierarchi-
cal clustering, and particular kinds of neural networks, such as autoencoders,
Deep Belief Networks, Generative Adversarial Networks, or Self-Organizing
Maps.

1.1.3 Semi-supervised Learning

As the name suggests, semi-supervised learning is a combination of supervised
and unsupervised learning. During the learning, the model uses data, where
only part of them have assigned the output. So the training dataset is divided
into two parts, usually denoted as a labeled and unlabeled set. The model
learns from the labeled set in a supervised way but also uses additional in-
formation from unlabeled data to further improve its performance. Like in
unsupervised learning, a similarity measure can be utilized in semi-supervised
learning. The size of the unlabeled dataset is often much larger than of the
labeled one. Nowadays, having access to a large amount of data is quite com-
mon, but obtaining the correct ground truth labels for them may be difficult,
costly, or time-consuming. That is due to the fact that getting labels usually
involves human effort or an experiment. Therefore semi-supervised learning
may help to overcome this issue. However, according to [6], the unlabeled data
must hold certain assumptions, to be able to improve the model’s accuracy.

Smoothness Assumption

If two points x1, z2 are close, then so should be the corresponding outputs
y1, y2. This assumption should be met in the fully supervised learning. In
semi-supervised learning, this assumption also depends on the density of the
data. So for the semi-supervised learning, if two points x1, 2 in a high-density
region are close, then so should be the corresponding outputs y1, y2.

4



1.2. Artificial Neural Networks

Cluster Assumption

The cluster assumption states that if points are in the same cluster, they are
likely to be of the same class. The idea behind this assumption is intuitive and
puts together the principles of supervised and unsupervised learning. When
the data form clusters, it is reasonable to assume that the samples in a par-
ticular cluster belong to the same class. On the other hand, it does not mean
that data from one class have to form a single cluster. Actually, the early
methods of semi-supervised learning were based on clustering, followed by as-
signing the clusters with classes of labeled data. This assumption is related
to the requirement of the low-density separation, which says that the decision
boundary should lie in a low-density region.

Manifold Assumption

This assumption states that the high-dimensional data lie roughly on a low-
dimensional manifold. When the dimensionality of the input data is high, then
it is often that a problem with measuring distances in a high-dimensional space
arises. The problem is that the differences in pairwise distances of samples
from different classes, tend to be less pronounced, and therefore less useful.
However, if the data lie in a manifold, then distances can be measured inside
the low-dimensional space containing the parameters of the manifold.

1.1.4 Active Learning

Active learning builds on the same principle as semi-supervised learning of
using both labeled and unlabeled data together for the training. The difference
is that active learning extends this idea by letting the model itself decide which
of the unlabeled data samples should be selected for labeling. The algorithm is
able to behave interactively and query the user to provide outputs for selected
data. Active learning can be used in combination with incremental or online
learning to improve the model’s accuracy gradually. The most straightforward
approach used in active learning is uncertainty sampling. When the model is
probabilistic, it can evaluate how certain it is about a particular prediction.
Then it selects those samples with the least confident predictions.

1.2 Artificial Neural Networks

Artificial neural networks (ANN) belong to the most successful machine learn-
ing methods for classification and pattern recognition. The development of
artificial neural networks was inspired by biological neural networks in the
brains of animals. An artificial network as well consists of nodes and their
connections, like neurons and synapses in a brain. The node in an ANN is
called an artificial neuron and represents a mathematical function. An artifi-
cial neuron has one or more weighted inputs. It sums them and adds a bias
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1. OVERVIEW OF THEORY

and passes it to a non-linear activation function to produce the output. The
output of a single neuron f(x) for an input vector x of length n can be written
as the value of a function in the following way:

f(®) = (Zwm + b) :
1=0

where ¢ is the activation function, w; is the weight of a z;, the i-th component
of z, and b is a bias. Because the neurons in a network are connected together
to a graph structure, it is convenient to visualize them as nodes shown in
Figure 1.1.

o O
' (B0 -

In

Figure 1.1: A diagram of an artificial neuron with a sigmoidal activation
function. Taken from the lecture slides [8].

It is essential to choose a non-linear activation function, to make the net-
work able to learn other than linear features. There are many functions that
can be used as activation. Usually, some sigmoidal function is used or nowa-
days a rectified linear unit (ReLU) or some of its variants [9]. An example of
a sigmoid function that is commonly used is the logistic function:

1

S@) = =

The simple function ReLU is commonly used as a default in many frameworks
for neural computation. Its definition follows:

rx ifx>0
ReLU(z) = { 0 otherwise.

As mentioned above, an artificial neural network is created by connecting
neurons together to form a directed graph. A node can have its input set to
accept signals from outside, therefore it is called an input neuron. Similarly,
output neurons directly produce the output of the whole network. The graph
of a network can contain cycles, and such a network is then called recurrent.
A network without cycles is named feed-forward, and its structure can be
often grouped into layers according to the distance from the input nodes. We

6



1.2. Artificial Neural Networks

will focus only on feed-forward networks in this thesis, which are commonly
used for classification and regression problems. When each neuron in a layer
is directly connected to neurons in the following layer, the network is called a
multilayer perceptron (MLP). Layers other than input and output are referred
to as hidden layers. A diagram of a multilayer perceptron with two hidden
layers is given in Figure 1.2.

by 7]
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x z"(x) h(x) z°(x) f(x)

Figure 1.2: An example of a feed-forward neural network with two hidden
layers. Taken from the lecture slides [8].

When an ANN is used as a model for classification into more than two
classes, the output layer has a size equal to the number of target classes.
Classes are represented as a one-hot encoding, which sets the value of the out-
put corresponding to a particular class to 1 and all the others to 0. Generally,
the neurons’ output can be any real number, therefore to normalize the output
of the last layer between 0 and 1, the softmax function is used. It maps the
network’s output to a probability distribution of target classes. The softmax
function for an output z; is defined by the formula:

et

SOftmaX(m)i = W,

where n is the dimension of the input data.

1.2.1 Learning of Neural Networks

So far, we only described the inner structure of neural networks. What makes
an ANN useful is its ability to learn general patterns from the samples of input
data. The output of a neural network is determined by the input data, the
hyperparameters, and the trainable parameters. In regular neural learning,
the hyperparameters, such as the number of neurons, the topology, activation
functions, etc. are set before the training. What is iteratively learned are the
input weights and biases of a particular neuron. These are the only trainable

7



1. OVERVIEW OF THEORY

parameters of a standard MLP. The learning process is an optimization of
those parameters to produce as correct results as possible. To measure how
good the prediction of a network is, a loss function is used. The loss func-
tion usually measures the difference between the actual target label for the
input sample and the network’s prediction. Mean squared error (MSE) is a
simple example of such a measure, its formula for true labels y and network’s
predictions ¢ follows:

. 1< .

where n is the number of classes. But a more commonly used loss function for
classification tasks is the cross entropy, which yields better results according
to [10]. The formula of discrete cross entropy is:

H(yag) == Zyz log §i.
=1

Then learning of a neural network is a minimalization of the loss function.
Input data are presented to the network and the mean of corresponding loss
functions is evaluated. The loss function is calculated for every training sam-
ple, and the mean of losses is the overall error of the network in the current
state. The error function than can be written as E(w), where w is the vector
of all weights of the network. The network’s output also depends on the values
of biases, but for simplification, they can be included in the weights w, in such
a way that, a bias is the weight of a neuron whose activation is always 1. In
order to minimize the error function, we need to find its gradient VE(w). The
gradient is a vector of partial derivatives of a function. Then we can use an
optimization algorithm called gradient descent. Gradient descent iteratively
changes the values of the vector of weights w in the opposite direction of the
gradient. The change can be written as:

Aw = —aVE(w)
where « is the learning rate and determines the size of the change. Therefore
the change of each weight component w; is:

oF

Aw; = — .
w a@wi

However, changing the weights only after computing the error of the net-
work for the whole dataset is computationally inefficient. Therefore, the
dataset is usually split into smaller parts called mini-batches. Then the error
of the network is computed for each batch, and the weights are updated. The
size of the batch is an additional hyperparameter for the learning algorithm.
This way, the update frequency is higher, and the learning usually converges

8



1.2. Artificial Neural Networks

faster. However, this approach is slightly different from the standard gra-
dient descent, because it does not compute the exact gradient but only its
approximation. Therefore, because of the randomness in the batch selection,
this learning method is referred to as mini-batch stochastic gradient descent
(SGD). An effective way of computing the gradient of large networks with
many connections and weights is the backpropagation algorithm. It is com-
puted by applying the chain rule iteratively, from the last layer to the input
later.

There are also more complex optimization algorithms that use techniques
like momentum to avoid ending in local minima. An example of such an algo-
rithm is the Adam optimizer [11], which is implemented in modern frameworks
and popular lately.






CHAPTER 2

Related Work

Semi-supervised learning has been intensively studied at least since the early
2000s, as it is documented in the literature survey [12]. The first semi-
supervised approaches were based on a generative statistical model, such as
Gaussian mixture models, where unlabeled data can help to produce more
accurate mixture components.

A different, rather straightforward approach is self-training, an example
of which was used here [13] on the language processing domain. It is a simple
example of using predictions of a model itself during the training. The model
is first trained only on the labeled data samples. Then the trained model
is used to label the unlabeled dataset. Typically, only the most confident
predictions are selected as targets. These predictions are then combined with
the initially labeled part of the data and used for later training together. This
method can slightly improve the robustness of the model. However, it could
also damage the performance because it amplifies the errors of the original
supervised model.

Another method is to train multiple different models simultaneously with
different views of the data. Then the unlabeled samples are used for training
of the models if their predictions meet certain mutual conditions. This group
of algorithms is called multi-view training, and a simple example of such a
method is Co-training [14]. Co-training requires an assumption about the
input dataset to be met. The labeled data L need to be split into two condi-
tionally independent subsets L; and Ls, and each of them should be sufficient
to train a good model. First, two models m; and mo are trained using the
initially split datasets L; and Lo. Then all the unlabeled data are classified
using both models m; and msy. The prediction of a particular sample is used
as a target for the other model, but only if the confidence according to the
former model is high and confidence according to the latter model is low.

Similar approaches are self-ensembling methods that combine different
variants or instances of the same model. Self-ensembling methods often use
predictions of the same model under different configurations to improve it.

11



2. RELATED WORK

Recent examples of such methods are Ladder networks [15], II-model [16],
Temporal Ensembling [16], Mean Teacher [17], and Virtual Adversarial Train-
ing [18]. In the following section, we will describe those and additional self-
training method Pseudo-Labeling [19] in more detail. We will focus only on
algorithms for classification problems using neural networks.

2.1 Semi-supervised Learning of Neural Networks

According to the overview paper [20], the following four approaches are most
important for semi-supervised learning of neural networks, especially deep
networks. The authors of the paper implemented these methods and compared
them using image classification benchmark datasets.

2.1.1 Pseudo-Labeling

A very simple approach from the family of self-training methods is Pseudo-
labeling [19]. The term pseudo-label denotes ANN prediction of the correct
class for unlabeled data, provided the network has a sufficient confidence in
such a prediction, i.e., if for an unlabeled input x,

arg max fe@) =0 fe (2.1)

ceC

where C' denotes the set of classes, f.(x) the activity of the output neuron
corresponding to the class ¢ € C for the input z, and ¥ € (0,1) is a given
threshold. The threshold helps to prevent the network from learning incorrect
labels, which would result in an increase in error rate. Similarly to labels, also
pseudo-labels can be represented with {0, 1}-valued vectors with dimension
equal to the number of classes, with exactly one component equal 1. Also
the loss of network predictions with respect to pseudo-labels can be evaluated
with the same loss function as their loss with respect to labels. In [19], cross
entropy has been used to this end. The losses for all labels and pseudo-labels
are then summarized to an overall loss function being minimized during semi-
supervised learning. However, the losses for labels and pseudo-labels have
different weights, or equivalently, the losses of pseudo-labels are multiplied
by some trade-off coefficient a(¢) > 0. This notation refers to the fact that
the trade-off coefficient depends on the training epoch t. The formula for the
overall loss function of a mini-batch of data, consisting of n labeled and n’
unlabeled data is

/

1 & 1 i
LZ*ZZL(:% 7f@ 7/ ZL Im /m ) (22)
n m=1ceC n m=1ceC

where fI" is prediction of m’s sample in labeled data, y7* its label, f™ pre-
diction for unlabeled data and y.™ is the pseudo-label of that.

12



2.1. Semi-supervised Learning of Neural Networks

The Pseudo-labeling algorithm can improve the generalization performance
using unlabeled data according to the cluster assumption listed in the previ-
ous chapter, which states that the decision boundary should lie in low-density
regions to improve generalization performance [6]. The unsupervised loss com-
ponent of the Pseudo-labeling method forces the predicted class probabilities
to be near 1-of-K code, thus having one component set to 1 and all others to
0. In other words, it makes the network to be more confident with its pre-
dictions. This results in minimizing the conditional entropy of the network
predictions:

1 ’fl
H (yla') = o E E =1[z"")log P (y" = 1|2™") . (2.3)
m=1ceC

where y* is the unknown label of the mth sample, and 2'™ is the corresponding
input vector. The entropy measures the overlap of classes, therefore lowering
the entropy shifts the decision boundary to a region with lower-density of
samples. It means that Pseudo-labeling can be considered as a form of Entropy
Regularization [21].

2.1.2 Increasing the Consistency

Another two methods evaluated in the overview paper are II-model and Tem-
poral Ensembling. These self-ensembling methods are similar, and both are
based on an idea of increasing the consistency of the network’s predictions.
This approach encourages the network’s output to be consistent when the
same input sample is presented but under different circumstances. This can
mean evaluating the predictions for the same input between two instances of a
neural network differing through a random perturbation. Such a perturbation
is typically introduced through random noise or through dropout. The overall
loss function minimized during semi-supervised learning is then the superpo-
sition of the loss of supervised learning and a loss reflecting the inconsistency
of the considered ANN instances.

