
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Deep neural network for city mapping using
Google Street View data

Varun Burde

Supervisor: Ing.Michal Reinštein,Ph.D.
Field of study: Cybernetics and Robotics
Subfield: Robotics
January 2020

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

478596Personal ID number:Burde VarunStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

Cybernetics and RoboticsBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Deep neural network for city mapping using Google Street View data

Master’s thesis title in Czech:

Hluboká neuronová sít pro mapování města s využitím dat z Google Street View

Guidelines:
The aim is to design, implement and experimentally evaluate a deep neural network based solution for city mapping using
Google Street View images. The proposed software solution should allow the user to request Google Street View imagery
for any location, perform analysis and feature extraction using deep neural network(s) and output vectorized description
projected and visualized over the underlying map.
Instructions are as follows:
1. Study the state-of-the-art literature relevant to the thesis [1-7].
2. Explore the TensorFlow framework [7] and use it with Python to design, implement and evaluate a deep neural network
model [3].
3. For experimental evaluation use publicly available datasets; existing pre-trained models should be explored first.
4. Design and implement user interface for the application execution, processing of the input images and visualization of
results; Google Colab utilising TPUs is recommended.
5. Compare the results with related state-of-the-art work [4, 5, 6].

Bibliography / sources:
[1] Goodfellow, Ian, et al. „Deep Learning“, MIT Press, 2016
[2] Szegedy, Christian, et al. "Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning."
AAAI. 2017. APA
[3] He, Kaiming, et al. "Mask R-CNN" arXiv preprint arXiv:1703.06870 (2017).
[4] Liu, Ming-Yu, et al. "Layered interpretation of street view images." arXiv preprint arXiv:1506.04723 (2015).
[5] Kang, Jian, et al. "Building instance classification using street view images." ISPRS Journal of Photogrammetry
and Remote Sensing (2018).
[6] Law, Stephen, Brooks Paige, and Chris Russell. "Take a look around: using street view and satellite images
to estimate house prices." arXiv preprint arXiv:1807.07155 (2018).
[7] Abadi, Martın, et al. "TensorFlow: Large-scale machine learning on heterogeneous systems, 2015." Software
available from tensorflow.org.

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Name and workplace of master’s thesis supervisor:

Ing. Michal Reinštein, Ph.D., Vision for Robotics and Autonomous Systems, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 07.01.2020Date of master’s thesis assignment: 24.01.2019

Assignment valid until:
by the end of summer semester 2020/2021

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
Ing. Michal Reinštein, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Acknowledgements
I want to acknowledge the help of all

of those who made this project possible.
I want to start by thanking my parents
for their unconditional love and support
during my thesis. I want to express my
sincere gratitude to my supervisor Ing.
Michal Reinštein, Ph.D., for his time, pa-
tience, guidance, and also for allowing the
idea to persuade originally, and made this
project successful. Furthermore, I would
like to thank all those people who work on
all open source projects mentioned in the
reference. And all generous people who
post the discussion and blogs for all useful
learning resources. I am also thankful for
Google LLC, who is offering free resources
like Google Colab laboratory and API for
the emerging developer.

Declaration
I declare that this work is all my own work
and I have cited all sources I have used in
the bibliography.

Prague, January , 2020

Prohlašuji, že jsem předloženou práci
vypracoval samostatně, a že jsem uvedl
veškerou použitou literaturu.

V Praze, . ledna 2020

v

Abstract
With the advancement of computation
power and large datasets, a massive im-
provement of the deep neural network
leads to many widespread applications.
One of the applications of the deep neural
network is solving computer vision prob-
lems like classification and segmentation.
Competition like ImageNet[1] Large Scale
Visual Recognition Challenge[2], took the
capability to the next level; in some cases,
classification is better than human.

This thesis is an example of an appli-
cation that utilizes the ability of neural
networks. The document describes the im-
plementation, methodology, experiments
done for developing software solutions by
using the deep neural network on image
resources form Google Street View images
[3].

The user provides a geojson file con-
sists of an area of interest in the form of
square or polygon as the input. Google
StreetView API [3] downloads the avail-
able images. The images are first pro-
cessed with the state of the art CNN
(Mask R-CNN[4]) to detect the objects,
classify them with the confidence score,
generate a bounding box, and a pixel-wise
mask around the detected object. The
text file stores information like coordi-
nates of the bounding box, name of the
class, and the mask values.

An ordinary RGB (panoramic) image
from GSV does not consist of any depth
data. The images are processed with an-
other state of art CNN (monodepth2[5]),
to estimate the pixel-wise depth of the
objects in the images.

The averaged value of the depth within
the mask is used as the distance of the
object. The coordinates of the bounding
box are used for positioning of the object
in other axes.

The resulting outputs are markers of
detected objects underlying in the map. A
bar graph to visualize the number of detec-

tion per class. A text file containing the
number of detection per each class. The
output from each processing step above,
like detections, depth images, mask values
to compare and evaluate.

Keywords: Google Street View, Mask
R-CNN, Monodepth2, Object detection,
Deep neural network, City mapping

Supervisor: Ing.Michal Reinštein,Ph.D.
E225b,
Karlovo nam. 13,
121 35 Prague 2,
Czech Republic

vi

Abstrakt
S rozvojem výpočetní síly a rozsáhlými
datovými soubory vede masivní zlepšení
hluboké neuronové sítě k mnoha rozšíře-
ným aplikacím. Jednou z aplikací hluboké
neuronové sítě je řešení problémů počíta-
čového vidění, jako je klasifikace a segmen-
tace. Soutěž jako ImageNet [1] Výzva pro
vizuální rozpoznávání ve velkém měřítku
[2] posunula schopnost na další úroveň;
v některých případech je klasifikace lepší
než lidská.

Tato práce je příkladem aplikace vyu-
žívající schopnost neuronových sítí. Do-
kument popisuje implementaci, metodiku,
experimenty prováděné pro vývoj softwa-
rových řešení pomocí hluboké neuronové
sítě na obrázkových prostředcích z ob-
rázků Google Street View [3].

