Master’s Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Radioelectronics

Machine Learning Algorithms
in Wireless Physical Layer Network Coding

Bc. Jakub Kolar

Open Electronic Systems

Supervisor: Prof. Ing. Jan Sykora, CSc.
Field of study: Communications and Signal Processing
January 2020

ii

cTu MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details
e ™
Student's name: Kolar Jakub Personal ID number: 434776

Faculty / Institute: ~ Faculty of Electrical Engineering
Department / Institute: Department of Radioelectronics

Study program: Open Electronic Systems

Branch of study: Communications and Signal Processing

Il. Master’s thesis details

e N
Master’s thesis title in English:

Machine Learning Algorithms in Wireless Physical Layer Network Coding

Master’s thesis title in Czech:

Algoritmy strojového uéeni pro bezdratové sitové kédovani fyzické vrstvy

Guidelines:

Student will get acquainted with fundamental principles of machine learning algorithms and with fundamentals of Wireless
Physical Layer Network Coding (WPNC). Student should systematically present the background machine learning theory
from the particular perspective of digital communication application. The core of the work should focus on the utilisation
of learning methods in scenarios with undefined or weakly defined system model. It particularly applies to codebook and
constellation used at the transmit side, and the network channel model and topology. Student will first apply (at least at
the theoretical concept level) the learning methods on simple point-to-point scenarios (e.g. learning the codebook for
unknown channel model), then on simple multi-user and/or WPNC scenarios (e.g. source constellation/modulation
classification, learning the relay hierarchical network code maps for end-to-end WPNC solvability, etc). Selected simple
algorithms should be implement and verified by a computer simulation.

Bibliography / sources:

[1]1 J. Sykora, A. Burr: Wireless Physical Layer Network Coding, Cambridge University Press 2018

[2] T. O’Shea and J. Hoydis, “An introduction to deep learning for the physical layer,” IEEE Transactions on Cognitive
Communicationsand Networking, vol. 3, pp. 563-575, Dec 2017.

[3] Christopher M. Bishop: Pattern Recognition and Machine Learning, Springer 2006

Name and workplace of master’s thesis supervisor:

prof. Ing. Jan Sykora, CSc., Department of Radioelectronics, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Date of master’s thesis assignment: 17.09.2019 Deadline for master's thesis submission:

Assignment valid until: 19.02.2021

prof. Ing. Jan Sykora, CSc. doc. Ing. Josef Dobes, CSc. prof. Mgr. Petr Pata, Ph.D.
Supervisor’s signature Head of department’s signature Dean’s signature
& J
lll. Assignment receipt
é The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others, A
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.
S Date of assignment receipt Student’s signature)

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

iv

Acknowledgements

I would like to thank to Prof. Ing. Jan
Sykora, CSc. for the supervision of this
thesis. Further, I want to express my
sincere gratitude to my family and friends

for continuous support during the studies.

A very special thanks goes to my girlfriend
Eva for being so special to me Q.

Declaration

I declare that I completed the presented
thesis independently and that all used
sources are quoted in accordance with the
Methodological Instructions that cover
the ethical principles for writing an aca-
demic thesis.

In Prague, 7. 1. 2020

Prohlasuji, ze jsem predlozenou praci
vypracoval samostatné a ze jsem uvedl
veskeré pouzité informacni zdroje
v souladu s Metodickym pokynem o
dodrzovani etickych principa pii priprave
vysokoskolskych zavéreénych praci.

V Praze, 7. 1. 2020

Abstract

This thesis deals with an application
of machine learning (ML) algorithms in
wireless physical layer network coding
(WPLNC). An introductory part of the
text provides a general overview of ML
methods, a motivation for utilization of
ML approaches, and a very brief sum-
mary of principles of WPLNC. Artificial
neural networks (ANN) recently attracted
attention in the field of communications,
with a broad range of promising appli-
cations. Basic principles and backprop-
agation training procedure of ANN was
hereby addressed and implemented. Fi-
nally, several exemplary problems in ba-
sic WPLNC scenarios were stated, and
solutions were proposed and tested as
computer simulations. These scenarios
focused on an issue of classification of
hierarchical symbols in a two-way relay
channel with BPSK and QPSK modula-
tions and considered a variable parameter
of relative fading. The obtained results
showed that the trained systems based
on ANN are capable of performing these
tasks, and performance was evaluated. An
effort was to tune the parameters of the
trained system and to provide a clear vi-
sual representation of the results.

Keywords: Wireless physical-layer
network coding, Machine learning,
Artificial neural networks,
Backpropagation, Two-way relay channel,
Decision regions

Supervisor: Prof. Ing. Jan Sykora, CSc.

vi

Abstrakt

Tato prace se zabyva aplikacemi algoritmut
strojové uceni na bezdratové sitové ké-
dovéani fyzické vrstvy. Uvodni ¢ést textu
poskytuje obecny prehled metod strojové
uceni, motivaci pro vyuziti pristupu stro-
jového uceni a velmi struc¢ny prehled prin-
cipt bezdratového sitového kédovani fy-
zické vrstvy. Umélé neuronové sité béhem
poslednich letech pritahovaly v oboru ko-
munikace pozornost velkym rozsahem slib-
nych aplikaci. Déle jsou zde popsany a im-
plementovany zakladni principy a metody
trénovani umélych neuronovych siti. Na-
sledné bylo popsano nékolik ukazkovych
uloh v zdkladnich scénarich bezdratového
sitového kédovani fyzické vrstvy a byla
navrzena a pocitacovymi simulacemi tes-
tovana jejich feseni. Tyto scénafe se za-
meérily predevsim na problém klasifikace
hierarchického symbolu v dvousmérném
reléovém kandlu s modulacemi BPSK a
QPSK. Uvazovan byl také proménny pa-
rametr relativniho tlumeni. Dosazené vy-
sledky ukazaly, ze natrénovany systém za-
lozeny na umélé neuronové siti je schopen
tyto ukoly plnit a byla vyhodnocena jejich
vykonnost. Byla také vynalozena snaha
vyladit parametry natrénovaného systému
a poskytnout jasnou vizudlni reprezentaci
vysledk.

Kli¢ova slova: Bezdratové sifové
kédovani fyzické vrstvy, strojové ucend,
umeélé neuronové sité, backpropagation,
dvousmérny kandl s reléovym uzlem,
rozhodovaci oblasti

Contents
1 Introduction 1

2 Machine Learning: An Overview |3

2.1 Preface 3
2.2 Introduction 3
2.3 Basic Terminology
2.3.1 Introductory Example:
Polynomial Curve Fitting........ [
2.4 Current Trends of Machine
Learning in Communications
2.4.1 Supervised Learning in Wireless
Systems i
2.4.2 Unsupervised Learning in
Wireless Systems
2.4.3 Reinforcement Learning in
Wireless Systems

2.4.4 Machine Learning in WPLNC

2.5 List of Machine Learning
Approaches

3 Brief Fundamentals of Wireless
Physical Layer Network Coding

3.1 Introduction [15]
3.2 Network Coding
3.3 Wireless Physical Layer Network
Coding ...t
4 Artificial Neural Networks 21
4.1 Introduction 21]
4.2 Gradient Descent 23|
4.2.1 Example: Gradient Descent
Training
4.3 Stochastic Gradient Descent ... [27
4.3.1 Example: Stochastic Gradient
Descent Training
4.4 Backpropagation Algorithm
4.4.1 Example: Backpropagation
Algorithm to Learn XOR
4.4.2 Example: Auto-encoder

vii

5 Exemplary Applications of
Machine Learning Algorithms in

WPLNC 37
5.1 Introduction 37
5.1.1 Notes to the Implementation

5.2 Simplified Scenario: Classification

of Transmitters on Relay Node ...
5.3 Classification of Hierarchical
Symbols in simplified 2WRC with
BPSK
5.3.1 Problem Formulation
5.3.2 Ilustration of Degrees of
Freedom of the Problem 146!
5.3.3 Parameters of the simulation
5.3.4 Introductory Example
5.3.5 Regularization through Noise
5.4 Classification of Hierarchical
Symbols in simplified 2WRC with
QPSKo
5.4.1 Extension to QPSK
5.4.2 Exemplary Results

5.5 Effect of Size of Training Data Set
on Classification in 2WRC with

5.6 Variable Relative Fading in 2WRC
with BPSK

5.6.1 Analysis of the Parameters and

Tuning o L.
6 Conclusions 93
Bibliography 95
A Appendix 99

A.1 MATLAB Code to Train ANN
with Backpropagation Algorithm to
Classify XOR

A.2 Folder List of the Attached CD

Figures

2.1 Example training data.
2.2 Over-fitting demonstration.
2.3 Example test data.............. 9]
2.4 Over-fitting demonstration. 9|

2.5 Dependence of approximation on
regression parameter.............

2.6 Dependence of approximation error
on regression parameter.

2.7 Dependence of magnitude of
polynomial coefficients on regression

parameter \.
3.1 Conventional relay scheme..
3.2 Network coding relay scheme. ..
3.3 WPLNC relay scheme.

3.4 BPSK constellations in WPLNC
SetUupP. v 18]

3.5 WPLNC hierarchical structure

demonstration. 19
4.1 Single ANN perceptron.
4.2 Linear separability

demonstration.
4.3 Gradient descent - example

organization. 24]
4.4 Squared error function evolution

during gradient descent training. . .
4.5 Gradient descent — a convergence

of individual weights.............
4.6 Gradient descent — separation of

the classes......................
4.7 Gradient descent - separation of

linearly non-separable classes.
4.8 SGD training: weights evolution

forn=0,01..............
4.9 SGD training: weights evolution

forpy=0,001...................
4.10 Sigmoid function and its

derivative. 29|
4.11 Simple neural network with one

hidden layer.

viii

4.12 Demonstration of XOR training
convergence.

4.13 Trained XOR function

demonstration. 34
4.14 Structure of auto-encoder.
4.15 Demonstration of convergence of

auto-encoder training.
4.16 Representation of the

auto-encoder hidden output values.

5.1 Illustration of how training process
of ANN is implemented throughout

Chapter 5.
5.2 Demonstration of how multiple

BPSK modulation superimpose on

the relay antenna.

5.3 Description of the sampling
process.

5.4 Example of training data, used to

determine number of users u.
5.5 Demonstration of convergence of
the training process.

5.6 Demonstration of the accuracy of
the system trained for different levels

of SNR.
5.7 Demonstration of generalization

issues of the system tested on

different values of SNR.

5.8 Demonstration of different levels of
SNR of the training data.

5.9 Demonstration of effect of different

angles of fading parameter h.
5.10 Demonstration of effect of 7

difference between angles of two

fading parameters h.
5.11 Demonstration of effect of

different magnitudes of two fading

parameters h.
5.12 Comparison of reference decision

maps and trained decision map in

small-scale example..............

5.13 Introductory example of trained
system.

5.14 Setup 1: Illustration of training
data set for h = exp (JZ”) . 51

5.15 Setup 1: Comparison of decision
maps for h = exp (%) 51

5.16 Setup 1: Comparison of accuracy
of determined maps for

h:exp(%). %

5.17 Setup 1: Comparison of BER of
determined maps for h = exp (%) . 52

5.18 Setup 1: Illustration of training

data set for h = exp (%r) e %
5.19 Setup 1: Comparison of decision
maps for h = exp (%) 53

5.20 Setup 1: Comparison of accuracy
of determined maps for

h:exp(%).

5.21 Setup 1: Comparison of BER of
determined maps for h = exp (%r) .

5.22 Setup 1: Comparison of decision
mapsfor h=1..................

5.23 Setup 1: Comparison of decision
maps for h = exp (z%) B

5.24 Setup 1: Comparison of decision
maps for h=—1.

5.25 Setup 1: Comparison of decision
maps for Ah=0,7................

5.26 Setup 1: Comparison of decision
maps for h = 0,7 exp (szr) 56

5.27 Setup 1: Comparison of decision
maps for h = 0, 7exp (%)

5.28 Setup 1: Comparison of decision
maps for h = 0,7 exp (3{7”) 56

5.29 Setup 1: Comparison of decision

maps for h=—-0,7.

5.30 Setup 2: Comparison of decision
maps for h = exp (%)

5.31 Setup 2: Comparison of decision
maps for h = exp (%) 57

5.32 Setup 2: Comparison of accuracy
of determined maps for

h = exp (JZ“) e 58

ix

5.33 Setup 2: Comparison of BER of
determined maps for A = exp (JZ”) .

5.34 Setup 2: Comparison of accuracy
of determined maps for

hzexp(%).

5.35 Setup 2: Comparison of BER of
determined maps for h = exp (%r) :

5.36 Setup 2: Comparison of decision
mapsfor h=1..................

5.37 Setup 2: Comparison of decision

maps for h = exp (:%) B,

5.38 Setup 2: Comparison of decision

maps for h=—1.

5.39 Setup 2: Comparison of decision
maps for h=0,7................

5.40 Setup 2: Comparison of decision
maps for h = 0,7 exp (%) 61

5.41 Setup 2: Comparison of decision
maps for h = 0,7 exp (%) 61

5.42 Setup 2: Comparison of decision
maps for h =0, 7exp <3{Tﬂ) 61

5.43 Setup 2: Comparison of decision

maps for h=—-0,7.
5.44 QPSK simulation legend.
5.45 Nlustration of training data set

forh=1........

5.46 Comparison of decision maps for

h=1.. 64
5.47 Comparison of accuracy of
determined maps for h=1.

5.48 Comparison of SER of determined

mapsfor h=1..................
5.49 Illustration of training data set
for h = exp (%) e 66

5.50 Comparison of decision maps for

h = exp (%) e 66
5.51 Comparison of accuracy of o
determined maps for h = exp (%) . 67

5.52 Comparison of SER of determined

maps for h = exp (%) E

5.53 Comparison of decision maps for

hzexp(ﬁ%).

5.54 Comparison of decision maps for

hzexp(%).

5.55 Comparison of decision maps for

h =exp(frachjm6)..............
5.56 Comparison of decision maps for
h=—1. i

5.57 Ilustration of training data set

for h = exp (%) B

5.58 Ilustration of training data set
for h=0,7.

5.59 Comparison of decision maps for
h=0,7.

5.60 Comparison of decision maps for

hzO,?-exp(%).

5.61 Comparison of accuracy of
determined maps for h =0,7.

5.62 Comparison of SER of determined
maps for h=0,7................

5.63 Comparison of accuracy of
determined maps for

h=0,7-exp (%) 72

5.64 Comparison of SER of determined
maps for h =0,7 - exp (%) 72

5.65 Comparison of decision maps for
h=0,7exp (). 73

5.66 Comparison of decision maps for
h:(),?-exp(‘%’f). 73

5.67 Comparison of decision maps for
h=0,7exp (). o 73

5.68 Comparison of decision maps for
h=—0,7.

5.69 Comparison of accuracy for
different values of D for SNR = 5

dB. ... [75]
5.70 Comparison of BER for different
values of D for SNR =5dB. (75l

5.71 Comparison of accuracy for
different values of D for
SNR=75dB.

5.72 Comparison of BER for different
values of D for SNR = 7,5 dB. ...

5.73 Comparison of accuracy for
different values of D for

SNR=10dB................... rded
5.74 Comparison of BER for different

values of D for SNR = 10dB. [17
5.75 Examples of Online Mode.

5.76 Examples of Online Mode
(continued).

5.77 Comparison of accuracy in online
mode for £h=4,5°

5.78 Comparison of BER in online
mode for £Lh=4,5°

5.79 Comparison of accuracy in online
mode for £Lh =40,5°

5.80 Comparison of BER in online
mode for £{h =40,5°

5.81 Comparison of accuracy in online
mode for £h =76,5°............

5.82 Comparison of BER in online
mode for £h =76,5°

5.83 Visualization of changes of
weights of ANN for 50 training
epochs.

5.84 Visualization of changes of
weights of ANN for 30 training
epochs.l

5.85 Comparison of averaged BER for
reference methods and for average
BER of trained systems with 30 and
50 training epochs...............

5.86 Block diagram illustrating the
first implemented training routine.

5.87 Block diagram illustrating the
second implemented training
routine............ 36|

5.88 Block diagram illustrating the
third implemented training routine.

5.89 Comparison of reference methods
and resulting average BER of
different training procedures.

5.90 Visualization of changes of

weights of ANN according to training

procedure in Figure 5.87L

5.91 Visualization of changes of

weights of ANN according to training

procedure in Figure 5.87,

5.92 Visualization of changes of

weights of ANN according to training

procedure in Figure 5.88.

5.93 Comparison of reference methods
and resulting average BER of
training procedure for I =5.

xi

Tables

4.1 List of XOR training data.
4.2 List of auto-encoder training data.

5.1 Explanation of training input tg4.

5.2 Parameters of simulation in
Setup 1. ...

5.3 Parameters of simulation in

Setup 2. ...
5.4 Implemented single-user QPSK.
5.5 Explanation of training input tg4.

5.6 Parameters of simulation for

QPSK. oo
5.7 Parameters of simulation. [74]

5.8 Parameters of simulation for online
mode of BPSK in 2WRC. [78

5.9 Parameters of simulation for
variable £h. 87

Chapter 1

Introduction

This thesis is about the connection between two topics: Machine Learning
(ML) and its possible applications to Wireless Physical Layer Network Coding
(WPLNC). Currently, ML is gaining interest in many fields. In the beginning,
we shall provide several examples that show how the ML methods might be
useful in the broad area of communications. Based on the current literature
and providing a brief survey of the state of the art methods, we will try to
give a tutorial on a selected topic of ML and connect its applications with the
typical scenarios in wireless communications, especially on the physical layer.

Next, the fundamental ideas of WPLNC shall be briefly stated with an
aim to select a target field of the applications. This background of WPLNC
will be used to state an exemplary problem definition to be solved with a
selected ML method. For the applications, focus in this thesis shall be given
to provide a clear explanation of the methods and approaches. Note, the
performance of the implementations shall not be a key criterion.

The goal of this thesis is to provide a description of the ML algorithms
that are suitable to be applied in the scenarios of WPLNC and to implement
some of these algorithms as computer simulations.

The theoretical part of the thesis will be focused on the utilization of
Artificial Neural Networks. Based on the current literature, a basic descrip-
tion shall be provided together with a detailed explanation of the training
procedure.

Finally, the last chapter shall contain several commented examples, imple-
mented as computer simulations.

Chapter 2

Machine Learning: An Overview

. 2.1 Preface

Machine learning is a broad area of methods, and hereby we will try to provide
an introduction to the topic based on a study of several references such as
[1] [2] [3]. In an effort to avoid problems with notation, it is adopted mainly
from [I]. The title of [2] is "Pattern Recognition and Machine Learning," and
let us say, that these topics are strongly connected. Pattern recognition uses
concepts of machine learning, and its task is typically to determine regularities
in data automatically and, e.g., classify the data to different categories [1].
A very common area of usage of the machine learning is concentrated in
the fields of image and speech analysis [I] [2] [3]. Corresponding to this
fact, most of the literature takes e.g., a popular picture classification [2] as
an introductory tutorial example. Keeping in mind the main topic of this
thesis, which concerns wireless digital communication, we will in the text
partially adopt also literature from other fields. The justification is that the
mathematical formulations are obviously general and blind to specific inputs
of the machine learning approaches and algorithms.

In this chapter, we shall provide a background of general machine learning
methods.

. 2.2 Introduction

The task of machine learning is to find an optimized solution of programming
tasks based on example data sets or past experience; especially, it is suitable
in situations when we can not simply write code to solve the problem because
of a lack of knowledge about the situation [I]. The first area of usage is
when the model does not exist at all, e.g., converting speech to written text
or identifying handwritten digits, when the human can perform this task
easily, but can not generally describe the knowledge in order to implement
the solution using the computer. The complexity of these tasks is in the
diversity of the input data. For example, different styles of the handwriting
of letters and digits in optical character recognition, or different parameters
of pronunciations of words in speech analysis are the reasons, why these
tasks are difficult to be solved in a traditional way — without use of machine
learning methods [I]. Then, a method of machine learning is generally to
inspect a large amount of data and discover the corresponding mappings that

3

2. Machine Learning: An Overview

are difficult to be described [I]. Another common assumption of the machine
learning paradigm is that the properties of the system might be varying
and therefore, the system should be adaptive with respect to the specific
conditions — this is different from fixed tuned system [I]. The given examples
of speech and image recognition systems are exemplary approaches that are
already commercially successful and based on machine learning. Applications
of pattern recognition algorithms in the fields of image and speech analysis
became very popular in recent years, where the success was driven by the
availability of the huge amount of data and large computation power [4].

The field of machine learning developed as a union of many fields, where
the methods were discovered for different purposes [I]: statistics, pattern
recognition, signal processing, data mining and neural networks, to name few.

Next, let us introduce the suitable use cases of machine learning, because
we must not expect that it provides us ’one-fits-all’ solution to the problems.
Conventional engineering workflow typically means, that the background
knowledge of the problem to be solved, e.g., the physical description, is used
to produce a mathematical model of the situation, then the algorithm is
designed and optimized to find the solution and performance bounds can be
then stated to evaluate the results [4]. This is probably the best we can do.
On the other side, fundamentally the machine learning approach might allow
us to replace the step of designing the model of the system with a possibly
easier task of collecting large amount of data, called training set, that is
used by the 'machine’ to 'learn’ the solution of the task [4]. Note, this way
is suitable only in case, that the description of the task is not available or
is extremely difficult to formulate and this is the fundamental motivation
for the topic of this thesis with respect to wireless digital communication.
Usage of machine learning is inappropriate in cases that the model of the
situation is known and is suitable to find an approximation of the model that
corresponds to the data [1].

According to [3], it is advisable to consider the machine learning approach
in case that:

B a conventional approach is not desirable from the reasons of an unavailable
physical model of the situation or when the algorithmic solutions are too
complex to be applied;

B the training sets are available or can be created;
B the task to be learned is stationary and does not change rapidly in time;

® an explanation of the decision is not required, i.e., a black box realization
is sufficient;

® clear metric evaluating the solution can be defined.

It is also possible and desirable to choose and design the specific method of
machine learning such that it utilizes the background knowledge [4]. Moreover,
while the machine learning based on the training data can find a solution
without a mathematical model, the solution will be typically found suboptimal
with respect to a solution based on a relevant model [3].