This approach was first applied in [15] to Ladder Networks, which are ba-
sically chained denoising autoencoders. In a Ladder Network, the consistency
is controlled in each layer, between the output of the previous layer and the
application of a denoising function to a noisy output from the next layer.

In [16], two similar kinds of neural networks using this approach to semi-
supervised ANN learning were proposed that can be viewed as simplifications
of Ladder Networks. The consistency is in them controlled only at the net-
work output, like the accuracy of supervised learning. The first kind, called
IT-model, evaluates both randomly differing ANN instances on each minibatch
of data. The second kind, called Temporal Ensembling, evaluates only one of
them and then uses its predictions in the inconsistency loss. As a compensa-
tion, predictions from multiple previous network evaluations are aggregated

13



2. RELATED WORK

into an ensemble prediction. Both methods use MSE to calculate the un-
supervised inconsistency loss. Due to targets changing only once per epoch,
Temporal Ensembling becomes unwieldy when learning large datasets. The
difference between both methods in terms of how they compute the loss is
shown in Figure 2.1 taken from the original paper.

M-model
w(t)
Vi Z """" »  cross- ¢
. > i > > -
Xi N : stochastic > network »|_entropy weighted loss
augmentation »| with dropout N squared —> sum
Zi difference
Temporal ensembling
w(t)
Vi srrermemrn s »|  cross- v
. z. entropy |, K
X; stochatstt|_c > _tnhetdwork . i we;i::ed loss
augmentation wi ropou squared >
Z; »| difference
\ #Zl'

Figure 2.1: Two diagrams comparing the flow of data used to compute loss
function in both the II-model (top) and the Temporal Ensembling (bottom).
Labels y; are available only for the labeled inputs, and the associated cross-
entropy loss component is evaluated only for those. Taken from the paper [16]
by Laine and Aila.

2.1.3 Mean Teacher

To overcome the problem, that the targets change only once in an epoch, an
approach called Mean Teacher has been proposed in [17]. Instead of aggre-
gating predictions, it aggregates network’s weights, more precisely, averages
them. Mean Teacher maintains an exponential moving average (EMA) of the
model weights. Averaging model weights over training steps produces a more
accurate model than using only the final weights. This way, the method ag-
gregates information after every step, not just after every epoch. Moreover,
because the weights are averaged in all layers, not only the output softmax
layer, the model learns faster from the unlabeled data. Theoretically, this
should lead to better generalization, and the approach has indeed achieved
smaller test errors on several known benchmarks.

2.1.4 Virtual Adversarial Training

In [18], the most sophisticated among the four considered approaches has been
proposed, called Virtual Adversarial Training. The name comes from the loss
function proposed by Goodfellow et al. to train networks against adversarial
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inputs [22], and known as adversarial loss:

Logy(z,0) = D[q(-|x), p(-|x + Tagv; 0)] (2.4)
where 744y = arg max Dlg(-|z),p(-|lz +r;0)], (2.5)

where ¢(-|x) represents our knowledge of the true conditional distribution of
labels given a particular input x, whereas p(-|x; 6) represents the correspond-
ing distribution implied by the neural network for particular values of their
parameters 6, € > 0 and D is some non-negative function on pairs of probabil-
ity distribution, such as cross entropy, which was used in [18]. And the term
“virtual” refers to the fact that in supervised learning, this loss needs to be
minimized on unlabeled inputs instead on adversarial ones. In [18], our knowl-
edge of the true conditional distribution of labels was represented by p(-|z; é),
where § denotes the estimate of 6 at the current stage of learning. This leads
to a specific case of (2.4), a loss function that is called local distributional
smoothness (LDS):

LDS(x,0) = D[p(-|z:0), p(-|x + rvaqy; 0)] (2.6)
where ry,qy = arg ‘l‘fn”a<x D(p(-|x;0), p(-|z + r; 0)]. (2.7)
r||<e

LDS is then averaged over all labeled and unlabeled data and combined with
the supervised learning, which is in [18] controlled by maximum likelihood.
Consequently, the final objective of semisupervised learning in this approach
is the minimization

(0}

mein(—Llik({(fC>y)’$ € Lo}) + 1]+ U]

> LDS(x,9)), (2.8)

zeLUU

where |£]| and |[U| are the cardinalities of the sets £ of labeled and U of
unlabeled data, and « > 0 is a trade-off coefficient. Moreover, the authors
of [18] propose to enhance virtual adversarial training through adding, to the
sum of functions minimized in (2.8), the entropy of the conditional distribution
p(+|z; 0) implied by the network, again averaged over all labeled and unlabeled
data.

We have implemented the first two of those approaches, the second in both
variants II-model and Temporal Ensembling. Some details of our implemen-
tation are given in the next chapter.
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2.2 Neural Networks in Malware and Network
Intrusion Detection

As malware detection is strongly interconnected with and closely related to
network intrusion detection, using ANN will be reviewed here in both areas.
Probably the first proposal to use neural networks in them was in 1990 by
Lunt [23] and was implemented two years later [24] in a network trained on
inputs from audit log files.

The authors of [25] employed user commands as input, but rather than
trying to learn benign and malicious command sequences, they were detecting
anomalies in frequency histograms of user commands calculated for each user.

The paper by Cannady [26] summarised ANN advantages and disadvan-
tages for misuse detection. As the two main advantages, the flexibility with
respect to incomplete, distorted and noisy data, and the generalization ability
are viewed, whereas as the main disadvantage, the ANN black-box nature.

In the late 1990s and early 2000s, self-organizing maps were quite popular
in this context [27, 28, 29]. In particular, Depren et al. [28] used a hierar-
chical model where misuse detection based on Self-Organizing Maps (SOMs)
was coupled with random forest-based rule system to provide not only high
precision, but also some sort of explanation.

Much research has been devoted to comparing different kinds of ANN, or
more generally, different classifiers including one or more kinds of ANN, on
real-world malware detection or intrusion detection data. Probably the most
popular among such data is an extensive intrusion detection dataset that was
used at the 1999 KDD Cup [30]. Zhang et al. [31] compared five different kinds
of ANN. Mukkamala et al. [32] compared a multilayer perceptron (MLP) with
Support Vector Machines.

Among more recent ANN applications to malware and network intrusion
detection, [33] should be mentioned for using synthetically generated attack
samples to train an MLP, as well as [34] for a malware detection with recurrent
networks. Expectedly, the kinds of ANN applied to these two areas during the
last decade are most often deep networks [35, 36, 37]. In [38], deep learning
was used together with spectral clustering to improve the detection rate of low
frequency network attacks. ability to process raw inputs and learn their own
features. Saxe et al. [39] employed a convolutional neural network (CNN)
to extract features that were subsequently used as the input for an MLP
detecting malicious activities. CNNs seem to be particularly suitable to learn
spatial features of network traffic [40, 41]. In [40], a CNN was in addition
combined with a long short term memory learning temporal features from
multiple network packets.