Uživatel poskytuje soubor geojson se-
stávající z oblasti zájmu ve tvaru čtverce
nebo mnohoúhelníku jako vstup. Google
StreetView API[3] stáhne dostupné ob-
rázky. Snímky jsou nejprve zpracovány
pomocí nejmodernějších CNN (Mask R-
CNN [4]), aby detekovaly objekty, kla-
sifikovaly je pomocí skóre spolehlivosti,
vytvořily ohraničující rámeček a kolem
detekovaného objektu malovaly pixely. .
Textový soubor ukládá informace, jako
jsou souřadnice ohraničovacího rámečku,
název třídy a hodnoty masky.

Obyčejný RGB (panoramatický) sní-
mek z GSV neobsahuje žádné hloubkové
údaje. Obrázky jsou zpracovávány s jiným
nejmodernějším CNN (monodepth2[5]),
aby se odhadla hloubka objektů v obra-
zech po pixelech.

Průměrná hodnota hloubky v masce se
používá jako vzdálenost objektu. Souřad-
nice ohraničovacího rámečku se používají
pro umístění objektu v jiných osách.

Výsledné výstupy jsou markery deteko-
vaných objektů, které jsou základem mapy.
Sloupcový graf pro vizualizaci počtu de-
tekcí ve třídě. Textový soubor obsahující
počet detekcí pro každou třídu. Výstup

z každého kroku zpracování výše, jako
jsou detekce, hloubkové obrázky, hodnoty
masky pro porovnání a vyhodnocení.

Klíčová slova: Google Street View,
Mask R-CNN, Monodepth2, Detekce
objektů, Hluboká neuronová síť,
Mapování města

vii

Contents
List of Abbreviations 1
1 Introduction 3
1.1 Motivation . 3
1.2 Aim and objective of the thesis . . 3
1.3 Overview of Thesis 4
1.4 Structure of thesis 4
2 Related Work 7
3 Theory 11
3.1 Image Classification 11
3.2 Semantic Segmentation 11
3.3 Instance segmentation 11
3.4 Feature extraction 11
3.5 Neural Network 12
3.5.1 Regression task 12
3.5.2 Loss function 13
3.5.3 Forward propagation 16
3.5.4 Backpropagation 17
3.5.5 Activation functions 18
3.5.6 Overfitting 20

3.6 Dropout regularization 20
3.7 Deep learning 21
3.8 Convolutional neural network . . 21
3.8.1 Convolutional layers 21
3.8.2 Pooling layer 22

3.9 Neural network architectures for
Image classification 23
3.9.1 VGG16 and VGG19 23
3.9.2 ResNet50 23
3.9.3 Inceptionv3 24
3.9.4 Xception 24
3.9.5 Mobilenet v2 24
3.9.6 Densenet 24
3.9.7 Nasnet 24
3.9.8 Mask R-CNN 24

3.10 Neural network for depth
estimation . 26
3.10.1 Monodepth 26
3.10.2 Monodepth2 26

3.11 Evalution of machine learning
model . 27
3.11.1 Confusion matrix 28
3.11.2 Accuracy 29
3.11.3 Misclassification rate 29
3.11.4 True positive rate 29
3.11.5 True negative rate 29

3.11.6 Precision 30
3.12 Multi class evaluation 30
4 Software tools 31
4.1 Google Direction API 31
4.2 Google Street View API 31
4.3 Folium . 31
4.4 KERAS . 31
4.5 TensorFlow 32
4.6 Pytorch . 32
4.7 Google Colab 32
5 Implementation 33
5.1 Input . 33
5.2 Creating a query 33
5.3 Downloading of Images from
location . 33
5.3.1 Structure of metadata 34

5.4 File Handling 34
5.5 Classification and segmentation . 35
5.5.1 Mask dictionary 36

5.6 Depth estimation 36
5.7 Depth Analysis 37
5.8 Creating Geojson file and map . 38
5.9 Statistics . 38
6 Methodology 39
6.1 Building query 39
6.2 Overpass API 39
6.3 Downloading the Images with
Google Street View API 40
6.3.1 Selecting the parameter for
Google street view API 40

6.4 Maintenance of dictionary 41
6.5 File handling 41
6.6 Classification and segmentation . 42
6.7 Depth of the detected object . . 43
6.8 Depth Analysis 44
6.9 The scheme of creating the map 45
6.10 Marker visualization in the map 46
6.11 Implementation in Google Colab 47
6.11.1 Building the environment . . 47
6.11.2 Downloading and running of
scripts . 47

6.11.3 Visualization 47
6.12 Experimentation 48
6.12.1 Downloading images from the
status of GSV API 48

viii

6.12.2 Mapping without depth
Image . 48

6.12.3 Changing parameters of Mask
R-CNN. 49

6.13 Clustering 49
6.14 Waypoint coordinates 49
7 Experimentation evaluation 55
7.1 Resulting map from the Setup . . 55
7.2 Result of Map generation with
overpass API nodes 55

7.3 Mapping with the geometric
method and Kmeans clustering . . . 55

7.4 Mapping using depth and
metadata . 56

7.5 Use of GSV API to download the
sequence of image 57

7.6 Performance of Mask R-CNN on
GSV dataset 57

7.7 Performance of GSV Images . . . 58
7.8 Performance of Depth Images . . 59
7.9 Performance of Folium 59
8 Results 61
8.1 Performance of localization 61
8.2 Performance on large data set . . 61
8.3 Drawback . 63
8.3.1 Location of the markers are not
correct . 64

8.3.2 Google Colab 64
8.4 Future work 65
8.4.1 Training own dataset 65
8.4.2 Downloading sequence of
images . 65

9 Conclusion 67
A Pictures 69
B File structure 77
B.1 Structure of Files 78
B.2 Structure of Downloads 79
B.3 Structure of Masks 79
B.4 Structure of Mask_depth. 79
B.5 Structure of database 80
C Bibliography 81

ix

Figures
3.1 Example of image classification
where the object is classified as the
car in the image 12