Considering a general machine learning task briefly, we are initially given
a training set of data, that is used to train the algorithm to find a possible

4

2.3. Basic Terminology

solution; considering a step called generalization, we then use additional test
set to determine, if the the received solution is suitable [2]. Generalization is
fundamental to machine learning because it distinguishes the process from
pure memorization of the training set. It assumes that the found model will
be valid also for subsequent inputs. The assumptions that allow us to perform
the generalization are called inductive bias [1]. More details follow in the
next sections.

B 23 Basic Terminology

Generally, to perform a solution using a computer, we first need an algorithm,
and we want to use the most efficient one, e.g., from the point of view of
memory or number of instructions [I]. In machine learning, we want the
computer to find the parameters for a method using the training data to
compensate for the deficit of our knowledge in cases when we do not have any
better approach. Especially, this holds in situations when we suppose that
the process is not completely random, i.e., there are some rules or patterns,
and therefore we assume that there exists a process that explains the origin
of the testing data [I]. In this section, we will try to provide a brief overview
of the terminology of machine learning.

There are three main types of machine learning problems to be introduced
[31:

8 Supervised learning: Let us have N training examples described as
D = {(z4,t;)}¥,, where x; stands for data (e.g., picture pixels of digits
to be recognized) and ¢; for labels corresponding to the z; (0, 1, 2, ...,
9). The goal of supervised learning is to assign a label ¢ to input data
x based on the training set D. Following the digit recognition example,
we train a machine with large number of example digits z; and correct
labels ¢; in D and then we want the machine to output label ¢ to a new
picture input z [2].

Another formulation is to find parameters 6 of model g(-) that describes
a mapping t = g(z[0) [1].

Classification are called problems with discrete values of ¢, and this
covers applications such as character recognition, speech recognition,
face recognition. Discriminant is called a function that separates different
classes. Regression term is used for case of continuous values of ¢. A
basic example of regression is e.g., fitting a polynomial function with
noisy observations, as seen in the following section.

8 Unsupervised learning: Let us have N training examples, but this time
we are not provided with the labels, i.e. D = {(z;)}}Y;. Supervised
learning aims to reveal some information about the data and generally
to discover the mechanism of the data set generation. Typical problems
are clustering (grouping of similar examples x;), density estimation
(determining distribution of z;) and dimensionality reduction [2].

B Reinforcement learning: Consider a task, which consists of taking many
steps, and based on the steps performed, either rewards or punishments
are allocated. The individual steps are not important, but the important

2. Machine Learning: An Overview

thing is to reach the goal based on a correct policy [3]. This policy is
good if the steps based on this policy are good to reach the goal and
should be found based on the past good steps [I]. The difference from
supervised learning is that the labels ¢ are not provided with respect to
individual steps; however, some information is provided afterward, and
therefore it is not completely unsupervised. The solution is complicated
by the fact that an inter-step leading to local maximization of reward
might not lead to the overall best policy [2].

Next common terms to be introduced are:

B Feature extraction is a term used to address a preprocessing of the data
to be used by the machine and includes steps to improve the ability of
the machine to determine the correct function.

® Tasks of predictions are understood, such that in case of discovering
some hypotheses based on the past training data, we can decide, if the
current conditions of new data are consistent and eventually predict,
that state of the system will correspond to the learned model.

8 Qutlier detection are tasks, when we are afraid, that the given data
set might be corrupted by samples, that are not consistent with the
remaining samples and could damage further analysis, if not excluded.

B 2.3.1 Introductory Example: Polynomial Curve Fitting

Let us now describe a simple example of polynomial curve fitting, where the
approach of machine learning will be shown practically. The example and
discussion are based on [2], and the computation was implemented in Matlab.
Note, the approach is based on a well-known least-squares method. However,
we might consider it to be a good tutorial example. It is supposed to serve
for the introduction of term over-fitting and to repeat the basic overview of
the machine learning terminology.

Training data tiaining = (t1,...,tn), N = 10, were obtained as noisy
observations of function f(x) = sin(27z). The samples are shown in Figure 2.1
together with function f(z). The task is to solely based on the training set
tiraining to estimate the unknown function t= f(x) to assign for any value
of z a predicted value of t. Here, as an introductory example, it is our
convenience to know the model of the situation, which could be described as
t = sin(27wz) + n, where n is noise term drawn from Normal distribution with
zero mean and some variance o2, denoted n ~ N(0,02). As stated earlier, in
machine learning tasks we are asked to investigate the training data in order
to avoid investigating of the specific observation model.

In this example, we shall use the polynomial approximation of form

m
t(x, W) = wo + wix + - + W™ = Zwixi, (2.1)
=0
where w = (wy, . .., w,) are coefficients, that uniquely identify a polynomial

of order m, fitting the training data tiraining. A performance metric to be
used shall be square-error function evaluated in N points and defined as

6

2.3. Basic Terminology

Original Data and its Noisy Observations

Original function f(x) = sin(27x)

1 ——© Training data ¢ - noisy observations| |

0.5]

-05 B

Figure 2.1: Figure of training data, t¢raining, and original function
f(z) = sin(27x).

N
E(x,w) = Z[f(x,w) —tn]2 (2.2)
n=1

Note that such a definition is opted because the metric is to be minimized
using differentiation, and taking the square ensures the first derivative to
be continuous, which eases the minimization process. Further, observe that
function E(z,w) is linear with respect to the coefficients w. Next step in
model selection is the choice of polynomial order m. Then, we evaluate
the function in training points tiraining, and, by standard differentiating and
comparing the results with zero, and we minimize the result, i.e., we obtain a
set of linear equations in the form

OB w) _ OE@w) _, (2.3)
8’[1)0

and solve the system. We solved the set of Equations 2.3/ for m =1,...,9
and the resulting approximations can be seen in Figure 2.2 for selected values
of m = {1;3;5;9}. Visually, we can see that the obtained linear function for
m = 1 gives a very poor result in fitting the training set, tiaining. This is not
surprising, given the background knowledge of sinusoidal model. A situation,
when the model in not capable to follow the data is called under-fitting. Next
the polynomials of order m = 3 and m = 5 have quite a good ability to
approximate the sin(27x) and the polynomial of order m = 9 can, of course,
go through all the ten points of the training set, tiraining-

To evaluate the generalization ability of our approximation, let us define
root-mean-square error Eryg as

E(x,w
ERMS - (]v), (24)

2. Machine Learning: An Overview

Fitted Results for Different Polynomial Degrees m

m=1 m=3

1

05 | /N \ 1 0.5 / \
N \
) \ 0 \
\ \
-0.5 N/ -0.5 \

-1 1 y

0 2 4 6 0 2 4 6

Original function x

Training Data ¢
Fitted Polynomials of order m

AT
OIS/ \\ | /f N

Figure 2.2: Figures of polynomial curves received after minimization of error
function; given are examples of the first (i.e., a linear function), the third, the
fiftth and the ninth order polynomials, respectively. The ninth order polynomial
perfectly approximates training data but overall gives poor performance, because
it has only a limited ability to assign an appropriate value of f to new values of
x outside the training set.

which has an ability to "fair and square" evaluate the error without dependence
on the size of the test data set. The set, tiest, consists of 100 samples that
were generated in the same way as tiraining and are shown in Figure [2.3. Note,
we assume in this example, that ti.st was not available before.

Let us evaluate how good the approximation is. The resulting plot of errors
is shown in Figure [2.4. We can see, that evaluating the error function Egrys
with respect to training set, tiraining, the function Eryg is for increasing
value of m monotonically decreasing and this confirms the observation from
Figure [2.2, where the error is 0 for m = 9. On the other side, evaluating
Erms with respect to test set, tiegt, shows a decrease for m = 1,...,8 and
then a steep increase for m = 9, which can be easily understood reviewing
the Figure [2.2. The situation, when the model is over-trained on the training
data and then gives poor performance on test data is called over-fitting and
should be avoided by a proper model selection - in this case, it means not to
select a value of m to large [2].

We can inspect, that our approach leads for increasing values of m to
increasing values of coefficients w;. Let us now concentrate on the case of
m = 9. We can try to train a machine, that will prefer smaller coefficients w;.

8

2.3. Basic Terminology

Test Data

T T T

1+ —©0 Test Data -

Original Function

Figure 2.3: A hundred samples of test data to check the ability of generalization;
the samples were obtained by the same process as training data in Figure It
is a common practice to evaluate the resulting performance of the machine using
a data set, which was not used during the training phase.

Comparison of ERyg w.r.t. Training Data and Test Data
06 T T T T T T T

————— Frus wer.t. Test Data
Egrns wer.t. Training Data

Figure 2.4: Figure compares calculated Egryg error with respect to training
data and test data sets; with polynomial of the ninth order the machine learns
to perfectly fit the training data but gives very poor result to fit the test data.

This is motivated by an intention to reduce large oscilations of the resulting
polynomial, as seen in Figure in case of m = 9. To do so, let us change
the performance metric to take form of [2]

N
B, w) =Y [f(z,w) — t2 + 2w, (2.5)
n=1

1=0

When minimizing the metric in Equation 2.5, we penalize larger magnitude
of coefficients w;. This form of reqularization is used to train the machine
with smaller coefficients w;, which leads to less rapid changes in the values of
the resulting polynomials.

Again, this approach was implemented in Matlab and the results are
provided in Figure for different values of A. For the selected values of
A, we can observe that the rate of changes is decreased as In A increases for

9

2. Machine Learning: An Overview

Fitted Results for Different Values of In A

InA =-20 InA=-15
2 1.5
1H
1 _— 1 X f h
S0 TN Y
AN 0.5 \
/) >
= 0 + 0f AN
S W J
\ /X 05t
At \w //\ A
ER: \\4/
-2 -1.5
0 2 4 6 0 2 4 6
T Fitted Polynomials x
Original Function
Inh=—10 Training Data ¢ In)=—5

S

I 4N

Figure 2.5: We can see how choice of regression parameter \ affects the resulting
approximation. Small values of In A = {—20; —15} do not much suppress the oscil-
lations of the ninth order polynomial; the exemplary values of In A = {—10; -5}
show that the problem of malicious oscillations, i.e. over-fitting, is suppressed.
Notice, that with the regularization involved, the approximation polynomial
curve does not go through all the training samples any more.

Dependence of Egryg on A Parameter
06 T T T T
FErys w.r.t. testing data
Egyg wer.t. trainig data | |

0 1 1 1 1
-20 -15 -10 -5 0 5
InA

Figure 2.6: Figure analogical to Figure We can compare values of Erus
calculated from the sets of training data tiraining and test data tiess. As InA
increases, the obtained approximation is less successful in matching the training
data tiraining and, at the same time, error with respect to test data ties is
reduced. Nevertheless, for In A > —5, the obtained polynomial loses ability to
follow original function, because the coefficients are forced to be too small, see

Figure

10

2.4. Current Trends of Machine Learning in Communications

Dependence of Cumulative Coefficients Magnitude on In A
250 T T T T

Cumulative Coefficients Magnitude ‘

200

In A

Figure 2.7: In this figure we can observe how the choice of parameter A in metric
defined in Equation |2.5 affects the resulting polynomials: increasing value of
A in the metric causes as result of minimization a significant decrease of the
polynomial coefficients w, .. ., wo.

m = 9. In Figure [2.6] we can again compare behaviour of Eryg with respect
t0 tiraining and tiest, respectively. While the regularization causes increasing
deviation from the training data tiraining, it reduces an error evaluated with
respect to test data tiegt.

We can roughly observe that optimum value of A is for In A € (—10; —5),
and then the suppression of magnitude of the coefficients is too high; see
Figure [2.6l We can also compare the results from Figure 2.6/ and Figure 2.4
to see, that by applying the regularization process, we managed to obtain
similar results as when selecting smaller polynomial order.

Finally, let us have a look at Figure 2.7, where we can see how our
regularization affected the size of the approximation polynomials. We can
observe that the magnitude of the coefficients decreases very rapidly with an
increasing value of In \.

Summarizing this subsection, we have seen a trivial polynomial curve
fitting example based on [2] and, e.g., seen also in [4], where a problem of
polynomial fitting was solved with a very traditional approach of least squares
minimization. The desired outcome is to provide a basic example, where the
terminology was revisited, as well as to introduce the problematics of model
selection related to under-fitting and over-fitting issues.

B 2.4 Current Trends of Machine Learning in
Communications

Let us now provide an overview of machine learning approaches that are
according to the recent literature perspective in the context of wireless
communication systems. Specifically, we shall be interested in the methods
suitable for applications on the physical layer. As discussed in the Introduction
section above, we shall try to concentrate on methods of machine learning,
which might be useful in digital communication problems in situations, when
alternative solutions are not fully satisfactory. Previously in the text, we
provided notes about evaluating the suitability of machine learning approaches
for given tasks. Reviewing that, either algorithmic or model deficit is typical
to be solved, and the situation should be considered to choose proper solution

11

2. Machine Learning: An Overview

[4]. Next, let us address few current trends, separately for the supervised,
unsupervised, and reinforcement learning, and also to mention few published
applications of machine learning to WPLNC.

B 2.4.1 Supervised Learning in Wireless Systems

Recently, machine learning approach was adopted to many problems in wire-
less communication. At the receiver site, the tasks of channel detection and
decoding can be described as classification of the label of the transmitted
message from baseband signal [4]. Methods of machine learning were adopted,
e.g., in cases where no channel models exist or existing solutions are compu-
tationally very complex [4]. An issue that might occur in the case of channel
decoding is the fast rate of changes in the channel state [4].

As an algorithmic deficit situation might be considered a broad task of
modulation classifications [4]. Recent examples of deep learning solutions
are [5] and [6], where the authors developed a system to extract image data
from received 1/Q parts of the signal and then applied pattern recognition
techniques to train modulation recognition systems.

Neural networks are also widely used for enhancement of indoor positioning,
e.g. in [7] and [8]; other recent application is to cancel self-interference of
full-duplex nodes [9] [4]. Caching of popular data content is used on the
application layer, and it is supported by machine learning to decide, what
content might be required by users in specific locality [4].

Note, that recently amount of survey literature appeared, e.g. [10], [11],
and recent trends are captured at [12].

B 2.4.2 Unsupervised Learning in Wireless Systems

Recently, auto-encoders attracted attention, see e.g. [13] and [14]. Tradition-
ally, auto-encoder consists of two parts: (1) encoder processes input data
to some other representation, (2) decoder operates with an output of the
encoder to retrieve original input data [4]. In [I3], the authors presented
an idea to model the whole wireless communication chain as auto-encoder
with motivation to simultaneously optimize the design of all parts of the
system, i.e., modulator, source coding, channel coding, demodulator, and
decoder. From the point of view of machine learning, deficient knowledge of
the channel model was addressed in [I4]. The auto-encoders are designed as
deep neural networks.

Next, clustering is in communication systems used to allocate resources or
to initially group the nodes and then perform, e.g., routing with respect to
created clusters, rather than single nodes [4]. The ability of self-organization
using clustering seems to be a very natural tool to be used in ad-hoc networks.

B 2.4.3 Reinforcement Learning in Wireless Systems

Interpretation of communication using reinforcement learning is another
recent machine learning topic in wireless communication. For example, in
[15], the authors illustratively present, how traditional parts of communication

12

2.5. List of Machine Learning Approaches

chain can be represented by machine learning tools (such as FIR filter <>
convolutional neural network layer, IIR filter <+ recurrent cell in artificial
neural network, and source coding <+ auto-encoder). The main contribution
of [I5] is the design and training of the system, where modulation is learned
between two nodes in a decentralized manner using reinforcement learning
problem formulation.

B 2.4.4 Machine Learning in WPLNC

In [I6], the author addressed a problem of detecting parameters of WPLNC
network, namely the number of source nodes connected to relays, followed by
identification of source nodes connected to the relays using the recognition
of random sequences. It is called Cloud Initialisation Procedure, and with
a focus on saving-resources approach, it is based on unsupervised k-means
algorithm, pointing to possibilities of enhancement, using e.g., E-M algorithm
[16]. Both, simulation and hardware implementations are provided.

In preprint [I7], a deep learning approach was adopted to optimize the
constellations of 2WRC. The authors describe communication in 2WRC as
a combination of three deep neural networks (DNN): (1) source modulator,
(2) relay node, and (3) demodulator. This setting is trained to minimize
cross-entropy loss between the source and destination nodes, and simulation
results are provided for different SNR values [I7]. (Note, this seems to be
analogical to approach of auto-encoder.)

In paper [18], the authors describe solution called WPLNC random access.
It utilizes principles of WPLNC to allow a non-guaranteed exchange of
messages in the environment, where interference intentionally occurs, and
successful communication is reached when the destination node is able to
decode (in two phases) desired messages from received set of equations on
given finite field [I8]. A deep neural network is in [18] designed to make
decisions about sets of equations to be solved in the given step, in order to
reach minimal error.

B 2.5 List of Machine Learning Approaches

In the literature, e.g. [I] [3], these are common general topics of machine
learning:

8 Bayesian Decision Theory

8 Parametric Methods

8 Dimensionality Reduction

8 clustering

8 Decision Trees

8 Multilayer Perceptrons

13

14

Chapter 3

Brief Fundamentals of Wireless Physical
Layer Network Coding

In this chapter, let us briefly provide an introduction to the topic of Wireless
Physical Layer Network Coding (WPLNC). We will focus on comparison with
traditional approaches. This chapter is based on a very recent book [19] and
introductory parts of recent dissertations [20] and [16]. The goal is to provide
an introduction in such a way that we can later possibly identify the target
applications of machine learning algorithms in WPLNC systems.

. 3.1 Introduction

Let us first summarize a few generally known facts. In the past 20 years,
wireless communication systems became ubiquitous and worldwide penetrated
to everyday life. A fundamental restriction factor of wireless communication
is in the limited amount of frequency spectrum, where the transmitted signals
are conveniently separated. This separation allows the official authorities
to control the frequency allocations used for many purposes by different
types of organizations or individuals. The necessity of such control comes
from the nature of wireless communication. Since electromagnetic waves
radiated by antennas of different transmitters operating in the same frequency
bands superpose on the receiver antennas, this causes a phenomenon called
interference. Possibly with the exception of radio jamming, traditionally such
interference is considered to be malicious because it damages the desired
shape of the waveform at the receiver side and effectively reduces signal-to-
interference-plus-noise ratio (SNIR). Informally, reduced SNIR causes the
wireless communication to be vulnerable to errors and outages.

In the concept of wireless communication networks and multi-user systems,
this fact gave rise to traditional methods of avoiding interference by separating
the signals with different frequency channels, i.e., frequency division duplex
(FDD); or with different time slots, i.e., time division duplex (TDD); or coding
schemes. Corresponding to these exist the well known multiple access methods,
such as TDMA, FDMA, and CDMA. Note that combinations of these schemes
are commonly used. In cellular systems, these multiple access methods are
efficiently utilized to allow communication of many users, while reusing the
radio resources in a non-overlapping manner to avoid interference. A trend
reaching its limit is reducing the size of the cells [19]. Recently, we might also
observe an effort to use higher frequency bands, e.g., as in proposed mmWave

15

3. Brief Fundamentals of Wireless Physical Layer Network Coding

communication [2I]. An extension of usable communication spectrum is
clearly favorable, however, new drawbacks appear at these high frequencies,
such as high signal attenuation, which causes a small coverage area [21].

WPLNC paradigm offers a possibility to design a system where the intended
cooperative interference of wireless network users is used to increase network
capacity and, hence, use it constructively [19].

B 32 Network Coding

Traditional multi-hop networks route the messages such that intermediate
devices duplicate input messages to the outputs in order to send them to the
desired destinations. A concept of network coding was introduced with a key
advance, where the intermediate device is allowed to perform operations with
input messages, such that some function of inputs is used as the output [16].

Phase 1:

Phase 2:

Figure 3.1: Conventional relay scheme.

Let us present a simple example shown in [I9] and [20] to exemplify the
network coding using Figures [3.1] and 3.2l Note, the network is referred to as
a 2-way relay channel (2WRC) [19]. A description follows: Nodes N4 and
Np wish to exchange binary messages M4 and Mp via an intermediate node
R, referred to as relay. The first obvious solution is to split the process into
two phases, as shown in Figure |3.1. In Phase 1, N4 sends message M4 to
relay R; then relay R sends the message to node Np. In Phase 2, the same
is done for message Mp originating in Np, and the task is done, the nodes
exchanged the messages.

Phase 1:
Phase 2:

Figure 3.2: Network coding relay scheme.

Now, we revisit the same task, but demonstratively utilizing approach of
network coding. In Phase 1 in Figure [3.2 messages M4 and Mp are sent
to relay R. Then, node R internally performs bitwise XOR operation of the
received messages, denoted M4 @ Mp, and sends the result to both nodes,

16

3.3. Wireless Physical Layer Network Coding

N4 and Ng. Since N4 and Np have the knowledge of their original messages,
they can process calculations to obtain the unknown message. Specifically,
node N4 performs XOR again to obtain Mp, since

(MA@ Mp)®Ma=(Ms®My)®Mp=00Mp= Mg, (3.1)

vice versa for Np to obtain M4, and a bit elaborately the task of messages
exchange is completed, too.

As seen in [16], a general description of network coding, expressed as output
function of nth node N,, with input messages (M4, Mp, ...), might be stated
as

YN, = In,(Ma, Mp,...), (3.2)

and at the destination node Np, a reconstruction function, denoted e.g.
y;,llj, should be defined to recover the messages (M, Mp,...) from possibly
multiple inputs (yn,,...), written as

(Ma, Mp,...) = fyp(uny,-). (3-3)

Before moving to WPLNC, let us explicitly state, that in the network coding
paradigm, the forwarded messages are logically computed in the corresponding
devices according to predetermined functions, as in Equation 3.2, and that
this high-level approach is used for both, wired and wireless networks, when
appropriate multiple-access schemes are applied [19].

B 3.3 Wireless Physical Layer Network Coding

Concept of WPLNC might be understood as a modification of network
coding, tailored to the usage in the wireless environment, where the physical
properties of wireless channels are considered and utilized. Firstly, half-duplex
constraint is a common assumption in wireless communication that must be
respected, meaning that the network nodes are not capable of transmitting
and receiving signals at the same time using identical radio resources [19].
In the paradigm of WPLNC, the devices are aware of the network topology,
and the operations of the network, such as routing, are adapted to it, which
consequently improves the theoretic capabilities of the network, compared to
the traditional approach of point-to-point links in networks [19]. Knowledge of
the topology can be then exploited to transmit signals that are on the physical
layer intentionally combined and received in predetermined combinations [19].