To our best knowledge, there were so far only two particular ANN applica-
tions to malware or network intrusion detection that included semi-supervised
learning in the narrow sense. In [1], various settings of semi-supervised lad-
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der networks (see Section 2.1) were compared on the above mentioned intru-
sion detection dataset [30]. In [2] (cf. also the thesis [42]), skipgram net-
works [43] extended with semi-supervised learning based on pseudo-labels
(see Section 2.1) were used for Android malware detection. Skipgrams are
neural networks embedding large sets of structured non-numeric data into
low-dimensional vector spaces. Whereas in [43], skipgrams were proposed for
the embedding of text (word2vec), the input set in [2] is the set of rooted sub-
graphs around every node of three dependency graphs representing the API
dependencies, permission dependencies, and information source and sink de-
pendencies of the considered Android application. However, skipgrams were
not used directly for malware detection in [2], only for representation learning
of the structured input, whereas the malware detection itself was performed
by a support vector machine. So far, no semi-supervised neural networks have
been used directly for malware detection, and also none have been used with
unstructured inputs simply listing values of the evaluated features, which are
encountered much more frequently than dependency matrices.
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CHAPTER 3

Design and Implementation

Most of the implementations of semi-supervised deep learning algorithms we
found, including those in the overview paper [20], were designed for the image
data. Their performance was tested on common image classification bench-
mark datasets like MNIST [44], The Street View House Numbers (SVHN) [45]
or CIFAR-10 [46]. Authors usually used a convolutional neural network (CNN)
as the underlying machine learning model. CNNs are types of feed-forward
neural networks that are able to learn filters to detect features in images.
Their advantage is that they can find hierarchical patterns in image data
represented as a two-dimensional array.

We intended to use our implementation with more general data. There-
fore we used a multilayer perceptron (MLP) as our underlying network, which
is a universal model. On top of this model, we implemented three semi-
supervised learning algorithms: Pseudo-labeling, II-model and Temporal En-
sembling. We used Python frameworks Tensorflow and Keras and functions
from Scikit-learn library. Most parts of these algorithms we used share the
same implementation. Fundamentally, they only differ in the way they com-
pute the unsupervised component of the loss function. Firstly, both methods
use the same MLP architecture with ReLLU as the activation function in the
hidden layers and utilize the same optimizing algorithm Adam [11] with the
initial learning rate set to 0.001, 51 = 0.99, and B2 = 0.999. As was shown
above, the optimized loss function is defined as a weighted sum of supervised
and unsupervised loss:

L=Lg+ w(t)LU. (31)
The weight w(t) depends on the ratio between the number of labeled and

unlabeled data, and the current epoch. We ramp up the value of the weight
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using a Gaussian curve:

£l (-s0-02)
t) = maxi ~1 , 1771 ’ 2
w(t) =w ESTIN (3:2)

where t = max(y,%, 1), e is number of the current epoch,r, is the length of the
ramp up period and wy,q, is a parameter specifying the maximum weight.

Increasing the weight of the unsupervised loss during the training is neces-
sary as the network needs to learn to classify the supervised data first. Even-
tually, it can learn to incorporate the unlabeled information as well. Similarly,
at the later phase of the training, the learning rate and the 5; parameter of
the Adam optimizer are decreased to improve the exploitation:

Ire = wylre_, and B; = 0.4wy + 0.5, (3.3)

where wy = e(—1251%)

,t= max(%, 1) and ry is the length of the ramp down
period. We also included a type of elitism to select the resulting model with
the lowest total loss per epoch calculated with the maximal weight for the

unsupervised component instead of a weight in the current epoch.

3.1 Pseudo-Labeling

The unsupervised loss in the Pseudo-labeling algorithm is calculated using
cross-entropy between network’s predictions and pseudo-labels, but only for
predictions with confidence above a specified threshold ¢ (cf. 2.1). We com-
pute the vector of pseudo-labels 3/ for every data sample x and the correspond-
ing network output f(x) using the following formula for i-th component:

, |} 1 ifi=argmax; fi(z)
Yi = { 0 otherwise (3.4)

Then the resulting formula based on cross entropy for the unsupervised loss
component Ly of a particular data sample x is:

c]
Ly(z) = = yilog(y), (3.5)
=1

where |C| is the number of classes.

3.2 Increasing the Consistency

We also implemented two variants of the consistency preserving, self-ensembling
algorithms: The IT-model and the Temporal Ensembling. Both approaches use
mean squared error (MSE) to compute unsupervised loss. What is different is
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the target for which is MSE evaluated. II-model compares two predictions of
the same state of the network using different inputs and different dropped out
neurons. To augment the data for the second prediction, we multiplied the
input feature vector with a noise sampled from normal distribution A/(1, o?).
We chose to multiply the data with the noise instead of adding it because it
is invariant to the differing variances of the individual features.

The second variant, Temporal Ensembling, compares the prediction of the
network in the current epoch with the predictions obtained in the previous
epoch. The dropout and data augmentation can be used as well. So the
unsupervised loss Ly for this approach is calculated as follows:

]

Ly(x) =Y (yi — §:) (3.6)

=1

where y is the current output of the network in the training step and 7 is the
output of the network in a different state or for augmented input.
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CHAPTER 4

Experiments

Firstly, we tried our implementations of two semi-supervised methods men-
tioned above and a fully supervised baseline on a two-dimensional example.
We chose simple generated moon-shaped data, which are often used for visu-
alization of classification or clustering algorithms.

4.1 Experiment With Moon-Shaped Data

The data consist of two classes that are linearly inseparable but do not overlap
so that the classification can be performed with no error. The advantage is
that we can easily visualize the classification decision border in two dimensions
and examine the behavior of the algorithm. An example of generated moon-
shaped data is visualized in Figure 4.1. There are together 1500 points, one
half is red and the other blue. The points are randomly projected on a half-
circle with additional Gaussian noise with a standard deviation equal to 0.08.
To generate the data, we used the function make__moons from the Scikit-learn
Python library. Then we normalized the points between 0 and 1. For every
method in this experiment, we used the same MLP architecture with two
hidden layers, the first having 64 neurons and the second 32 neurons.

In Figure 4.2, we present two different arrangements of labeled and un-
labeled data, each solved by the fully supervised learning, Pseudo-labeling,
and II-model. In the first experiment, we tested the ability of the algorithm
to learn from a small amount of data, there are two moon-shaped clusters,
each having 1000 samples, where only 16 of each are labeled. We let each
network to train for 300 epochs. Even though the supervised learning had
available samples distributed over the whole cluster, it was not able to learn
the correct shape using only 32 samples. The Pseudo-labeling algorithm could
not improve the results using the unlabeled data. However, the results of the
II-model are notably better as it managed to capture the moon shape quite
well.
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Figure 4.1: Visualization of a simple two moons dataset. There are 1500
two-dimensional points that lie on two half-circles with additiona noise.