3.2 Semantic segmentation, where the
girl and horse are segmented from
the whole image[6] 13

3.3 Instance segmentation of class bus
with the green mask 14

3.4 Multiple regression model as linear
neuron [7] . 14

3.5 Structure of three layers of neural
network . 16

3.6 Three layer neural network with
parameter[8] 16

3.7 Backpropagation error[8] 17
3.8 Softmax function [9] 19
3.9 Relu function[9] 19
3.10 TanH function [9] 20
3.11 Convolution of filter or kernel K
(center) blue matrix with the
receptive field (red) of Image I (left)
and its output (green) one node of
feature map I*K (right) 22

3.12 Example of max pooling where
the max is taken over 4 number with
stride 2 [10] . 23

3.13 Micro architecture of Resnet 50
[11] . 23

3.14 Head architecture of Mask
R-CNN [4]. Left side of the
architecture is extend version of
Faster R-CNN with ResNet [12] and
right side is extend version of Faster
R-CNN with FPN [13] 26

3.15 Loss model with left and right
disparity maps ,dl and dr.The same
module is input for four different
output scales. C:Convolutional, UC:
Up-Convolutional, S:Bilinear
Sampling, US: Up-Sampling, SC:Skip
Connection[14] 27

3.16 Overview of Monodepth2 Network
[5] . 27

3.17 Confusion matrix for multiclass
classification [15] 30

4.1 Street view work flow [16] 32

5.1 The proposed pipeline for city
mapping . 34

5.2 Example of downloaded
image(640x640)from GSV API . . . 35

5.3 Structure of metadata from GSV
API . 35

5.4 Structure of mask dictionary . . . 36
5.5 Example of the resulted image
processed with Mask R-CNN with
different color mask and confidence
score of the detected class 36

5.6 Example of resulted depth image
processed with monodepth2 when
converted to grayscale 37

5.7 Structure of final dictionary 37
5.8 Individual depth masks of detected
class with their estimated depth
value . 38

5.9 Structure of output geojson file . 38

6.1 Parameters of GSV query 40
6.2 Downloaded GSV image with the
different pitch angle 41

6.3 Wrong classification of class knife
with good confidence score of 0.76 43

6.4 An estimated depth value(rounded
off to whole number) of objects inside
bounding boxes 44

6.5 Detected objects and their
converted gray scale image 45

6.6 Scheme for estimating the location
of an object, with different heading
angles. 46

6.7 Resulting map from the geojson
file . 47

6.8 Resulting map from the folium . 47
6.9 Flow chart for downloading the
image with the status result 51

6.10 Geometric approach of finding
location of object from the image
considering (320,640) as the center of
coordinate system 52

6.11 Polyline with corresponding
coordinates . 52

x

6.12 Resulting waypoints from polyline
from Google Direction API. The
points have been decoded and placed
in form of White marker 53

6.13 Sampled waypoints when the
distance between two waypoints is
greater than minimum distance . . . 53

7.1 Resultant marker when using the
geometric mean and clustering
approch . 56

7.2 Misclassification of the grill (purple
mask) as the bench with confidence
score of 0.97 57

7.3 Street name text (red mask) is
classified as the car 58

7.4 Person is detected in between the
trees with confidence 0.95 58

7.5 No detection(false negative) of
class car (red car) 59

7.6 Shift of the lanes from left to right
on straight road though the
coordinates of image is at center of
road . 59

7.7 Glitchs in GSV 60
7.8 Visual reference of the estimated
depth . 60

8.1 Downloaded images at 0 and 90
heading . 62

8.2 Downloaded images at 180 and 270
heading . 62

8.3 Markers of the detected class on
the map , purple marker shows the
traffic light light orange shows potted
plant . 63

8.4 Combination of various database
together with bounding box as given
input and marker points as the
output . 64

8.5 Giraffes detected during test . . . 65
8.6 Sequence of images downloaded
from left to right 66

A.1 Availability of GSV images in
Munich . 70

A.2 Munich street with input
bounding box (black) with the
resulting marker 70

A.3 Availability of GSV images in
Prague street 71

A.4 Street in Prague with area of
interest as bounding box (black) with
the resulting marker 71

A.5 Availability of GSV images at area
of interest . 73

A.6 Resulting visualization of large
scale map with 17336 detections . . 73

A.7 Confusion matrix of 81 classes . 75

xi

Tables
2.1 Segmentation results on data
science bowl 2018 challenge[17] 9

3.1 Comparision of monodepth2 with
the existing method on KITTI 2015
using Eigen split[5] where, D - Depth
supervision, S - Self-supervised stereo
supervison, M - Self-supervised stereo
supervison . 28

3.2 Confusion matrix for the binary
classification[18] 28

6.1 Configurable parameters of Mask
R-CNN . 43

8.1 Number of detection with their
classes . 63

A.1 Number of detected objects per
class within area of interest(Munich) 69

A.2 Number of detected object per
class within area of interest(Prague) 72

A.3 Number of detected object per
class . 74

xii

List of Abbreviations

Abbrevation Full form

DNN Deep Neural Network
GSV Google Street View
CNN Convolutional Neural Network
COCO Comman Objects in Context
API Application Program Interface
FCNN Fully Convolutional Neural Network
RGB Red Green Blue

1

2

Chapter 1
Introduction

1.1 Motivation

In recent years, many applications have been developed using neural networks.
Especially the use of a CNN for image processing has opened the doors
of solving computer vision problems[19] with computers. Maps provide
important information to the user in terms of navigation and the landmarks.
Productivity can be further improved by adding more features to the map.
It can be either a bus station, a post box, or any object of interest. Google
has been providing street images in form GSV images for a long time. These
images carry a big set of information that can be transformed to create a
useful application. With the unlimited possibility of applications using GSV
images, the thesis describes a novel solution of mapping the whole city using
the DNN. An approach of using neural networks to find features from images
and placing over the underlying map in the form of a marker.

1.2 Aim and objective of the thesis

The aim is to design, implement, and experimentally evaluate a deep neural
network-based solution for city mapping using Google Street View images
[3]. The proposed software solution should allow the user to request Google
Street View imagery for any given location specified as geojson[20], perform
analysis and feature extraction using the deep neural network(s) and output
vectorized description projected and visualized over an underlying map. The
user interface for the application execution, processing of the input images,
and visualization of the results should be realized using Google Colab [21] to
utilize Google TPUs. Existing pre-trained models should be explored. First,
a thorough experimental evaluation of publicly available datasets should
follow. Comparison with related state-of-the-art is an integral part of the
work and should be presented in the final thesis. Recommendation: imple-
mentation should be done in Python [22], using Keras [23] and TensorFlow
[24] frameworks.