The fundamental difference between network coding and WPLNC is the way
of combining signals. Previously in case of network coding, relay performed a
calculation of specific function based on the inputs and transmitted a result;
in WPLNC, the combination of signals reaching the relay originates as a
superposition of the electromagnetic waves, i.e., interference at the relay
receiver antenna [19] [16].

Revisiting the previous example of 2WRC, we will introduce the most
fundamental terms in WPLNC terminology. In the example, we consider
that nodes N4 and Np wish to exchange single bits b4 and bg, modulated
using uncoded BPSK transmission. The half-duplex constraint results in
time-domain separation of the process into two phases (see Figure 3.3):

17

3. Brief Fundamentals of Wireless Physical Layer Network Coding

Multiple-access phase:

Broadcast phase:

@ x(ba,bp) ° x(ba,bp) @

Figure 3.3: WPLNC example: 2-way relay channel. Multiple-access phase and
broadcast phase are illustrated.

B Multiple-access phase covers the synchronized transmission of the modu-

lated signals received in superposition at the receiver antenna of relay
node R;

® Broadcast phase refers to (further specified) retransmission of the received
superposed information according to mapping x(ba, bp) [19].

N4 Tx Constellation Np Tx Constellation

—1:b4=0| +1:ba=1 —-1:bp=0| +1:bp=1

R Rx Constellation

—2:byp=0and bp =0 T 4+2:bp=1and bp =1
[0:ba=1andbs=0
orbg=0and bg =1

Figure 3.4: BPSK constellations in WPLNC setup describing multiple-access
phase. Top: standard BPSK constellations transmitted by nodes N4 and Np;
Bottom: superposed constellation received at relay R, neglecting channel effects
and assuming synchronization.

Let us assume a unit gain of the the wireless channels between all nodes.
In Figure 3.4, we can see an illustration of standard BPSK constellations
transmitted by nodes Ny and Np, and constellation received by relay R.
Note, relay R does not observe mappings of individual bits by and bp,
but their network coded signals, represented e.g. in the constellation space.
Considering the superposed constellation points, if bit value 0 is by BPSK
represented as —1 and bit 1 as 41, simultaneous transmissions result clearly
in 3 possible results: (by = 0,bp = 0) = —2, (bu = 1,bp = 1) — 2, and
(ba =0,bp =1) or (bgy = 1,bgp = 0) — 0. Graphically this is illustrated in
bottom of Figure [3.4. Note, this superposed modulation is predetermined by
the system design. A many-to-one function of the input data resulting to
specific value at the relay is called hierachical network code map (HNC map).
Thus the relay does not access the specific data bits b4, bg, but only needs
to distinguish between the values s(ba,bp) € {—2;0;+2}. Based on values
s(ba,bp), values of b = {0; 1} are assigned as XOR of original data bits ba, bp.

18

3.3. Wireless Physical Layer Network Coding

Variable b is referred to as hierachical symbol. When hierarchical symbols
are received by nodes Ny, Np, these need to utilize previous knowledge of
transmitted symbols, i.e. by value for N4 and bp for Npg, in order to be able
to decode the required bit values. This background knowledge necessary for
recovery of the information is called hierachical side information (HSI).

Assuming wireless transfer and considering half-duplex constraint, we
can compare number of time slots required to perform the task of message
exchange examples depicted in Figures (3.1}, |3.2 and |3.3| to demonstrate the
efficiency of WPLNC scheme. Conventional approach requires overall 4 time
slots for transfers (1: No — R, 22 R — Np, 3: Ng — R, 4: R — Ny);
Network coded solution requires 3 time slots (1: N4 — R, 2: Ng — R,
3: R — N4 and Np) and, finally, WPLNC scheme can perform this task
using only 2 time slots (1: N4 and Ng — R,2: R — N4 and Np), which is a
remarkable result.

bp

bl = Xl(bAa bB)

bs = x2(x1(ba,bB),ba,bc)

Figure 3.5: WPLNC hierarchical structure demonstration. Considering more
complicated network topology, inputs of the HNC map producing hierarchical
symbols can be also other hierarchical symbols.

Note, that in the terms above, the attribute "hierarchical" is more il-
lustrative, when the topology is more complicated and refers to, so-called,
hierarchical principle, which is essential for WPLNC. Hierarchical principle
corresponds to a fact that in general network the relays perform the following
tasks: (1) receive information from multiple network predecessors (front-end
processing), (2) process this information to forward it (relay stage) and (3)
forward some function of the received information (back-end processing) [19].
These three steps, considered in multiple stages create hierarchical encapsu-
lation [19]. Let us see Figure 3.5 for better understanding. In there, nodes
N4 and Np produce symbols bs and bg; these are delivered to relay R,
which applies its specific HNC map x; and produces hierarchical symbol
b1 = x1(ba,bp). So far, this is identical to the 2WRC. Next, node N¢ pro-
duces symbols bo and it reaches relay Ro together with hierarchical symbol
b1. Relay Ry applies its HNC map x2 and produces hierarchical symbol
ba = x2(x1(ba,bB),ba, bc), understood as composition. Finally, destination
node Np receives hierarchical symbol by and uses it to recover original in-
formation symbols b4, bg, bo. Informally, a mapping used at the destination

19

3. Brief Fundamentals of Wireless Physical Layer Network Coding

node to retrieve desired information from all received hierarchical symbols, is
referred to as global HNC map [19].

Finally, let us state that the fundamental requirement laid on the WPLNC
system is to enable end-to-end communication, meaning that all required
input messages can be in destination nodes unambiguously decoded using
appropriate global HNC maps. This is formally addressed by generalized
exclusive law in [19] and informally states, that all different sets of input
symbols transmitted by source nodes need to be processed by the hierarchical
network, such that global HNC map decodes the received hierarchical symbols
uniquely.

As described so far, the WPLNC concept offers the possibility to improve
the capacity of relay networks with multiple information flows at the cost of
tailored design respecting the topology [19]. Hereby, we have tried to provide
a brief introduction to the topic of WPLNC, and for comprehensive and
formal description, we refer to [19].

20

Chapter 4

Artificial Neural Networks

In recent literature on usage of machine learning in communications, e.g. [4]
[13] [18], artificial neural networks (ANN) are very often utilized for different
purposes. In this chapter, we shall discuss an introduction to the ANN topic,
motivated by a wide range of possible applications in communication systems.
In a tutorial way, we shall train a simple ANN system and focus on the
training description. The following is based on [I] and [22]. According to [22],
characteristics of the typical use-cases of ANN are:

8 Target function is defined with training data set consisting of a vector of
features @ and desired output ¢;

Training data can contain errors (noise);

B Long training times are acceptable;

Fast evaluation using a trained machine is possible;

Black-box decision is made with (often) difficult interpretability.

. 4.1 Introduction

The basic idea of ANN is that a weighted combination of input values is
thresholded using a non-linear function to provide the desired output. Basic
unit is called perceptron and is shown in Figure 4.1

Inputs x; € R,i = 0,1,...,n, might come either from the environment
or can be outputs of other perceptrons; weights w; € R,7 = 0,1,...,n, are
called synaptic weights, associated to the inputs x;. xg is called bias unit and
is always equal to one [I].

To begin with a purely linear system, we can write output ¥y as

n
Y= zauw;, (4.1)
i=0
or equivalently as a dot product

y=wlx, (4.2)

4. Artificial Neural Networks

Summation Nonlinearity Output

Figure 4.1: Single ANN perceptron: Inputs zg,x1,...,z, are with appropriate
weights wg, w1, ..., w, summed up to variable y, which is thresholded using
non-linear function s() to output o.

where = (1,21, ...,2,)" and w = (wo, wy, ..., wy)".
In this setup, given data a, values of weights w should be found to perform
desired task. For d = 1, the model reduces to

Yy = x1w1 + wo, (4.3)

that is capable to perform linear fit with slope w; and intercept wy (see
Eq. 2.1). Generally, for n > 1 it defines plane in n-dimensional space, which
can be used to linearly separate two classes, C'y and Cy for positive and
negative values, respectively [1]. Formulating it mathematically, we use
threshold function, s(y), to make the decision. In this case, if the threshold
function is defined as

+1 fory >0
s(y) = , (4.4)
—1 otherways

then we select C for s(y) = 1 and Cs for s(y) = —1. A possible interpretation
of this, is that our designed weights w allow the input values z1,..., x4 to
"overpressure" the bias unit xg .

AND function XOR function

N I

A »l1 L1

< L L

Figure 4.2: Linear separability demonstration: AND function is linearly separa-
ble; XOR is not linearly separable.

22

4.2. Gradient Descent

In Figure 4.2}, let us demonstrate the linear separability principle on boolean
functions: with z; and x9 representing inputs (+1) of boolean functions
outputting +1 (circle) and —1 (disk), we can easily find (e.g.) weights
wog = 1l,w; = -1, defining a line (dashed), that might be understood
as discriminant function realizing function z; AND zs; for function XOR,
however, the task is not solvable using a single perceptron, because we can
not find a single line, separating the values correclty as for AND function
[22].

. 4.2 Gradient Descent

Let us now discuss, based on [22], how to determine the weight vector w.
To begin with, we omit the tresholding operation and investigate first the
situation for output y as shown in Eq. 4.3l The discussed approach is
called gradient descent. For this purpose, assume that we want to train the
perceptron with training set D = {(x4,ta)} 1,

Training error, F(w), shall be measured using squared-error function

L\’JM—A

D
Z tq —ya)®, (4.5)

where t4 is target training value for dth training example x4 and yg = w gy
is actual output of the trained perceptron with given weights w. Note, that
Eq. 4.5 defines a quadratic function of weights w (determined by the training
data) and we desire to find minimum of this function.

It is generally known that the gradient of function points to the direction
of the steepest ascent. Therefore "minus gradient" defines the direction of
steepest descent. Simply, gradient descent is the iterative method, where we
are moving along the error surface defined by Eq. 4.5 in the direction against
the gradient, which is here defined as

VB (w) = OFE(w) OE(w) 8E(w)l

g ey

. (4.6)

awo ’ 871)1

To state the training rule, we first initialize the weight vector w with small
random values, e.g. uniformly distributed values from interval (—ﬁ; ﬁ)
[1]. The training rule can be then written as

w < w — nVE(w), (4.7)

where 7 is positive constant called learning rate and needs to be of appropriate
size: too small value makes the learning last unnecessarily long time; too big
can prevent the training process from converging [22].

To implement this training rule practically, we need to evaluate the gradient
in Eq. [4.6. Because we omitted the non-linear function, the situation is
similar to that in Section [2.3.1, and we can evaluate elements of the gradient
analytically as

23

4. Artificial Neural Networks

OE(w) _ 9 1 D
ow; 2 = yd
1 D
==Y 5 —(ta—wa)?
2 a=1 W;
1. &)
=52 > (ta — ya)5—(ta — ya) (4.8)
d=1 Wi

T

Il
Mo

0
(ta — va) Bw; (tg —w x)

a
Il

1

I
Mo

(ta — ya)(— i),

a
Il

1

where ;4 is ith component of dth training example [22]. We can now express
update rule for a single single weight value w; as

D
wi < wi + 1Y _(ta — Ya)Tid; (4.9)
d=1
and because our simplified model has only one global minimum, this approach
is guaranteed to converge, given sufficiently small value of learning rate 7.

Gradient descent is a general technique, which can be used to search
hypotheses space, parameterized by continuous variable (weights), provided
that error function is differentiable with respect to these parameters [22].
General problems of this simple approach are possibly slow convergence and
a fact that in case of the error function with multiple local minima, it does
not guarantee to reach a global minimum [22].

B 4.2.1 Example: Gradient Descent Training

Let us now provide an implementation example of gradient descent training.
Given training data D = {(z4,tq4)}}2%, where x4 = (21, z2) represent two-
dimensional data and t; € {—1,+1} defines two classes, the task is to
use gradient descent to find weights w = (wg, w1, ws), that perform linear

separation of these classes. Schematically, it is shown in Figure [4.3]

wo

- a

w2

Figure 4.3: Gradient descent - example organization: two-dimensional data
(z1,22) are labeled with value ¢ and perceptron is trained to separate these
classes using linear discriminant function.

24

4.2. Gradient Descent

Equation 4.9 was used to find values wg,w;,ws and the training was
performed in Matlab. Evolution of squared error function, defined in Eq. [4.5
is shown in Figure [4.4] As expected, the error decreases uniformly because,
in our simplified case, there is only one global minimum. Note, the learning
rate 1 was chosen heuristically.

Squared Error

103 ‘ ;
102 1
s
s
s
S
10!]
100 | | | |
0 5 10 15 20 25 30
Tterations

Figure 4.4: Squared error function evolution during gradient descent training:
we can observe uniform convergence of the training algorithm.

In Figure 4.5, we can have a look at values of descending weights during
single iterations. We can observe that the algorithm converges within 25
iterations for all weights.

Weights Evolution
0.6 T I ‘
—-O-—w
—-+-—w
04 =
e}
i}
02t GGG i
Go.q
. O-
SF O‘O\oﬂ@ee,ererere
z ol GC-00000009
= *,
\
R
\
021y i
>*
\+\+
04 F \+\+\+,,,+\+ |
B ok S S A S |
-0.6 : ‘ ‘ ‘ ‘
0 5 10 15 20 % 80
Iterations

Figure 4.5: Gradient Descent: convergence of individual weights. This figure
is dual to Figure 4.4 but provides in detail observation of how the individual

weights contribute to the overall error.

We might also be interested in plotting a decision boundary that the system
learns to perform the classification. To do so, let us have a look at result of

25

4. Artificial Neural Networks

the summation, i.e. wy + wix1 + wexs. We compare this sum with zero and
express o as function of x1, i.e.

r9 = —T1— — —. (4.10)

In Figure [4.6], we observe the training data of separated classes and decision
boundaries. We can see that the system learned a decision line approximately
perpendicular to the connection of means of the two classes.

Separated Data Sets

15
O Class 1
O Class 2
1L Decision Boundary
05
§ 0f
-05
9k
_1.5 1 1 1 1 1 1
-1.5 -1 -0.5 0 0.5 1 1.5

Figure 4.6: Gradient descent: separation of the classes and learned decision
boundary.

Finally, in Figure 4.7, we demonstrate the robustness of the gradient descent
algorithm. The data sets, in this case, are not linearly separable. Nevertheless,
the training procedure still converged to an acceptable solution.

Separated Data Sets

3 -
O Class1
o (@] O Class 2
le) Decision Boundary
2 o ®o
1k
§ 0r
-1+
2+
-3 L L L L L I
-3 -2 -1 0 1 2 3

Figure 4.7: Gradient descent: learned separation of linearly non-separable classes.

26

4.3. Stochastic Gradient Descent

. 4.3 Stochastic Gradient Descent

Stochastic gradient descent (often abbreviated as SGD) is modification of
gradient descent algorithm, described in the section above. In the gradient
descent approach, the training is performed over all training samples within
one moment. This is sometimes called batch learning. SGD approzimates this
computation using iterative updates, based on individual training samples
[22]. The modified error function is given by the expression

Eq(w) = %(td —va)?, (4.11)

and resulting learning rule, based on minimization of Eq. is

w; < w; + 1t — Ya)Tid, (4.12)

where the learning iterations are with respect to training data index d [22]. In
every iteration of d out of D, the weights are modified according to gradient
computed from single training samples. This is its main advantage over the
previous solution because it helps to avoid falling to the local minimum of
the minimized error function.

SGD is a very generic algorithm and is broadly used. Sometimes, it is
referred to as Least Mean Square (LMS) algorithm and is used, e.g., for
adaptive filter design [22].

B 4.3.1 Example: Stochastic Gradient Descent Training

SGD training was applied to an example described in Subsection 4.2.1], with
only modification in the expansion of training set to D = 3000, for a purpose
to intuitively demonstrate convergence properties. Reached results are very
similar, and therefore identical outputs are here omitted.

Weights Evolution (D = 3000, = 0.01)

0.1
0 MMWWW”
|
|
\
-0.1 -
(
<ol w
g-02p v
o \ w2
s
=

03 \ i
0.4 + \\w i
N s T A T ”VMMVM\’WW ,»Nm\,\i

-0.5

-0.6 1 1 1 1 1
0 500 1000 1500 2000 2500 3000

d (Iterations)

Figure 4.8: SGD training: weights evolution for n = 0.01. The convergence is
disturbed by noise artefacts.

27

4. Artificial Neural Networks

However, we shall present here the impact of the proper choice of learning
parameter 7. In Figure 4.8, the chosen learning parameter was n = ﬁ, and
we can observe, that convergence of values of the weights is not uniform and
suffers from significant noisy oscillations. In Figure 4.9 the learning rate
value was decreased to n = ﬁ, and we can observe, that the convergence
process is much smoother, but also significantly slower.

Weights Evolution (D = 3000, = 0.001)
0.1 : : :

I

.02 L

Wo, Wi, W

0.4 |

0.5 I I I I I
0 500 1000 1500 2000 2500 3000

d (Iterations)

Figure 4.9: SGD training: weights evolution for n = 0,001. The noise artefacts
were suppressed.

This illustrates the trade-off between accuracy and time of convergence. A
common technique to smooth the training process and still keep it sufficiently
fast is to decrease the learning rate of n gradually [22].

. 4.4 Backpropagation Algorithm

As stated above, single perceptrons are capable of describing only linearly
separable situations [22]. More complicated, non-linear functions are learned
by multilayer networks, and in this section, we shall briefly provide their
description and also a description of the associated training algorithm called
backpropagation.

It seems natural that to describe non-linear behavior; we need to give up the
previously used linear model of the perceptron. Note, a cascade of multiple
purely linear layers could be described as a single linear layer. Therefore, we
shall incorporate a non-linear function to the output of perceptron, as shown
in Figure 4.1. Choice of the non-linear output function is not unique [22],
however very commonly is used sigmoid function, traditionally denoted o,

and defined as

s(y) =o(y) = - (4.13)

Convenient property of sigmoid function, is that its derivative can be

28

4.4. Backpropagation Algorithm

expressed as product of its outputs, specifically

do(y)
dy

=o(y)(1 = a(y)), (4.14)

and this property is utilized in description of backpropagation algorithm.
Shape of sigmoid function together with its derivative are shown in Figure|4.10L
Other output function with similar properties is e.g. tanh(y) [2].

Sigmoid Function o(z) and

Figure 4.10: Sigmoid function and its derivative.

To present further notation, let us show in Figure 4.11] a simple neural
network with one hidden layer, two inputs and one output. When desired to
specify weight value in the network, it is common notation to use superscripts
to denote number of the layer, e.g. wj(.i) denotes weight in first layer, while
subscript ji identifies weight wj; going from ith to jth neuron [22]. The same
notation is used to denote xj; the input from ith to jth neuron. Bias entries
are in Figure [4.11] represented as wjg, to address them specifically. Note,
that often the bias entries are omitted in schematic pictures in the literature.
Subscript u is used to address uth output of the network, o,, and, explicitly,
the output is evaluated as non-linearity o applied to sum of the inputs, i.e.
0y = 0(yy). In Figure 4.11|is only one output, o5.

(1)

W1g

Input layer Hidden layer Output layer

Figure 4.11: Simple neural network with one hidden layer.
Next, we shall provide description of Backpropagation algorithm, based

n [22]. Let us first provide description of the variables. Backpropagation
algorithm is used to find values of weights in a neural network with n;, input

29

4. Artificial Neural Networks

entries, Npidden NUmMber of hidden neurons and 74, outputs. The learning is
based on training data set D = {(x4,tq)}7_,, where 4 € R™n and t; € R,
Another input to the algorithm is learning rate 7. For clarity, the superscripts
are here omitted and variables are distinguished as either "hidden" or "output’.

Following derivation is based on the description provided in [22] with slight
changes of notation. Consider dth training sample entering the network.
Error function to be minimized by Backpropagation is the sum of squares of
errors of all k network outputs oy, i.e.

Eq(w) = . > (tk—or)?, (4.15)

ke€outputs
and the aim is to find update rule of form

OE,

Wyi = Wji — N~
J J 8wﬂ7

(4.16)

analogically to the situation of SGD. Let us use variable y; = >, wj;zj; to
denote weighted input to the jth neuron. Weight w;; influences the rest of

the network only through variable y;, and therefore chain rule can be used to
0E4

express derivative 54 as
Jr

8Ed 6Ed 83/]‘ 8Ed
= = 4.1
awji ayj 8wjz- 8yj ZC] (7)

where z;; is value passed from ith to jth neuron [22]. Next, we consider
separately update rule for the output layer and hidden layer, beginning
with the output layer, i.e. when jth neuron in Equation 4.17]is part of the
output layer [22]. Similarly to Equation [4.17, value y; influences only the
corresponding output o; and chain rule can be used to write

OEy OEq %

Ofd _ 024 005 4.18
dy; 0doj Oy, (4.18)

and we can now address the right hand side terms of Equation 4.18| separately
[22]. Firstly, using Equation 4.15 in Equation 4.18|, we state,

OB _ 01

o= gz, 2 (o (1

kcoutputs

and because derivative of right hand side summation is non-zero only when
j =k, we evaluate it as

OBg _ 0 1 ve_ Lo o0 4o
G0, ~ gt =2t — o) ==t = o). (420

Secondly, assuming usage of non-linear output function o(y;), defined in

Equation [4.13] and its derivative, stated in Equation 4.14] the second term of
. . 00;
Equation 4.18, i.e. 8—;, can be evaluated as
J

do; 0o(y;)
— = =o0;(1 —0;). 4.21
82/]‘ ayj J(J) ()

Substituting Equations [4.20] and 4.21] into Equation [4.18], we get

OE;

0y —(tj — 0j)0;(1 — 05), (4.22)

30

4.4. Backpropagation Algorithm

and using Equation 4.16, the update rule for output weights can be stated as

Wi $— Wj; + T}.Tjin(l — Oj)(tj — Oj). (423)
In the remainder, let 0 = —%—5: for arbitrary neuron k with input y; [22].