In the second experiment, we tried if the algorithms can deal with a drift
in the training data. This time we used clusters with 10000 samples and
labeled only 1000 points that lie near the center, for each class. We trained
the networks for 100 epochs as having it run longer did not improve the results
of either of the methods. The supervised algorithm could only use the labeled
data that are linearly separable. So it learned to classify the labeled data
with zero error, and we present it only as a baseline for comparison. Pseudo-
labeling again failed to use the information contained in the unlabeled data,
and its accuracy was similar to the fully supervised learning. Also in this task,
the II-model was able to use the smoothness of the data and performed the
best of three methods. To quantify the results, we summarized the prediction
accuracies tested on the whole clusters in Table 4.1.

Completing these experiments, we observed that the results of the Pseudo-
labeling correspond to the idea behind the algorithm. It makes the network’s
decision more confident as it uses the interim predictions as if they were the
true labels. Also, the decision border did not seem to converge to a stable
finale state throughout the learning. It kept shifting closer to one or the other
class, roughly in the range where the confidence of the supervised learning was
low. We managed to get decent results using the II-model, and it proved to be
able to capture the smooth distribution of data. However, the algorithm was
susceptible to inappropriate setting of hyperparameters. It often happened
that one class became dominant during the training, and the II-model could
not recover from that.
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(c) pseudo (d) pseudo

(e) pi-model (f) pi-model

Figure 4.2: Comparison of the decision border of three algorithms on simple
moon-shaped data. The decision border is visualized as a transition from blue
to red. The saturation expresses the classification confidence of the network.
The labeled data are shown as cyan or orange circles, while unlabeled are
drawn in gray. On the left side, we randomly labeled only 16 samples out of
2000 from each class. On the right side, we labeled 1000 samples close to the
center out of 5000 from each class.
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Table 4.1: A summary of test accuracies on simple moon-shaped data. The
table compares Pseudo-labeling, II-model, and fully supervised learning on a
test data covering the whole moon cluster. There are results of two experi-
ments. In the first one, only 16 points out of 1000 were uniformly selected and
labeled for both classes. In the second, we labeled 1000 points in the center
out of 10000 samples for both classes.

Method Test case
16 pts uniform | 1000 pts in center
Supervised 89.1 % 46.2 %
Pseudo-label 85.4 % 42.9 %
IT-model 95.7 % 76.0 %

4.2 Experiments With a Real-World Malware
Dataset

4.2.1 Data

We tested our implementation using a real-world malware detection dataset
provided by Avast. The data concern Windows Portable Executable files,
which were collected during 380 weeks. It consists of 540 real-valued features
derived directly from the binary files using static analysis. Because of their
confidentiality, the data were anonymized. This means that we do not know
the meaning of each feature, so we can not tell which properties of the binary
files are more important than others. Each file is labeled with one of the five
classes:

o Malware

o Adware

e Infected

o Potentially unwanted program
e Clean

There were some attributes with zero or very low variance among the whole
set. Therefore we used principal component analysis (PCA) to reduce the
dimensionality of the feature space and speed up the training. First, we min-
max normalized the data between 0 and 1, and then we projected them to the
subspace spanned by the 128 main components while keeping more than 99 %
of the explained variance.
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Figure 4.3: Visualization of the drift in the proportion of classes in time. The
plots show the ratio between individual classes of binary files for each of the
380 weeks. Fach type of file is represented by a different color.
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Over time, the structure and the properties of the malware change. There-
fore, the features of the dataset change too. This drift has a notable im-
pact on the performance of machine learning models working with such data.
The models tend to lose the classification accuracy gradually as the malware
evolves. But the evaluation of these models is also affected by the drift in
the proportion of classes of captured files. We analyzed the distribution of
malware types and present it in Figure 4.3. There can be seen major shifts in
the occurrence of some malware classes in the range of tens of weeks. Also,
some classes, such as adware, are underrepresented.

4.2.2 Hyperparameters

At first, we analyzed the hyperparameters of each algorithm and optimized
those that we expected to have the greatest impact, based on the results during
early tests of our implementation. We chose the data from five weeks between
the 50th and the 55th week. We performed stratified random sampling and
selected 10,000 training and 5000 testing records. We kept only 5 % of the la-
beled from the training set, and the rest remained unlabeled. Using this data,
we evaluated the classification accuracy for various sets of hyperparameters.

For the Pseudo-labeling algorithm, we optimized the threshold ¢ and the
maximal weight w;,q, for the unsupervised loss component. For the con-
sistency preserving algorithms, we optimized the standard deviation ¢ of the
noise used in data augmentation and again the parameter w,,q,. Furthermore,
we repeated the search of parameters for all six combinations of variants of the
algorithm, which were: II-model or Temporal Ensembling and whether to use
dropout, augmentation or both. We took the parameters from the following
sets:

Wmaz € {0.1,1,2,5,10,15, 20, 30,50},
o € {0.01,0.05,0.1,0.15,0.2,0.3,0.5},

¥ € {0.5,0.7,0.8,0.9,0.95,0.98,0.99}.
However, because of the high time requirements, we did not perform the full

factorial search through all possible combinations. Instead, we optimized only
one parameter at time, keeping others on default values which were:

Wmaz = 30,
o=0.1,
¥ =0.9.

The rest of the hyperparameters we used as stated in the original papers or we
modified them slightly according to our observations because the domain of
our dataset is entirely different. The results of hyperparameter optimization
are visualized using bar charts in Figure 4.4.
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Figure 4.4: Results of the hyperparameter optimization. There are two bar
charts for each implemented method, showing the mean test accuracy with
different values of hyperparameters.
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Each bar chart represents the average test accuracy from 20 independent
training runs. The Pseudo-labeling algorithm performed the best with ¢ = 0.9
and Wyqe = 20. However, the differences in the results were small, especially
for the threshold ¥. Then we tested two variants of the consistency increasing
algorithm. We present only results, in which both augmentation and dropout
were enabled because they reached the best accuracy. The better of the two
was II-model. The best noise deviation o seemed to be 0.2 and wynqz 10. The
results concerning the maximal weight of unsupervised loss wy,q, in the Tem-
poral Ensembling suggest that this semi-supervised algorithm had a rather
negative effect on the accuracy. The network with the lowest values of the
weight, therefore with a little semi-supervised influence, performed much bet-
ter than with higher values. Interestingly, higher values of the o for noise
worked better with Temporal Ensembling. Based on these results, we contin-
ued only with Pseudo-labeling and II-model in later experiments. The final
values of the chosen hyperparameters used in experiments follow in Table 4.2.
In every experiment, we used the same MLP architecture with five layers and
the topology 128-96-64-32-5.

Table 4.2: Final setting of training parameters and model hyperparameters.

Common
Number of training epochs 100
Training batch size 100
Weight ramp-up period r, 70
Optimizer ramp-down period 74 20
Initial learning rate 0.001
Pseudo-Labeling

Pseudo-labeling threshold ¥ 0.9
Maximal weight w,q. 10

Consistency preserving

Consistency preserving variant II-model
Use dropout Yes

Use data augmentation Yes
Maximal weight w,q. 20

Standard deviation o of the noise | 0.2
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4.2.3 Experimental Design

Then we measured the performance of the Pseudo-labeling, II-model, and the
purely supervised baseline for different proportions of labeled data. We varied
the ratio » = |£] : (|£]| + |]) in the range

r € {0.5%, 1%, 2%, 5%, 10%, 25%, 50%, 75%}.