3

1. Introduction
1.3 Overview of Thesis

The thesis work is a software solution to achieve the task described above,
using the state-of-the-art DNN(s) [25] and data set from GSV [3].

The core implementation of the thesis depends on the GSV images [26].
GSV API for Python [22] is used to download the available GSV images
within the area specified by the coordinates.

Downloaded images are then processed with DNN for classification and
segmentation. For segmentation and classification, Mask R-CNN[4] with
architecture developed in Keras[23] framework with TensorFlow [24] as com-
putational backend is used. The pre-trained model with COCO[27] dataset,
which consists of 81 classes, are used. The resulted images consist of classified
objects with their confidence score by their class, localized within a bounding
box, and segmentation with the colored mask.

The depth of detected objects is predicted with another state-of-the-art
DNN [5]. Using the estimated depth of the object respect to the GSV image,
objects are inserted on the map. The visualization of objects is expressed
in the form of an overlay of markers on the map. The output geojson file
consists of objects with their properties and classes separated by a different
color. A bar graph contains information of the number of detection per class
to reflect the understanding of the scenario.

1.4 Structure of thesis

Chapter 2, Related work, covers the latest state-of-the-art approaches re-
lated to the topic of this thesis.

Chapter 3, Theory, describes the conceptual knowledge about the algo-
rithm and tools used within the thesis.

Chapter 4,Implementation, describes the created pipeline and its de-
scription of each block in terms of data and its processing.

Chapter 5, Methodology, this chapter describes the methods and algo-
rithms used to solve the tasks mentioned in the chapter implementation. The
comprehensive description of transformation and manipulation of data, what
approaches and parameters chosen for the tools are described in this section.

Chapter 6, Experimental Evaluation, involves examining the outputs from
the state-of-the-art networks. The performance of different tools is shown
during there development.

Chapter 7, Results from the outputs are described — the visual represen-
tation of output in terms of their features and properties with various tools.
The shortcomings of the solution are mentioned in this chapter.

4

.................................. 1.4. Structure of thesis

Chapter 8, Conclusion this chapter describes the usability and applica-
tions of the software solution with different approaches for various problems,
future scope, and aim fulfillment.

5

6

Chapter 2
Related Work

The smart way of utilizing Google Street View images[3] as dataset using
deep learning algorithms[25], to develop a software solution has been seen
in the last few years. One such example "Google Street View image of a
house predicts car accident risk of its resident", where images of the house
from GSV is used to annotate house feature like age, type and condition
manually and this data is used to predicts car accident risks of its resident
using probabilistic model[28]. Another such application “Take a Look Around:
Using StreetView and Satellite Images to Estimate House Prices”, where
GSV and satellite images are used to extract features like age, size and ac-
cessibility as a visual feature and using DNN to estimate the house prices [29] .

With the popularity of autonomous driving [30], layered interpretation
of GSV images, [31] was developed in Mitsubishi Electric Research Labs
with the use of DNN on GSV images. In the paper, the author planned
a stratified street model to encode depth and semantic data on the street
pictures for autonomous driving. The author proposes a 4-layer street model,
layers categories as the ground, pedestrians, vehicles, buildings, and sky. The
input used for the experiment was the pair of stereo images. The deep neural
network was used to extract the appearance features for semantic classes.

Another example of an application developed with GSV and deep neural
network is building instance classification using Street View images[32]. The
author projected a general framework for classifying the practicality of in-
dividual buildings. The projected technique relies on Convolutional Neural
Networks (CNNs), that classify facade structures from Street View pictures,
additionally to remote sensing pictures, that sometimes solely show roof
structures. Geographic info was used to mask out individual buildings and to
associate the corresponding street view images. Additionally, the tactic was
applied to get building classification maps on each region and town scales of
many cities in the USA.

One example which is similar to work done in the thesis is Automatic
Discovery and Geotagging of Objects from GSV imagery [27]. This pa-
per describes the solution to localize the object from multiple views using

7

2. Related Work.....................................
geometry[33]. To geolocate the object in an image, they developed a Markov
Field model to perform object triangulation. They use two state-of-the-art
FCNN for semantic segmentation and monocular depth estimation of the
object of interests. The geolocalization is done with Google street view images
with Triangular based MRF(Markov random field) model described in the
paper. The result from the DNN is a map with an overlay of tags on the
map. The algorithm requires images from two or more different location to
complete MRF based localization.

Photo localization with deep neural network [34] (Deepgeo), another such
example of the application of the deep neural network. The author uses a
deep neural network and trains it over the panoramic image of Google Street
View. The outcome is the prediction of the location of the image. It’s trained
with the 50 states10K[35] datasets, which they created with the GSV API.
The author presented Resnet[12] architecture with three types of integration,
and their results. The early integration, in all four views, are concatenated
to form twelve channels. It allows information to be shared between images
in all layers. In medium integration, the feature is extracted from each image
before concatenation. In late integration, along with feature extraction, a
layer of the perceptron is connected to integrate the prediction, which simply
takes the maximum over each output class with the max pool layer. The
conclusion shows the results of the game GeoGuessr with a proposed solution
against humans. With the best variant of the network out of 5 games, the
neural network outperforms the human.

Geolocation by embedding maps and images, show similar work done [36].
Here the author presents an approach to geolocate images on a 2D map based
on learning a low dimensional embedded space. The neural network is trained
with GSV panoramic images cropped with different angles along with the
geolocated map tiles. The map tile is taken from an OpenStreetMap [37],
which consists of the visible junction, building, and green areas on a map
illustrating semantic features that leverage for geolocation. The network has
two independent sub-networks, one for location images and other for map
tiles. First sub-network which process location image extracts the feature
and based on Resnet50[12] architecture. In the sub-network top layer is
removed and coupled a trainable NetVLAD layer[38]. The other sub-network
extracts the features from the map and has similar architecture. Instead of
using Resnet50, Resnet18 is used and coupled with the NetVLAD layer. In
both sub-networks, projection modules go through the same layers, which
reduce the dimensional of descriptor down to the embedding size and help to
project semantically similar input near to each other. The results show the
methodology to correlate 360-degree location images and 2D cartographic
map tile into a common low dimensional space using a deep learning approach.