Further, to derive training rule for hidden neurons, we note that this time
weight w;; influences (in case of considered, fully connected, neural network)
all the inputs y; in the subsequent layer. Let this set of neurons with direct

inputs y;, be denoted as Successors(j) [22]. Derivative gfjdi in Equation |4.16

takes form

8yj keSuccessors(j) 8yk 8yj
0
keSuccessors(j) Yi
00
= Z _5kwkj870]‘ (4'24)
k€eSuccessors(j) Yi
= Z —5kwkj0j(1 — Oj)
k€Successors(j)
= —0;(1 - 05) > W0,
keSuccessors(j)

and the update rule from Equation [4.16| can be then for the hidden neurons
specified as

Wi < Wj; + T]Ct?jin(l - Oj) Z wk.jék. (425)
k€Successors(j)

The above description of Backpropagation is summarized as pseudocode in
Algorithm [1l. Note the following:

B The stopping criterion on line 3 might be of different forms. One
possibility is to stop when some defined error floor is reached (e.g., factor
(tx — og) is sufficiently small). Another choice is to train the network
for a fixed number of epochs, which is the number of expositions of the
whole training set to the network.

® The factors of the form o (1—o) on lines 7 and 10, respectively, originates
from the derivative of the sigmoid function, see Equation 4.13.

® Factor J; on line 7 is based on Equation [4.22| Similarly, value §;, is based
on result in Equation [4.25.

® Line 12 is analogical to Equation |4.12, where correction of each weight
wj; is proportional to value xj;, that was previously multiplied by this
weight.

® Many different modifications of Backpropagation exist. One of most
common, mentioned e.g. in [I] and [22], is so-called adding momentum.
Essentially, it means that the change of weight on line 12 takes into
account also the value of change in the past iteration. More formally,

31

4.

Artificial Neural Networks

if Awj;(n) denotes change of weight between neurons j and ¢ in nth
iteration, line 12 might be written as

Wi < Wj; + néjxji + OéijZ‘(TL — 1),

where value a € (0,1) controls how significant is influence of past change.
The motivation for this modification is to avoid convergence of the
training process towards local minimum instead of global minimum [22].
Effectively, this introduces memory to the algorithm, which bears infor-
mation about the prevailing gradient descent vector. This momentum
modification was also implemented in the shown examples.

Algorithm 1: Backpropagation Algorithm

© ®

10

11
12

13
14

Data: D = {(wd, td)}g:p Nin, Mhiddens Mout, 75
Result: Neural network weights wj;;

Create network with parameters ni,, 7hidden, out;
Initialize all network weights to small random numbers;
while Stopping criterion is not met do
foreach (x4,t;) € D do
Input x4 to the network and compute all outputs oy;
foreach Network output neuron k£ do
Compute
O = ox(1 — op) (t, — o);
end
foreach Hidden neuron h do
Compute
On = on(1 —op) > WOk
keSuccessors(h)
end
Update each weight as
Wi 4= Wj; + 775jsz-;
end
end

The backpropagation algorithm is widely used to train different structures

of ANN. Its main advantage is simplicity. Further details of Backpropagation
algorithm might be found e.g. in [1], [2] or [22].

32

4.4. Backpropagation Algorithm
B 4.4.1 Example: Backpropagation Algorithm to Learn XOR

ANN shown in Figure 4.11] was trained using Backpropagation Algorithm, as
described in previous section in Algorithm 1l To illustrate ability of multilayer
network to learn linearly non-separable function, let us present training of
XOR function. Training data set D = {(z4,t4)}3_, is shown in Table 4.1

ElENENE
1[0]0]0
2011
3101
NIENER

Table 4.1: List of XOR training data.

Computation was performed in Matlab, selected stopping criterion was
5 000 epochs, and the opted learning parameter was n = 1. In every training
epoch, every training sample (z1,2z2) was fed to the network, output o of
the network was evaluated and compared to the desired training set value
t. Figure 4.12| is provided to demonstrate the convergence of the training
process. Therein we can see, how the modification of the weights over all
epochs suppressed error term (¢ — o). This term is a natural choice to measure
the accuracy of the training since it is proportional to the deviation term &
shown on line 7 in Algorithm [1l It is interesting to see that the convergence
process is not uniform.

Error Term for Different Training Inputs

0.6 T T T
(t —o) for zy = 0,25 =0,t =0
(t—o) forzy =0,2o =1,t =1
04 + (t—o) forzy =1,20 =0,t =1+
(t—o) forzy =120 =1,t=0
0.2 4

Error Term (¢t — o)

-0.8 1 1 1 1
0 1000 2000 3000 4000 5000

Training Epochs

Figure 4.12: Demonstration of XOR training convergence: we can observe
decreasing error values of the error terms during the training epochs.

In Figure 4.13| is shown a plot of original training data together with
lines, which might be interpreted as decision boundaries. These lines were
determined based on weight coefficients of the hidden neurons, by the same
computation as shown in Equation |4.10. Zero values of XOR function are
identified in the outer space of these lines, and unit values are captured
between these lines.

33

4. Artificial Neural Networks

Learned XOR function

1 o il
0.8 r A
0.6 [4
04 .

Decision Boundary of Hidden Neuron 1
02 F Decision Boundary of Hidden Neuron 2 |
XOR(z1,z2)=1
O XOR(zy,z2)=0
0 (¢} A

Zy

Figure 4.13: Trained XOR function demonstration: decision boundaries were
determined based on the trained hidden layer weights.

B 4.4.2 Example: Auto-encoder

This example is based on [22]. In Figure 4.14] is shown simple structure
of ANN called auto-encoder. In this example, the parameters are ny, = 8,
Nhidden = 3 and neoye = 8, with training data given in Table 4.2.

|

Zq tq
0000 0001 | 0000 0001
0000 0010 | 0000 0010
0000 0100 | 0000 0100
0000 1000 | 0000 1000
0001 0000 | 0001 0000
0010 0000 | 0010 0000
0100 0000 | 0100 0000
1000 0000 | 1000 0000

N[O =W N |

Table 4.2: List of auto-encoder training data.

Input Layer

Hidden Layer

Output Layer

Figure 4.14: Structure of auto-encoder. Auto-encoders are trained to duplicate
inputs to the output layer with a bottle-neck in the hidden layer(s).

34

4.4. Backpropagation Algorithm

Interpretation of the training data set in Table 4.2|is that auto-encoder
is trained to copy the input of the network to the output. However, in
this example, the hidden layer consists of only 3 neurons, and therefore the
trained weights need to perform some form of compression. This example was
implemented in Matlab. In Figure |4.15|is demonstrated convergence of the
training process. The error of the output layer is shown for d = 8 different
training inputs within 10 000 epochs.

Error Term for Different Training Inputs

Error Term (tq — 04)

_0.5 l Il Il
0 2000 4000 6000 8000 10000

Training Epochs

Figure 4.15: Demonstration of convergence of auto-encoder training. Having a
hidden layer, the convergence process is not uniform and contains abrupt changes.
In the figure, especially the inputs of the training sample denoted d = 8 converge
very slowly.

3D Representation of Hidden Layer Outputs

°

|

)

08
°

06

S 04 ®
0.2 °

Figure 4.16: Representation of the auto-encoder hidden output values: variables
01(_1)7 i = 1,2,3, are shown as representation of 3-dimensional space, where
8 different outputs are described as 8 different combinations of 3 values that
converge to binary-like representation.

Let us have a look at the outputs of the hidden layer. Weights of the

hidden layer w](ll-) were trained, such that 8 different training samples result in

8 different combinations of the hidden layer outputs 051). Visualization of the
situation is provided in Figure 4.16, where the 3 dimensions correspond to 3
hidden outputs. Different inputs are by the hidden layer represented almost
as corners of a cube, that effectively perform some binary-like representation

of the inputs.

35

36

Chapter 5

Exemplary Applications of Machine
Learning Algorithms in WPLNC

. 5.1 Introduction

In this chapter are provided solutions to several exemplary problems that were
recognized as suitable to be solved using a machine learning approach. All
these examples are solved by training of designed ANN using the Backpropaga-
tion algorithm described in Algorithm [1. To avoid possible misinterpretations
of the implemented setups of the training, we provide Figure [5.1, which
illustrates the utilization of Algorithm

Let us describe Figure Firstly, the training data set of D samples is
addressed. Previously, it was denoted as D = {(z4,t4)}7_;. We emphasize
that throughout the whole chapter, these samples correspond to received
symbols in the constellation space. With the exception of Section where
the procedure is addressed in detail, we assume that all samples are received
before the training process is started. Moreover, these samples are fized during
the whole training process (observation is not updated). This means that the
training process is in this chapter always performed solely based on a single
realization of D. Further, all weights of the ANN are initialized with small
random values. It is a typical approach, recommended in the literature on
the topic of ANN; e.g., [22].

Following Algorithm [1], the training process consists of individual epochs.
Denote E the number of epochs, let e counts individual epochs, initialized
e = 1. As explained in Chapter |4, a single epoch corresponds to a single
exposure of all training samples. In Algorithm [I} this corresponds to the cycle
on lines 4-13. These samples are individually fed into the ANN. For each of
the D samples, all the error terms d; are evaluated. Using terms Jy, all the
weights are updated. Quantitatively, within each epoch, e, performed with
D training samples, all the weights are updated D—times. Expanding this
evaluation, within E epochs of the training process with D training samples,
all the weights are updated E - D—times.

In the context of wireless radio communication, we stated that the training
samples correspond to points in the constellation space. This implies that to
obtain training data, we need use the radio channel D—times. The product
E- D then corresponds to the computational complexity of the training process.
Next, looking at Figure 5.1, we distinguished how the weights in all the steps

37

5. Exemplary Applications of Machine Learning Algorithms in WPLNC

of the training process depend on other variables. The weights are denoted
as w3(A; B). Let us explain these indices. Easily, the upper index e indicates
actual epoch of the training process; lower index d indicates, which training
sample d out of D was in the given step fed into the ANN (i.e., enters the
input layer and subsequently caused some output on the output layer).

Receive D training samples (observations), D = {(zq, td)}le‘

v

Initialize small random weights wipt

v

rd=1 O wiT] (Wit (T1,t1))
Fd=2 — Wi (Wnit, (21, t1); (@2, 12))
-Fd=3 — wiZh(W5Z3; (3, t3))
Epoch
e=1
td=D 1 ———0 wSThH (WZL i (@p_1,tp-1))
Ld=D B wiZh(W5Zp_y; (®p,tp))
Repeat Fore=2: F
~d=1 D ws_y (D5 s (1, 1))
Frd=2 1wy (WG_y; (T2, 12))
-d=3 — wi_s(Wg_y; (z3,t3))

rd=D 1 ———5 wi_p_1(Wi_p_oi(®p-1,tD-1))

Li=D 5 wi_p(Wi—p_1; (Tp,tp))

Figure 5.1: Illustration of how training process of ANN is implemented through-
out Chapter 5.

Further, parameter A bears information about what past variables affected
the ANN. For e = 1,d = 1, the weights are a function of its randomly
initialized values wry,j; therefore A = wry. The variable B then informs,
what actual variable affects the result of the training. For e = 1,d = 1, the
first training sample (x1,¢1) was fed into the ANN, and therefore B = (&1, t1).
Analogically for e = 1,d = 2, the weights will be modified based on the past
values A = {wt, (x1,t1)}, and the actual update of the ANN depends on
the second training sample B = (x2,t2). Note, that parameters A and B
are separated with a semicolon. Subsequent values of parameter A are then
denoted with a hat (@), to address that the weights were updated based on
its previous values (estimates of the weights).

The small rectangles on the horizontal lines in Figure |5.1| visualize what
sample d out of D actually entered the ANN. The bottom block of the diagram
then denotes that the process repeats £ —times.

38

5.1. Introduction

B 5.1.1 Notes to the Implementation

My own MATLAB implementation of the Backpropagation Algorithm from
Chapter 4 was used for all the considered examples. By most, the difference
between individual scripts is in parameters of the network and processing of
the results for the purpose of visualization. Therefore, this text contains only
a single written implementation of the Backpropagation Algorithm and may
be found in Appendix [A.1l. This particular example was developed for an
example in Subsection 4.4.1l

Of course, all the implemented MATLAB scripts may be found on the
attached CD. Eventually, on the server https://dspace.cvut.cz/| may be
these scripts also found. Therein, all the scripts are for convenience ordered
in subfolders according to Sections of this Thesis and typically contain also
* mat files with achieved results for easy reconstruction of output Figures
(that are typically also included).

g

From the perspective of decision theory (see Subsection 1.5.4 in [2]), our
implementation of the ANN corresponds to the determination of discrimi-
nant function, which is utilized to perform the classification directly, i.e., a
probabilistic model is not determined.

Finally, all the tasks were interpreted and solved as classification problems.
In the studied literature on the topic of the ANN, no strict rules were
determined, concerning the architecture of the network (number of hidden
nodes, number of hidden layers, number of output nodes). In principle, the
arbitrary value might be achieved on the output of the ANN. Eventually, (in
extremal case) this might be used to train the ANN, such that all the classes
are indicated using different output values of a single neuron. However, my
own implementation utilizes the sigmoid function to threshold the output
values of the output layer between 0 and 1. A number of C' individual classes
are then indicated using C' individual outputs, and the maximal value is used
for decision. Of course, this corresponds to the training data set, where the
classes are indicated as a "one-hot" vector. The training data set is always
explained in the subsequent examples. Note, so-called soft-mazx output might
be easily implemented to interpret such outputs as a probability of being in
the class [1].

39

https://dspace.cvut.cz/

5. Exemplary Applications of Machine Learning Algorithms in WPLNC

B 52 Simplified Scenario: Classification of
Transmitters on Relay Node

The following example is in application of ANN to classification of constellation
diagrams motivated by [5].

Considering the WPLNC system, all nodes need to be aware of complete
topology. Relay nodes decide on how to process received signals based on
knowledge of the origin of the received signals. In this section, we shall address
the situation when the relay node lacks the confidence of what neighbors
are radio-visible. Let us consider only a simplified scenario, where we design
ANN to perform the classification of the signal received by the relay node. In
Figure 5.2 is shown, how BPSK modulation, received from one to six users,
superimposes on the relay node antenna, assuming zero phase shift. With this
assumption, the number of possible constellation points equals the number of
users, plus one. A similar problem was addressed in [16], in the context of
the initialization of the WPLNC system.

1 User 4 Users
-1 +1
2 Users 5 Users

D
o
——»
v

~1 ‘ +1 -1 - -1 ‘ +5 +: 41
3 Users 6 Users

1 1 2 1 1 2
~1 -1 | +1 +1 z 1 +1 +2 41

Figure 5.2: Demonstration of how multiple BPSK modulation superimpose on
the relay antenna. Possible constellation points are shown. Note, the horizontal
axis is normalized to 1.

Further, let us assume perfect time synchronization and knowledge of
modulation pulse, such that the relay node can obtain I/Q representation
of the received signal. For simplicity, we assume that the only effect of the
channel is AWGN. With all these simplifications, the considered relay node
shall be able to collect a set of L samples represented in the constellation
space. These samples originate by superimposing signals from u transmitters,
u=1,...,U = 6, on the relay receiver antenna.

We assume that the maximum number of users is U = 6. Let us describe
how to retrieve the number of users U, that transmit BPSK modulation to the
relay node. To do so, we shall use ANN with one hidden layer, as described
in the previous chapter. The network inputs shall be denoted z1,x2,...,xN.
As stated, training data to be used are points in constellation space; however,
we shall perform feature extraction before training the ANN. Let us describe,
how the training set D = {(x4,tq)}2_, was created. Note, x4 € RY and
tqg € RV, U = 6. The ANN desired outputs are for each training sample

40

5.2. Simplified Scenario: Classification of Transmitters on Relay Node

Sampling of Constellation Space

Figure 5.3: Description of the sampling process: In the figure is demonstrated
the performed process of feature extraction. The constellation space was along
real axis divided into N equally large rectangular areas and counts of received
samples within these areas were determined.

provided in the training set as a vector t4. As a result of this, the designed
system uses vector t;, where all its values but one are zero and uth position
is equal to 1 if the corresponding training input originated as a superposition
of transmissions of u users, where u =1,...,6.

The preprocessing is illustrated in Figure |5.3. First of all, the received
constellation points were normalized, such that real and imaginary parts take
values between -1 and 1. This is necessary to suppress dependence of the
classification on received power level and eases the sampling process since we
want to obtain a fixed number of features. Next, the constellation space was
divided along the real axis into N rectangular areas, where N is chosen odd
to reach symmetry, e.g., N = 19. The number of constellation points that fall
into these rectangles corresponds to the input x,. This might be understood
as sufficient statistics for this task (simple projection). It is recommended to
avoid training of ANN with excessively high values, e.g., in [I]. Therefore,
the elements of training set x; were normalized as

xq — ji(zq)

Tq < (5(:13d) s

(5.1)

where p(xy) and 6(x4) denote mean value of x4 and standard deviation of @,
respectively. An example of normalized training input is shown in Figure [5.4.
We can compare it with Figure [5.2] and observe, that for the provided number
of L = 500 received superimposed samples, the distribution over constellation
points is not uniform. Further, note that examples of training samples in
Figure |5.4] are generated for the high value of SNR. Later, results will be
provided for different values of SNR. Intuitively, the higher number of inputs
N should provide better resolution and lead to better performance with
respect to accuracy at lower values of SNR. On the other side, it might also
cause the ANN to be more complex with a larger number of parameters that
need to be determined.

Note, in this thesis, whenever addressing a scenario with multiple superim-
posing constellations, SNR is considered with respect to the first user.

Having the preprocessed training data set, the ANN was implemented with
number of inputs ny, = N = 19, number of hidden neurons npiggen = 10,
number of outputs ney = U = 6, and learning rate n = 0,5. Size of the
training set was selected, such that each of 6 considered combinations has
150 realizations, i.e. D = 6150 = 900, and determined sufficient number

41

5. Exemplary Applications of Machine Learning Algorithms in WPLNC

Zd
o =N

Zd
o =N w

o

Figure 5.4: Example of training data used to determine number of transmitters
u. This figure is analogical to Figure Note, however, that number of received
constellation points is not distributed uniformly and constellation points with

Training Data for Different Number of Users u

u=1 u=4
© ©
2
(W 1
V.Y V.V.V.V.V. V.V.V.V.V. V. V. 0 QMA\ SEES BEED th@
ATA A L W T AAA A = L WL) IO
5 10 15 20 0 10 15 20
d d
u=2 u=>5
© ©
2
W2 YanVaYa VaYa Ve a WGV Y2V Vs VY aiVay 0 OAVX-\ (‘hrlvl\ A-\Avl-\ A\A\(’) A\A\U
A TAV AL WA WL WA WA A WA W WA W, WA W W
0 5 10 15 20 0 5 20
d d
u=3 u==06
© ©
=
K Q Q
Y. Y. V.M. Y.Y. Y.V, M. V..V. Y.\ UTCr Y P Y P S G Y Sy S P GN|]
OO OO A -y OO0 OO0 T OUT OUT O
0 10 15 20 0 5 10 15 20
d d

smaller real part were received more often.

Error Term (¢, — 0,)

Figure 5.5: Demonstration of convergence of the training process: During 5
epochs, the training set containing 900 training examples was exposed to the

04 L

Error Term for Different Training Inputs

08 :
\

06 |

04 f

02 r

-0.6 !

3 4 5 6
Training Epochs

network and convergence was successfully reached.

of training epochs was 5. In Figure is demonstrated convergence of the

training process for high value of SNR.

Further, the training process was verified using additional validation set
V = {(x4,tqs) }2,, which was generated using exactly the same process as
a training set D, using the same parameters, but differs in realizations of
AWGN. The weights of the ANN obtained by training of the network with
the training set were used to process the validation set V, and the system

42

5.2. Simplified Scenario: Classification of Transmitters on Relay Node

reached 100% accuracy.

Let us now investigate how the designed algorithm performs for different
values of SNR. An initial attempt is shown in Figure [5.6. Accuracy of
classification is in the whole chapter defined as
Number of Correctly Classified Validation Samples

Size of Validation Set

- 100%.

(5.2)
Let us emphasize that in Figure 5.6, the accuracy was evaluated, such that
training data were generated for the corresponding SNR, the system was then
trained, and lastly tested using validation data with the same SNR as training
data set. (Specifically, this means that 41 markers in Figure [5.6| correspond
to accuracy of 41 separately trained ANN for a single value of SNR.) This
evaluation was performed for values between 0 and 20 dB with step 0,5 dB.
Moreover, in Figure 5.6 is the accuracy recorded for N=19 and for N=39
inputs of the ANN, corresponding to the granularity of the sampling during
the process of feature extraction. We observe that finer sampling results in
only a very slight improvement in performance.

Accuracy =

Dependence of Accuracy on SNR

100 -

95 -

Accuracy [%]

T T O=k=

85

—T—

-

o
H—C=

80 1 1
0 5 10 15 20

SNR [dB]

Figure 5.6: Demonstration of the accuracy of the system trained for different
levels of SNR. On the interval between 0 dB to 20 dB, the accuracy of the system
is excellent. Nevertheless, bellow 5 dB accuracy drops very rapidly, and the
number of inputs to the ANN seems not to be of much importance.

The results in Figure [5.6/ seem to be promising. Let us now focus on the
generalization ability of the designed system. We shall investigate how this
setup works for unknown values of SNR, which is a slightly more practical
approach. For that purpose, we shall use Figure |5.7. In this experiment, all
the above-described parameters of ANN were preserved, but the number of
training epochs was extended to 10. Three different approaches were tested,
and the explanation follows. In the figure, green markers stand for the most
naive approach, where testing data were generated with SNR = 15 dB, the
ANN was trained, and validation was performed for different values of SNR.
Blue markers evaluate training setup, such that training data were generated
for values of SNR between 0 dB to 20 dB, and all these training samples

43

5. Exemplary Applications of Machine Learning Algorithms in WPLNC

were exposed to the ANN during the training epochs. The blue markers
perform much better for low SNRs. The green markers showed a similarly
good performance above 10 dB. The reason for this might be that the weights
of the ANN tried to capture the situation for a too broad range of SNR, and
generalization was not possible. If we look back at Figure therein the
situation of rapid drop-off at 5 dB was similar to that in Figure This
means that generally, this system has the poor capability to work precisely at
low SNRs, more specifically below 5 dB. Therefore, last approach was tested,
denoted in Figure with red markers. Red markers correspond to training
strategy, where we a priori gave up a chance to train the system for values
of SNR below 5 dB. The training data set was generated for SNR values
between 5 dB to 20 dB, and obviously, it outperformed previous approaches
on this interval during testing with the validation data set.