As the training union of labeled and unlabeled data, we took 10,000 stratified
samples from 5 consequent weeks and split them in the considered ratios. Then
we trained 20 separate instances of the network and calculated the average
accuracy on a stratified test set of size 5000 for them. We repeated this
experiment for four distinct groups of weeks: 1-5, 51-55, 101-105, and 151-155.
We also evaluated the performance of trained networks on the data from all of
the following weeks. This is particularly interesting from the point of view of
the considered application domain. Because the structure of malware changes
over time, the prediction accuracy of the newer data tends to get worse. That
means that if semi-supervised learning could overcome this problem, it could
be beneficial. Therefore, we also tried to take the data from newer periods than
the labeled weeks as the unlabeled training set. So we trained the network
using labeled data together with unlabeled data from several weeks later.
Unfortunately, we did not manage to outperform the standard fully supervised
learning this way using any of the implemented methods. We present the
results of these experiments in the following section.

4.3 Results

Using the hyperparameters setting presented in the previous section, we mea-
sured the average test accuracy of 20 training runs of our three implementa-
tions in relation to the proportion of the labeled data in the training data set.
The results can be found in Table 4.3. We can see that the performance of the
fully supervised learning depends on the number of labeled data as it is the
only learning source for the network. The results of the semi-supervised algo-
rithms Pseudo-labeling and II-model are more interesting. Both algorithms
bring a slight increase in the accuracy of low ratios of the labels. The most
noticeable improvement is when there are only around 1 or 2 % of labels.
When the ratio gets above 10 %, the accuracy gain is negligible, and for the
higher values, the semi-supervised effect is even negative. Also, it seems that
[T-model outperforms Pseudo-labeling, as its accuracy is higher in most of the
measurements.

31



4. EXPERIMENTS

Table 4.3: Comparison of the II-model, Pseudo-labeling and the supervised
baseline, relative to the ratio of labeled data. The table depicts the percentage
of the average testing accuracy on four different periods.
contain the results of the supervised baseline, the A P and A II columns show

the difference using Pseudo-labeling and II-model respectively.

Ratio

Weeks: 1-5

Weeks: 51-55

S |AP|AD

S |AP|AD

0.5 %
1%
2%
5 %
10 %
25 %
50 %
75 %
100 %

67.9
71.0
76.8
82.4
85.1
88.3
89.9
90.4
90.9

+0.4
+1.7
+1.3
-0.1
+0.0
—-0.4
—-0.4
-0.1

+3.1
+4.5
+2.5
+1.1
+1.1
+0.3
—0.1
-0.1

63.9
67.1
73.9
82.2
86.1
89.2
90.6
91.2
914

+2.8
+5.0
+3.4
+0.4
-0.4
-0.5
-0.7
-0.3

+3.5
+6.4
+5.7
+2.4
+0.8
+0.1
+0.0
-0.3

Ratio

Weeks: 101-105

Weeks: 151-155

S |AP|AD

S |AP|AD

0.5 %
1%
2 %
5 %
10 %
25 %
50 %
75 %
100 %

96.8
61.8
69.7
7.8
83.2
87.4
89.8
90.7
91.3

+5.2
+6.9
+95.9
+3.7
+1.0
+0.7
-0.3
—0.1

+6.8
+9.0
+6.2
+3.3
+1.1
+0.3
—0.2
—-0.4

67.6
70.3
76.6
80.4
81.7
83.1
84.2
84.4
84.8

+0.3
+5.7
+1.9
+0.2
+0.3
+0.3
-0.1
+0.3

+1.9
+6.4
+2.0
+0.8
+0.6
+0.3
-0.2
—0.2
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4.3. Results

4.3.1 Statistical Tests

To verify our observations, we performed multiple comparisons statistical tests
for the classification accuracies of three implemented methods. We made
more measurements using another testing data to see whether the methods
are significantly different. We took the testing data from all of the weeks later
than the training set. Then we evaluated the accuracy for each week and for
all considered ratios of labeled and unlabeled data. For each combination of
ratio, testing week, and algorithm, we obtained twenty different results using
twenty separately trained instances of the networks.

Firstly, we applied the Friedman test [47] to find out whether all the meth-
ods achieve the same accuracy. The Friedman test is a nonparametric test
that compares at least three matched groups of measurements. It uses the
ranking of results of different methods on the same testing data. In our case,
it orders the accuracies of three methods from low to high and assigns the
rank to them. Then it sums all the ranks of each method separately and
compares the sums. If the sums are very different, the resulting p-value of the
test will be small. We present the results of the Friedman test in Table 4.4.
All of the p-values were small enough that we could reject the null hypothesis
of the equal accuracy of all three methods in all considered cases. Because we
performed multiple comparisons at once, we corrected the p-values with the
Holm method [48]. After that, we still could conclude that all three methods
are not equal at the 5 % level of family-wise significance.

Table 4.4: Results of the Friedman statistical tests. There are p-values for
every tested combination of ratio of labeled sample and training week. All
values are very low so that the null hypothesis of the method equality can be
rejected in every case with the Holm correction at a 5 % level of family-wise
significance.

Ratio Training weeks
15 51-55 101-105 151-155

0.5% | 1.87 x 10749 | 3.64 x 10721 | 1.01 x 1079 | 7.90 x 103!
1% |272x107% | 4.76 x 10740 | 2.90 x 10725 | 0.00 x 1
2% | 7.24x10727 | 1.75x 10720 | 1.49 x 10712 | 4.98 x 10713
5% | 245x 107" | 2.57 x 10711 | 0.00 x 1 7.18 x 10725
10 % | 1.46 x 10796 | 0.00 x 1 1.51 x 1072° | 0.00 x 1

25 % | 0.00 x 1 0.00 x 1 1.49 x 10712 | 8.41 x 10%
50 % | 1.69 x 1072° | 6.24 x 10738 | 0.00 x 1 0.00 x 1

75 % | 3.03x 10726 | 1.98 x 10798 | 3.40 x 10725 | 0.00 x 1
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Table 4.5: Results of the post hoc statistical tests. The number is the p-value
of the test, and the asterisk marks whether the null hypothesis was rejected.