Performance of state-of-the-art CNN(s) for segmentation has been evalu-
ated in following project. Identification of cell nuclei based on deep neural

8

https://www.geoguessr.com/

..................................... 2. Related Work

Input size Output size Mean average
precision(mAP)

U-Net[39] 512x512x3 128x128x1 0.325
Mask R-CNN[39] 512x512x3 56x56x1 0.476
DenseUNet[41] 512x512x3 128x128x1 0.442

Table 2.1: Segmentation results on data science bowl 2018 challenge[17]

network[17] shows evaluation of three neural networks for segmenting cell
nuclei in images; Mask R-CNN [4], U-Net[39], Denset[40]. The task was to
segment each cell nuclei and background with the use of 640 microscopic
images. The Mask R-CNN shows the best results with 0.476 mean average pre-
cision for the segmentation. The detailed results can be inferred from table 2.1

9

10

Chapter 3
Theory

3.1 Image Classification

Image classification is the process of classifying an image based on its visual
features present in the raster. It is a task of identifying whether the given
visual feature is present in the image or not. It can be done by finding the
relationship between the nearby pixels. The relationship of the nearby pixel
can be calculated using classifiers; one way is to compare images using the
nearest neighbor classifier in which pixel-wise absolute value differences can
be used to show the relationship between two images [19]. The figure 3.1 is
an example in which the object is classified as the predefined class car with a
confidence score of 0.98.

3.2 Semantic Segmentation

Image segmentation is the process of partitioning of digital image into multiple
segments for further analysis. The pixels of the image are organized into
higher-level units that are either more meaningful or more efficient for further
analysis (or both). Figure 3.2 shows the example of semantic segmentation.

3.3 Instance segmentation

Instance segmentation is the task of semantic segmentation with the identifi-
cation of boundary at the detailed pixel level for each classified object.

Figure 3.3 is an example of instance segmentation of different color seg-
mentation masks. For example, the bus is segmented with a green mask.

3.4 Feature extraction

Feature extraction is the process of transforming the pixel data of an image
to a set of feature points or something more meaningful, which can be used
in other techniques, such as point matching or machine learning, and using

11

3. Theory

Figure 3.1: Example of image classification where the object is classified as the
car in the image

point matching.

3.5 Neural Network

A neural network is made up of a set of connecting units or nodes called
neurons. A neuron is the basic unit of the neural network, which is simple
models like linear, logistic regression.

Consider a neural network model built from a linear regression model.

3.5.1 Regression task

In supervised learning, linear regression is the task of creating a linear model
by finding the relationship between inputs (independent variable) and the
output (dependent variable).

Consider the input variable

x = (x1. . . xD) (3.1)
and output variable y
Linear regression is a function which is made to learn the relationship

between input and output is given by

ŷ = h(x) = w0 + w1x1 + . . .+ wDxD = w0 + 〈w, x〉 = w0 + xwT [7] (3.2)

12

................................... 3.5. Neural Network

Figure 3.2: Semantic segmentation, where the girl and horse are segmented
from the whole image[6]

where,
ŷ is model, h(x) is hypothesis, w0 . . . wD and other are weights, 〈w, x〉 is

the dot product of vector w and x

Often the data are being represented in homogeneous coordinates and
matrix notation by

X =


1 x(1)

...
...

1 x(|T |)

 (3.3)

y =


y(1)

...
y(|T |)

 (3.4)

An accurate model can be created by estimating the value of weights.
Training set T = (X,y) consists of a set of known inputs with their output
and used to train the model.

Learning is the process of finding such a model parameter w∗, which
minimizes the certain loss function.

w∗ = argmin
w

J(w, T)[7] (3.5)

3.5.2 Loss function

The function we want to minimize in order to get a low error rate for the
training data is called the loss function. The loss function reduces all the
aspects of a possibly complex system (dense or deep network) down to a

13

3. Theory

Figure 3.3: Instance segmentation of class bus with the green mask

Figure 3.4: Multiple regression model as linear neuron [7]

single scalar value, which allows solutions to be ranked and compared[42].

The minimum of loss function can be found using numerical optimization
techniques like mean square error which is given by,

JMSE(w) = 1
|T |

|T |∑
i=1

(
y(i) − ŷ(i)

)2
[7] (3.6)

where |T| is the set of training examples given by

T =
{(
x(i), y(i)

)}|T |
i=1

(3.7)

The simple linear regression task can be further combined together to make
a multiple linear regression model. Consider the neuron in figure 3.4 with
three inputs and one node.

14

................................... 3.5. Neural Network

The loss function J(w) can be minimized using Gradient descent algorithm
is given by

w ← w − η∇J(w), i.e.
wd ← wd − η ∂

∂wd
J(w) (3.8)

where η is learning rate

Loss function for training, with T number of examples ,

J(w) =
|T |∑
i=1

E
(
w,x(i), y(i)

)
(3.9)

To understand the concept for calculating error function for T number
of examples, let’s find the loss function for a single training example and
assuming the squared error loss.

E(w,x, y) = 1
2(y − ŷ)2 = 1

2
(
y − xwT

)2
[8] (3.10)

Finding the derivative of loss function using the chain rule

∂E

∂wd
= ∂E

∂ŷ

∂ŷ

∂wd
, where

∂E

∂ŷ
= ∂

∂ŷ

1
2(y − ŷ)2 = −(y − ŷ), and

∂ŷ

∂wd
= ∂

∂wd
xwT = xd

[8] (3.11)

which gives,

∂E

∂wd
= ∂E

∂ŷ

∂ŷ

∂wd
= −(y − ŷ)xd[8] (3.12)

The process can be iterated over batch of training example with a Gradient
descent algorithm given by equation 3.8 to find the optimum value for the
weights.

