

Bachelor’s thesis

Autocomplete in the system TA ČR Starfos

Róbert Schönfeld

Department of Applied Mathematics
Supervisor: Ing. Jǐŕı Novák, Ph.D.

January 20, 2020

Acknowledgements

I would like to thank my supervisor for his infinite supply of patience and my
team at TA ČR for their support, which made this work possible.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on January 20, 2020

Czech Technical University in Prague
Faculty of Information Technology
c© 2020 Róbert Schönfeld. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Schönfeld, Róbert. Autocomplete in the system TA ČR Starfos. Bachelor’s
thesis. Czech Technical University in Prague, Faculty of Information Technol-
ogy, 2020.

Abstrakt

Našeptávače jsou rozš́ı̌rená technologie ve vyhledáváńı, asistuj́ıćı uživateli při
formulaci vyhledávaćıch dotaz̊u. Tato práce se zabývá implementaćı našeptávače
v existuj́ıćı aplikaci TA ČR Starfos. Je představena dekompozice problémové
domény včetně problematiky uživatelských rozhrańı vyhledávač̊u. Dosažena
je uspokojivá implementace s použit́ım Apache Solr založená na autorem vy-
tvořených kĺıčových slovách, která poskytuje základ pro budoućı vývoj.

Kĺıčová slova našeptávač, źıskáváńı informaćı, automatická extrakce kličových
slov, zpracováńı přirozeného jazyka, uživatelské rozhrańı pro vyhledáváńı,
Apache Solr, informačńı systém výzkumu a vývoje

Abstract

Query auto completion(QAC) is a widespread information retrieval technology
for aiding query specification in search systems. This thesis is concerned with
the implmentation of QAC in an existing application TA ČR Starfos. A
decomposition of the problem domain is provided including a study of search
user interfaces. A satisfactory implementation using Apache Solr based on
author-assigned keywords is achieved and provides a foundation for further
development.

vii

Keywords query auto completion, information retrieval, automatic keyphrase
extraction, natural language processing, Apache Solr, search user interface
current research information system

viii

Contents

Introduction 1

Goals 3

1 Problem context 5
1.1 Technology Agency of the Czech Republic 5
1.2 IS VaVaI . 5

1.2.1 CEP Projects and RIV Results 6
1.3 TA ČR Starfos . 7

2 Search user interfaces 9
2.1 Models of information seeking 9

2.1.1 Iterative refinement . 9
2.1.2 Berry-picking . 10
2.1.3 The information foraging theory 10
2.1.4 Query taxonomy and QAC 10

2.2 Query specification and syntax 11
2.2.1 Boolean queries . 11
2.2.2 Command languages . 12
2.2.3 Modern keyword search 13
2.2.4 The search box . 14

2.3 Current web search engines . 14
2.3.1 Google search . 15

2.4 Faceted search . 16
2.4.1 Nested facets and dashboards 17

2.5 QAC design patterns . 18
2.5.1 Keyword query suggestions 18
2.5.2 Direct entity suggestions 19
2.5.3 Search history suggestions 20
2.5.4 Interactivity and responsiveness 20

ix

2.5.5 Presentation of suggestions 20
2.5.6 Instant search . 21

3 Theory 23
3.1 Building the corpus of QAC suggestions 23

3.1.1 From search query logs 23
3.1.2 From searched documents 24

3.2 Retrieving suggestions . 25
3.2.1 Matching . 25

3.2.1.1 Brute force . 25
3.2.1.2 Inverted index based on n-grams 25
3.2.1.3 Prefix trees . 26

3.2.2 Ranking . 27
3.2.2.1 Heuristic models 27
3.2.2.2 Learning to rank 28

3.3 Automatic keyphrase extraction (AKE) 29
3.3.1 Text pre-processing . 29

3.3.1.1 Stopwords . 29
3.3.1.2 Stemming . 30
3.3.1.3 Morphology . 30

3.3.2 TF-IDF . 31
3.3.3 RAKE . 31

4 Implementation 33
4.1 Software requirements . 33

4.1.1 Establishing goals . 33
4.1.2 Suggestions . 34
4.1.3 User interface . 34
4.1.4 Technical requirements 35

4.2 Author-assigned keywords . 35
4.2.1 Parsing . 36
4.2.2 Normalization . 36

4.3 AKE . 37
4.4 Matching and ranking . 38

4.4.1 HTTP web service . 39
4.5 Front end . 39

Conclusion 41

Bibliography 43

A Acronyms 49

B Contents of enclosed CD 51

x

List of Figures

1.1 Domain model of key entities in IS VaVaI 6
1.2 Production version of Starfos search available at starfos.tacr.cz . . 7

2.1 Form to generate boolean search query in Google Patents 12
2.2 A part of the current Google “Advanced search” form 13
2.3 Selection of facets for the computer mice on alza.cz 16
2.4 Example of a complex facet in Google Patents 17
2.5 Example of advanced Google QAC suggestions 18

3.1 Basic structure of a QAC system 23
3.2 Example of trie schema . 26
3.3 Query re-ranking pipeline . 28

4.1 The current version of Starfos’ QAC in development 40
4.2 Additional examples of achieved QAC results based on author-

assigned keywords . 40

xi

Introduction

Query auto completion (QAC), autocomplete, autosuggest, typeahead search
and incremental search all refer to the same information retrieval technology
and its corresponding UI element used in search applications. One of its
earliest appearances was in the Bash command line interpreter, in which op-
tions retrieved from a dictionary of command and file names were displayed
in alphabetical order after a double press of the Tab key. Word prediction
software was subsequently studied with the aim of increasing the typing speed
of individuals with physical disabilities. [1]

In 2004, Google rolled out their implementation of QAC called Google Sug-
gest. A drop-down list of query suggestions, updating instantly after every key
stroke, appeared below the search box.[2] With the emergence of mobile de-
vices, where the input method is especially time-consuming and error-prone,
QAC powered search boxes identified by the magnifying glass icon have be-
come universally recognizable UI elements.

Google QAC has made its way into pop culture as a simple barometer
of trends. There is a whole book[3] dedicated to presenting a collection of
entertaining Google QAC suggestions, one per page. Examples include “i
wish i were a”, “what happens if you put a” and “why do millennials”.

The use of QAC in search engines operating on large data sets is enabled by
the availability of databases and network infrastructure capable of sufficiently
responsive retrieval of the suggestions. My implementation utilizes the open
source search engine Apache Solr.

1

Goals

The aim of the thesis is summarized in the following 3 objectives:

1. Study and provide a description of the problem domain including

a) search user interfaces,
b) the current version of Starfos,
c) the IS VaVaI data set,
d) methods for matching and ranking of QAC suggestions.
e) methods for generating the QAC corpus,
f) automatic keyphrase extraction (AKE),

2. Implement a QAC web service for Starfos using Python, the web frame-
work Django and the search engine Apache Solr, with key requirements:

a) Provide keyword query suggestions in both Czech and English lan-
guages.

b) Include suggestions for documents and their URLs.
c) Include suggestions for precise filtering on related entities, which

are available in a structured form, i.e. filter by organization or
author.

d) Ensure sufficiently low response time, i.e. 100 - 200 miliseconds.

3

Chapter 1
Problem context

The motivation comes from my involvement in the project Proeval, specifi-
cally the development of the system TAČR Starfos. Proeval is an EU-funded
internal project of the Technology Agency of the Czech Republic (TA ČR)
with the subtitle ”Evidence-Based management of R&D funding programmes,
improvement of analytical and data services of TA ČR” (author’s translation).

This chapter provides an overview of the domain and the existing appli-
cation.

1.1 Technology Agency of the Czech Republic

The Technology Agency of the Czech Republic (TA ČR), an organisational
unit of the state, is one of the providers of public R&D funding in the Czech
Republic. TA ČR’s purpose is to administer public contests in which funding is
allocated to applied research projects submitted by university faculties, private
companies and other research institutions.

1.2 IS VaVaI

The key data source for Starfos is IS VaVaI[4], the Czech current research
information system. It offers extensive records of state supported projects and
their research results from the past 30 years. This includes detailed financial
records per year and participating organization.

IS VaVaI is presently maintained by RVVI (the Research, Development
and Innovation Council of the Government of the Czech Republic)[5]. The
data is produced and submitted by R&D funding providers such as TA ČR.
RVVI is responsible for overseeing the data collection process in accordance
with relevant legislation, maintaining the database and making it publicly
available via their own web application and JSON API.

5

https://starfos.tacr.cz

1. Problem context

Concurrently with the development of Starfos, the IS VaVaI data set has
been processed and stored in DAFOS, TA ČR’s data warehouse. A fair
amount of work has gone into cleaning and enriching the data. In particular
dealing with the errors and inconsistencies caused by the sub-optimal data
structure and historically inconsistent maintenance.

Project

Code
Name (cs, en)
Project goals (cs, en)
Provider's evaluation (cs,en)
Author-assigned keywords (en)

Implementation period
Finances

Scientific field classifications
Misc enumerations

Organization

IČO
Name
Abbreviations
Address
ARES data

0..n

0..1

Provider

Code
Name (cs, en)
Abbreviation (cs, en)

Programme

Code
Name (cs)

CallForProposals

Code
Name (cs)

0..n1 0..n1

Result

Code
Name (cs, en, original)
Description/Abstract (cs, en, original)
Author-assigned keywords (en)

Type (e.g.: paper, patent, conference)
Publication year
DOI
URL
Type-specific ids, meta data

Scientific field classifications
Misc enumerations

0..n0..n

0..n

1..n

0..n

1..n

0..n
1..n 1

Author

First name, Last name
Titles
Nationality
Vedidk
ORCID, Scpous ID, WoS ID

1..n

0..n

Figure 1.1: Domain model of key entities in IS VaVaI

1.2.1 CEP Projects and RIV Results

The two most valuable collections of documents both for Starfos and this work
are Projects and Results.

CEP(Central register of R&D projects) A subsystem of IS VaVaI, con-
taining 50k projects with roughly 2k being added each year. These
represent a particular R&D activity with a defined goal and assigned
state support.