Supervised and Pseudo-labeling

Ratio Training weeks

1-5 51-55 101-105 151-155
0.5 % | 1.68x1 1.41x107% « | 2.01x1 1.59x1
1% |203x1 7.97x107% « | 5.10x 109 0.00x 1 *
2% |3.82x10712 % | 1.90x 1079 % | 1.96x 10702 7.48x10799 «
5% | 3.90x1071% x| 1.18x10719 % | 3.00x 10725 1.02x107% «
10 % | 2.23x107%1 3.52x 10718 % | 1.20x 1020 4.20x107% «
25 % | 6.84x10717 % | 0.00x1 % | 1.14x10712 420%x107% «
50 % | 1.02x1071% % | 4.80x1072* % | 2.53x 10702 0.00x 1 *
75 % | 3.64x10720 % | 1.96x 10792 % | 2.37x 107! 0.00x1 *

Supervised and II-model

Ratio Training weeks

1-5 51-55 101-105 151-155
0.5% | 1.84x10733 % | 2.90x107% % | 5.90x 107 3.72x10722 «
1% | 1.91x1079 % | 3.00x1071% % | 1.00x 10722 0.00x 1 *
2% [9.76x1079% % | 1.44x1079% % | 1.41x 10712 7.76x 1071 «
5% | 5.66x1079 | 442x107°0 | 7.85x107% « | 4.11x 10708 «
10 % | 5.54x107°2 3.45%x10712 % | 4.00x 10797 2.42%107% «
25 % | 6.23x10717 % | 3.74x 1071 % | 2.72x10793 4.72%x107% «
50 % | 3.72x107% 5.66x 10701 4.45%10~40 1.23x 1079 «
75 % | 5.91x10720 % | 3.70x1079® % | 5.56x 10714 1.27x10724 «

Pseudo-labeling and II-model

Ratio Training weeks

1-5 51-55 101-105 151-155
0.5% | 7.24x10728 % | 1.64x1072! % | 2.19x107% 8.24x 1072 «
1% | 1.87x1079 6.25x10740 % | 4.79%1071° 1.79% 1079
2% | 3.08x107%0 % | 3.64x10720 % | 4.07x107%4 2.03x1
5% 1.74x107% % | 1.93x107% % | 1.43x10792 4.49%1072 «
10 % | 3.90x1079 % | 0.00x1 % | 1.44%x 10793 1.71x 10719 «
25 % | 0.00x1 % | 8.13x10728 % | 3.93x 10793 4.84x1071 «
50 % | 2.91x1072% % | 5.32x10733 % | 0.00x 1 2.21x10724 «
75 % | 1.11x1 6.44x 10792 2.91x10723 9.82x 10798 «
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4.3. Results

Subsequently, we compared all three pairs of algorithms separately using a
post hoc pairwise test. Supervised to Pseudo-labeling, Supervised to II-model,
and Pseudo-labeling to II-model. The results of it can be found in Table 4.5.
We again present the p-values of the test. The tests, where we could reject
the null hypothesis of the equal accuracy of both compared methods at the
5 % level of family-wise significance with Holm correction, are marked with an
asterisk. A significant difference between the compared methods was found
for 80 among the 96 compared pairs corresponding to the 32 combinations of
training weeks and ratios.

In the cases where the pairwise test identified methods to be different, we
compared the means of accuracies to decide which method performed better.
We summarized the results in Table 4.6. If we consider only tests with ratio
up to 5 %, where the difference was significant, then the Pseudo-labeling was
significantly better than supervised learning in 3 cases and the II-model in 11
cases. Pseudo-labeling was significantly better than II-model in only 3 out of
14 significant comparisons. In tests with a higher ratio of labeled samples, the
results are less conclusive.

Table 4.6: Multiple comparisons test of three methods for different ratios of
labeled data, tested on the data from all of the following weeks till the end.
Each cell contains a triplet of symbols representing the results of three post
hoc pairwise tests. The order of the comparisons is: supervised to Pseudo-
labeling, supervised to II-model, and Pseudo-labeling to II-model. The dash
means that the comparison was statistically insignificant and three letters
S, P, and II marks whether supervised, Pseudo-labeling, or II-model were
significantly better than the other algorithm in the test.

Ratio Training weeks

1-5 51-55 101-105 | 151-155
05% | —, 0,101 | S, I, 11| -, I, 1T | —, II, IT
1% -, 10, — | S, I, I | —, I, 1T | P, II, IT
2% S, S, IT|S,S,II|P, I, P| S, S, -
5 % S, -, 11 |S,-,P | P, I[P | S III
0% | -, -, I | S, II,IT|S,S,P|S,S,II
25% | P, I, IT | S,S,IT|P,S,P|S,S,II
50% | P, -, 11| S, -, II|P,S,P|S,S,II
% |P,S, - |P,S,—| -, S,P|S, S, I
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Figure 4.5: The progression of the classification accuracy evaluated on weeks
between the 5th and the 55th.
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Figure 4.6: The progression of the classification accuracy evaluated on weeks
between the 55th and the 105th using Pseudo-labeling, II-model, and fully
supervised learning, trained using a dataset with 1 % of labels. For each plot,
there are three quartiles visualized; the median is drawn with a solid line,
while the first and the third quartiles are dotted. The curves correspond to
the moving average with the window size of five weeks. The first five dashed
weeks are means of all previous weeks. The first five weeks at the beginning
of each plot were used for the training.
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Figure 4.7: The progression of the classification accuracy evaluated on weeks
between the 105th and the 155th.
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Figure 4.8: The progression of the classification accuracy evaluated on weeks
between the 155th and the 205th using Pseudo-labeling, II-model, and fully
supervised learning, trained using a dataset with 1 % of labels. For each plot,
there are three quartiles visualized; the median is drawn with a solid line,
while the first and the third quartiles are dotted. The curves correspond to
the moving average with the window size of five weeks. The first five dashed
weeks are means of all previous weeks. The first five weeks at the beginning
of each plot were used for the training.
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We also visualized the progress of the classification accuracy over time in
plots, examples of which are in Figures 4.5 to 4.8. To capture the variance
of the results, we plotted three quartiles. Because the accuracies oscillated
greatly through the individual weeks, we used a moving average to smooth the
curves. We can see that both semi-supervised algorithms slightly improved the
accuracy of the network on the roughly first 30 weeks. The Pseudo-labeling is
around 1 or 2 % better than supervised learning, while IT-model gets another
1 or 2 % above the Pseudo-labeling. After around 40 weeks, the results of all
three methods are very similar. As the properties of the data shift over time,
the overall results on the data beyond 50 weeks got considerably worse and
fluctuated more for all methods.

4.3.2 Semisupervised Learing With Data Drift

Then we tried to use semi-supervised learning of neural networks to overcome
the problem with the drift of data over time. We tried to simulate a real use
case of machine learning in malware detection. We fixed the labeled part of the
training to a certain period of time, like in previous experiments. Nevertheless,
we wanted to use also the information in the unlabeled newer weeks. To create
a more realistically sized dataset, we increased the number of training weeks
as well as the number of samples. We took 50,000 samples from a ten-week
period. To choose suitable weeks for the experiment, we first trained our fully
supervised baseline several times on fives and tens consequent weeks, starting
at different points in time. Then we evaluated the classification accuracy in
all of the following weeks to see the drift in data.

We selected data between the 275th week and the 285th week because
the test accuracy oscillated less, and there was a somewhat steady decrease
in the accuracy in the first twenty weeks. Then we used the data in later
weeks as unlabeled for semi-supervised learning. For each following week, we
trained the network again, taking all samples in one week as the unlabeled
set. Because training the network for almost a hundred times was rather
demanding on computational time, we decided to examine only one semi-
supervised algorithm. We used the II-model because it performed better so
far, and the Pseudo-labeling did not seem to work well with the data drift
in the simple experiment with moon data. The classification accuracy was
evaluated on the same samples as in the unlabeled training part.