These neurons are grouped together to form a layer which is connected to
each other. These layers change their weight during the process of learning.
Training changes the weight of each layer to create a filter that allows the
specific form of features to pass and thus can be used as a feature detector.
Making these network deep enough and combining with several forms of dif-
ferent layer makes it possible to create a filter which can detect very complex
features.

A neural network should have at least three layers: input layer, hidden(can
be one or many) layers and output layer.

Figure 3.5 shows the structure of the three layers neural network.

15

3. Theory

Input #1

Input #2

Input #3

Output

Hidden
layer

Input
layer

Output
layer

Figure 3.5: Structure of three layers of neural network
Source: Created with LaTex package TikZ [43]

Figure 3.6: Three layer neural network with parameter[8]

The layer between the starting point (input) and the endpoint (output)
layer is called a hidden layer. There are layers which can be trained called
trainable layer and layer which can not be trained called non-trainable layer
like pooling. The number of parameters is layer dependent.

Example of the three layers neural with a parameter associated with the
network can be seen form 3.6

3.5.3 Forward propagation

The weights of the layer change when the input is passed through the network.
The input is feed into the layer, changing the weights (from the result of
the loss function), then passed to the next layer, and the process continues
until the output layer. Each layer can have a different set of functions. This
process takes place from left to right, i.e., from the input of the network to
its output and called forward propagation.

Considering the layer given in figure 3.6, if all weight w and activation
function g are available then for input vector x we can estimate the ŷ by

16

................................... 3.5. Neural Network

Figure 3.7: Backpropagation error[8]

iterative evaluating in individual layers. This process is forward pass.

aj =
∑

i∈Src(j)
wjizi

zj = g (aj)
(3.13)

In equation 3.13 zi are inputs of hidden layers neuron xi and zj are outputs
for hidden layer neuron.

From equation 3.9 the gradient of the loss function w.r.t to individual
weight :

∇E(w) =
(
∂E

∂w1
,
∂E

∂w2
, . . . ,

∂E

∂wW

)
[8] (3.14)

Gradient decent algorithm to update weight :

wd ←− wd − η
∂E

∂wd
for d = 1, . . . ,W (3.15)

where η is learning rate

Individual derivatives ∂E
∂wd

for each parameter can be computed using
backpropagation and ultimately finding the weights.

3.5.4 Backpropagation

From figure 3.7,loss function E depends only on wji and aj

Error δj is given by

δj = ∂E

∂aj
(3.16)

and δj is the error of the neuron on the output of hidden layer and zi is
the input from i to j and known form forward pass.

For output layer δk depends only on ak via g(ak) and can be written as:

δk = ∂E

∂ak
= ∂E

∂ŷk

∂ŷk

∂ak
= g′ (ak) ∂E

∂ŷk
[8] (3.17)

17

3. Theory
and for hidden layer δj E depends on ai via all ak and computed as :

δj = g′ (aj)
∑

k∈Dest(j)
wkjδk[8] (3.18)

Hence the derivative ∂E
∂wd

can be computed with

∂E

∂wji
= δjzi[8] (3.19)

The training is performed repeatedly to reduce error by minimizing the
loss function. In each iteration, the weights get changed to improve its
performance. Often a large data set is required to train the neural network.
Initially, the network starts with some random number as the results from
the forward propagation. These results from forward propagation can have
error. The measure of error is found with the loss or cost. This measure
of error is done with the loss function on the desired output and prediction
of training examples. The learning process should be efficient to change
the required network parameter to reduce the loss (error). Consequently,
the negative gradient of the loss with respect to parameters is calculated by
recursively applying the chain rule layer by layer towards the input. This
process is repeated for each example, and the parameter learning rate of the
obtained negative gradient is summed up to weight and update them. This
process is called backpropagation. The learning algorithm must be optimized
enough(should have proper value for parameter like learning rate and batch
size so the algorithm do not stuck) such as stochastic gradient descent (SGD)
[44] to get all parameters to converge to atleast local minima.

3.5.5 Activation functions

It is assumed neural networks learn the easy parameters like line detection,
curve detection, etc. during the starting layer(closer to input), and the later
layer can filter more complex structure like the human face or the object
which is trained by the training examples. Activation function controls the
output of the node, whether it should be fired or not and hence crating
the filter for the feature. Some of the most common functions used as an
activation function are :

Softmax

The softmax activation[9] is used to perform multi-class classification, as it
ensures that all the activation in a single layer is summing up to 1.

yk = exp(φk)∑c
j exp(φj) , (3.20)

yk = exp(φk)∑c−1
j exp(φj) + 1

, k = 1, 2, . . . , c− 1, (3.21)

Soft max function can be viewed from figure 3.8

18

................................... 3.5. Neural Network

Figure 3.8: Softmax function [9]

Figure 3.9: Relu function[9]

Relu

ReLU stands for rectified linear unit[9]. Mathematically, it is defined as y =
max(0, x). It is described by :

f(x) =
{

0 for x < 0
x for x ≥ 0 (3.22)

f ′(x) =
{

0 for x < 0
1 for x ≥ 0 (3.23)

The characteristic of Relu function can be seen from figure 3.9

19

3. Theory

Figure 3.10: TanH function [9]

TanH

TanH is a hyperbolic function that ranges from -1 to 1[9]. The function can
be described as

tanh(x) = 2
1 + e−2x

− 1[45] (3.24)

TanH function can be viewed from figure 3.10

3.5.6 Overfitting

There is a situation when the neural network is too much inclined toward the
training data set rather than the general feature set of the object of interest,
which can lead to poor performance for other testing datasets. The classifier
should be aimed to learn the general feature by training, which can perform
well during testing. However, the objective function is set to reduce the
training loss and can often cause overfitting. One of the ways to reduce the
overfitting is regularization. Regularization is the process that discourages
learning a more flexible model (high variance and more fit toward noise) by
reducing the magnitude of weights (adding penalty term). Another way to
reduce the overfitting can be to train network with big and various datasets.

3.6 Dropout regularization

Dropout is one of the most effective methods to regularize network and
prevent overfitting. Randomly neuron is chosen to stop being propagating.
This makes the no weight update of the neuron through its incoming and
outgoing connections. Dropout can also decrease training time cause some of
the layers are dropped so less computation.