RIV(Information Register of R&D results) Another subsystem, contain-
ing more than 1M results with 50k added annually. These are essentially
meta data of scientific publications, or other types of results such as
patents, software or organized workshops. Approximately 50% of them
are linked to a project.

6

1.3. TA ČR Starfos

1.3 TA ČR Starfos

Figure 1.2: Production version of Starfos search available at starfos.tacr.cz

Starfos is a web application developed by TA ČR. Its purpose is to support
both internal analytical processes and public presentation of Czech R&D.

The central feature is a full-text and faceted search interface on top of IS
VaVaI data stored in DAFOS. Additional data sources in the R&D domain
will likely be incorporated in the future. Extensive configuration options are
available for the collections, filters and other components.

The functionality is not limited to search. There are document detail
pages offering comprehensive data visualizations and reporting. A recent ad-
dition is TAČR v Datech, a simple content management system for publishing
infographics which can take input from SQL queries.

7

https://starfos.tacr.cz/en/tacrvdatech/

Chapter 2
Search user interfaces

Following UI standards is valuable especially for well-known interfaces like
search and QAC. It removes the need for users to learn a new system. To
users, the “big players” in the search engine market act as reference.[6] This
chapter introduces some of these design patterns and describes a selection of
popular search applications. A particularly useful resource for me was the
book Search User Interfaces by Marti Hearst [7], which is outdated in places,
but provides a very well-organized overview. It begins with this description
of a search UI’s purpose:

The job of the search user interface is to aid users in the expres-
sion of their information needs, in the formulation of their queries,
in the understanding of their search results, and in keeping track
of the progress of their information seeking efforts.[7]

2.1 Models of information seeking

Let’s start by considering a high level description of how humans use infor-
mation retrieval systems to fulfill information needs. The term information
seeking is close in meaning to search, but emphasizes that this is a broader
human activity and may occur over a long period of time.[8]

Although it is difficult to comprehensively model user behavior, examining
some of the proposed models may be helpful for framing further discussion.

2.1.1 Iterative refinement

One simple model proposed in [8] views information seeking as iterative re-
finement of a query that is terminated when the user’s initial information need
is met and consists of the following phases:

1. Recognizing a need for information

9

2. Search user interfaces

2. Accepting the challenge to take action to fulfill the need

3. Formulating the problem

4. Expressing the information need in a search system

5. Examination of the results

6. Reformulation of the problem and its expression

7. Use of the results

2.1.2 Berry-picking

Another view is provided by the berry-picking model[9] which acknowledges
the more complex nature of some information needs. Information encountered
in a search may shift the user’s goals and queries in unexpected directions or
create new goals and diverse queries. Moreover, the information need may
not be satisfied by the retrieval of a particular set of documents, but rather
by many bits of information gathered over consecutive searches and various
interactions with search results.

2.1.3 The information foraging theory

The information foraging theory[10] is based on the idea that humans transfer
food-finding cognitive mechanisms to exploring, finding and consuming infor-
mation. The theory suggests that search strategies evolve to maximize the
ratio of valuable information gained to the cost of searching and reading.[7]
Searcher’s behavior is modeled as constantly performing a probabilistic cost-
benefit analysis for navigation. In other words making judgements on whether
to continue reading a particular resource, refine or significantly alter the query,
view more search results, etc.

An important concept for UI design associated with this theory is infor-
mation scent — the estimated probability that a navigation choice will be
successful.[11] The navigation proposition[12] states that in order for a re-
source to be findable within a navigation structure, there must be sufficient
information scent at every step. Search result listings are designed to provide
strong indications about what individual results contain.

2.1.4 Query taxonomy and QAC

Information needs and individual queries can be classified in various dimen-
sions including the topic and underlying goal. This can be done either by
automated analysis of search query logs, manual classification or question-
naires. The models described above are relevant especially for rather open

10

2.2. Query specification and syntax

information needs exemplified by a task like compiling literature for a scien-
tific paper.

From the point of view of QAC, it is useful to identify the following two
types of information needs or queries:

known-item search The user is searching for a particular document or ob-
ject, that is known in advance, e.g. app, setting, regularly visited web
page, old email. In this case, the search or QAC system is merely the
most convenient way of looking up the document. QAC in this context
has a straight forward purpose of minimizing the time it takes to submit
a query or execute a desired action. Also, it satisfies the users’ need for
feedback, confirming that the query is formulated correctly. The most
extreme example are IDEs and other power-user tools.

exploratory search[13] The user does not have a fully defined goal or is
searching in an unfamiliar domain. In these situations, QAC guides
the user, suggesting sensible queries. In other words, QAC has the
potential to present the data set and the search app’s functionality in
an interactive way.

2.2 Query specification and syntax

Query specification refers to the phase of the information seeking process in
which the user expresses their internalized concepts in a query format that
the search system can make use of [7]. These formats range from command
languages and Boolean queries to keyword search and natural language ques-
tions.

Querying multimedia collections or searching by image is also possible but
this overview is restricted to textual queries and documents.

2.2.1 Boolean queries

Search engines in the pre-web era often used Boolean queries or highly spe-
cialized command languages. Users were trained in the use of these systems
and were willing to spend time formulating the queries, especially if charged
per query.[7] This was simply because such systems were easier to implement
rather that the sophisticated processing available today.

Boolean queries are expressions consisting of words and Boolean operators
AND, OR, NOT. A simplified solution is using two prefix operators —
+(plus) meaning that the search term must be present and -(minus) that
it must not.

An interesting entry form to generate Boolean queries is used in Google
Patents. It is displayed at all times in the left panel of the search results page
and provides a certain level of abstraction, which may not require the users

11

2. Search user interfaces

to understand Boolean queries. The input shown in figure 2.1 generates the
query

((automated) OR (automatic)) ((keyword) OR (keyphrase)) (extraction)

and inserts it into the search box.

Figure 2.1: Form to generate boolean search query in Google Patents

2.2.2 Command languages

In addition to Boolean, command languages make use of other operators to
specify options such as fields to search, stemming activation, prefix search or
wildcard search.

One example still relevant today is the Lucene Query Syntax used in Solr’s
default Standard Query Parser, although it is not necessarily meant to be used
by end users. For example the query

(title:foo OR title:bar)ˆ2 OR (abstract:"foo bar"˜4)

matches documents that contain either foo or bar in their title and also
documents that contain the two words in the abstract in the given order
within distance 4 of each other. At the same time it gives a boost factor of 2
to the first term’s contribution to the relevancy score.[14]

Google search still supports Boolean queries and tens of other operators
to alter search results. For example site: restricts results to a specific site
and intitle: searches in web page titles only. However these are rather hidden
features that are not expected to be used often or by many users. There is
an “Advanced search” entry form(figure 2.2) for some of these functions, that
translates them to their textual equivalent.

12

2.2. Query specification and syntax

Figure 2.2: A part of the current Google “Advanced search” form

2.2.3 Modern keyword search

Keyword search is the dominant query method used today. The query consists
of keywords or phrases relevant to the user’s information need. These may be
single words, compound nouns, several keywords, or more complicated phrases
containing prepositions, conjunctions, etc.

There is an important trade-off between performing clever automated ac-
tions and user control. Without sufficient quality of results, automated query
transformations may lead to frustrating experiences. The ranking algorithm
is completely opaque to users. “ANDing” is problematic when the result set
is empty or too small. “ORing” based on statistical functions such as TF-
IDF may lead to confusing ranking. For example a document containing a
rare term may be ranked high even if it matches no other query terms.[15]
Another famous example is the query to be or not to be which yields no
results in many search engines because of stop word removal.

In Google search, there is a verbatim option that disables stemming, syn-
onym expansion, stopword removal, spellchecking and other query corrections.
It requires all search terms to be present and omits results for related queries
or concepts.

Techniques such as website popularity ranking, boosting occurrences of
terms in close proximity, identifying entities or collocations and good qual-
ity search result snippets (fragments of matched text) proved to be effective
solutions.[16] Especially in web search where the quality of the first few results
is key and recall is not very important. For example 80% of search result clicks
are on one of the first 4 results.

Research shows that first-time searchers often intuitively start by using
natural language questions. It takes time to learn that keyword search is an
iterative process and that effort can be made to improve the query and in-
crease the likelihood of a successful search. In recent years, search engines
are increasingly capable of intelligent query understanding and handling nat-
ural language questions. This trend was summarized well by a Google search
engineer in 2007:

13

2. Search user interfaces

Search over the last few years has moved from “Give me what
I typed” to “Give me what I want” [17]

Some of these techniques and algorithms will be described in more detail
in later chapters.

2.2.4 The search box

In the end, the query entry interface often boils down to a search box, which
has become one of the most recognizable UI elements. It should be promi-
nently displayed on every page, where users expect to find it (top-right or
top-center area) . The full input field should be displayed rather than initially
being hidden behind the magnifying glass icon.

The size of the input field has been shown to influence the average query
length[18]. Particularly multi-line boxes encourage longer text. A popular
practice is placing a grayed-out placeholder text in the search box that disap-
pears when clicked and contains a hint — either an instruction like Search
e-mail or example queries, e.g. code breaking, Alan Turing, enigma
movie 2014. A related practice is providing a selection of featured or trend-
ing searches in the form of hyperlinks under the search box.

An integral feature of the search box for aiding the query specification
process is of course QAC.

2.3 Current web search engines

With the emergence of the Web, search became a technology widely adopted
by the masses. Before that, information retrieval systems were restricted to
narrow groups of highly trained users such as librarians, lawyers, journalists
and scientific researchers. These systems were usually limited to meta data
and searching was often followed by the physical retrieval of a copy of the
resource.

At its core, the UI has remained unchanged since the first web search
engines. There’s a search parameter entry form at the top of the page and a
simple vertical list of search results.[7] This is because web search engines need
to cater to an extremely wide range of users and information needs. Search is
a mentally intensive process and usually only serves to support a larger task,
rather than being the goal itself.

A 2005 study[19] found that even this simple design posed challenges for
some older adults. Many participants struggled to understand the basic con-
cept of keyword specification. Further simplifying the search results list has
been found to substantially improve usability for this demographic.