Dependence of Accuracy on SNR of Training Data

100
95
X
> |
2 | *
= /
g 900 * .
<t
*
85 - * .
— ©& — Training Data with SNR between 5 dB and 20 dB
— % — Training Data with SNR between 10 dB and 20 dB
— % — Training Data with SNR = 15 dB
80 1 * 1 1
0 5 10 15 20

SNR [dB]

Figure 5.7: Demonstration of generalization issues of the system tested on
different values of SNR. Green markers evaluate system trained for SNR = 15
dB and tested with validation data with different SNRs; blue markers describe
accuracy of system trained with training data on multiple levels of SNR and
tested on whole range of SNRs; red markers show accuracy of system, that was
trained and tested only for usage on a subset of SNRs.

B 5.3 Classification of Hierarchical Symbols in
simplified 2WRC with BPSK

B 5.3.1 Problem Formulation

In this example, let us consider the application of WPLNC on 2WRC with
BPSK modulation. We shall assume a situation where the effect of channel
fading is not neglected. Specifically, our model shall include flat fading, which
affects the amplitude and phase of the received signal and also the effect of
AWGN.

44

5.3. Classification of Hierarchical Symbols in simplified 2WRC with BPSK

First, we shall present the system model. Let the observation of the received
signal, z € C, be described as

x=54(ba) + hsp(bp) + w, (5.3)

where information bits ba,bp € {0,1} are modulated using BPSK to constel-
lation symbols s4, sp € {£ 1}, h € C is relative fading parameter, w € C
is complex AWGN with variance o2 and considered HNC map of hierarchical
symbol b € {0, 1} is bitwise XOR, i.e.

bZX(bA,bB) =by D bp. (5.4)

With the model above, the task is to determine the hierarchical symbol
b based on observation x. Given the observation model, this situation was
formally addressed in [19], and decision regions were analytically determined.
In this section, we revisit this example. We shall try to determine decision
regions for hierarchical symbol b using ANN. Initially, we try to determine
what is the ability of ANN to reach the same results as in [19]. Firstly,
we verify the performance of ANN-based decision regions. An extension of
the task might be a usage of higher-order modulation in the system model,
e.g., QPSK. More practical utilization of decision regions, determined using
machine learning, would be to apply it to a situation where the decision regions
are not yet analytically derived due to the complexity of more complicated
channel models, e.g., non-linear. This addresses the model deficit, as discussed
in Chapter 2.

Again, we assume perfect time synchronization and knowledge of modu-
lation pulse. Observation z can be represented as constellation point. To
keep previous notation, let real and imaginary part of complex number x
be denoted as x; and z3, i.e. 1 = Real(x), 2o = Imag(z). To build up a
reasonable scenario, let us assume, that training data set D = {(zq, ta)}7,
is provided. As previously, &y = (x1,x2)q is vector of training samples used
as inputs of the ANN. A model situation might be, such that transmitters
N4 and Np modulate and transmit number of D bits by and bp, respectively,
that are predetermined and used as pilot signals at the receiver. These
bits form pseudo-random sequences {ba 4}7_; and {bp 4} ;. The receiving
relay node R is aware of pilot sequences {ba 4}2_, and {bpq4}2_,, and utiliz-
ing Equation |5.4/ is provided with sequence of desired hierarchical symbols
{ba}iy = {bad ® bpa}ii-

Addressing the desired outputs of the trained ANN for dth training sample,
denoted as previously by %4, let us use ANN with two outputs, corresponding
to two considered hierarchical symbol values {0,1}. Let t4 = (t1,t2)q, such
that ¢; indicates hierarchical symbol 1 and ¢5 indicates hierarchical symbol
0. It is summarized in following Table 5.1, and effectively means, that
t1 = ba@®bp and to = 1 — t1. Of course, in this case, we could use ANN
with only one output with non-linear sigmoid function and use its values
directly to determine hierarchical symbols; however, we design this example
as a classification task, and this setup is more suitable for a possible extension
to a system with more hierarchical symbols than only two.

45

5. Exemplary Applications of Machine Learning Algorithms in WPLNC

| bad [bpa | ba | ta= (t1,t2)a |

B
0070 (0, 1)
0 [1 |1 (1, 0)
1 [0 |1 (1, 0)
1 [1 [o (0, 1)

Table 5.1: Explanation of training input ¢q4.

SNR =10dB,h=1 SNR=5dB,h=1

3 O (w1,20) for b=1, ie. (tn,b2) = (1, 0) 3
O (w1,a) for b=0, i (t1,t2) = (0, 1)

(z1,) for b= 1, i.e. (t1,12) = (L, 0)

o
O (w1,32) for b=0, ie. (t1,t) = (0, 1)

g0 g0
1 1
2 2
3 3
2 0 2 2 0 2
Ty zy

Figure 5.8: Demonstration of different levels of SNR of the training data.
Different levels of SNR of training data might impact level of generalization
achieved by the trained ANN.

B 5.3.2 lllustration of Degrees of Freedom of the Problem

Properties of system model, defined in Equation are illustrated in following
Figures 5.8 where number of training samples is D = 300. Firstly, in
Figure is shown training data set for different levels of SNR. The effect
of spreading the constellation points is trivial. However, we utilize this to
mention a regularization technique, used to improve a generalization ability of
ANN. It was described, e.g., in [23] or [24], that larger noise of input training
data might increase the performance of the trained system.

Later, it will be graphically addressed when illustrating decision regions
trained by the ANN. Intuitively, training the ANN with data containing
a more significant level of noise forces the weights to be more tolerant of
outliers. Eventually, this means that the result of the training process might
be improved when artificially corrupting the training data with additional
noise. In [23], it is concluded that improvement of the training process might
be achieved, when several epochs of the training are performed with training
data injected with additional noise and subsequently continue with clean
training data.

In further examples, SNR is fixed to 10 dB and results for different values
of fading parameters h are shown. The examples are easy to interpret, but
are hereby utilized to visually demonstrate degrees of freedom of the desired
classification system. In Figure , the fading parameters are h = et
Factors % correspond to angles in constellation space, between constellation

points of modulated signals sp(bg) and s4(ba).

Figure [5.10 extends example from Figure and demonstrates, that after

change of the angle in exponent by a factor of m, i.e. hereby for fading
iz _ dmgin D gin . .

parameters h =e5 and h =e’s =e5 , the groups of constellation points

46

5.3. Classification of Hierarchical Symbols in simplified 2WRC with BPSK

SNR = 10 dB, h = exp(¥) SNR = 10 dB, h = exp(—1F)

3 O (z1,m) for b=1, ie. (t1,t2) = (1, 0) 3 O (w1,m) for b=1, ie. (t1,t2) = (1, 0)
O (w1,m) for b=0, ice. (t1,t2) = (0, 1) O (w1,@) for b=0, ice. (t1,12) = (0, 1)

g0 g0
-1 -1
2 2
3 3
2 2 2 2
T xy

Figure 5.9: Demonstration of effect of different angles of fading parameter h.
Positive or negative angle of the complex fading parameter defines, whether the
superposition angle is counter-clockwise or clockwise.

corresponding to hierarchical symbols b = 0 and b = 1 interchange positions.

A o
SNR = 10 dB, h = exp(%) SNR = 10 dB, h = exp(*")
3 O (an,02) for b=1, ie. (t1,42) = (1, 0) 3 O (znm) for b=1, ie. (t1,42) = (L, 0)
O (znas) for b=0, ie. (f1,f2) = (0, 1) O (z1.a) for b= 0, . (f1,t2) = (0, 1)

g0 &0
K -1
2 2
3 3
2 0 2 2 0 2
x] 1

Figure 5.10: Demonstration of effect of 7 radians difference between angles of
two fading parameters h. The groups of constellation points corresponding to
different hierarchical symbols interchange position.

Finally, in Figure is demonstrated how the magnitude of the fad-
ing parameter affects the superimposed constellation. When magnitude |h|
decreases from |h| = 0,9 to |h| = 0,5, it results in a shorter distance be-
tween the groups of constellation points for the different hierarchical symbols.
Effectively, this should force the classification regions to be sharper.

B 5.3.3 Parameters of the simulation

Having described the observation model and training set, we can move to
the training procedure. Given two dimensions of constellation space, number
of inputs to the network is nj, = 2 and two possible hierarchical symbols
determine number of outputs net = 2. To the purpose of evaluating the
performance of the training, it is necessary to visualize the decision regions.
Especially for ANN with a large number of hidden neurons, it is complicated
to show determined decision regions based only on the trained weights, as,
e.g., in Figure 4.13

As a result of this, we opted to sample the constellation space, feed the
samples to the trained network and, after rounding operation, to show the
outputs. Moreover, we need to have some reference solutions to evaluate

47

5. Exemplary Applications of Machine Learning Algorithms in WPLNC

SNR = 10 dB, h = 0,9 exp(¥) SNR = 10 dB, h = 0,5exp(¥)
3 O (w1,@9) for b=1,ie. (t1,t2) = (1, 0) 3 O (w1,@2) for b= 1, ie. (t1,t2) = (1, 0)

O (w1,22) for b=10, ie. (t1,t2) = (0, 1) O (w1,@2) for b=0, ie. (t1,t2) = (0, 1)
2 2

g0 g0
K 4
2 2
3 3
2 2 2 2
€y g

Figure 5.11: Demonstration of effect of different magnitudes of two fading
parameters h.

how good the trained model is. Two reference solutions are hereby provided.
Firstly, for its simplicity, evaluation is based on a metric, which is Euclidian
distance of the tested points from the constellation points, neglecting the
noise term w. The second method that is described later is hereby referred to
as "True Metric Map" and was shown in [19].

Further, let us note that this task was handled experimentally. The reason
is, there are not any general rules on how to design the parameters of ANN.
Fixing the number of inputs and outputs, degrees of freedom of the ANN to
be designed are: (1) number of hidden layers, (2) number of neurons in each
hidden layer, and (3) learning rate. Additionally, concerning the transmission,
we need to determine: (4) the number of training samples D, and (5) number
of training epochs, such that desired generalization is reached. Finally, as
number (6), it comes out that the critical parameter is hereby SNR of training
data.

All of these parameters have a very significant impact on the properties of
convergence and, specifically, on time of training. While the overall number
of neurons in ANN determines the number of operations performed during
training, it also affects its approximation abilities. Consequences of improperly
chosen learning rate n are either extremely long convergence time or losing
the ability to minimize the error function. The number of training samples D
obviously affects the computational time required per epoch, and, together
with its SNR, it rules the ability of generalization. An exhaustive number of
computer simulations was performed to map these effects, and, in the sequel
of this section, let us provide a summary of the results.

B 5.3.4 Introductory Example

First, let us start with an illustrative example. In MATLAB was implemented
ANN with two hidden layers, having n}(111()iden =10 and n}(121()iden = 10 neurons
in hidden layers. Learning rate was selected as n = 0,5. Let D = 300 and
SNR = 10 dB and the training data set D = {(z4,tq)}7_, was generated

with fading parameter h = e’f. Further, the trained network was tested using
validation set with 2- D samples, i.e. V = {(zq4,tq)}22;, preserving the fading
parameter h and with fixed SNR = 15 dB. Training lasted 2 000 training
epochs.

As mentioned, according to [19], two possible reference maps are offered.

48

5.3. Classification of Hierarchical Symbols in simplified 2WRC with BPSK

The first, hereby denoted as Distance-Based Map is determined purely based
on shortest Euclidean distance in constellation space between coordinated
of classified points (i.e., (z1,2z2) and true coordinated of constellation points
corresponding to specific hierarchical symbols, determined with knowledge of
fading parameter h and neglecting noise term.

Distance-Based Map Trained Map True Metric Map

T 1

Figure 5.12: Comparison of reference decision maps and trained decision map
in small-scale example with SNR = 15 dB.

The second reference map denoted in the sequel as True Metric Map was
derived in [I9]. It takes into account the specific variance of AWGN and the
contribution of all constellation points, corresponding to given hierarchical
symbols. Note, Distance-Based Map is an approximation of True Metric Map,
where only the greatest operand is counted.

Trained Map

O (w,zz)forbzl
, BN | O (@a)frs-off

Z1

Figure 5.13: Introductory example shows, that though all samples of validation
set generated with SNR = 15 dB were correctly classified, generalization ability
of the system is very low and does not come too close to the reference solutions.

Result of training process is shown in Figure Two levels of gray color
are used to distinguish the decision regions corresponding to the hierarchical
symbols, and results are shown for approximated Distance-Based Map (left-
hand side), determined Trained Map (middle), and True Metric map (right-
hand side). Constellation points corresponding to the hierarchical symbols
are also shown for reference.

Note, the shaded decision regions were determined, such that the constel-
lation space was sampled, and individual samples were processed. For the
trained decision map, this means that samples of constellation space were

49

5. Exemplary Applications of Machine Learning Algorithms in WPLNC

subsequently fed to the trained ANN, and rounded outputs, corresponding to
specific hierarchical symbols, were recorded.

Though we can see in Figure [5.13]) that all samples of the validation set V
were correctly classified, the shape of the trained decision boundary mostly
consists of two lines and does not come very close to the reference maps. This
means that reached generalization ability of the trained system is terrible, and
effectively is equivalent to the simple XOR-example, shown in Figure 4.13.

B 5.3.5 Regularization through Noise

Since the illustrative results shown in the previous subsection were not very
satisfactory, an effort was made to tune the parameters of the simulation.
A significant improvement of the results was observed when significantly
decreasing SNR of training data. This was recognized as a regularization
technique, as addressed previously, and formally described, e.g., in [23] and
[24].

Further, it is shown that training the ANN with training data set with
very low SNR improves the performance of training. Further, let us provide
the results of simulations in two setups. The following parameters were
heuristically determined based on a large number of experiments: SNR and
size of training data set, number of neurons in hidden layers, learning rate
1. The previous example was extended, and as a result of this, we present
obtained results.

Though this form of regularization is later shown to improve the trained
result significantly, it also causes a problem. The issue is that the ANN
is successfully trained using a training data set with some specific SNR; of
course, the reference solution is obtained using the same SNR. However, the
trained ANN is then tested with data sets generated with a wide range of
SNRs.

Therefore, the problem is that different SNR might be used for successful
training than for the real application of the system. Later, the corresponding
reference solution is therefore provided based on the actual SNR, while a
single trained system is used to evaluate performance for all values of SNR.
Eventually, an artificial noise might be added to the received "pilot" samples
to reduce the SNR.

In the provided results, this problem is not further addressed.

B Setuwp1

Parameters of simulation in Setup 1 are shown in Table 5.2l The first
exemplary result is for value of relative fading h = exp <JI“) In Figure |5.14],
we can see visualization of training data set.

In Figure [5.15|are shown resulting decision maps. Though the result is not
perfect, we can see that the shape of trained decision maps approximately
preserves the shape of reference solutions. Note that the trained Map is not
symmetric as it is supposed to be. Further, True Metric Map is seen to be
very smooth, while Distance-Based Map is not. It is caused by a fact, that
True Metric Map takes into account variance of the noise.

50

5.3. Classification of Hierarchical Symbols in simplified 2WRC with BPSK

| Parameter | Value |
n 0,05
n‘Enlir)iden 40
n§12i()lden 40
SNR of training data set | —1 dB
D 7 000
Number of training epochs 500

Table 5.2: Parameters of simulation in Setup 1.

Trained Map

O (z1,29) forb=1 ::
o o O O (oot off

T
Figure 5.14: Setup 1: Illustration of training data set for h = exp ().

Distance-Based Map Trained Map True Metric Map

Figure 5.15: Setup 1: Comparison of decision maps for h = exp (JI”) .

To evaluate performance of trained system, we use Figure , that shows
accuracy, evaluated in % and Figure that shows evaluation of Bit Error
Rate (BER) as a function of SNR. Note, for evaluation of BER was used
validation set of 10° samples, and at this moment, it is understood as the rate
of wrong hierarchical symbol classification. We can observe that for values of
SNR above 8 dB, the performance is overall outstanding. From both figures,
we can read out that both reference solutions slightly outperform the trained
system. Also, we emphasize that the True Metric Map was computed for
each SNR separately. Of course, the Distance-Based Map does not change
with SNR at all, and Trained Map was determined for SNR =—1 dB.

51

5. Exemplary Applications of Machine Learning Algorithms in WPLNC

Dependence of Accuracy on SNR of Validation Data

100 45/@:@—%—&%+®—®—®—%—®—®-%—$
&
98 /g/ J
/// — © — Trained Decision Map
96 6 — % — Distance-Based Metric|
// — % — True Metric Map
g 94 ;%/// i
>
S 7
£ o2r 1
g /
= 90 %
o i
J
88 é/ 4
86 4
84 - - -
0 5 10 15 20

SNR [dB]

Figure 5.16: Setup 1: Comparison of accuracy of determined maps for
h = exp (%) .

Dependence of BER on SNR of Validation Data

100 . .
— © — Trained Decision Map
— % — Distance-Based Metric
10.1 P~ — — % — True Metric Map
; ~9_ _
3 -9 - \@:
10_2 E - :% ~
>
L ~ - ;3:\ -
% 1073 ¢ Y
an} 3 \X\ -
I N \
4L N N
107 * N
L N\

\
107°F \
10—6 I I I I

0 2 4 6 8 10
SNR [dB]

Figure 5.17: Setup 1: Comparison of BER of determined maps for & = exp (1) .

52

5.3. Classification of Hierarchical Symbols in simplified 2WRC with BPSK

Let us provide a few more examples. Firstly, for value of fading parameter
h = exp (%r), the reference decision map splits constellation space to 4 equal
areas. It seems to be suitable for benchmark purposes since we can observe
how precisely is the trained ANN able to approximate the central area, where
the reference decision boundaries are orthogonal. Of course, better results
might be achieved when using larger ANN, an increasing number of training
epochs, or when the system was fine-tuned in other ways. Once more, training
data set is illustrated in Figure 5.18

Trained Map

O (z,zg) forbzl
> I8 g A O (z1,z2) forb=0 :‘

L2
o

Z1

Figure 5.18: Setup 1: Illustration of training data set for h = exp (%T) .

Comparison of reference maps and trained decision map can be seen in
Figure Again, the approximation is not perfect; however, focusing, e.g.,
on the upper half-plane of the trained decision map, the decision regions are
well-separated along the real and imaginary axis. We can observe that though
the setup is symmetric, the trained decision maps are not.

Distance-Based Map Trained Map True Metric Map

O (z1,22) or b 1
O (x1,22) for b=10

Figure 5.19: Setup 1: Comparison of decision maps for
h=exp (F).

Comparison of accuracy of reference and trained decision maps over different
SNR is once again shown in Figure in % and in Figure 5.21 as BER.

Further examples are shown, preserving |h| = 1. Specifically, h = 1 in
Figure [5.22, h = exp (1’4&) in Figure |5.23|and h = —1 in Figure |5.24. The
figures evaluating performance showed approximately same results and are
therefore omitted.

53

5. Exemplary Applications of Machine Learning Algorithms in WPLNC

Accuracy [%]

Dependence of Accuracy on SNR of Validation Data

100

98

96

94

92

90

88

86

84

— ©& — Trained Decision Map
— % — Distance-Based Metric
— 3 — True Metric Map

10 20

SNR [dB]

Figure 5.20: Setup 1: Comparison of accuracy of determined maps for
h=exp (F).

Dependence of BER on SNR of Validation Data

100
— ©& — Trained Decision Map
— % — Distance-Based Metric
— % — True Metric Map
1L = =@ - .
10 3 @ _ N E
RN -
102 ¢ ® NI 3
> E
. AN
2 e
3 *Q
107 F \\ E
< 3
NS
NN
AN \(')
4| N3
1 O L \ é
¥
1 0 -5 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9
SNR [dB]
Figure 5.21: Setup 1: Comparison of BER of determined maps for h = exp (%r) .

54

= = um s nnw s s s 53 Classification of Hierarchical Symbols in simplified 2WRC with BPSK

Distance-Based Map Trained Map True Metric Map

() . (zl,zg) or b=14
O (z1,29) for b=0

Figure 5.22: Setup 1: Comparison of decision maps for h = 1.

Distance-Based Map Trained Map True Metric Map

.. (w1, @) for b=1[H
O (w1, @) for b=0{|

Figure 5.23: Setup 1: Comparison of decision maps for h = exp (47).

Distance-Based Map Trained Map True Metric Map

O (wl,xz)forb
O (z1,29) forb=01|

x xy xy

Figure 5.24: Setup 1: Comparison of decision maps for h = —1.

Further exemplary results for |h| = 0,7 are shown in Figures 5.26-5.29, see
the captions for corresponding values of relative fading parameter.

Distance-Based Map Trained Map True Metric Map

(@) . (z,zz) forb—1
O (21,m2) for b=0

Figure 5.25: Setup 1: Comparison of decision maps for h = 0, 7.

55

5. Exemplary Applications of Machine Learning Algorithms in WPLNC » = w o = o s = u u = u &

Distance-Based Map Trained Map True Metric Map

PR o (w,zz)forb=1
O (z1,29) forb=0
1 o

&0

-

-2
AR, — -3 I |
o2 210 1 23 2 10 1 2 3

Ty o o

Figure 5.26: Setup 1: Comparison of decision maps for h = 0,7 exp (%) .

Distance-Based Map Trained Map True Metric Map

| . (@) . (xl,zg) for b=1[§
1 TR { 1 11 .
é“ o ,,,,,,,, é“ 0 (S] 0
- . 1 R -
o loostoRcooootkonsed 00 | o O -2 boooochosoocgocosad
2 -1 0 1 2 3 2 -1 0 1 2 3 2 -1 0 1 2 3
z Zy z
- _ .Tr
Figure 5.27: Setup 1: Comparison of decision maps for h =0, 7exp (1) .
Distance-Based Map Trained Map True Metric Map
‘ ‘ ‘ ‘ . (@) . (z1,22) for b=1§
HN 0 ,,,,,,,,, é“ 0 ,,,,,,,,, g o
EREY - BEE . EEEY - e
2 SRR -2 RESRESERE -2
3 : . 3 : NN B 3 | - E—
2 -1 0 1 2 3 2 -1 0 1 2 3 2 -1 0 1 2 3
T Ty Ty
Figure 5.28: Setup 1: Comparison of decision maps for h = 0,7 exp (M) .
Distance-Based Map Trained Map True Metric Map
2 | | : : ! O (m1,x2)forb1
O (z1,29) for b=0
11 [000 | {1 A 000 [1 - o |
é“ o
410 SRS L {{ | SIEEEEEES ¢ _{ | [T
2] TR 0 | o4 HEEEEEEEES 000 | o] SRR
_3 S S e S SR S e T DR . . |

2 -1 0 1 2 8
z

Figure 5.29: Setup 1: Comparison of decision maps for h = —0, 7.