20

.................................... 3.7. Deep learning

3.7 Deep learning

Deep learning is the subfield of machine learning. Deep learning can be
supervised, unsupervised, semi-supervised, or even reinforcement learning.
Making neural networks deep enough can produce great results like image
classification, image segmentation, etc. [25]. Deep learning usually requires
a large amount of data before it can use for the test due to a large number
of a layer that needs to be trained. Though the deep network is often hard
to train and requires too much data to train, the results produce are worthy
cause it enables it to learn very complex and non-linear features.

3.8 Convolutional neural network

An image often contains a high volume of data in the form of color channels. It
would be wasteful to have full connectivity of layers, and the massive number
of the parameter to train may quickly lead to overfitting. The convolutional
neural network takes advantage of the fact that the neighboring pixels are
correlated in image, so its architecture is designed in a more sensible way.
The convolutional neural network has neurons arranged in 3 dimensions:
width(width of the image), height (height of the image), depth (color channel
in image).

3.8.1 Convolutional layers

Convolutional in mathematics[46] is an operator, refers to the mathematical
combination of two functions to produce the third function. It involves analyz-
ing the sample of input signal contributes to the many points of output signals.
It expresses the relation of how the shape of one signal is modified by the other.

In image processing, It is performed on the input data with the use of
filter or kernel(which can be any or specific) to produce a feature map. The
filter is a small matrix of numbers that are multiplied with the input to
perform convolution. The filter is applied to different segments of the image
sequentially, and this process can be viewed as filter sliding.

Sliding the filter all over input at every location with some interval, give
the convolution and the results are put onto the feature map.

It is assumed that the features in images are found in nearby pixels locally
rather than covering the whole image. Usually, the area of the filter is kept
smaller than the size of the image to learn features from the relationship of
neighborhood pixels. These local features can be found at any part of the
image, which makes sliding a crucial process in creating a feature map. The
receptive field is the input area which gets multiplied by the filter to produce
one node in feature map.

21

3. Theory
0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

I

∗
1 0 1
0 1 0
1 0 1

K

=

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

I ∗K

1 0 1
0 1 0
1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Figure 3.11: Convolution of filter or kernel K (center) blue matrix with the
receptive field (red) of Image I (left) and its output (green) one node of feature
map I*K (right)
Source: Created with LaTex package TikZ [43]

Figure 3.11, shows the image I with the kernel or filter K and output feature
map (I*K). The red area displays the receptive field, blue matrix is the filter,
and element in green is the one node of the feature map.

Stride

Stride is the step size the filter took each step during sliding of the filter.
Stride size is usually one, which means the filter slides one pixel per each
step. When the size of stride is increased the filter slides over the image with
a larger interval and less overlap between the pixels.

Padding

It is not necessarily that for given image size, the filter size, and the stride
are compatible. A zero value pixel can be introduced from the outer of the
image to overcome this shortcoming. This layer of zero pixels surrounding
the images is called padding.

3.8.2 Pooling layer

The output feature map can be sensitive to the location of the features in
the input. This sensitivity can be addressed by downsampling the feature
maps. The invariance of feature detection sensitive to the location is refereed
by the technical phrase "local translation invariance "[47]. Hence making the
feature maps a more robust to change in position of the feature in the image
pooling is performed. Common usage of the pooling layer is to downsample;
there are no trainable parameters associated with the pooling layer.

The pooling can be performed by averaging or taking the max of the
features in the patch of the feature map. Some common methods of pooling
are Average pooling and Max pooling. Max pooling can be seen by figure
3.12.

22

................... 3.9. Neural network architectures for Image classification

Figure 3.12: Example of max pooling where the max is taken over 4 number
with stride 2 [10]

Figure 3.13: Micro architecture of Resnet 50 [11]

3.9 Neural network architectures for Image
classification

3.9.1 VGG16 and VGG19

The 16 and 19 stand for a number of weight layers in the network[48]. Due to
its depth and fully connected, it was hard to train the network. The training
process can be made easier if the network is trained with less weight layer
first and then after a smaller converged network can be used as the initializer
for the larger deeper network, and the process was called Pre-training. It
was the 1st runner up for image classification and winner of localization in
ILSVRC[2] 2014.

3.9.2 ResNet50

In general convolution network, several layers are stacked and are trained to
for feature filter layer by layer. In residual learning, the network will try to
learn the residual. Residual [12] is the subtraction of features learned from
the input of the layer. Its architecture is based on microarchitecture, which
has small building blocks that can be used to construct the network. The
collection of micro-architecture building blocks leads to macro architecture.
The microarchitecture of Resnet 50 can be seen in figure 3.13.

23

3. Theory
3.9.3 Inceptionv3

The Inception [49] model make multi-level feature extractor by computing
1x1, 3x3 and 5x5 convolution within the same module of the network and
output of these filters are piled on the channel space before being supplied
into the next layer.

3.9.4 Xception

Xception [50] was proposed by Francois Chollet, the creator of Keras library. It
is an extension of Inception architecture that replaces the standard Inception
modules with depthwise separable convolution.

3.9.5 Mobilenet v2

The purpose of mobilenet [51] was to have a general-purpose computer vision
neural network for mobile devices. Mobile net v2[52] introduces two new
features to architecture — first, a linear bottleneck between layers and shortcut
connections between the bottleneck.

3.9.6 Densenet

Densely convolution network connects each layer to every other layer in a
feed-forward fashion. The proposed network model states if the connection
between the layer close to the input and those close to the output is shorted,
the neural network can be more considerably deeper, more accurate, and
efficiently trained[53].

3.9.7 Nasnet

Google introduced "AutoML" that automates the design of the machine
learning model; a neural controller network can suggest model architecture
"child" who is trained and evaluate the task. The controller network is in the
loop with the child network. The feedback from the "child" is used to inform
the controller network on how to improve for the next iteration. This process
gets repeated thousands of times — generating new architectures, testing
them, and giving that feedback to the controller to learn from. Using this
method, AutoML was able to determine the fittest layers on CIFAR-10, which
performed well on ImageNet[2] image classification and COCO[27] object
detection. This architecture of "NASNet" [54] has been formed by combing
these two layers.