The search results are contained in a narrow column on the left side of
the search engine results page(SERP). This approach follows the philosophy

14

2.3. Current web search engines

than narrower columns of text are easier to read and it leaves space for other
content such as advertisements on the right.

2.3.1 Google search

Google is the dominant web search engine, commanding a global market share
of around 90%.[20] 63 000 searches are processed every second with the av-
erage user performing 3-4 daily. 15% of these are new queries, that have not
been seen before.[21] ”Googling” has become a verb synonymous with web
searching. Seznam, a local competitor, is maintaining a market share as high
as 25-30% on desktops in Czech republic, which is quite rare, although it is
on a steady decline from 50% in 2014.[22]

In recent years, Google has been incorporating new features into its SERPs.
Dynamic content is displayed in between the standard results and in another
column on the right. In 2012, Knowledge panels were introduced and now
appear for roughly one third of queries.[23] This is a form of semantic search
based on the Knowledge Graph, Google’s knowledge base with information
retrieved from sources such as Wikipedia. These have been criticized for
incomplete source attribution and particular cases of being inaccurate.[24]

Another feature is a question answering system presented in the form of
Featured snippets or People also ask cards. This blurs the lines between search
and personal assistant apps. Users are now comfortable querying Google with
simple questions in natural language, especially if confirmed by a QAC sug-
gestion.

More broadly this is attempting to resolve the user’s query directly on the
SERP eliminating the need to be redirected to an external resource. According
to [25], so called zero-click searches account for more than 50% of Google
searches overall and more than 61% on mobile as of June 2019 in the US. This
is met with disapproval from SEO marketers although for example reduced
traffic because of Knowledge panels may be positive for Wikipedia.[26]

Because of their popularity and significance, researchers have attempted
to study web search query logs to perform contemporaneous forecasting. For
example attempting to predict near-term values of economic indicators in [27]
and detecting influenza epidemics in [28]. Google publishes search statistics
in a limited form on the website Google Trends.

Other components of the Google SERP include:

• content panels like maps, weather, sports results, dictionary definitions,
population statistics charts, image/video carousels and many more

• widgets such as calculator, currency converter, timer/stopwatch

• search box to perform site search within a search result and site links —
a selection of additional pages organized under one search result

• related searches sometimes also in the context of individual search results

15

2. Search user interfaces

2.4 Faceted search

The idea behind faceted search or faceting is to combine navigation with
search, displaying hierarchical classifications of documents. Unlike standard
keyword specification where the user needs to explicitly think up the search
parameter, faceting provides explicit drill-down options. One eye tracking
study[29] found that participants spent 50% of the time looking at facets, and
that therefore they play a crucial role in exploratory search.

Facets allow filtering of the search results set based on various dimensions
or attributes of the documents. This is used primarily in search applications
operating on narrow collections of documents with structured fields. The
classic example are e-commerce sites such as alza.cz 2.3

Figure 2.3: Selection of facets for the computer mice on alza.cz

In addition to filtering, facets serve an informational or analytical function
by displaying facet counts in brackets — the number of documents in that
category — which provide indications about the size of various result sets.

After some facet options are selected, the counts of other options within
that facet represent the number of documents that would be added to the
result set if selected. This behavior is referred to as multi-select faceting.
Some other facet design patterns include hierarchical options, ordering by
count, counts displayed in a histogram, and options containing images such
as brand logos.

Varying sets of facets can be dynamically chosen and displayed for different
queries. Facet options may also be based on labels automatically generated
from unstructured text, e.g. indexed search terms or extracted keywords/-

16

2.4. Faceted search

topics. Carrot2[30] is an Open Source Search Results Clustering Engine that
performs clustering online on the top search results and provides labels for
these clusters in the form of a facet.

Another element related to navigation is selection of search scope. This is
often achieved by a drop down menu or radio buttons close to the search box
with the default being searching all collections. However, users often overlook
this[7] and therefore it is good practice to never require the user to make
a navigation choice before executing the query, but rather support it in the
SERP.

2.4.1 Nested facets and dashboards

Figure 2.4: Example of a complex facet in Google Patents

The meaning and implementation of facets can be generalized to encom-
pass any statistics or aggregations on the set of search results. In addition to
the typical counts, these can be other functions such as sum, average, mini-
mum, maximum, etc. Additionally, Solr and similar databases offer even more
complex functionality — nested facets (not to be confused with hierarchical
facets). This means that further aggregations can be computed on sets of
documents yielded by the parent facet.

This may correspond to a 2D chart on the set of search results. Such
visualizations can be implemented directly in search to supplement search
results such as in Google Patents (figure 2.4). In this case, the filtering and
analytical function of the facet is separated into two distinct elements —
filtering by patent assignee can be done using a select box in the left panel

17

2. Search user interfaces

and statistics of assignees on top 1000 results are shown in a more complex
visualization on the right.

This kind of system for filtering a data set and computing statistics on
results can even be the primary feature in some applications such as business
analytics dashboards, where a search results listing is not meaningful. This
has become a popular use case for Elasticsearch (alternative to Solr also based
on Lucene) paired with Kibana — essentialy a GUI that exposes filtering
functionality and enables easy creation of visualizations powered by faceting
or aggregations.

2.5 QAC design patterns

QAC search boxes are an evolved UI element that is mature and many of
its aspects are standardized. The Baymard Institute conducts UX analy-
sis of e-commerce sites and provides an extensive evaluation of 153 QAC
implementations.[31] A 2019 benchmark claims that 96% of major e-commerce
sites include QAC functionality in their search. Good practices identified by
this study and others will be introduced in this section.

2.5.1 Keyword query suggestions

Figure 2.5: Example of advanced Google QAC suggestions

Our primary focus is on keyword query suggestions (in later text I simply
use QAC suggestions). These are keyword queries recommended to the user
by the search system. Such recommendations may be included in the SERP
to aid query reformulation in the form of “Related searches” and spellchecking
(showing potential spelling errors). However, our interest is in QAC — pro-
viding query suggestions in a list under the search box, updating as the user
types.

18

2.5. QAC design patterns

Typically, suggestions are retrieved based on prefix match, therefore di-
rectly representing what the user might intend to type. Other schemes may
be used such as including phrases that contain a fully entered word in the
middle. A major feature is spellchecking — tolerance of misspelled words
— which can be implemented in several ways. As we see in the following
statement, the impact of QAC suggestions is not straightforward.

Our search usability testing reveals that having autocomplete
suggestions appear as users type their search query isn’t about
speeding up the user’s typing process. The true value comes from
how autocomplete suggestions can assist and guide users toward
submitting better search queries. When autocomplete suggestions
are done well they inspire users about the types of queries to use,
teach correct domain terminology, help avoid typos, and assist
users in selecting the right search scope.[31]

While QAC has the potential to increase quality of submitted queries, it
can also lead to incorrect search paths.[32] Therefore the quality must be suf-
ficient to compensate for the distraction. Moreover, as a general principle,
requiring users to make relevancy judgements should be avoided. For exam-
ple similar queries like paracetamol and paracetamol (acetaminophen)
should not be available. Quality should be prioritized over quantity for exam-
ple by utilizing more aggressive normalization. Most solutions are based on
lowercase suggestions consisting of alphanumeric characters.

For obvious reasons, it is undesirable to offer suggestions that yield empty
result sets, however this may be unavoidable in combination with faceted
search. Airbnb search remedies this by showing a button Remove all filters
and see X more results.

2.5.2 Direct entity suggestions

In some applications, additional types of suggestion are appropriate. These
can be either direct document suggestions or filtering by facets(entities). For
example, search in an e-mail application may suggest individual messages
directly and filtering by sender, date or label.

Crucially, this implements tolerance for search terms being entered into
the wrong field. A solution with dedicated input fields for author or doc-
ument identifier runs the risk of frustrating users who expect this function
from the main search box. An alternative solution that simply incorporates
these attributes into the main full-text search leads to unexpected results and
reduced precision. For example, should a search for author name in a library
return books in which the name is mentioned or only the ones he authored?

19

2. Search user interfaces

2.5.3 Search history suggestions

One study of Yahoo query logs found that 40% of queries were for re-finding,
i.e. the user clicked on a result that they had already clicked on in a previous
search session.[33]

For these know-item searches, it is valuable to support suggestions from the
user’s search history. In addition to normal matching, several recent searches
may be shown in the default view with no characters typed.

2.5.4 Interactivity and responsiveness

A 1968 paper[34] identified 100ms as the maximum response time required
to achieve the illusion of direct manipulation. In other words, making the
user feel like content on the screen is changing directly as a result of their
actions, rather than the action being performed by the computer. This is a
key requirement for QAC, because relatively large portions of the screen are
being rendered in response to key strokes. Large delays and inconsistency can
be distracting and have negative impact on query specification.

One approach is to start showing suggestions only after several characters
have been typed or to insert delays preventing triggering in case of quick
successive key presses. However, if sufficiently low and consistent response
time is achieved, instant refreshing with no loading animations seems to be
preferred and has become standard. While providing suggestions already after
the first character may be unlikely to predict the query, it makes it clear that
the search box in fact has QAC functionality and prevents potential confusion.

Keyboard navigation using arrow keys is expected in addition to mouse
clicks and should allow looping between the first and last suggestions. The
suggestion that is currently selected with arrow keys can be automatically
inserted into search box, enabling further typing (e.g. entering a space to get
suggestions for another word in a phrase). A good practice is to include an “X
button” to empty the search box on mobile devices and allowing the Escape
key to close the QAC box on desktop.

2.5.5 Presentation of suggestions

Presenting a rather small number of suggestions is recommended so that they
are not overwhelming. They should certainly fit into view on desktop rather
than requiring a scroll bar.

An important guideline is to provide visual distinctions between various
types of suggestions such as the ones identified above. The basic solution is
grouping by type, although some applications manage to mix types into a
single list and distinguish them by icons or other labels. The magnifying glass
icon is sometimes used to indicate query suggestions. Less common designs use
large QAC boxes with multiple columns or for example show large thumbnails
for matched products.