56

5.3. Classification of Hierarchical Symbols in simplified 2WRC with BPSK

B Setup?2
| Parameter | Value |
n 0,05
ngr)idpn 70
n](12ir)1d9n 70
SNR of training data set | —1 dB
D 7 000
Number of training epochs 500

Table 5.3: Parameters of simulation in Setup 2.

In Setup 2, all simulations from Setup 1 were repeated with an increased
number of neurons in the hidden layers and hereby are provided results for
the same relative fading parameters as in Setup 1. IL.e., the first half of the
simulation results is for |h| = 1, the other half for |h| = 0,7. We can see that
though the number of neurons was significantly increased, the obtained results
are of similar performance. (Again, figures showing accuracy of classification

and BER are shown only for values of relative fading parameter h = exp (%)

and h = exp (%) . Subsequent results were very similar.)

With this repeat of simulations, let us point out that determined parameters
are not claimed to be perfect. Hereby, it remains open, what is the optimal
number of neurons per layer, how many training epochs are required, and what
learning rate is appropriate. Nevertheless, based on the figures comparing
BER and accuracy of the trained system, the trained system is shown to
perform sufficiently, especially for higher values of SNR.

Distance-Based Map

Trained Map True Metric Map

O (@1,22) or b=1 |
O (@,@) forb=0

Figure 5.30: Setup 2: Comparison of decision maps for h = exp (sz) .

Distance-Based Map Trained Map True Metric Map

O (wy,29) forb=14
O (z1,29) for b=0

Figure 5.31: Setup 2: Comparison of decision maps for h = exp (%T) .

o7

5. Exemplary Applications of Machine Learning Algorithms in WPLNC

Dependence of Accuracy on SNR of Validation Data

T
100 + ﬁé%—&$+&@—®-$—$—&®+$
&
98 - é 4 4
7 . —
/, — © — Trained Decision Map
96 g/ — % — Distance-Based Metric :
// — % — True Metric Map
X 94+ éé J

Z /
< //
5 92 + / 7 i
3 I
< &

90 ﬁ i

J

88 J i

86 i

84 ! L I

0 5 10 15 20

SNR [dB]

Figure 5.32: Setup 2: Comparison of accuracy of determined maps for
h = exp (JZ’T) .

Dependence of BER on SNR of Validation Data

10° | ,
— © — Trained Decision Map
— % — Distance-Based Metric
10-1 - — % — True Metric Map
TR~
\:@Q\@
1072 S8~]
-~ 8 E
R
\\\i\
~N
% 1073 RN |
N
* \\
QR
_ N N
10 Ny N
%
AR
\ 4
10°° \
%
10—6 L 1 | |
0 2 4 6 8 10
SNR [dB]

Figure 5.33: Setup 2: Comparison of accuracy of determined maps for
h=exp ().

58

5.3. Classification of Hierarchical Symbols in simplified 2WRC with BPSK

Dependence of Accuracy on SNR of Validation Data

T
100 |- g@,&$—®-&@—®-®@-®-®—®—®
p
/é/
98 - 6 4 il
% — © — Trained Decision Map
96 é — % — Distance-Based Metric 4
/5 — % — True Metric Map
— 7
X 94+ / J
/

]]
E ool i
: j
: j
< y

90 g/ J

/
88 -/ J
J
/
86 a@j i
84 ! ! I
0 5 10 15 20

SNR [dB]

Figure 5.34: Setup 2: Comparison of accuracy of determined maps for
h = exp (%))

Dependence of BER on SNR of Validation Data

1 O O T T T T T
— © — Trained Decision Map
— % — Distance-Based Metric
— % — True Metric Map
-1 L = @ - |
10 F T8
SQu N
R - Sk
102 3 > J
F N
~ \Q\\ -
2 BN
1073 E ¥ \\ \\ i
: ey
[* N\
[N
Al N 0
10 ’ S
. *
10 -5 L L L L 1 1 | |
0 1 2 3 4 5 6 7 8 9
SNR [dB]

Figure 5.35: Setup 2: Comparison of BER of determined maps for
h=exp ().

59

5. Exemplary Applications of Machine Learning Algorithms in WPLNC » = w o = o s = u u = u &

Distance-Based Map

Trained Map

T2
X2

2 -

Figure 5.36: Setup 2:

Distance-Based Map Trained Map

2 j 2
1 oo S
g0 g0 §
P N
2 e
2 -1 0 1 2 3 2 -1 0 1 2 3
T Zy

True Metric Map

5 O (w,zz)orbzl
O (m,zp) forb=0
0
-1
-2
-3 SN N
2 -1 0 1 2 3
Eal

Comparison of decision maps for h = 1.

True Metric Map

P O (z1,22) for b=1
O (z1,29) forb=0

11

0 e

EEEY 2

-2

kR -
2 -1 0 1 2 8

z

Figure 5.37: Setup 2: Comparison of decision maps for & = exp (¥).

Distance-Based Map Trained Map

2 el
1 oo 1 |
go "0 go (o g
T SR
i Jp E—__ JcJp E—__
2 -1 0 1 2 3 2 -1 0 1 2 3
T zy

True Metric Map

5] O (zl,xg)forbl
O (x1,2) for 0]
14 — S
o) BT 0O
4] lBocoooSwosced|
o] lMoccoo&usooeds|
J: T SRS o I
2 -1 0 1 2 3
T1

Figure 5.38: Setup 2: Comparison of decision maps for h = —1.

Distance-Based Map Trained Map

2 2
1 s 1 {eoseofeceed
go R 00 so R 0O g
-1 e -1 SEREEEEERER &
-2 R -2 -
-3 ——— . -3 " —
2 -1 0 1 2 3 2 -1 0 1 2 3
X Ty

True Metric Map

(@) (avl7 Z9) or b=1
(@) (z1,22) for b=0

2 -1 0 1

Ty

Figure 5.39: Setup 2: Comparison of decision maps for h =0, 7.

60

== um s nnn s s s 53 Classification of Hierarchical Symbols in

Distance-Based Map

2 -1 0 1 2 3
zy

Figure 5.40: Setup 2:

Distance-Based Map

2 -1 0 1 2 3

Ty

Figure 5.41: Setup 2:

Distance-Based Map

2 -1 0 1 2 3

Ty

simplified 2WRC with BPSK

Trained Map True Metric Map

o 1 .. (zl,xz)forbzl |
O (z1,29) forb=0
1
g0
R .
LR
: : d | 3]
2 -1 0 1 2 3 2 -1 0 1 2 8
Xy Ty

Comparison of decision maps for h = 0,7 exp (JZ”) .

Trained Map True Metric Map

.. (zl,zz) forb=1[H
: ;
1 1]
g 0 é" 0 [EEEEE TR
B o D R
o PR o R
3 2 ___ [— 3 I
2 -1 0 1 2 3 2 -1 0 1 2 8
Ty T

Comparison of decision maps for h = 0,7 exp (%T) .

Trained Map True Metric Map

. O . (21, x2) for b=1 |
: g I
1 1 1 . ‘
é‘l 0 et é“ 0 EEEEEEn
11 11
2 e -2
-3 5 N) -3 . .|
2 -1 0 1 2 3 2 -1 0 1 2 3
T Iy

Figure 5.42: Setup 2: Comparison of decision maps for h = 0,7 exp (?1433) .

Distance-Based Map

Trained Map True Metric Map

,,,,,,,,,, o | O (am)forb=1]|

O (z1,29) forb=01|
,,,,,,,,,, 1 (e I T 55 |
,,,,,,,, S0 .
,,,,,,,, -{ {Baskconced
,,,,,,,, -0 [-
,,,,, . | KR]
2 -1 0 1 2 3 2 -1 0 1 2 8

Ty Ty

Figure 5.43: Setup 2: Comparison of decision maps for h = —0, 7.

61

5. Exemplary Applications of Machine Learning Algorithms in WPLNC

B 5.4 Classification of Hierarchical Symbols in
simplified 2WRC with QPSK

B 5.4.1 Extension to QPSK

Further, let us consider an extension of procedure described in Section [5.3
purely for BPSK modulation. We shall consider QPSK modulation with XOR
HNC map in 2WRC. Therefore, the observation model is still described by
Equations 5.3 and 5.4, but implemented bit-wise. In accordance with [19],
the symbols of signle QPSK are assigned according to Table [5.4l

’ Information Input ‘ Mapping

T

00 e1
il

01 e 4
3T
10 e 4
T
11 e 1

Table 5.4: Implemented single-user QPSK.

A direct extension of Table [5.1] with corresponding information inputs
and training inputs is shown in Table [5.5] Again, four possible hierarchical
symbols are indicated by four outputs of the ANN. Hence, noyt = 4.

| bad | bpa | by | ta= (t1,t2,t3,t4)q |
00 | 00 |00 (1, 0,0, 0)
00 | 0L |01 0,1, 0, 0)
00 | 10 | 10 0,0, 1, 0)
00 | 11 | 11 0,0, 0, 1)
01 00 | 01 (0, 1, 0, 0)
01 01 | 00 (1, 0,0, 0)
0L | 10 | 11 (0,0,0,1)
0L | 11 |10 (0,0, 1, 0)
10 | 00 |10 0,0, 1, 0)
10 | o1 |11 (0,0,0,1)
10 | 10 |00 (1,0, 0, 0)
10 | 11 | o1 0, 1,0, 0)
11 | 00 |11 0,0,0,1)
11 | 01 |10 0,0, 1, 0)
11 | 10 | o1 0, 1,0, 0)
11 | 11 |00 (1, 0,0, 0)

Table 5.5: Explanation of training input ¢4.

Outputs of ANN implemented in Section [5.3| were simply rounded, to
indicate the determined hierarchical symbols. With four hierarchical symbols,
the determined hierarchical symbol shall be now identified by the maximal
value of the corresponding output. This eases graphical representation of
decision maps and avoids conflicts in classification.

62

5.4. Classification of Hierarchical Symbols in simplified 2WRC with QPSK

Bl 5.4.2 Exemplary Results

Parameters of the training process were experimentally tuned to reach satisfac-
tory results. Similarly to previous results with BPSK modulation, hereby, we
present results for several values of relative fading parameter h. As expected,
we shall see that the shape of the decision maps becomes more complicated
than previously.

Note that for comparisons of accuracy, we used the validation set of 200 000
samples for each value of SNR. Compared to previous results for BPSK,
hereby, we used the term symbol error rate (SER) to evaluate the error rate
of classification, since the symbol consists of two bits.

Besides an increased number of hierarchical symbols, another issue with
QPSK is, that of singular fading, described in [19]. It is a situation when
the specific value of relative fading parameter causes, that multiple different
hierarchical symbols are in constellation space located in the same coordinates.
Later, one example is shown to demonstrate this.

¥ (@,z2) for b=00
x (m1,xq) for b =01
O (z1,29) for b=10
O (33’1,3?2) for b =11

Figure 5.44: QPSK simulation legend.

Keeping the following results for QPSK modulation more clear, the legend
is shown separately in Figure 5.44. Further are shown simulation results gen-
erated with parameters shown in Table [5.6. During experimental simulations
was observed that good results are shown for SNR of training data set 11 dB.

Parameter ‘ Value
n 0,05
nl%Zlden 50
"hidden 50
SNR of training data set | 11 dB
D 10 000
Number of training epochs | 1 000

Table 5.6: Parameters of simulation for QPSK.

To provide an orientation, in Figure |5.49| it is shown training data set
together with trained map for relative fading parameter h = 1. The training
samples are distinguished according to legend in Figure |5.44.

This task is more demanding than the example with BPSK. In this setting,
only a hierarchical symbol b = 11 is located in a single region. Regions
corresponding to hierarchical symbols b = 01 and b = 10 are divided into
two parts; finally hierarchical symbol b = 00 is divided into four parts. Note
that this uneven number of regions, corresponding to specific hierarchical
symbols, implies that individual regions are covered with an uneven number
of training samples.

Specifically, about four times more training samples are located in the
single central region for b = 11, than in the four individual regions for b = 00.

63

5. Exemplary Applications of Machine Learning Algorithms in WPLNC

Trained Map

2
1
RNORIE Sl
-1
-2
e .
-2 -1 0 1 2 3
Iy

Figure 5.45: Tllustration of training data set for h = 1.

Further, reference decision maps are together with the trained decision
map shown in Figure Clearly, the individual regions are separated. The
decision boundaries are not as straight as supposed to be. The trained corner
regions, corresponding to symbol b = 00, were probably trained smaller than
desired because the number of training samples in the neighboring regions was
bigger. Also, we can observe that for SNR = 11 dB, the difference between
Distance-Based Map and True Metric Map is visually negligible.

Distance-Based Map Trained Map True Metric Map

Figure 5.46: Comparison of decision maps for h = 1.

To quantitatively evaluate the performance of the trained system, we again
use a validation data set for different values of SNR. In Figure [5.47 it is
expressed as accuracy of correct classifications. We can see that accuracy
rapidly drops off for SNR below 10 dB. Further, we observe, that below 5 dB
Trained Decision Map performs better than Distance-Based Map.

In Figure [5.48, the performance is evaluated as symbol error rate in loga-
rithmic scale. At this moment, we can see that around SNR = 11 dB, the
trained system performs worse than the reference decision maps.

64

5.4. Classification of Hierarchical Symbols in simplified 2WRC with QPSK

T D

100 | w

-
95

Dependence of Accuracy on SNR of Validation Data

v]

T

4

// — © — Trained Decision Map

90 r é — % — Distance-Based Metric 7
f — % — True Metric Map

85

T
~-
@
N

/
80 I W]

75 - / 1

Accuracy [%)

70 // 1
65 /. .

60 -/ .

55 1 1 1
0 5 10 15 20

SNR [dB]

Figure 5.47: Comparison of accuracy of determined maps for h = 1.

Dependence of SER on SNR of Validation Data

100 x
L — © — Trained Decision Map
@ _ — % — Distance-Based Metric
= ® e — % — True Metric Map
= ? -

1L - |
107" Bl ;
' @]

102 ¢ \X 5
N

\\\g

A\
3L \]
107 \\\Q :
\]
X\\]
5

10'4 | | | | |
0 2 4 6 8 10 12

SNR [dB]

Figure 5.48: Comparison of SER of determined maps for h = 1.

65

5. Exemplary Applications of Machine Learning Algorithms in WPLNC

Further testing of this ANN configuration was performed for different values
of relative fading parameter h. First part of results shows situation when

|h| = 1. Subsequent result is shown for h = exp (%) . In Figure 5.49, we can

again see training data set on top of trained map.

Trained Map

2
1
HN 0 ,,,
-1
-2
_3 ..
-2 -1 0 1 2 3
T1

Figure 5.49: Illustration of training data set for h = exp (%) .

In Figure we can clearly compare the trained and the reference
decision maps. We observe that the central cross-like region, corresponding
to hierarchical symbol b = 11 is roughly followed by the ANN. The shape of
the decision regions is more complex than previously; however, the number of
regions is still preserved. A fact is that at this moment, the shape of trained
decision boundaries does not follow the reference solutions very well.

Distance-Based Map Trained Map True Metric Map

Figure 5.50: Comparison of decision maps for h = exp (%) .

Quantitatively, it is evaluated in Figure A rapid drop off of accuracy
of classification is observed for the trained system at SNR=15 dB. A poor
performance is even emphasized in Figure 5.52, where the symbol error rate
is evaluated. Comparing Figures 5.48 and [5.52, we demonstrate a severe
dependence of performance of the trained system on actual value of relative
fading parameter. This holds for all methods.

66

5.4. Classification of Hierarchical Symbols in simplified 2WRC with QPSK

Dependence of Accuracy on SNR of Validation Data

100 |- ‘ & 6 6 00 o
//@’/@//@’
95 & il
Vg
90 //Q(— © — Trained Decision Map i
Vi — % — Distance-Based Metric
% — % — True Metric Map
85 /é/]
— A
XX, 80 - /ﬁ .
//
g /
<
5 o7t #]
S Va
B g
70 / il
/!
65 /g il
/!
60 ;g |
/
55 75 1
1 1 1
0 5 10 15 20
SNR [dB]

Figure 5.51: Comparison of accuracy of determined maps for h = exp (%) .

Dependence of SER on SNR of Validation Data

10° x
i — © — Trained Decision Map
— % — Distance-Based Metric
Bl @ e — % — True Metric Map
@
S
N ©
107 LN]
L Q \ 4
® N
x 1]
S N
n @\
N
107 ¢ _]
[N]
O
N
X
\
3L \
10} b
1 I 1 1 1 1 1
0 2 4 6 8 10 12 14 16
SNR [dB]

Figure 5.52: Comparison of SER of determined maps for h = exp (%) .

67

5. Exemplary Applications of Machine Learning Algorithms in WPLNC

Distance-Based Map Trained Map True Metric Map

Figure 5.53: Comparison of decision maps for h = exp (2").

Distance-Based Map Trained Map True Metric Map

Figure 5.54: Comparison of decision maps for h = exp (3") .

Distance-Based Map Trained Map True Metric Map

Figure 5.55: Comparison of decision maps for h = exp (E’JT”) .

Distance-Based Map Trained Map True Metric Map

Figure 5.56: Comparison of decision maps for h = —1.

68

5.4. Classification of Hierarchical Symbols in simplified 2WRC with QPSK

In Figures to further results of training are shown for |h| = 1. See
captions of the figures for corresponding values of h. In Figures and
we can see, that shape of the decision regions is further complicated, because
the central section splits to four parts. Evaluation of accuracy and SER is
omitted and was similar to the previous case.

In Figure is demonstrated a situation of singular fading, addressed in
[19]. As an example, for a value of relative fading parameter h = exp (%r)
it happens, that coordinates of multiple different hierarchical symbols in
constellation space are identical. Note, that in Figure [5.57 some of the
markers, distinguishing individual hierarchical symbols overlap and effectively
prevent correct classification.

Trained Map

Z

Figure 5.57: Illustration of training data set for h = exp (Jg) .

The following examples are shown for |h| = 0,7 for the same angles of
h as previously. Only in Figure [5.58 are shown training data to give an
illustrative example. With the decreased magnitude of the fading parameter,
each hierarchical symbol is represented in a constellation space with four
possible coordinates, and this makes the training further complicated.

In Figure are decision maps for h = 0,7 and in Figure for
h=0,7-exp % . The graphs, evaluating performance of the maps are then
shown in Figures and for h = 0,7 and in Figures and for
hzO,?-exp(%)

It is worth notice, that for h = 0,7 - exp (%), the performance is very
poor for all used decision maps. Finally, in Figures to are shown
additional example for |h| = 0,7. We observe, that the trained maps are not
symmetric.

To conclude this section, an extension of the simulation from BPSK to
QPSK was quite straightforward. However, it is not clear what parameters
of ANN result in optimal performance. Some results were experimentally
determined and hereby are provided. At this moment, we do not claim that

69

5. Exemplary Applications of Machine Learning Algorithms in WPLNC

the reached results of the ANN trained system are optimal. In most examples,
the performance of the trained system falls behind the reference methods for
higher values of SNR. On the other side, it sometimes slightly overcomes the
Distance-Based Maps for lower values of SNR. Performance of True Metric
Map, derived in [19], was shown to be overall superior in the simulations.

Trained Map

2
1
é\l 0 ,,
_1 coooBe
-2 -1 0 1 2 3
ol

Figure 5.58: Illustration of training data set for h = 0, 7.

Distance-Based Map Trained Map True Metric Map

Figure 5.59: Comparison of decision maps for h =0, 7.

Distance-Based Map Trained Map True Metric Map

§o ¢o SO OfEEE
A oo g 1
-2 -2
3 R —— -3 —
2 -1 0 1 2 3 2 -1 0 1 2 3
Ty T

Figure 5.60: Comparison of decision maps for h = 0,7 - exp (%) .

70

5.4. Classification of Hierarchical Symbols in simplified 2WRC with QPSK

Accuracy [%)

SER

Dependence of Accuracy on SNR of Validation Data

100
90
— © — Trained Decision Map
— % — Distance-Based Metric
— % — True Metric Map
80 J
70 P/ 1
}/
60 // 4
/
#
é/
50 4
0 5 10 15 20
SNR [dB]

Figure 5.61: Comparison of accuracy of determined maps for h =0, 7.

Dependence of SER on SNR of Vahdatlon Data

i_ — ©& — Trained Decision Map
—@®- e — % — Distance-Based Metric
@ —a. — % — True Metric Map
10" 3 B, Sa = E
' @
N
R .
2 ®
107 F X \5% E
: \
N
N
8
2\
1072 ¢ &
10 -4 | | | | |
0 2 4 6 8 10 12 14
SNR [dB]

Figure 5.62: Comparison of SER of determined maps for h =0, 7.

71

5. Exemplary Applications of Machine Learnin

g Algorithms in WPLNC

Dependence of Accuracy on SNR of Validation Data

100 [T Mﬁﬁ%
90 b
_. 80 r h
=X
o 5 — © — Trained Decision Map
% // — % — Distance-Based Metric
%4 70 L /é — 3 — True Metric Map i
3 /7
< &
4
60 /% T
é/
é;
50 | / 1
? 1 1 1
0 5 10 15 20

SNR [dB]

Figure 5.63: Comparison of accuracy of determined maps for h = 0,7 - exp (

Dependence of SER on SNR of

Validation Data

10° ; ; : ‘ :
— © — Trained Decision Map
— % — Distance-Based Metric
© — % — True Metric Map
=@
L ~e_ s
~a. 3
™~ 9\
&
AN
L1 L AN |
€3 10 [® <
5] L Q .
N W
N&\\%
N
R
N\
1072 1 x L L x L 1 1
0 2 4 6 8 10 12 14 16
SNR [dB]

5)-

Figure 5.64: Comparison of SER of determined maps for h = 0,7 - exp (%) .