The results of this experiment are visualized in Figure 4.9. Unfortunately,
the semi-supervised II-model did not manage to use the unlabeled data to
improve the classification at all. The accuracy is worse in all but three weeks
and is lower by 5.5 % on average. Moreover, there are three major drops in
the accuracy visible on the plot.
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Figure 4.9: The use of II-model with unlabeled data from later weeks. The
plot compares the test accuracies of a fully supervised baseline (red) with the
ITI-model (green). The data from ten weeks between the 275th and the 285th
week were labeled. Supervised learning used only those, while II-model used
samples from the particular tested week as unlabeled.

4.4 Discussion and Future Work

We compared two semi-supervised algorithms Pseudo-labeling and II-model.
These algorithms were both designed to be used for the classification of image
data with convolutional neural networks. We applied them to a completely
different domain of data extracted from malware files. Nonetheless, we will
try to compare our results with these studies. While the original papers of
algorithms present better results, we will try to relate our observations with
the overview paper [20] as it provides a more realistic evaluation. The authors
of the paper from the Google Brain team tested these algorithms on two
datasets. On CIFAR with 4000 labeled images and SVHN with 1000 labeled
images. They reported that the Pseudo-labeling increased the accuracy on
CIFAR by 2.5 % and by 5.2 % on SVHN. The improvement with the IT-model
was 3.9 % and 5.6 %, respectively. When we tested these methods using
the malware dataset, we noted that it performed the best when around 1 %
of data were labeled, which corresponds to only 100 samples out of 10,000.
In this setting, our implementation of Pseudo-labeling brought an accuracy
increase between 1.7 % and 6.9 %, depending on the test case. The increase
by II-model ranged from 4.5 % to 9 %. When we evaluated the accuracies on
the data from later weeks with a drift in the features and class proportions,
the improvements were slightly less noticeable. However, we should note that
the overall classification accuracy was lower in our experiments than in the
original articles, which leaves more space for the improvement with the use of
semi-supervised learning.
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Even though the experiments are not directly comparable because of the
difference in the domain, we assume that we have shown that these algorithms
can be used with non-image data too. Though, it seems that these algorithms
are useful only when a limited number of labeled samples are available. That
might be useful for some applications where the ground truth outputs are
difficult or expensive to obtain. However, that is not necessarily the case with
malware data as the antivirus companies usually have access to a large amount
of training data. What we think would be more beneficial is if semi-supervised
learning could help to capture the evolution of malicious files. That is what we
tried to accomplish in the last experiment in the previous section. However,
the effect of the semi-supervised II-model was almost only negative. There
are several possible reasons for that.

The first explanation could be that we just did not find the appropriate
setting of learning parameters and hyperparameters of the II-model and thor-
oughly tuned parameters would outperform the semi-supervised baseline. But
we do not think that this is the case because we manually tried a lot of dif-
ferent settings and still did not manage to get better results with II-model. A
different reason might be that drift in the data is that strong, that it breaks
the assumptions stated in the first chapter. In other words, it would mean
that the newly recorded files and their corresponding calculated features are
that different, that they produce a completely different output of the network.
Therefore II-model would not be able to find a correct connection between the
old and the new data. By looking at Figure 4.9, we can see that there is a
quite large and steady decline in the accuracy in the first 20 test weeks. It
could be caused by a gradual shift in the properties of data, but also by a con-
stant increase in the proportion of new completely different samples. Another
reason could be that the II-model algorithm is only useful when the labeled
set is much smaller than the unlabeled. However, in the last experiment, the
labeled set was usually around two times larger than the unlabeled set. This
seems likely when we consider the results of our previous experiment with
different ratios of labeled data.

But we believe that it does not mean that semi-supervised learning could
not help with this problem in general. If the assumptions for semi-supervised
learning are at least partially met, there should be a way how to use the unla-
beled data to mitigate the negative effect of data drift. Therefore, for follow-up
research, we propose to focus on solving this challenge. One approach could
be to utilize some kind of similarity measure on the input data and emphasize
the unlabeled samples, which are more similar to the labeled set. Then the
algorithm could try to gradually move to more different samples. We tried to
experiment with this and analyzed distances among samples from the same
class in different time periods. We tried several commonly used similarity
measures like Euclidean, Manhattan, Cosine, Chebyshev, and Mahalanobis.
The Cosine distance seemed to be best to separate the different classes, but
the overall results were not conclusive enough to be used straight away. The
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data are not simple enough to be separable using just distance measures. We
tried this only on the raw input vectors. Hence the next step could be to incor-
porate the similarity measure in other parts od the machine learning model.
For example, to use it on the activations of neurons in hidden layers, where
the network learned to extract more complex features. Also, datasets similar
to the malware one we used, might be good candidates for online learning,
where the model is incrementally improved using new data samples. It could
also be used with active learning, which would help to choose the best samples
for labeling.
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Conclusion

In this thesis, we presented an application of semi-supervised learning of deep
neural networks, mainly to malware data. At the beginning, we outlined
machine learning and its types. We also described artificial neural networks
and how they learn from training data. The next chapter was dedicated
to related studies. We outlined a few early semi-supervised algorithms and
described four approaches of deep semi-supervised learning in detail. Then
we described our implementations of two of the algorithms, Pseudo-labeling
and II-model. In the last chapter, we presented our experiments with these
two methods.

We tested them using a simple two-dimensional dataset and visualized the
learned decision border. Then we compared them with the fully supervised
baseline. We evaluated the classification accuracy on a real-world malware
dataset divided to 380 weeks by the time of the first recording of the respective
binary file. Despite having been developed for the classification of image data,
the results showed that both methods could improve the performance of a neu-
ral network on malware data. However, implemented algorithms seem to be
beneficial only when the proportion of labeled data is low, ideally around 1 %.
We have also found that these semi-supervised methods can increase the accu-
racy on data newer than the training set, for which drift in structure is likely
to occur, but only to a certain extent. Furthermore, we tried to overcome
the problem with the data drift and used the newer samples as the unlabeled
set for the II-model. However, its effect was mostly negative. Based on our
experiments, the relatively more complex algorithm, II-model has got slightly
better results than Pseudo-labeling in most cases.
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APPENDIX A

Acronyms

Al Artificial inteligence

ANN Artificial neural network

CNN Convolutional neural network
EMA Exponential moving average
LDS Local distributional smoothness
MLP Multilayer perceptron

MSE Mean squared error

PCA Principal component analysis
ReLU  Rectified linear unit

SGD Stochastic gradient descent

SOM Self-organizing map
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APPENDIX B

Contents of Enclosed CD

readme.BXb .. vvviriienennnnnnn the file with CD contents description
ST o o PP the directory of source codes
t semi-supervised.............. ... .. ool implementation sources

thesiS...cvvvveinn... the directory of IATEX source codes of the thesis
L72=5 & v the thesis text directory
LDP_Koza_Jan_QOQO.pdf ................ the thesis text in PDF format
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