20

2.5. QAC design patterns

“Inverted highlighting” is often used for keyword query suggestions with
the rationale summarized in the following statement.

A common practice is to highlight the part that matches the
user’s input; however when offering search suggestions, the in-
verse is true: it is important to highlight the part that is being
suggested. This approach visually aids the user in distinguishing
between suggestions as it highlights the differences.[35]

Other practices include restricting suggestoins to a specific search scope,
buttons for alternative actions and displaying the number of found documents
for each suggestion.

2.5.6 Instant search

Instant search is a design that goes a step beyond QAC. Not only suggestions,
but search results themselves are updated during typing. This works well
when the searched collection is relatively small and prefix matching is used.
For example searching for songs, albums or playlists in Spotify. Another
reason to favor this design is when the input method is especially slow like
arrow buttons on TV remote.

Prefix matching is most likely not suitable for full-text search. But there
is the possibility to periodically refresh search results based on the top QAC
suggestion at that moment. This was implemented in Google search in 2010.
After the rise of mobile devices which have insufficient screen space for this
approach, Google Instant was discontinued in 2017 with the aim of unifying
the search experiences and avoiding maintaining two different systems.[36]

21

Chapter 3
Theory

In the previous chapter, I explored the problem of QAC from the UI per-
spective. This chapter provides an overview of the methods and technologies
for implementing the QAC back end — the service that returns the QAC
suggestions based on text entered into the search box.

Figure 3.1: Basic structure of a QAC system

Source: [37]

3.1 Building the corpus of QAC suggestions

There are two commonly used sources for QAC suggestions: search query logs
and the corpus of documents being searched.

3.1.1 From search query logs

According to a survey [38], mining search query logs is the basis of most
researched QAC solutions. It enables major search engines to provide dynamic
time and location sensitive suggestions.

23

3. Theory

Filtering out undesirable queries poses a major challenge. Queries can be
submitted by accident and contain misspellings, questions in natural language,
long passages of text or otherwise produce undesirable suggestions.

More importantly, there is risk of breaching user privacy by publishing
suggestions containing sensitive information. Furthermore, the system has to
contend with manipulation. Attackers may attempt to game QAC by submit-
ting queries containing advertisements or malware, a new form of black hat
SEO.[39]

In [39], a systematic analysis using NLP techniques is performed on query
logs of major search engines. One of the findings is that there are at least tens
of companies offering autocomplete manipulation services, mainly employing
one of two strategies - search log pollution and search result pollution:

Particularly, we found that at least 0.48% of the Google au-
tocomplete results are polluted. The security implications of the
attack are significant. For example, our study shows that at least
20% of these manipulation cases are used for underground adver-
tising, promoting content as gambling and even malware. [39]

3.1.2 From searched documents

Data in structured text fields can be used directly to supply keyword query
suggestions. In certain types of documents such as scientific papers, author-
assigned keywords are available. These have the potential to be a major source
but come with certain challenges:

Authors usually do not assign keywords manually unless they
are instructed to do so because it is annoying and time consuming.
Additionally, an author will probably assign keywords which are
most likely to draw attention to the document. Therefore, it is
uncertain whether author-assigned keywords correspond precisely
to the content of the document. [40]

The option that I mainly focus on — using automatic keyphrase extraction
to generate suggestions from the searched documents — is introduced later
the chapter.

The disadvantage of using documents is that they do not represent the
users’ needs nearly as well as the search query log, although it provides good
support exploration. Moreover, query logs are not available in certain cases
such as the initial launch of an application or for privacy and legality reasons.

24

3.2. Retrieving suggestions

3.2 Retrieving suggestions

The corpus of suggestions is normally computed offline and stored in a data
structure for efficient retrieval. Processing a QAC query, i.e. returning a list
of suggestions given the user input has two aspects:[38]

Matching Construct a list of candidate suggestions matching the user input.

Ranking Rank the candidates by relevance and return the top n.

3.2.1 Matching

The suggestions are usually matched based on prefix or other substrings such
as full words. For simplicity, the following text only mentions prefixes.

3.2.1.1 Brute force

Let’s start by considering the trivial brute force approach: iterate over the
corpus of suggestions and select those with matching prefix. This has time
complexity of O(n ∗ p), where n is the corpus size and p is the prefix length
— clearly unacceptable for large data sets. An improvement can be achieved
by using binary search - maintaining the suggestions in an ordered list. For
example an SQL query to achieve this could look something like:

SELECT l a b e l FROM s u g g e s t i o n s WHERE t ex t LIKE ’ p r e f i x%’ ;

3.2.1.2 Inverted index based on n-grams

It is important to mention that the indexing performance is much less critical,
which can be leveraged to build data structures that offer better querying
performance. This leads to the idea of computing all possible prefixes (Edge
character n-grams) for each suggestion during indexing and building a map
that yields the list o suggestions for a given prefix.

The inverted index, a key data structure powering full-text search is
based on the same idea. In standard full-text search, the keys in the index are
search terms, e.g. normalized stemmed words. In the case of QAC, suggestions
are in the role of documents and all possible prefixes — n-grams rather that
full words — are acting as terms.

This solution provides fast retrieval at the expense of space. The number of
prefixes(terms) in the index is O(MN) where N is the number of suggestions
and M is the maximum length. For each prefix, a list of suggestions is kept,
therefore the worst case space complexity is O(MN2). M can be limited
by simply restricting support to a fixed length of prefix like 20 characters.
Moreover, only a limited number of suggestions such as 10 are ever retrieved for
a prefix. Therefore, based on the ranking solution, the number of suggestions

25

3. Theory

indexed for each prefix could be limited to a top selection based on static
score.

In a simplified scenario, where only matching suggestions by full words is
required, an improvement can be achieved by using two indexes. The first
index mapping prefixes to all possible words and the second mapping words
to suggestions.

3.2.1.3 Prefix trees

Another option are specialized data structures designed for fast retrieval of
strings based on prefix — prefix trees or tries (a type of search tree). This
solution was first proposed by René de la Briandais in 1959.[41] The inverted
index approach requires all index terms to be treated individually, e.g. in a
sorted array.[42] Tries make use of the fact that prefixes shared by multiple
strings need only be stored once and only the remaining suffixes are stored
individually.

Figure 3.2: Example of trie schema

Source: [43]

The tree is interpreted as follows:

• The root represents the start of every suggestion, i.e. no characters.

• Edges represent characters.

• Non-terminal nodes represent prefixes.

26

3.2. Retrieving suggestions

• Leaves designate complete suggestions and the path from root to leaf is
the sequence of characters of the suggestion.

• The k−th level in the tree contains the k−th character of all suggestions.

A value such as the suggestion ranking may be stored in the nodes. Therefore
tries can be also used more broadly to implement an associative array where
keys are strings.

Searching for a prefix is preformed by traversing the tree from the root,
at every level choosing the child corresponding to the next character in the
prefix. After that, depth-first search is performed to find all suggestions in
the subtree below that prefix.

This final step is costly for short prefixes. More advanced data structures
similar to trie that mitigate this disadvantage are Deterministic Finite Au-
tomata (DFAs) and Finite State Transducers (FSTs). These kinds of data
structures are likely the basis of state-of-the-art commercial solutions.[38]

3.2.2 Ranking

From the potentially large number of suggestions matched by prefix, a ranking
based on some criteria needs to be produced and several top results returned
to the user. Existing solutions can be broadly classified into two categories:
heuristic models and learning-based models.[38]

3.2.2.1 Heuristic models

Heuristic models compute a static score for each suggestion, attempting to
represent the likelihood the user is intending to issue that query. Although
the functionality of QAC is not limited to prediction, a ranking function can
be viewed as estimating the probability P (suggestion|prefix).

Popularity in the query logs directly estimates this probability with suc-
cessful results in practice, and plays a key role in web search engines. A
straight forward user-centered model is most popular completion (MPC). It
simply assigns a static ranking to each suggestion, corresponding to its rela-
tive frequency in the query log.[38]

However it should be noted that simply considering all executed queries
may be misleading. It fails to account for unsuccessful queries, where the
information need was not met. Therefore a better signal might be giving
more weight to successful searches. For example, an e-commerce site might
go a step further and consider conversions such as purchase of a product.

As in building the corpus, document popularity might be used as substi-
tute, but runs the risk of conflating supply and demand. The users may not
be searching for a phrase even if it is popular in the corpus.

In web search, query popularity changes over time as new content such
as news and other trends emerge. Additionally, certain queries are driven by

27

3. Theory

periodical patterns, e.g. weight loss, movie tickets or sunset time. This
may be addressed by limiting the analyzed search query log to a fixed past
period (a time-sensitive model). More sophisticated approaches leveraging
time-series analysis attempt to predict future trends and handle the trade-off
between supporting time-sensitive and consistently popular searches.

3.2.2.2 Learning to rank

QAC ranking and search ranking in general can be formulated as a supervised
learning problem — often referred to as learning to rank (LTR). In contrast to
heuristic approaches, this method aims to collect many features that represent
the characteristics of a suggestion.

The training data for such models can be harvested from query logs and
consist of pairs (prefix, query) along with a label representing the relevancy of
the query for the given prefix. In QAC ranking, it is common to use a binary
label, i.e. “suggestion chosen” or “not chosen”.[38] The aim is to train a model
that produces a ranking score between 0 and 1. An interesting possibility is
using rankings from outside search engines as additional examples.

The prefix and query are represented as feature vectors. Commonly used
features include query log popularity, document popularity, length and user
interactions such as typing speed and clicking patterns harvested from high
resolution query logs.

It is not surprising that search behavior and therefore appropriate sugges-
tions vary dramatically across regions, demographics and individual users.[44]
Therefore, user features such as age and past search behavior are incorporated
to implement personalization.

An important technique to enable the use of such models is query re-
ranking (figure 3.3). Running an expensive LTR model on the full list of
suggestions for a short prefix is too expensive. Therefore, the ranking must
be done in two phases. First, selecting a list of candidates based on a cheap
ranking such as ordering by static score and consequently re-ranking the se-
lected candidates using the expensive model. The first phase is normally done
as part of the matching iteration.