72

5.4. Classification of Hierarchical Symbols in simplified 2WRC with QPSK

Distance-Based Map Trained Map True Metric Map

T

Figure 5.65: Comparison of decision maps for h = 0,7 - exp (&) .

Distance-Based Map Trained Map True Metric Map

Figure 5.66: Comparison of decision maps for h = 0,7 - exp (441) .

Distance-Based Map Trained Map True Metric Map

Figure 5.67: Comparison of decision maps for h = 0,7 - exp (E’JT”) .

Distance-Based Map Trained Map True Metric Map

Figure 5.68: Comparison of decision maps for h = —0, 7.

73

5. Exemplary Applications of Machine Learning Algorithms in WPLNC

B 55 Effect of Size of Training Data Set
on Classification in 2WRC with BPSK

In this section, we experimentally addressed the influence of the size of the
training data set D on the performance of the trained system. Analytical
tools for this task were not found in the literature. Motivation is to reduce
the number of resources required for training.

Besides the variable value of D, the tested ANN was designed with param-
eters of Setup 1 in Section [5.3] and for convenience repeated in Table [5.7. We
focused on a single value of relative fading parameter, h = exp (%) .

’ Parameter Value ‘
n 0,05
n%()iden 40
"hidden 40
SNR of training data set | —1 dB
Number of training epochs 500

Table 5.7: Parameters of simulation.

The simulations were organized, such that a value of D ranged in 20 values
between 100 and 3 900 samples with a uniform step of 200 samples. For
each of these 20 values, 20 ANNs were trained and tested. These tests were
performed for 3 different levels of SNR. The size of the validation data set
was 100 000 samples. Resulting values of Accuracy and BER were averaged
and are shown in Figures [5.69 and [5.70] for SNR = 5 dB; in Figures [5.71
and 5.72| for SNR = 7,5 dB; and in Figures |5.73| and |5.74] for SNR = 10 dB.
Moreover, in the figures of accuracy are shown polynomials of the fifth order,
fitting the trained results.

Looking at these figures, we observe that for all values of SNR, a rapid
drop-off of performance occurs for the particular tested ANN below D = 2 000
samples. We observe that the SNR of validation data does not affect this
value.

The presented simulation is significantly time-consuming. Though the
results were averaged over 20 realizations, none of the curves that evaluate
the performance of the trained decision maps seem to be smooth. This
probably means that more realizations of the experiment would have been
desirable. Another issue is that these results are valid only for this specific
parameter of ANN. Moreover, to avoid disturbance of the experiment by
other parameters, the results are shown only for a single value of h. A similar
experiment but on a larger scale might be performed in case of tuning of the
parameters for some more practical utilization.

74

5.5. Effect of Size of Training Data Set on Classification in 2WRC with BPSK

Dependence of Accuracy on Size of Training Data Set

100 C T T T T T T T H
Tk ke ek ok ﬁ;&%:#é%:ézé:gézﬁ;g/ﬂs
95 - o BT .
hrig
% - 4]
®
85 % — © — Trained Decision Map 4
ﬁ — + — Fitted Trained Map
o L — % — Distance-Based Metric i
. 80 / — % — True Metric Map
2 /
[l a
g /
3
< 700/ 8
/
65 |-/ a
606 1
55 :
50 1 1 1 1 1 1 1

500 1000 1500 2000 2500 3000 3500 4000
D [number of training samples]

Figure 5.69: Comparison of accuracy for different values of D for SNR = 5 dB.

Dependence of BER on Size of Training Data Set
Q T T T T T T T
\ — ©& — Trained Decision Map
\ — % — Distance-Based Metric
Q — % — True Metric Map

107" 5 \ 1

BER

o %000 6 °

S e —p— ke ok k— e sk ok ke e ok e —k— e ok —%
0 500 1000 1500 2000 2500 3000 3500 4000
D [number of training samples]

1072

Figure 5.70: Comparison of BER for different values of D for SNR = 5 dB.

75

5. Exemplary Applications of Machine Learning Algorithms in WPLNC

Dependence of Accuracy on Size of Training Data Set

100 = o —F— % ok % * kg — - ! —]
5 %7$1@\§ H—O—&- %——&%r,&_ﬂ@@
95 - + |
7
7
L * 4
90 /}5
85 Y — © — Trained Decision Map 4
ﬁ — + — Fitted Trained Map
<) L — % — Distance-Based Metric i
=, 80 / — % — True Metric Map
& e
8 75 # 1
/
g /
< 70t/ i
/
65 |
/
600 .
55 =
50 1 1 1 1 1 1 1

500 1000 1500 2000 2500 3000 3500 4000
D [number of training samples]

Figure 5.71: Comparison of accuracy for different values of D for SNR = 7,5 dB.

Dependence of BER on Size of Training Data Set

T T T T

100

— ©& — Trained Decision Map
r — % — Distance-Based Metric
r — % — True Metric Map

BER
e
o

. /
102:' \ /\ /\ Iy 7

0 500 1000 1500 2000 2500 3000 3500 4000
D [number of training samples]

Figure 5.72: Comparison of BER for different values of D for SNR = 7,5 dB.

76

5.5. Effect of Size of Training Data Set on Classification in 2WRC with BPSK

Dependence of Accuracy on Size of Training Data Set

100 = * —F— % * % ¥ B Q% B OG-0 QB
ELFE Tt
95 Pl E
A
90 A 1
/3
85 @// — © — Trained Decision Map 4
— + — Fitted Trained Map
X 80+ // — % — Distance-Based Metric i
- / — % — True Metric Map
z o
8 75 # 1
=] //
S ot
< r i
//
65 4
/
600 1
55 4
50 1 1 1 1 1 1 1

500 1000 1500 2000 2500 3000 3500 4000
D [number of training samples]

Figure 5.73: Comparison of accuracy for different values of D for SNR = 10 dB.

Dependence of BER on Size of Training Data Set

100
o — © — Trained Decision Map
[oo — % — Distance-Based Metric
1 &‘S — % — True Metric Map
107" ¢ N 3
, LN
102k o) ® R]
E \ 3
: I\ I\ I\
\\ [\ ;o\ I
L / \ / \ / 1
5 10-3 E \ / \ / \ / \ 3
M g 29 P o’ \b
[Q N]
104 -
107 e B TR kg k¥ Ry s 3
o % *: R i SIS
10—6 I I I I | | |

0 500 1000 1500 2000 2500 3000 3500 4000
D [number of training samples]

Figure 5.74: Comparison of BER for different values of D for SNR = 10 dB.

77

5. Exemplary Applications of Machine Learning Algorithms in WPLNC

B 56 Variable Relative Fading in 2WRC with BPSK

In this section is shown an online mode modification of the algorithm that
determines the decision regions for BPSK modulation in 2WRC for a variable
value of relative fading parameter h. Parameters of the ANN used for this
experiment are shown in Table Note that the size of the training data set
and the number of training epochs was significantly decreased, compared to
Setup 1 in Section the other parameters are preserved. These parameters
were heuristically determined based on several experiments.

‘ Parameter ‘ Value ‘
n 0,05
n}(j()iden 40
nl(12i¢)iden 40
SNR of training data set | —1 dB
D 2 000
Number of training epochs 50

Table 5.8: Parameters of simulation for online mode of BPSK in 2WRC.

The explanation of the modification follows. All previous examples of
trained decision regions were determined independently, during separated
training experiments. At the beginning of all these experiments, all weights
of the ANNs were initialized with small random numbers. In this section is
assumed a variable relative fading parameter. Initially, magnitude is fixed for
|h| = 1, and the variable is only the angle, denoted £h. Further, the angle is
assumed to be changing very slowly.

Let us present exemplary results. In this setup of the simulation, 2 000
training samples are provided and £h changed in 20 steps from £h = 4,5°
to £h = 90°. With all previous assumptions, the weights of the ANN are
initialized to small random values only in the first step for £h = 4,5°. In
all subsequent steps, i.e., for £h = 4,5° to £h = 90°, the previously trained
weights of ANN are further modified in only 50 epochs of training.

Resulting trained decision maps are shown in Figures and We
can see that though the size of the training data set is significantly reduced,
as well as the number of training epochs, the reached results are very similar
to those previous in Section [5.3. For example, the decision map trained for
£h = 90° in Figure [5.76| seems to be visually quite accurate, compared e.g.
to the previous results in Figure [5.19

2 -1 0 1 2 3

(@) : £4h=4,5° (b) : £h=9° (c) : £h=13,5°

2 -1 0 1 2 3

Figure 5.75: Examples of Online Mode.

78

s e sssssessessssssnsssaas 50 Variable Relative Fading in 2WRC with BPSK

b o 4 o = ™

2 1.0 1 2

(@) : £4h=18° (b) : £h=22,5° (c) : £Lh=27°

w

2 1 0 1 2 3

b o 4 o = ™

2 1.0 1 2 2 1.0 1 2 3 2 -1 0 1 2 3

(d) : £h=31,5° (e) : £h =36° (f) : £h =40,5°

w

b b 4 o =

2 -1 0 1 2 3 2 1 0 1 2 3

(h) : £h =49,5° (i) : £h=54°

1) N L o - N

2 10 1 2 3 2 10 1 2 3 2 1 0 1 2 3

() : <h=58,5° (k) : <h=63° (1) : <h=67,5°

b o 4 o = ™

2 1.0 1 2

(m) : Lh=172° (n) : £h =76,5°

w

.
n

'
w

2 -1 0 1 2 3

(p) : £h =85,5° (q) : £h =90°

Figure 5.76: Examples of Online Mode (continued).

79

5. Exemplary Applications of Machine Learning Algorithms in WPLNC

Dependence of Accuracy on SNR of Validation Data

T T T T T T T T T
100 - 5 -6—06-6 86 666 666
—
7
7,
98 |- 5 -
%
&
96 - % =
// —O— Trained Decision Map
7 — %— Distance-Based Metric
94 g — %— True Metric Map
S /
5 /
g ,
3] /
< //
90 H// |
&/
o6 * |
86 - =
84 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
SNR [dB]
Figure 5.77: Comparison of accuracy in online mode for £h = 4,5° .
Dependence of BER on SNR of Validation Data
100 T T T T T T T T
1@~ i
10 =@ i B
R
102 F T 3
TN O
~ ~
M h * ~
A NS
AN ~N
N, o
10°F X S
N ~]
N ~
N\ ©
[| —O— Trained Decision Map x
4 | | —%— Distance-Based Metric \ B
10 F|— %— True Metric Map \ 3
\]
\
\ 1
10 I I I I I I I I B)k
0 1 2 3 4 5 6 7 8 9
SNR [dB]

Figure 5.78: Comparison of BER in online mode for £h = 4,5° .

80

Accuracy [%)]

BER

5.6. Variable Relative Fading in 2WRC with BPSK

Dependence of Accuracy on SNR of Validation Data

100
98
96 -
94 -

92 -

88 *‘//

86

T T T T T T T T T

7& / i
, —QO— Trained Decision Map
/ / — %— Distance-Based Metric
—— %— True Metric Map

Il Il Il Il Il Il Il Il Il

84

2 4 6 8 10 12 14 16 18 20
SNR [dB]

Figure 5.79: Comparison of accuracy in online mode for £h = 40,5° .

Dependence of BER on SNR of Validation Data

100 T T T T T T T T
07 T =6 E
i TR]
= ~
e~ _
~ ~¢ ~ —
~ o
1072 THL . TOo 3
~ I
~N
k P
AN ~
N I3
~ J
*\ ~
102 F S o
<]
%
\
[| —O— Trained Decision Map \
4 | | —%— Distance-Based Metric \ B
10 F|— »— True Metric Map N g
M
¥
10 -5 | | | 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9
SNR [dB]

Figure 5.80: Comparison of BER in online mode for £h = 40,5° .

81

5. Exemplary Applications of Machine Learning Algorithms in WPLNC

Accuracy [%)]

BER

Dependence of Accuracy on SNR of Validation Data

T T T T T T T T T
100 & © +&$+&$+&4®7®,%£
;‘b%
98 %/& i
96 4 i
ﬁ —QO— Trained Decision Map
7 — %— Distance-Based Metric
94 4 — %— True Metric Map
/
92 / .
/
/
90 é/ 7
/
88 / i
J
/
86 ag n
84 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
SNR [dB]
Figure 5.81: Comparison of accuracy in online mode for £h = 76,5° .
Dependence of BER on SNR of Validation Data
10 0 T T T T T T
AL T —eo il
107 F E|
5 Bad <
B -
R
RS
102 F RSN E
NTA 3
~
KN
NN
)
AN
N
103 F NN 4
N~ Q]
e\
NN
N
[| —O— Trained Decision Map B \ \é
4 | | —%— Distance-Based Metric A)
107 F %— True Metric Map 3
£ \J
¥
105 | | | | | |
0 1 2 3 4 7 8 9
SNR [dB]

Figure 5.82: Comparison of BER in online mode for £h = 76,5° .

82

5.6. Variable Relative Fading in 2WRC with BPSK

Reference decision maps are hereby omitted; see results of Setup 1 in
Section for visual comparison. Instead, let us evaluate the performance
of the results quantitatively using plots of BER and Accuracy, as previously.
Results are shown in Figures These were calculated using validation
sets of 100 000 samples. We can see that the performance of trained decision
maps is not identical for different angles. However, the results are competitive
to performance reached in Setup 1 in Section [5.3.

Bl 5.6.1 Analysis of the Parameters and Tuning

The previous part shows that parameters of the considered ANN might
be further tuned to reach satisfactory results with smaller computational
complexity. To further discover this, we can observe how the weights of the
ANN evolve during the training process. The motivation for this is to reduce
the resources required for training as much as possible. Initially, we can
focus on the number of required training samples and the number of training
epochs. A product of these values dictates the time required for training. In
Figure is shown a plot with three curves, corresponding to three layers
of the ANN. Each curve represents a sum of all squared differences of the

weights between two subsequent epochs. Specifically, the shown variables in
Figure were obtained as

W) (e) = % > [(e) ~ wP(e - 1], (5.5)

i

where j is the index of the layer of the ANN; W) denotes the number of
weights in the jth layer, and index e distinguishes the subsequent epochs.

Relative Squared Evolution of Weights

107" 3 T T T T T T T T T E
F — — — Hidden Layer 1 1
Hidden Layer 2|]
0 X T T N B Output Layer
10 2 p Ly

10° | | 3
I l]
|

107 I l 3
\.! \ E
N
| |]

108 \k"‘\\ [.
BN 5
(SR R A E

| v |

1076 N .

10 -7 | B | | | | | | | |

0 100 200 300 400 500 600 700 800 900 1000

1 000 = 50 Epochs - 20 Batches

Figure 5.83: Visualization of changes of weights of ANN for 50 training epochs for
20 trained systems corresponding to 20 values of £h. To avoid misunderstanding,
on the horizontal axes are epochs of the training. Hereby, each batch lasts 50
epochs and 20 batches are shown (again, 20 values of £h).

83

5. Exemplary Applications of Machine Learning Algorithms in WPLNC

Let us comment this Figure [5.83. Note, that all epochs corresponding
to a single value of £h are hereby referred to as a single batch. Firstly, we
can clearly see that the largest rate of cumulative change of the weights
was observed during the first batch, specifically within the initial 10 epochs.
All subsequent updates were of a significantly smaller impact. Secondly, all
batches are visually clearly separated by peak values, and the largest relative
rate of changes was mostly observed for the weights in the first hidden layer
(i.e. wgl)). It is also worth note that all the subsequent batches showed very
similar behavior.

In the previous section, we experimentally found that the considered ANN
starts to be successfully trained with 2 000 training samples. We can fix this
value and try to determine what is the required amount of training epochs.
Asking this question, we can see in Figure [5.83], that within the first batch,
the rate of changes significantly dropped after 30 epochs of training. Thus,
the example was repeated, with the number of training epochs decreased from
50 to 30. Visualization of evolution of ANN weights is shown in Figure [5.84l

Relative Squared Evolution of Weights

107 ‘ , ‘ ‘ .
[— — —Hidden Layer 1|]
i Hidden Layer 2|]
102 L{" ''''' Output Layer | |
i E
Hﬂ
N ‘ |
10 f{m‘l \ | ‘ | s
% l'l I | i i | |) | |\
o P e e ke
AR | \ N |
b S BN N T O (N0 N A L
S - [ERNE TR (N Y R N R AN
sLI IR Lo AN N Y A VY N N (S AR A (N
10 ? >N J N\ l\\‘ i‘ 5\\ I 1\‘ II\ \l, N i ~ \ i‘\ | ‘\ ‘\‘\\1‘ = \ 3
‘ N IR G\ (W N G AN AN AR A
[T I iV\ i \\i . !\‘\ I i N \\j N | | | N
- NN SO YN |
10 6 ? 3 | IR | \! \!]
F N
107 7 ‘ L L | ‘
0 100 200 300 400 500 600

600 = 30 Epochs - 20 Batches

Figure 5.84: Visualization of changes of weights of ANN for 30 training epochs
for 20 trained systems corresponding to 20 values of £h. Thus hereby, the
horizontal axes again carries the epochs, but 20 batches (for twenty different £h)
last only 30 epochs, compared to 50 in Figure |5.83|

In doing so, the amount of time required for training is significantly de-
creased, specifically by 40%. An appropriate question is: How does the
decrease in the number of training the epochs affect performance? For this
purpose, let us evaluate BER, averaged over all 20 tested values of £h. The re-
sult is shown in Figure 5.85/ and reveals that the impact seems to be negligible.
As expected, a greater number of training epochs caused better performance.
Note, 100 000 validation samples were used to test the performance over
individual SNRs.

Due to a large number of parameters in the system, it is not clear how to
optimize the parameters to save as many resources as possible. As noted, it
is desired to minimize the product of the number of training samples, D, and
the number of epochs denoted E. Two methods are proposed. Firstly, it is
not necessary to keep the number of epochs E constant. Ideally, a long initial
training sequence with a number of epochs E7 might be used to train the

84

5.6. Variable Relative Fading in 2WRC with BPSK

Dependence of BER on SNR of Validation Data

10° T T
1 —
10 =6 o
e _
@~ _
I S
102 RS
< B
~N S
* BNER
N ~ <
N x
]
& 107 * oS
N
/@ < h-N%
* RS
AN
-4 P — A\
10 — © — Trained Decision Map: 30 Epochs N
— B8 — Trained Decision Map: 50 Epochs %*
— % — Distance-Based Metric N\ <
True Metric Map N
107 3
10 -6 1 1 1 1 1 1 I I I
0 1 2 3 4 5 6 7 8 9 10
SNR [dB]

Figure 5.85: Comparison of averaged BER for reference methods and for average
BER of trained systems with 30 and 50 training epochs.

system as previously. Several subsequent training epochs can be performed
with a number of training epochs Fs, where Fo < Ej. Secondly, the value
of learning rate 7 might also be distinguished: Initially, let E; epochs be
performed with learning rate n; with an aim to properly turn on the system.
With an assumption of slowly changing £h, subsequent training of Fs epochs
can be performed with slightly larger learning rate 7y to partially compensate
the smaller value of E5.

Further, we might be interested, how these different values of Fy, Es and
11, n2 affect robustness of the classification. All the effect of past training
is erased when the ANN is reinitialized with small random weights. It is
desirable to explore how beneficial or malicious it is to keep the weights
updated instead of reinitialized. Three routines are proposed to study these
effects and used for comparison.

The first routine is shown in Figure 5.86 It is the simplest scenario, where
the weights are reinitialized before each training. It differs from the model
in previous Sections, such that initial training is performed with parameters
FE1,1m1, and then I —1 training for subsequent values of £h are performed with
parameters Fs,ns. This is meant to reduce the number of training epochs,
as described above. Besides this modification, it is the same scenario as
implemented before.

The second implemented training route is shown in Figure 5.87. In this
case, the reinitialization is performed only if ¢ = I, and thus the number of
reinitializations is decreased, and the effect of memory is introduced. The
random reinitialization is, in this case, meant to improve the robustness of the
routine. It tries to find a balance between the scenarios, where the weights of

85

5. Exemplary Applications of Machine Learning Algorithms in WPLNC

v

‘ Initialization: Generate Small Randnom Weights ‘

'

‘ Long Training: E; Epochs; Learning rate ny; ¢ =0 ‘

‘ Test with Validation Data Set; i =i + 1 ‘

‘ Small Change of Zh ‘

|
a)

‘ Initialization: Generate Small Randnom Weights ‘

‘ Short Training: Fo Epochs; Learning rate 19 ‘

‘ Test with Validation Data Set; i =i+ 1 ‘

‘ Small Change of Zh ‘

No Yes
i=1

Figure 5.86: Block diagram illustrating the implemented training routine, when
all the weights are reinitialized before each training.

ANN are randomly reinitialized before each training, and where the weights
are only updated. The longer training epochs are used for reinitialization
because therein seems the training to be the most efficient.

v

‘ Initialization: Generate Small Randnom Weights ‘

v

‘ Long Training: E; Epochs; Learning rate n;; ¢ =0 ‘

v

‘ Test with Validation Data Set; i =7+ 1 ‘

\ Small Change of Zh \

-

‘ Short Training: Fy Epochs; Learning rate 79 ‘

‘ Test with Validation Data Set; ¢ =7 + 1 ‘

v

‘ Small Change of Zh ‘

No /K Yes
=1

e

Figure 5.87: Block diagram illustrating the implemented training routine, when
all the weights are reinitialized only if ¢ = I.

The last scenario to be compared is described in Figure [5.88, and in this
case, the weights are randomly initialized only before the first training. All
the subsequent training is thus a modification of the previously trained
systems. This scenario assumes that the short training is sufficient to follow
the dynamics of the system, i.e., the changes of £h are only very small.

86

5.6. Variable Relative Fading in 2WRC with BPSK

Initialization: Generate Small Randnom Weights

l<
v

‘ Long Training: E; Epochs; Learning rate n1; ¢ =0 ‘

v

‘ Test with Validation Data Set; i =i+ 1 ‘

‘ Small Change of Zh ‘

g
al

‘ Short Training: Es Epochs; Learning rate nq ‘

‘ Test with Validation Data Set; i =i+ 1 ‘

‘ Small Change of Zh ‘

Figure 5.88: Block diagram illustrating the implemented training routine, when
all the weights are randomly initialized only before the first training.