Figure 3.3: Query re-ranking pipeline

Source: [38]

28

3.3. Automatic keyphrase extraction (AKE)

3.3 Automatic keyphrase extraction (AKE)

Automatic keyphrase extraction (AKE) is a task concerned with the selection
of representative phrases from unstructured text of a document. The term
keyphrase, rather than keyword, expressly covers multi word expressions. I
will use the two terms interchangeably. A linguist may define a keyword as:

A word, the frequency of which is statistically significantly higher
in the text than in the reference corpus.[45] (author’s translation)

In a supervised approach, AKE is treated as a classification problem. A
binary classifier is trained to determine, whether a candidate phrase is a
keyphrase in a given document. This requires careful preparation of train-
ing data.[46]

Unsupervised methods seem to be a more successful trend.[47] In the re-
mainder of this chapter, I introduce several such algorithms.

In general, the functioning of these algorithms can be decomposed into
two phases. The selection of potential keyphrases from the text followed by
scoring based on various statistics and the selection of top candidates based
on threshold or limit.

3.3.1 Text pre-processing

Because of the complexity of human languages, natural language process-
ing(NLP) is notoriously difficult for computers. However, various advances
make it possible for NLP to handle an increasing number of tasks.

Some AKE algorithms require a certain amount of text pre-processing —
transforming text into a more structured format that enables further compu-
tation. In this section, I describe a small selection of relevant NLP concepts.

3.3.1.1 Stopwords

Stopwords are the most common words in a language such as prepositions
and conjunctions. They provide little contribution to the meaning of a body
of text and are discarded in many NLP tasks. Most of these are closed-class
words meaning that new ones rarely enter the language.[7]

There is not a single decisive stopword list. The meaning of a stopword
is not well defined and particular lists are appropriate for various tasks. The
information stopwords carry should not be underestimated and stopword re-
moval has to be done carefully. For example, when performing AKE, a signif-
icant number of potential keyphrases would be lost if stopwords were simply
thrown away, e.g. internet of things or man on the moon.

29

3. Theory

3.3.1.2 Stemming

One major challenge of most languages is that small character variations in
words are not relevant in some scenarios. For example, a document titled
cheapest plane tickets should probably be retrieved for the full-text query
cheap plane ticket. Similarly when identifying frequent phrases in a docu-
ment, we would like to be able to identify these slight variations as the same
phrase.

Stemming is the basic solution to normalize word forms by simple string
based editing such as removing particular suffixes based on a list of rules. The
result of stemming (a stem) has potentially no meaning. For example the
words organizing and organziation are both stemmed to organ in Solr’s
default text analysis pipeline. Using stemming in full-text search is a very
common practice. It increases recall and lowers precision.

Some stemmers are also available for Czech. Solr comes with an implemen-
tation of a light (rather than aggressive) Czech stemmer based on the paper
[48] and a Python port is also available.

3.3.1.3 Morphology

Czech is an inflective language, which means words change form very fre-
quently based on their meaning and grammatical function in a sentence. This
is in contrast to a language like English where word order is crucial and there
are very few inflection rules.

Morphology is the study of the relationship of diverse word forms. Mor-
phological analysis provides several essential NLP functions including:

lemmatization Normalizing words into actual meaningful words (unlike stem-
ming)

POS tagging The process of classifying a word form based on linguistic cat-
egories including POS (part of speech) and more fine-grained properties.
The output of this process is called a POS tag and is usually in the form
of a string of characters, each corresponding to a category. These may
include POS, subPOS, gender, number, person, tense voice, etc.

morphological generation This is a generalization or an inverse of lemma-
tization. Given a lemma and a POS tag, the word form with the desired
categories is generated.

Morphodita and related software is developed at the Faculty of Mathe-
matics and Physics in conjunction with the Institute of Formal and Applied
Linguistics of Charles University in Prague. They provide state-of-the art
morphological analysis for inflective languages including Czech. This is en-
abled by processing a large annotated corpora containing word forms and
their respective lemmas and POS tags. Language structures are detected

30

3.3. Automatic keyphrase extraction (AKE)

without providing explicit linguistic knowledge. The corpora is condensed
into a morphological dictionary which provides an efficient implementation of
the functions described above.[49]

3.3.2 TF-IDF

Unsupervised AKE methods aim to take advantage of the underlying structure
of the text. To start with, it is likely that the author used keyphrases in the
text repeatedly as he advanced his argument. This suggests a trivial approach
— to simply select the words or n-grams most frequently appearing in the
document. This basic approach runs into the problem that text contains
common words, perhaps specific for the given domain, that do not represent
it well even if they appear repeatedly.

TF-IDF is an important statistic, that represents the significance of a given
word in a document, taking into account the context of the whole document
corpus. With the increasing number of occurrences in the document, the
term frequency TF and consequently TFIDF increases. At the same time,
with the increasing number of occurrences in the whole corpus, the document
frequency DF increases and therefore TFIDF decreases.

Single words or n-grams with the highest TF-IDF in a document can be
identified and extracted as keyphrases. One disadvantage of this approach
is that it is dependent on the whole document collection or the document
frequencies are based on a larger corpus.

3.3.3 RAKE

RAKE(rapid AKE)[50] is an algorithm based on the idea that keyphrases
are chunks of text in between stopwords and punctuation. Unlike in TF-IDF
where text normalization is performed first, RAKE runs on raw text.

First, candidate keyphrases are selected by splitting the text at stopwords
and punctuation. After that, individual words from the keyphrases are consid-
ered. The score for each word is calculated based on degree(number of unique
words, with which it appears in a phrase) and frequency (total number of
occurences). Finally, the score of a phrase is computed as the sum of its word
scores.

An additional mechanism attempts to detect keyphrases containing stop-
words. If two candidate keyphrases appear in the document separated by the
same stopword in that order at least twice, they form a new candidate.

31

Chapter 4
Implementation

4.1 Software requirements

In this section, I outline requirements for the Starfos QAC feature. With the
exception of recent searches and the administration interface, all of these were
implemented to some degree as part of the thesis.

4.1.1 Establishing goals

We aim to support both known-item and exploratory searches. The two cat-
egories loosely correspond to two groups of users we can identify in Starfos.

The first group consists of TA ČR’s employees and other professionals in
the field of R&D funding. These users are familiar with the domain and may
use Starfos to support their daily work tasks. Use cases include searching
for known keywords, organizations, filtering by enumerations and looking up
by document identifiers. Experienced users may appreciate features such as
matching documents by code prefix or history of recent searches.

The second group are users less familiar with the domain, who may be
discovering the website for the first time and are unaware of the available
functionality. For them, we want our QAC product to serve as a possible
introduction to the website. We may lean towards presenting a relatively
large number of suggestions in multiple categories. Another proposal is to
implement default suggestions, such as hand crafted or popular searches, that
are displayed after the first click in the search box. In addition, this may
enable us to address certain shortcomings of the current UI, such as filters
that are difficult to find.

As a general principle in UI design, it is easy to make false assumptions
about user behavior. Starfos query logs could be analyzed to gain reliable
insights.

33

4. Implementation

4.1.2 Suggestions

Implement suggestions in the context of the two search collections — projects
and results. In addition to keyword query suggestions the following types
should be included:

Filtering(facet) suggestions Take advantage of structured attributes such
as result author, project participant or provider. Users expect to be
able to enter these in the main search box. In IS VaVaI, a large number
of structured metadata attributes is available and exposed in Starfos as
facets. Important use cases are finding projects of an organization or
results of an author. Precise search based on filtering is expected.

Direct document suggestions Include a small number of these to encour-
age exploration. Match in document title and use standard highlight-
ing(not inverted). Rather than performing a search, directly redirect to
document detail page.

Recent searches and visited pages Store several recent searches and vis-
ited detail pages in cookies. Insert recent searches that match entered
prefix to the top of the suggestion list. Additionally, display both in the
default view with no characters typed. Consider legal implications and
ideally provide a setting to opt out of the functionality.

For facet and document suggestions, abbreviations should be supported
where possible. Projects and results should be matched by code prefix. Facet
enumerations should be matched by identifier. Abbreviations of Czech univer-
sities and other organizations are being collected and added to the IS VaVaI
data. Organization suggestions should allow both filtering projects/results
and redirecting to organization detail page.

4.1.3 User interface

We intend to follow most of the guidelines defined in the previous chapters
with the focus on desktop. In particular:

• Instant QAC already after the first entered character with no loading
animations.

• Support both for grouping and icons to visually distinguish types of
suggestions

• The magnifying glass icon for keyword query suggestions.

• To enhance readability,we use inverted highlighting. Additionally, we
align the first character of suggestions’ labels with the search box text
and use the same font. Implement the option for suggestions to include
a secondary label displayed in smaller font.

34

4.2. Author-assigned keywords

• Interactivity features and a cautious response time goal of 200 ms max-
imum.

4.1.4 Technical requirements

Automatic corpus update The underlying ISVAV database is updated in
regular intervals such as 1-4 weeks. Therefore a solution to update the
suggestions is required. It is not required to support updates on-line
and rebuilding the entire index is acceptable.

Administration interface and logging Even with automated processing,
an interface to curate the corpus by hand is desirable. Storing sugges-
tions in the database and using the Django admin interface will give
control to a non-developer administrator. In particular, the ability to
delete a suggestion is needed, especially if automated extraction from the
search query log or documents were implemented. Even if the solution
is limited to author-assigned keywords, the option to directly eliminate
poor suggestions that are encountered for common prefixes would be
beneficial.

4.2 Author-assigned keywords

Our dataset contains author-assigned(AA) keywords in English. This pro-
vides a great basis for automated extraction. AA keywords could allow us to
evaluate AKE algorithms and even use supervised methods. In particular, we
could perform a typical evaluation of precision and recall.

On the other hand, matching the quality of AA keywords of scientific
publications and projects, by extracting from their relatively short abstracts
seems to be extremely difficult, if at all possible. In fact, an English corpus
built from AA keywords proved to be a satisfactory solution and will likely
make its way into production. There seems to be little motivation to invest
more time into the development of AKE.

The AA keyowrds seem especially fitting for the use case of scientific results
and project where keywords are a well defined concept. And at the same time,
Starfos has no ambition (and no expectation by the users) of handling queries
that are much more sophisticated than straight-forward keywords.

The requirement of Czech QAC will possibly be dropped and English
search will be promoted as highly preferred. There is another reason to sup-
port this decision — only 40% of RIV results include a Czech abstracts while
the English one is available for 90%.

35

4. Implementation

4.2.1 Parsing

Keywords available in IS VaVaI have been collected from various providers over
a long period of time. They are not available as a structured list but rather
contained in a single string. The keyword strings contained in the data set use
inconsistent formatting. Most use “;” as a separator, but some use “,” or even
“- ”. Various aliases are used for blank values, e.g. “*”, “Neuvedeno”, “xxx
xxxxx”. Another challenge is posed by strings containing no separators. They
represent either a single long phrase, multiple one-word keywords, or even
multiple phrases. Our implementation is based on simple logic - checking the
total word count and the presence of stop words. Strings containing 2 words
are likely to represent a two-word phrase. 7 words are more safely treated as
7 keywords, but if there are stopwords, it is likely a phrase.

The main objective is to supply suggestions for autocomplete. A straight-
forward algorithm to split and clean the text provides sufficiently accurate
results.

Parsing mistakes are unlikely to yield the same wrong keyword with high
frequency. Therefore we can rely on the ranking algorithm to ensure they do
not appear often.

A more conservative approach would be outputting no keywords in case
of low confidence, correcting mistakes by hand or simply discarding keywords
occurring with a frequency below a certain threshold.

In addition to forming the corpus for QAC, these keywords are listed in
the document detail page with hyperlinks redirecting to search.

4.2.2 Normalization

The parsing we preformed simply aims to split the keywords by separators
but does no additional processing. This is appropriate for displaying in the
detail page, exactly as they were inputted by the author.

However, for QAC it is undesirable that they contain mixed case, abbre-
viations in parentheses, hyphenation and many other inconsistencies. As we
established in previous chapters, similar suggestions with for example only
small formatting differences would be highly undesirable.

Therefore we use a simple algorithm to normalize these keyword query
suggestions. This could potentially be used on extracted keywords in the
same way. Namely the algorithm removes parentheses including their contents,
removes hyphenation and other punctuation, eliminates excessive white space
and makes the suggestions lowercase.

This normalization reduces the number of AA keywords in our corpus from
1148033 to 951834 — a reduction of 20%. The document counts of resulting
keywords that are the same are summed up.

Still we haven’t addressed the various word forms of the keywords, espe-
cially some of them are in plural. This is not trivial and we will likely use

36

4.3. AKE

some POS tagging to detect popular patterns such as adjective followed by
noun and apply lemmatization based on these templates. This is an important
concept that is used for AKE as well.

4.3 AKE

The corpus of processed AA keywords seems to yield a satisfactory QAC
experience. The suggestions from AKE will hardly match this quality. Nev-
ertheless, I pursued AKE for the following reasons:

• Author-assigned keywords are only available in English and Czech sug-
gestions are also of interest.

• If sufficient quality is achieved by AKE, it promises higher consistency
than the diverse human assignment.

• Possibility to generate more keywords.

• Potential to be a valuable ranking signal even if the corpus was limited
to AA keywords.

Unlike most applications, we are interested in the corpus of all keywords rather
than accuracy per document, which makes this task substantially easier. Just
as with the AA processing, potential erroneous keywords can likely by elimi-
nated by ranking or explicit threshold.

Fortunately, many AKE implementations are freely available for Python
and provide simple basic usage. Although, Czech language support is an extra
challenge and for some methods is not available. For example pyTextRank re-
lies on the nlp library spacy for parsing text and identifying linguistic features
and Czech is not supported.

In the end we implemented bare bones versions of the following AKE
algorithms: basic term frequency, TF-IDF, RAKE, TextRank(English only).

An example result of TF-IDF on English project goals:
A novel ?idiothetic spatial? version of the standard peak-interval timing proce-
dure is proposed in order to study the role of temporal processing and interval-
timing strategies in spatial navigation. These ?hybrid? tasks are derived from
the study of duration discrimination and simultaneous temporal processing in
the seconds-to-minutes range in combination with the investigation of flexible
navigation and orientation in dynamic and moving world. As a consequence,
both the temporal and spatial dimensionsof the task involve dynamic cognitive
processes. Understanding how these processes are integrated and conducted
in parallel will be important for determining whether distortions in one di-
mension (e.g., time) affect processing in the other dimension (e.g., space).
Such time/space integration is considered to be a fundamental property of
cognition, but has never been elucidated.

37

4. Implementation

For the document above, our TF-IDF implementation yields the keywords:
temporal processing, interval timing, temporal, spatial, navigation,
timing, interval, processing, dimension, world consequence.

More examples can be found in the included jupyter notebooks.

4.4 Matching and ranking

Solr Suggesters are based on tree data structures I described. Our initial imple-
mentation using Solr Suggesters proved to be unreliable for larger collections
such as 1M RIV results and there is relatively little available documentation. It
supports automatically sourcing suggestions from indexed search terms (Doc-
umentDictionaryFactory) or loading from text file (FileDictionaryFactory). It
may be the best choice for many applications because of its easy setup, and
potentially better performance.

However it was not able to fulfill all of our requirements in a satisfying way.
Various matching settings are available in the various Lookup implementations,
however these do not provide the fine grained control achieved by custom Solr
field types based on n-grams. It is possible to combine multiple Suggesters
at the same time to implement suggestions grouping. However filtering is
supported only in a limited way. Filtering is useful in our case for providing
varying sets of suggestions in various contexts and search scopes.

The only disadvantages of the classic Solr index based on n-grams is worse
performance and more laborious implementation. Fortunately, we found that
this approach provides sufficient performance with response times hovering
around 100 miliseconds on our local network, with much room left for opti-
mization. Sematex autocomplete[52] is an example of an existing open-source
project that is designed in this way. Standard Solr cores are a mature and
popular technology, offering an extensive set of features including

• searching over multiple fields with varying text analysis pipelines,

• advanced query syntax,

• various ranking and relevancy tuning options,

• support for query re-ranking and Learning to rank,

• configurable highlighting,

• filtering,

We use three custom Solr fields for generating the index terms:

no token edge At index time, the text analysis pipeline of this field gener-
ates prefixes of size 1 to 20. At both index and query time, lowercasing
and accent removal is performed.

38

4.5. Front end

shingles Generates all possible continuous word n-grams of size 1-3 at index
time. This enables matching by full word anywhere in the suggestion.

code This field is used for matching document and facet suggestions based
on code or abbreviation. It computes all character n-grams rather than
prefix only.

For ranking, we use static score representing document popularity simply
because it is the easiest solution to bootstrap the system. Unlike in web
search engines with high traffic, mining query logs is unlikely to provide a
comprehensive solution. At the same time it seems very fitting for our use
case where there’s high emphasis on exploratory searches. More work needs
to be done on developing a more systematic approach including its evaluation.

The current implementation uses a rather simple Solr query that matches
by any of the 3 mentioned fields and sorts results based on the static score. In
addition, it defines highlighting parameters and grouping — the various types
of suggestions are return in one query in separate groups of fixed limit.

4.4.1 HTTP web service

The feature is implemented using the HTTP GET method with the following
parameters

q The text typed into the search box such as ”n”, ”na”, ”nan”

language The user selected search language

context Either the selected document collection or current page. This en-
ables varying suggestions sets to be used in different contexts.

4.5 Front end

I was not personally involved in coding the front end implementation. Al-
though I provided major input into the design. The front end is not provided
in the enclosed attachment. Only the back end implementation (HTTP ser-
vice) is included.

Special actions such as redirecting to document detail page and appending
filters to the current search payload were implemented. Suggestions grouping
is supported and easily configurable, although we might pursue merging at
least some of the groups.

39

4. Implementation

Figure 4.1: The current version of Starfos’ QAC in development

Figure 4.2: Additional examples of achieved QAC results based on author-
assigned keywords

40

Conclusion

Implementing QAC proved to be a demanding but rewarding challenge. It
spanned a wide range of disciplines and contained sub-problems ranging from
UI design to NLP and IR.

All requirements of the thesis were covered to some extent with the excep-
tion of evaluating the ranking solution and building the Czech corpus.

A skeleton implementation of several AKE algorithms and some other NLP
functions was created. Much more development including laborious cleaning
of the data set would be required to produce usable results. A real contribution
of this effort is integrating several NLP libraries into our project.

A satisfactory solution for the English QAC corpus was achieved based
on author-assigned keywords and will likely be deployed in production in the
near future.

AKE, suggestions ranking, search query log analysis and other topics could
have been studied in more depth. However, a decomposition of the problem
domain was established.

Much effort was put into designing a real QAC product and exploring
possibilities for improvement of Starfos search. In my view, the biggest success
is the robust and flexible software architecture of the QAC system itself.

41

Bibliography

[1] Tam, C.; Wells, D. Evaluating the Benefits of Displaying Word Predic-
tion Lists on a Personal Digital Assistant at the Keyboard Level. As-
sistive Technology, volume 21, no. 3, Sept. 2009: pp. 105–114, ISSN
1040-0435, 1949-3614, doi:10.1080/10400430903175473. Available from:
http://www.tandfonline.com/doi/abs/10.1080/10400430903175473

[2] I’ve Got a Suggestion. Available from: https://
googleblog.blogspot.com/2004/12/ive-got-suggestion.html

[3] Hook, J. Autocomplete: The Book. Chronicle Books, May 2019, ISBN
978-1-4521-7784-7.

[4] Veřejně Př́ıstupná Data IS VaVaI. Available from: https://www.rvvi.cz/

[5] Research and Development in Czech Republic. Available from: https:
//www.vyzkum.cz/

[6] Ulbricht, D.; Elger, K.; et al. Exposing Relational Databases through
an Emulated SOLR Search API. EGU General Assembly Confer-
ence Abstracts, Apr. 2018: p. 14610. Available from: https://
ui.adsabs.harvard.edu/abs/2018EGUGA..2014610U/abstract

[7] Hearst, M. Search User Interfaces. Cambridge University Press, Sept.
2009, ISBN 978-0-521-11379-3.