These three described routines were implemented and used for comparison.
The point of using these three systems is to evaluate quantitatively, what is
the effect of a random reinitialization of the weights of the ANN for variable
values of £h. Two values of I were used for simulations, I = 3, and I = 5.

Parameter Value
m 0,05
2 0,07
ngtziden 40
"hidden 40
D 2 000
SNR of training data set —-1dB
E 30
Es 20
£h 80 steps (4,5° : 4,5° : 360°)
Size of validation data set 100 000

Table 5.9: Parameters of simulation for variable £h.

Further parameters of the performed simulations may be found in Table [5.9.
Let us emphasize that D = 2 000 training samples were used for each training
and that 80 different values of £h were used for verification with a step of
4,5°.

The resulting comparison may be found in Figure |5.89 Note that for
different procedures, only the same value of I is to be compared, since these
were obtained using the same amount of computations. Let us comment on
these results. We observe that the least successful approach resulted from
the reinitialization of the weights before each training. This fact validates
that it is meaningful to update the weights, instead of randomly reinitialize
them before each training. The most successful results were obtained from
the scenario, where the weights were randomly initialized only before the

87

5. Exemplary Applications of Machine Learning Algorithms in WPLNC

first training and subsequently were only modified by the backpropagation
algorithm, instead of randomly reinitialized. Observing these results, we can
also conclude that the smaller value of parameter I, which controls the rate of
longer training processes, results in better performance. This is intuitive since
it implies more training epochs. A middle performance is shown for a random
reinitialization before the long training processes, though, the difference is
not very significant.

Average Dependence of BER on SNR of Validation Data

107 F

— 4+ — Reinitialize if = 3
— B — Reinitialize if I =5
——+— Reinitialize Always; I =3
3 —+— Reinitialize Always; [=5
10 E|----4-.- Never Reinitialize; I = 3
: -+ Never Reinitialize; I =5
—%— Distance-Based Metric
True Metric Map

BER

0 2 4 6 8 10
SNR [dB]

Figure 5.89: Comparison of reference methods and resulting average BER of
different training procedures.

In Figures[5.90/—[5.92 are provided visualizations of updated of the weights
of the ANN for the value of I =5 for all three considered scenarios. These
figures are used to provide detailed information on how the training process
differed for individual scenarios. Let us emphasize that this experiment was
designed to fairly compare the individual methods, that were allowed to
perform a fixed number of training steps. (Operations for reinitialization of
the ANN are neglected.) We also remind that these plots are showing relative
changes of weights. Compared to the previous Figure [5.84), the bottom levels
of changes in the weights are for all the scenarios similar and around the
level of 1076, The weights in the first hidden layer seem to change the most,
during the training process. Note, weights evolution for only the first 35 out
of 85 values of £h are provided to make the figures more illustrative.

Finally, in Figure |5.93|is demonstrated, how much variance is in BER of
individually trained system. Only a single figure is provided for scenario
according to Figure [5.88, where the weights are never reinitialized, for I = 5.
Variability of the individual BERs was observed to be very similar to this
result for all the trained scenarios. Most of the trained systems seem to be
well trained, however performance demonstrated for several values of £h is

88

5.6. Variable Relative Fading in 2WRC with BPSK

Relative Squared Evolution of Weights

T T T T T T

i

|
i
fl
H!

100 3 — — —Hidden La;ferl 3
Eo ol | Hidden Layer 2
77777 Output Layer
el e htd
102 !E‘-!'-'ﬁ R AHIHE
i fetis i il :
LI b 't“ﬁh
LRSI IR
I [l 4 I I
| i

=

i

P

T
o

10-6 L I I

0 100 200 300 400 500 600 700
770 Epochs in 35 Batches

Figure 5.90: Visualization of changes of weights of ANN according to training
procedure in Figure [5.87, where the weights are reinitialized before each training.
It is not very illustrative, but we can observe rapid changes during all epochs of
the training, caused by reinitialization. Within individual batches, corresponding
to the individual values of £h, a significant peak is caused by re-initialization
of the weights to small random numbers. In this and two subsequent figures,
35 batches correspond to 35 values of £h. Since I = 5, first batch lasts 30

epochs; 4 subsequent batches last 20 epochs. Therefore 7 complete cycles of 110
(=30 +4-20) epochs are shown.

very bad, and these probably do not meet the minimal conditions to allow
successful communication. It is questionable, how meaningful it is to observe
an average value of BER; possibly, the worst cases might be compared.

In this section was presented a modification of the previously trained
system for an operation in a channel with a slowly varying angle of relative
phase coefficient. Aspects of tuning the systems for minimal computational
complexity were considered and addressed. Three scenarios were implemented
and compared. The results were demonstrated, and the parameters were
tuned to obtain satisfactory results for a scenario, where the weights of the
ANN were updated during slow changes of the £h. For the fixed amount of
training samples D = 2 000, the number of training epochs was (on average)
decreased from 50 per batch to 22 for I = 5. Quantitatively, the number of
operations required for training was thus decreased by 56 %.

This approach might be virtually considered as an alternative to Hierarchical
Channel State Estimator, presented in [25] and [26].

89

5. Exemplary Applications of Machine Learning Algorithms in WPLNC

Relative Squared Evolution of Weights

T

100 < — — _Hidden Layer 1] 3
F Hidden Layer 2
77777 Output Layer

T

T

< 7T
el
== -
=
=
o
—
>
=
=
=
—

1 L 1 1 1 1
100 200 300 400 500 600 700
770 Epochs in 35 Batches

Figure 5.91: Visualization of changes of weights of ANN according to training
procedure in Figure |5.87, where the weights are reinitialized only when ¢ = I.
All 35 individual batches corresponding to individual values of £h are visually
clearly separated.

Relative Squared Evolution of Weights
T T T T T T T
10° E — — —Hidden Layer 1| 7
F Hidden Layer 2
77777 Output Layer

200 300 400 500 600 700
770 Epochs in 35 Batches

Figure 5.92: Visualization of changes of weights of ANN according to training
procedure in Figure Compared to previous Figures and we can
clearly distinguish, that the updates during the training process are significantly
smaller and the only significant peak value corresponds to the only random
initialization at the beginning of the simulation.

90

Dependence of BER on SNR of Validation Data

5.6. Variable Relative Fading in 2WRC with BPSK

100

10~

102 F

BER

1038 ¢

1074 F

— © — Average of Trained Decision Map
— % — Distance-Based Metric

— % — True Metric Map

————— 80 Individual Trained Maps

10°°

3 4 5 6 7 8 9
SNR [dB]

Figure 5.93: Comparison of reference methods and resulting average BER to-
gether with BER of all 80 individually trained systems for different £h, according
to training procedure in Figure for I = 5.

91

92

Chapter 6

Conclusions

The main objective of this thesis was to investigate how the approaches of
ML might be useful in the field of WPLNC. In the introductory chapters, the
fundamental principles of ML and WPLNC were briefly explained. Subse-
quently, the fundamental theory about ANN was addressed, and examples
were implemented.

The knowledge obtained in the initial part was then utilized to define
selected problems from the broad topic of WPLNC. Let us summarize the
achieved results. In Section [5.2| was considered a problem of an unknown
amount of transceivers in the WPLNC scenario, simplified by an assumption
of zero phase-shift. In Section [5.3| was considered a problem of classification
of hierarchical symbols in 2WRC with BPSK and developed a system to
perform this classification and to determine the corresponding decision regions.
This task was subsequently extended and tested in 2WRC with QPSK in
Section [5.4. Results provided in these sections demonstrate that the trained
systems based on ANN have representational ability to perform these tasks.
Reference solutions were implemented and used to evaluate the performance.

Since the parameters of the trained systems were determined experimen-
tally, the number of training samples used for training was quite excessive.
Therefore, Section |5.5| provided results that show a dependence of the per-
formance of the training process on the size of the training data set. For
a selected system, tested previously in Section [5.3, a sufficient number of
training samples was experimentally determined.

To make the considered task of classification of hierarchical symbols more
practical, in Section [5.6 was considered a situation where the relative fading
parameter is slowly variable. An effort was made to minimize the resources
required for the training of the system. A simple routine to solve this task
was proposed an tested. The number of resources required for training was
significantly reduced, compared to initial roughly guessed parameters, while
average performance was not seriously decreased.

My contribution is that based on the studied theory (i.e., fundamentals
of ML and WPLNC; ANN; stochastic gradient descent, backpropagation
algorithm), I implemented and tested the performance of the solutions of
the stated exemplary problems. The obtained results were evaluated and
compared to the reference solutions, and graphically represented.

93

94

Bibliography

E. Alpaydin, Introduction to machine learning, 2nd ed. Cambridge,
Mass: MIT Press, 2010.

C. M. Bishop, Pattern recognition and machine learning. New York:
Springer, 2006.

O. Simeone, “A brief introduction to machine learning for
engineers,” CoRR, vol. abs/1709.02840, 2017. [Online]. Available:
http://arxiv.org/abs/1709.02840

O. Simeone, “A very brief introduction to machine learning with appli-
cations to communication systems,” IEEE Transactions on Cognitive
Communications and Networking, vol. 4, no. 4, pp. 648-664, Dec 2018.

S. Peng, H. Jiang, H. Wang, H. Alwageed, Y. Zhou, M. M. Sebdani,
and Y. Yao, “Modulation classification based on signal constellation
diagrams and deep learning,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 30, no. 3, pp. 718-727, March 2019.

S. M. Hiremath, S. Behura, S. Kedia, S. Deshmukh, and S. K. Patra,
“Deep learning-based modulation classification using time and stockwell

domain channeling,” in 2019 National Conference on Communications
(NCC), Feb 2019, pp. 1-6.

S. Fang and T. Lin, “Indoor location system based on discriminant-
adaptive neural network in ieee 802.11 environments,” IEEE Transactions
on Neural Networks, vol. 19, no. 11, pp. 1973-1978, Nov 2008.

C. Hsu, Y. Chen, T. Juang, and Y. Wu, “An adaptive wi-fi indoor
localization scheme using deep learning,” in 2018 IEEE Asia-Pacific
Conference on Antennas and Propagation (APCAP), Aug 2018, pp.
132-133.

A. Balatsoukas-Stimming, “Non-linear digital self-interference cancella-
tion for in-band full-duplex radios using neural networks,” in 2018 IEEE
19th International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), June 2018, pp. 1-5.

A. Zappone, M. D. Renzo, and M. Debbah, “Wireless networks design
in the era of deep learning: Model-based, ai-based, or both?” 2019.

95

http://arxiv.org/abs/1709.02840

Bibliography

[11]

[14]

[15]

[16]

[19]

[20]

J. Jagannath, N. Polosky, A. Jagannath, F. Restuccia, and T. Melodia,
“Machine learning for wireless communications in the internet of things:
A comprehensive survey,” CoRR, vol. abs/1901.07947, 2019. [Online].
Available: |http://arxiv.org/abs/1901.07947

“Machine learning for communications emerging technologies initiative,”
New York, 2019. [Online|. Available: https://mlc.committees.comsoc|
org/research-library/

T. J. O’Shea, K. Karra, and T. C. Clancy, “Learning to communicate:
Channel auto-encoders, domain specific regularizers, and attention,” in
2016 IEEE International Symposium on Signal Processing and Informa-
tion Technology (ISSPIT), Dec 2016, pp. 223-228.

T. O’Shea and J. Hoydis, “An introduction to deep learning for the
physical layer,” IEEE Transactions on Cognitive Communications and
Networking, vol. 3, no. 4, pp. 563-575, Dec 2017.

C. de Vrieze, S. Barratt, D. Tsai, and A. Sahai, “Cooperative multi-agent
reinforcement learning for low-level wireless communication,” 2018.

T. Hynek, “Distributed algorithms for wireless physical layer network
coding self-organisation in cloud communication networks,” 2017.
[Online|. Available: |https://dspace.cvut.cz/handle/10467 /67682

T. Matsumine, T. Koike-Akino, and Y. Wang, “Deep learning-based
constellation optimization for physical network coding in two-way relay
networks,” 2019.

A. Pastore, P. de Kerret, M. Navarro, D. Gregoratti, and D. Gesbert,
“Neural network aided decoding for physical-layer network coding random
access,” 2018.

J. Sykora and A. Burr, Wireless physical layer network coding. Cam-
bridge: Cambridge University Press, 2018.

vvvvv

channels and systems with partial hierarchical side-information,” 2014.
[Online|. Available: |https://dspace.cvut.cz/handle/10467 /22862

X. Wang, L. Kong, F. Kong, F. Qiu, M. Xia, S. Arnon, and G. Chen,
“Millimeter wave communication: A comprehensive survey,” IEEE Com-
munications Surveys Tutorials, vol. 20, no. 3, pp. 1616-1653, thirdquarter
2018.

T. M. Mitchell, Machine learning. Boston: McGraw-Hill, 1997.

P. Chandra and Y. Singh, “Regularization and feedforward artificial
neural network training with noise,” vol. 3, pp. 2366—2371 vol.3, July
2003.

A. Seghouane, Y. Moudden, and G. Fleury, “On learning feedforward
neural networks with noise injection into inputs,” pp. 149-158, Sep. 2002.

P. Hron, “Channel estimation and network coded modulation for
parametric H-MAC Channel in WPNC Radio Networks,” 2019. [Online].
Available: |https://dspace.cvut.cz/handle/10467 /82566

96

http://arxiv.org/abs/1901.07947
https://mlc.committees.comsoc.org/research-library/
https://mlc.committees.comsoc.org/research-library/
https://dspace.cvut.cz/handle/10467/67682
https://dspace.cvut.cz/handle/10467/22862
https://dspace.cvut.cz/handle/10467/82566

Bibliography

[26] P. Hron and J. Sykora, “Performance analysis of hierarchical decision
aided 2-source BPSK H-MAC CSE with feed-back gradient solver for
WPNC networks,” 2019.

97

98

Appendix A

Appendix

B A.1 MATLAB Code to Train ANN with
Backpropagation Algorithm to Classify XOR

Y Y A A Y A
ANKUA% Script to illustrate backpropagation algorithm LALKNA%
AIREHH Jakub Kolar, last edit 19. 12. 2019 ABIIIIHA
BIIBBRIIBBRIIIIBIRIIB BT T s ls 1o lods s s 1s 1o s s s 1o 1o s 15 s o Ta s s s Do Do s 15 s Do Do 2 1 o Do o 25 25 o o
Athis specific exzample learns XOR function classification

A% initialization of the ANN

clear all;

close all;

D=4; Jnumber of training samples

x=[0 0; 0 1; 1 0; 1 11; % training inputs - samples
t=[0;1;1;0]; 7 training inputs - desired outputs

n_in = 2; /parameters of the network

n_out = 1;

n_hidden = 2;

K=0.2;

eta = .5; J learning rate

w_hidden=K*randn(n_in, n_hidden); /initialize weights
bias_hidden=K*randn(n_hidden,1);
w_output=K*randn(n_hidden, n_out);
bias_out=K*randn(n_out,1);

c=0; /Zto count outputs

4% training process
for epoch = 1: 5000 / <terate epochs

for i = 1:4 Jiterate training inputs
c=c+1;

/Aforward feed the network

for h =1 : n_hidden

activation_hidden(h) = x(i,:)*w_hidden(:,h);
activation_hidden(h)= activation_hidden(h) + bias_hidden(h);
sigmoid_hidden(h) = 1/(1+exp(-activation_hidden(h)));

end

99

A. Appendix

activation_output=sigmoid_hidden*w_output;
activation_output=activation_output+bias_out;
sigmoid_output= 1/(1+exp(-activation_output));

shbackpropagate error

/#compute delta parameters

delta_output = sigmoid_output*(l-sigmoid_output)*
(t(i)-sigmoid_output) ;

err(c)=t(i)-sigmoid_output; Jcapture error term of the network

for h = 1 : n_hidden
delta_h(h)=sigmoid_hidden(h)*(1-sigmoid_hidden (h))*
delta_output*w_output (h) ;

end

Jupdate the weights
bias_out = bias_out+ eta*delta_output;

for h =1 : n_hidden
bias_hidden(h) = bias_hidden(h)+eta*delta_h(h);
w_hidden(:,h)=w_hidden(:,h)+eta*x(i,:)’*delta_h(h);
w_output=w_output+eta*delta_output*sigmoid_hidden’;
end

end Jend of cycle for training samples
end /end of cycle for the epochs

4% plot decision boundary

% how to feed trained metwork with arbitrary data x

x=[0 1];

for h = 1 : n_hidden

activation_hidden(h) = x*w_hidden(:,h);
activation_hidden(h)= activation_hidden(h) + bias_hidden(h);
sigmoid_hidden(h) = 1/(1+exp(-activation_hidden(h)));

end

activation_output=sigmoid_hidden*w_output;
activation_output=activation_output+bias_out;
sigmoid_output_test= 1/(1+exp(-activation_output));

/4 determine the decision boundary
x_val=-.10:1/100:1.1;
x_21=-(w_hidden(1,1)/w_hidden(2,1))*x_val-
bias_hidden(1)/w_hidden(2,1);
x_22=-(w_hidden(1,2)/w_hidden(2,2))*x_val-
bias_hidden(2)/w_hidden(2,2);
Xx_3=-bias_out/w_output;

4% figure to visualize decision boundary and data
figure;

100

A.1. MATLAB Code to Train ANN with Backpropagation Algorithm to Classify XOR

plot(x_val,x_21);

hold on;

plot(x_val,x_22);

axis([-0.1 1.1 -0.1 1.1]);

hold on;

scatter([0;1],[1;0]);

hold on;

scatter([1;0],[1;0]);

hold off;

ttli=title(’Learned, XOR_ function’);

ttll=set(ttll,’Interpreter’,’latex’,’FontSize’, 15);

x1bli=xlabel (’$x 1%$°);

x1bli=set (x1bll,’Interpreter’,’latex’);

ylbli=ylabel(’x_2);

ylbll=set (ylbll, ’Interpreter’,’latex’);

lgd = legend(’Decision, Boundary of Hidden, Neuron,1’,
’Decision Boundary, of Hidden Neuron 2’,...
PXOR($x_1,x 2$)=_1’,°X0R($x_1,x 2$)=,0");

lgd=set (1gd,’Interpreter’,’latex’);

grid on;

4% figure to visualize convergence (error term reduces)

figure;

plot(1:epoch, (err(1:4:end)));

hold on;

plot(1:epoch, (err(2:4:end)));

hold on;

plot(1l:epoch, (err(3:4:end)));

hold on;

plot(1:epoch, (err(4:4:end)));

hold off;

ttll=title(’Error Term ,,for Different Training Inputs’);

ttll=set(ttll,’Interpreter’,’latex’,’FontSize’, 15);

x1bli=xlabel (’Training Epochs’);

x1bll=set (x1bl1l, ’Interpreter’,’latex’); /4 latex friendly :o)

ylbli=ylabel (’Error Term $(t-0)$,’);

ylbll=set (ylbll,’Interpreter’,’latex’);

lgd = legend(’$(t-o)$ for $x_1,=0,0,,x_2=,0,,t,=,0$",
’$(t-o)$ufor$x_1,=,0, x_2=,1, t,=u1$’,
’$(t-0)$ for $x 1.=11,.x_2=,0, t =,1%’,
’$(t-0)$ for $x_1, =,1,.x_2=,1,,t.,=,0%");

lgd=set(lgd,’Interpreter’,’latex’);

grid on;

101

A. Appendix

B A.2 Folder List of the Attached CD

thesis.pdf Jtext of the thesis
codes /scontains all the utilized MATLAB scripts
chapter_2
polynomilal_curve_fitting
figures_pol_fit
chapter_4
1_gradient_descent
2_sigmoid
3_backpropagation
4 auto_encoder
chapter_5
Section_5_2 count_users
Section_5_3_detect_symbols_2wrc_bpsk_xor
intro_example
Setup_1
Setup_1_figures
SNR_minus_1_500
h 0.7
h 1
Setup_2
Setup_2_figures
SNR_minus_1_500_70
h 07
h 1
test_SNR_bpsk
Section_b_4_detect_symbols_2wrc_qpsk_xor
simulation_results_SNR_11
figs_SNR_11
h 0.7
h_1
SNR_gpsk
0_7
0_7_j_pi_6
1
pi_6
Section_5_5_effect_of_D_to_training
results
SNR_10
SNR_5
SNR_7_5
Section_b5_6_online_mode_2wrc_bpsk_xor
Section_5_6_1_tuned_parameters
1 reinit _I_3
2_reinit_I_5
3_reinit_always_I_3
4 _reinint_always_I_5
5 reinit _never I 3
6_reinit_never_I_5
Section_5_6_compare_30_50_epochs
Section_5_6_initial_example

102

	Introduction
	Machine Learning: An Overview
	Preface
	Introduction
	Basic Terminology
	Introductory Example: Polynomial Curve Fitting

	Current Trends of Machine Learning in Communications
	Supervised Learning in Wireless Systems
	Unsupervised Learning in Wireless Systems
	Reinforcement Learning in Wireless Systems
	Machine Learning in WPLNC

	List of Machine Learning Approaches

	Brief Fundamentals of Wireless Physical Layer Network Coding
	Introduction
	Network Coding
	Wireless Physical Layer Network Coding

	Artificial Neural Networks
	Introduction
	Gradient Descent
	Example: Gradient Descent Training

	Stochastic Gradient Descent
	Example: Stochastic Gradient Descent Training

	Backpropagation Algorithm
	Example: Backpropagation Algorithm to Learn XOR
	Example: Auto-encoder

	Exemplary Applications of Machine Learning Algorithms in WPLNC
	Introduction
	Notes to the Implementation

	Simplified Scenario: Classification of Transmitters on Relay Node
	Classification of Hierarchical Symbols in simplified 2WRC with BPSK
	Problem Formulation
	 Illustration of Degrees of Freedom of the Problem
	Parameters of the simulation
	Introductory Example
	Regularization through Noise

	Classification of Hierarchical Symbols in simplified 2WRC with QPSK
	Extension to QPSK
	Exemplary Results

	Effect of Size of Training Data Set on Classification in 2WRC with BPSK
	Variable Relative Fading in 2WRC with BPSK
	Analysis of the Parameters and Tuning

	Conclusions
	Bibliography
	Appendix
	MATLAB Code to Train ANN with Backpropagation Algorithm to Classify XOR
	Folder List of the Attached CD