[8] Marchionini, G.; White, R. Find What You Need, Understand
What You Find. International Journal of Human–Computer Interac-
tion, volume 23, no. 3, Dec. 2007: pp. 205–237, ISSN 1044-7318,
doi:10.1080/10447310701702352. Available from: https://doi.org/
10.1080/10447310701702352

[9] Bates, M. J. The Design of Browsing and Berrypicking Techniques
for the Online Search Interface. Online Review, volume 13, no. 5,

43

http://www.tandfonline.com/doi/abs/10.1080/10400430903175473
https://googleblog.blogspot.com/2004/12/ive-got-suggestion.html
https://googleblog.blogspot.com/2004/12/ive-got-suggestion.html
https://www.rvvi.cz/
https://www.vyzkum.cz/
https://www.vyzkum.cz/
https://ui.adsabs.harvard.edu/abs/2018EGUGA..2014610U/abstract
https://ui.adsabs.harvard.edu/abs/2018EGUGA..2014610U/abstract
https://doi.org/10.1080/10447310701702352
https://doi.org/10.1080/10447310701702352

Bibliography

May 1989: pp. 407–424, ISSN 0309-314X, doi:10.1108/eb024320. Avail-
able from: https://www.emerald.com/insight/content/doi/10.1108/
eb024320/full/html

[10] Pirolli, P.; Card, S. K. Information Foraging Models of Browsers for Very
Large Document Spaces. In Proceedings of the Working Conference on
Advanced Visual Interfaces, AVI ’98, L'Aquila, Italy: Association
for Computing Machinery, May 1998, ISBN 978-1-4503-7435-4, pp. 83–93,
doi:10.1145/948496.948509. Available from: https://doi.org/10.1145/
948496.948509

[11] Experience, W. L. i. R.-B. U. Deceivingly Strong Information Scent Costs
Sales. Available from: https://www.nngroup.com/articles/wrong-
information-scent-costs-sales/

[12] Furnas, G. W. Effective View Navigation. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems - CHI ’97, At-
lanta, Georgia, United States: ACM Press, 1997, ISBN 978-0-89791-
802-2, pp. 367–374, doi:10.1145/258549.258800. Available from: http:
//portal.acm.org/citation.cfm?doid=258549.258800

[13] White, R. W.; Roth, R. A. Exploratory Search: Beyond the Query-
Response Paradigm. Number 3 in Synthesis Lectures on Information Con-
cepts, Retrieval, and Services, San Rafael, Calif.: Morgan & Claypool,
2009, ISBN 978-1-59829-783-6 978-1-59829-784-3, oCLC: 730260455.

[14] The Standard Query Parser — Apache Solr Reference Guide 8.3.
Available from: https://lucene.apache.org/solr/guide/8_3/the-
standard-query-parser.html

[15] Lake, M. Desperately Seeking Susan OR Suzie NOT Sushi. New York
Times. September, volume 3, 1998.

[16] The Influence of Caption Features on Clickthrough Patterns in Web
Search — Proceedings of the 30th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval. Available
from: https://dl.acm.org/doi/10.1145/1277741.1277767

[17] http://www.nytimes.com/2007/06/03/business/yourmoney/03google.h:
p. 9.

[18] Franzen, K.; Karlgren, J. Verbosity and Interface Design. SICS Research
Report, 2000.

[19] Aula, A.; Käki, M. Less Is More in Web Search Interfaces for Older
Adults. First Monday, volume 10, no. 7, July 2005, ISSN 13960466, doi:
10.5210/fm.v10i7.1254. Available from: https://firstmonday.org/ojs/
index.php/fm/article/view/1254

44

https://www.emerald.com/insight/content/doi/10.1108/eb024320/full/html
https://www.emerald.com/insight/content/doi/10.1108/eb024320/full/html
https://doi.org/10.1145/948496.948509
https://doi.org/10.1145/948496.948509
https://www.nngroup.com/articles/wrong-information-scent-costs-sales/
https://www.nngroup.com/articles/wrong-information-scent-costs-sales/
http://portal.acm.org/citation.cfm?doid=258549.258800
http://portal.acm.org/citation.cfm?doid=258549.258800
https://lucene.apache.org/solr/guide/8_3/the-standard-query-parser.html
https://lucene.apache.org/solr/guide/8_3/the-standard-query-parser.html
https://dl.acm.org/doi/10.1145/1277741.1277767
https://firstmonday.org/ojs/index.php/fm/article/view/1254
https://firstmonday.org/ojs/index.php/fm/article/view/1254

Bibliography

[20] Search Engine Market Share Worldwide. Available from: https://
gs.statcounter.com/search-engine-market-share

[21] 63 Fascinating Google Search Statistics (Updated 2019). Available from:
https://bluelist.co/blog/google-stats-and-facts/

[22] Infografika: Pod́ıl vyhledávač̊u Google a Seznam na českém internetu
#2019. Jan. 2019. Available from: https://www.evisions.cz/blog-
2019-01-24-infografika-podil-vyhledavacu-google-a-seznam-
na-ceskem-internetu-2019/

[23] Official Google Blog: Introducing the Knowledge Graph: Things, Not
Strings. Available from: https://googleblog.blogspot.com/2012/05/
introducing-knowledge-graph-things-not.html

[24] Kelley, L. The Google Feature Magnifying Disinformation. Sept.
2019. Available from: https://www.theatlantic.com/technology/
archive/2019/09/googles-knowledge-panels-are-magnifying-
disinformation/598474/

[25] How Much of Google’s Search Traffic Is Left for Anyone But Them-
selves? June 2019. Available from: https://sparktoro.com/blog/
how-much-of-googles-search-traffic-is-left-for-anyone-but-
themselves/

[26] What Do We Make of Wikipedia’s Falling Traffic? Jan. 2014. Avail-
able from: https://www.dailydot.com/news/wikipedia-falling-
traffic-meaning/

[27] Choi, H.; Varian, H. Predicting the Present with Google Trends:
PREDICTING THE PRESENT WITH GOOGLE TRENDS. Economic
Record, volume 88, June 2012: pp. 2–9, ISSN 00130249, doi:10.1111/
j.1475-4932.2012.00809.x. Available from: http://doi.wiley.com/
10.1111/j.1475-4932.2012.00809.x

[28] Ginsberg, J.; Mohebbi, M. H.; et al. Detecting Influenza Epidemics Using
Search Engine Query Data. Nature, volume 457, no. 7232, Feb. 2009: pp.
1012–1014, ISSN 0028-0836, 1476-4687, doi:10.1038/nature07634. Avail-
able from: http://www.nature.com/articles/nature07634

[29] Kules, B.; Capra, R.; et al. What Do Exploratory Searchers Look at
in a Faceted Search Interface? In Proceedings of the 9th ACM/IEEE-
CS Joint Conference on Digital Libraries, JCDL ’09, Austin, TX, USA:
Association for Computing Machinery, June 2009, ISBN 978-1-60558-322-
8, pp. 313–322, doi:10.1145/1555400.1555452. Available from: https:
//doi.org/10.1145/1555400.1555452

45

https://gs.statcounter.com/search-engine-market-share
https://gs.statcounter.com/search-engine-market-share
https://bluelist.co/blog/google-stats-and-facts/
https://www.evisions.cz/blog-2019-01-24-infografika-podil-vyhledavacu-google-a-seznam-na-ceskem-internetu-2019/
https://www.evisions.cz/blog-2019-01-24-infografika-podil-vyhledavacu-google-a-seznam-na-ceskem-internetu-2019/
https://www.evisions.cz/blog-2019-01-24-infografika-podil-vyhledavacu-google-a-seznam-na-ceskem-internetu-2019/
https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
https://www.theatlantic.com/technology/archive/2019/09/googles-knowledge-panels-are-magnifying-disinformation/598474/
https://www.theatlantic.com/technology/archive/2019/09/googles-knowledge-panels-are-magnifying-disinformation/598474/
https://www.theatlantic.com/technology/archive/2019/09/googles-knowledge-panels-are-magnifying-disinformation/598474/
https://sparktoro.com/blog/how-much-of-googles-search-traffic-is-left-for-anyone-but-themselves/
https://sparktoro.com/blog/how-much-of-googles-search-traffic-is-left-for-anyone-but-themselves/
https://sparktoro.com/blog/how-much-of-googles-search-traffic-is-left-for-anyone-but-themselves/
https://www.dailydot.com/news/wikipedia-falling-traffic-meaning/
https://www.dailydot.com/news/wikipedia-falling-traffic-meaning/
http://doi.wiley.com/10.1111/j.1475-4932.2012.00809.x
http://doi.wiley.com/10.1111/j.1475-4932.2012.00809.x
http://www.nature.com/articles/nature07634
https://doi.org/10.1145/1555400.1555452
https://doi.org/10.1145/1555400.1555452

Bibliography

[30] Carrot2 - Open Source Search Results Clustering Engine. Available from:
http://project.carrot2.org/

[31] 153 ‘Autocomplete Suggestions’ Design Examples - Baymard Institute.
Available from: https://baymard.com/ecommerce-search/benchmark/
page-types/autocomplete-suggestions

[32] Ward, D.; Hahn, J.; et al. Autocomplete as Research Tool: A Study
on Providing Search Suggestions. Information Technology and Libraries,
volume 31, no. 4, Dec. 2012: pp. 6–19, ISSN 2163-5226, doi:10.6017/
ital.v31i4.1930. Available from: https://ejournals.bc.edu/index.php/
ital/article/view/1930

[33] Teevan, J.; Adar, E.; et al. Information Re-Retrieval: Repeat Queries
in Yahoo’s Logs. In Proceedings of the 30th Annual International ACM
SIGIR Conference on Research and Development in Information Re-
trieval, SIGIR ’07, Amsterdam, The Netherlands: Association for Com-
puting Machinery, July 2007, ISBN 978-1-59593-597-7, pp. 151–158, doi:
10.1145/1277741.1277770. Available from: https://doi.org/10.1145/
1277741.1277770

[34] Miller, R. B. Response Time in Man-Computer Conversational Trans-
actions. In Proceedings of the December 9-11, 1968, Fall Joint Com-
puter Conference, Part I, AFIPS ’68 (Fall, Part I), San Francisco, Cal-
ifornia: Association for Computing Machinery, Dec. 1968, ISBN 978-1-
4503-7899-4, pp. 267–277, doi:10.1145/1476589.1476628. Available from:
https://doi.org/10.1145/1476589.1476628

[35] Cerdan, L. Algolia — Three Best Practices for Search Autocomplete on
Mobile. Available from: search-autocomplete-on-mobile

[36] Google Has Dropped Google Instant Search. July 2017. Avail-
able from: https://searchengineland.com/google-dropped-google-
instant-search-279674

[37] Fernandez-Kincade, G. Building an Autosuggest Corpus, Part 1.
Feb. 2018. Available from: https://medium.com/related-works-inc/
building-an-autosuggest-corpus-part-1-3acd26056708

[38] Cai, F.; de Rijke, M. A Survey of Query Auto Completion in Infor-
mation Retrieval. Foundations and Trends R© in Information Retrieval,
volume 10, no. 4, 2016: pp. 273–363, ISSN 1554-0669, 1554-0677, doi:
10.1561/1500000055. Available from: http://www.nowpublishers.com/
article/Details/INR-055

[39] Wang, P.; Mi, X.; et al. Game of Missuggestions: Semantic Analysis of
Search-Autocomplete Manipulations. In Proceedings 2018 Network and

46

http://project.carrot2.org/
https://baymard.com/ecommerce-search/benchmark/page-types/autocomplete-suggestions
https://baymard.com/ecommerce-search/benchmark/page-types/autocomplete-suggestions
https://ejournals.bc.edu/index.php/ital/article/view/1930
https://ejournals.bc.edu/index.php/ital/article/view/1930
https://doi.org/10.1145/1277741.1277770
https://doi.org/10.1145/1277741.1277770
https://doi.org/10.1145/1476589.1476628
search-autocomplete-on-mobile
https://searchengineland.com/google-dropped-google-instant-search-279674
https://searchengineland.com/google-dropped-google-instant-search-279674
https://medium.com/related-works-inc/building-an-autosuggest-corpus-part-1-3acd26056708
https://medium.com/related-works-inc/building-an-autosuggest-corpus-part-1-3acd26056708
http://www.nowpublishers.com/article/Details/INR-055
http://www.nowpublishers.com/article/Details/INR-055

Bibliography

Distributed System Security Symposium, San Diego, CA: Internet Society,
2018, ISBN 978-1-891562-49-5, doi:10.14722/ndss.2018.23036. Available
from: https://www.ndss-symposium.org/wp-content/uploads/2018/
02/ndss2018_07A-1_Wang_paper.pdf

[40] Bohne, T.; Rönnau, S.; et al. Efficient Keyword Extraction for Mean-
ingful Document Perception. In Proceedings of the 11th ACM Sym-
posium on Document Engineering - DocEng ’11, Mountain View,
California, USA: ACM Press, 2011, ISBN 978-1-4503-0863-2, p.
185, doi:10.1145/2034691.2034732. Available from: http://dl.acm.org/
citation.cfm?doid=2034691.2034732

[41] Briandais, R. D. L. File Searching Using Variable Length Keys. 1959,
doi:10.1145/1457838.1457895.

[42] Hadraba, A. Implementace Invertovaného Indexu. Dissertation thesis,
Masaryk University, Faculty of Informatics, 2015. Available from: https:
//is.muni.cz/th/hsr4u/?lang=en

[43] Zhuang, R. Data Structure - Trie. Mar. 2016. Available from:
https://jojozhuang.github.io/popular/data-structure/data-
structure-trie/

[44] Weber, I.; Castillo, C. The Demographics of Web Search. In Pro-
ceeding of the 33rd International ACM SIGIR Conference on Re-
search and Development in Information Retrieval - SIGIR ’10, Geneva,
Switzerland: ACM Press, 2010, ISBN 978-1-4503-0153-4, p. 523,
doi:10.1145/1835449.1835537. Available from: http://portal.acm.org/
citation.cfm?doid=1835449.1835537

[45] 2. Jazykové korpusy a jejich výstavba - FI-ULI: Úvod do lingvistiky pro
informatiky: p. 109.

[46] Hasan, K. S.; Ng, V. Automatic Keyphrase Extraction: A Survey of
the State of the Art. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Pa-
pers), Baltimore, Maryland: Association for Computational Linguistics,
2014, pp. 1262–1273, doi:10.3115/v1/P14-1119. Available from: http:
//aclweb.org/anthology/P14-1119

[47] Alrehamy, H. H.; Walker, C. SemCluster: Unsupervised Automatic
Keyphrase Extraction Using Affinity Propagation. In Advances in
Computational Intelligence Systems, volume 650, edited by F. Chao;
S. Schockaert; Q. Zhang, Cham: Springer International Publishing, 2018,
ISBN 978-3-319-66938-0 978-3-319-66939-7, pp. 222–235, doi:10.1007/
978-3-319-66939-7 19. Available from: http://link.springer.com/
10.1007/978-3-319-66939-7_19

47

https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_07A-1_Wang_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_07A-1_Wang_paper.pdf
http://dl.acm.org/citation.cfm?doid=2034691.2034732
http://dl.acm.org/citation.cfm?doid=2034691.2034732
https://is.muni.cz/th/hsr4u/?lang=en
https://is.muni.cz/th/hsr4u/?lang=en
https://jojozhuang.github.io/popular/data-structure/data-structure-trie/
https://jojozhuang.github.io/popular/data-structure/data-structure-trie/
http://portal.acm.org/citation.cfm?doid=1835449.1835537
http://portal.acm.org/citation.cfm?doid=1835449.1835537
http://aclweb.org/anthology/P14-1119
http://aclweb.org/anthology/P14-1119
http://link.springer.com/10.1007/978-3-319-66939-7_19
http://link.springer.com/10.1007/978-3-319-66939-7_19

Bibliography

[48] Dolamic, L.; Savoy, J. Indexing and Stemming Approaches for the Czech
Language. Information Processing & Management, volume 45, no. 6,
Nov. 2009: pp. 714–720, ISSN 03064573, doi:10.1016/j.ipm.2009.06.001.
Available from: https://linkinghub.elsevier.com/retrieve/pii/
S0306457309000685

[49] Straková, J.; Straka, M.; et al. Open-Source Tools for Morphology,
Lemmatization, POS Tagging and Named Entity Recognition. In Proceed-
ings of 52nd Annual Meeting of the Association for Computational Lin-
guistics: System Demonstrations, Baltimore, Maryland: Association for
Computational Linguistics, June 2014, pp. 13–18, doi:10.3115/v1/P14-
5003. Available from: https://www.aclweb.org/anthology/P14-5003

[50] Rose, S.; Engel, D.; et al. Automatic Keyword Extraction from Individual
Documents. In Text Mining, edited by M. W. Berry; J. Kogan, Chichester,
UK: John Wiley & Sons, Ltd, Mar. 2010, ISBN 978-0-470-68964-6 978-
0-470-74982-1, pp. 1–20, doi:10.1002/9780470689646.ch1. Available from:
http://doi.wiley.com/10.1002/9780470689646.ch1

[51] Mihalcea, R.; Tarau, P. TextRank: Bringing Order into Texts: p. 8.

[52] Sematext/Solr-Autocomplete. Sematext Group, Inc., Nov. 2019. Avail-
able from: https://github.com/sematext/solr-autocomplete

48

https://linkinghub.elsevier.com/retrieve/pii/S0306457309000685
https://linkinghub.elsevier.com/retrieve/pii/S0306457309000685
https://www.aclweb.org/anthology/P14-5003
http://doi.wiley.com/10.1002/9780470689646.ch1
https://github.com/sematext/solr-autocomplete

Appendix A
Acronyms

TA ČR Technology Agency of the Czech Republic

IS VaVaI Czech R&D Information System

UI User interface

QAC Query auto completion

AKE Automatic keyphrase extraction

IR Information retrieval

NLP Natural language processing

POS Part of speech

SERP Search engine results page

SEO Search engine optimization

49

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
thesis.pdf..............................the thesis text in PDF format
zadani.pdf.......................the thesis assignment in PDF format
src.......................................the directory of source codes

autocomplete.............Django app containing QAC functionality
textmining.................Django app containing nlp functionality
solr......................Django app containing a simple Solr client

thesis.................the directory of LATEX source codes of the thesis
images...................the directory of images used in the thesis text

51

	Introduction
	Goals
	Problem context
	Technology Agency of the Czech Republic
	IS VaVaI
	CEP Projects and RIV Results

	TA ČR Starfos

	Search user interfaces
	Models of information seeking
	Iterative refinement
	Berry-picking
	The information foraging theory
	Query taxonomy and QAC

	Query specification and syntax
	Boolean queries
	Command languages
	Modern keyword search
	The search box

	Current web search engines
	Google search

	Faceted search
	Nested facets and dashboards

	QAC design patterns
	Keyword query suggestions
	Direct entity suggestions
	Search history suggestions
	Interactivity and responsiveness
	Presentation of suggestions
	Instant search

	Theory
	Building the corpus of QAC suggestions
	From search query logs
	From searched documents

	Retrieving suggestions
	Matching
	Brute force
	Inverted index based on n-grams
	Prefix trees

	Ranking
	Heuristic models
	Learning to rank

	Automatic keyphrase extraction (AKE)
	Text pre-processing
	Stopwords
	Stemming
	Morphology

	TF-IDF
	RAKE

	Implementation
	Software requirements
	Establishing goals
	Suggestions
	User interface
	Technical requirements

	Author-assigned keywords
	Parsing
	Normalization

	AKE
	Matching and ranking
	HTTP web service

	Front end

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