3.9.8 Mask R-CNN

Mask R-CNN[4] is state of the art Convolutional Neural network, which
can do the instance segmentation described in 3.3. Mask R-CNN shares
the same feature from Faster R-CNN[55] for object detection. It consists

24

................... 3.9. Neural network architectures for Image classification

of two stages the first Region proposal Network(RPN) scans the image and
generates proposals areas where it is likely to contain an object. Another
stage, which is the essence of fast R-CNN [48] classifies the proposals and
generates bounding boxes and masks.

Anchors are the fixed bounding boxes of defined shape and sizes which are
places into images and will be used for reference when localizing the object
in the image.

A Region Proposal Network (RPN) takes an image and result in a set
of rectangular object proposals, each with an object score with the help of
anchors. The offsets of the image from the anchors are taken as input and
propose an object location in the image.

The second stage of feature extraction extracts features using RoIPool[55]
from each candidate box and performs classification and bounding-box regres-
sion. The output of regression determines the predicted bounding box in the
form of x, y, w, h (x coordinate, y coordinate, width, height), and output of
classification is a probability whether the predicted bounding box contains
an object or not. Along with these two stages, in the second stage of Mask
R-CNN in parallel to predicting the class and box offset, it also outputs a
binary mask for each region of interest.

Bilinear interpolation is a resampling process that uses the average of the
nearest pixel value to estimate new pixel value. It is an addition of linear
interpolation for interpolating functions of two variables.[56].

RoIPool is an operation for obtaining a small feature map from each RoI.
RoIPool first estimates a value for RoI to the separating granularity of the
feature map. This estimated RoI is then subdivided into spatial bins, which
are finally approximated by max-pooling. In each ROI bin, the value of the
regularly sampled positions is calculated directly by bilinear interpolation.
Thus, avoid the misaligned problem.

Network Architecture: Mask R-CNN have multiple architectures) Convolu-
tion backbone architecture used for feature extraction over an entire image)
network head for bounding box recognition(classification and regression) .

Figure 3.14 shows the head architecture of Mask R-CNN with Resnet as
Backbone.

Backbone: Its standard convolutional network that serves as feature ex-
tractor, convolutional network Resnet50 [57] with the introduction of Feature
Pyramid Network [13].

Feature pyramid Network: The Feature Pyramid Network (FPN)[13] was
introduced in Mask R-CNN with the purpose that it can properly render

25

3. Theory
ave

RoI

RoI
14×14
×256

7×7
×256

14×14
×256

1024

28×28
×256

1024

mask

14×14
×256

class

box
2048RoI res5

7×7
×1024

7×7
×2048

×4

class

box

14×14
×80

mask

28×28
×80

Figure 3.14: Head architecture of Mask R-CNN [4]. Left side of the architecture
is extend version of Faster R-CNN with ResNet [12] and right side is extend
version of Faster R-CNN with FPN [13]

the objects at various ranges. FPN improved the feature extraction pyramid
by combining the other pyramid that takes the high-level features from the
initial pyramid and carries them to lower layers. By doing so, it provides
features at every level to have access to both, lower and higher-level features.

3.10 Neural network for depth estimation

3.10.1 Monodepth

The depth estimation is done in the form of image reconstruction [14]. They
present depth estimation as an image reconstruction problem during training.
Assuming, given calibrated pair of binocular cameras, if the function can be
learned to reconstruct one image from another, then some 3D information is
learned about the scene. The two images (corresponding to left and right)
from the calibrated stereo pair can be captured at the same moment in time.
The attempt to find dense correspondence with the left image would allow
reconstructing the right image. Similarly, the same can be done to reconstruct
the left image, given the baseline distance been the camera and focal length
depth can be recovered from predicted disparity.

Network estimate depth by inferring the disparities that warp the left image
to match the right one or vice versa. The network generates the predicted
image with backward mapping with a bi-linear sampler, which results in the
fully differential model.

3.10.2 Monodepth2

Monodepth2 is improved version of monodepth [14]. New minimum reprojec-
tion loss function designed to handle occlusions, multi-scale sampling method
to reduce visual artifacts, and auto masking loss to ignore training pixels
have been proposed in the model.

The model can be seen in figure 3.16. (a) shows the depth network which
performs the reconstruction task as described in [14]. (b) shows the pose
network, which predicts the pair of frames at time steps. (c) Shows the
proposed per-pixel reprojection loss, which shows during the time frame when
the correspondence is good, the reprojection loss should be low rather than

26

..........................3.11. Evalution of machine learning model

Figure 3.15: Loss model with left and right disparity maps ,dl and dr.The
same module is input for four different output scales. C:Convolutional, UC: Up-
Convolutional, S:Bilinear Sampling, US: Up-Sampling, SC:Skip Connection[14]

Figure 3.16: Overview of Monodepth2 Network [5]

using the average loss for matching the pixel when there are occlusions. Using
minimum reprojection loss gives sharper results. (d) shows the proposed
multi-scale sampling, which is performed in the intermediate layers, these
layers upsample the depth predictions and compute all losses at the input
resolution reducing visual artifacts.

Figure 3.16 shows the network architecture used in monodepth2.
Table 3.1 shows the comparison results among other state-of-the-art net-

works on KITTI dataset[30]. The results show monodepth2 was able to
outperform other state-of-the-art network in self-supervised mono supervision,
self-supervised stereo supervision and combined mono and stereo both and
can be inferred from the scores.

3.11 Evalution of machine learning model

The trained model can be evaluated by testing. The metrics for evaluation
depends on the machine learning task. Some commonly used metrics for
evaluation are

27

3. Theory
Method Train Abs Rel Sq Rel RMSE RMSE log <1.25 <1.252 <1.253

Eigen[58] D 0.203 1.548 6.307 0.282 0.702 0.890 0.890
DORN[59] D 0.072 0.307 2.727 0.120 0.932 0.984 0.994
LEGO[60] M 0.162 1.352 6.276 0.252 - - -
Ranjan[61] M 0.148 1.149 5.464 0.226 0.815 0.935 0.973

Monodepth2[5] M 0.115 0.882 4.701 0.190 0.879 0.961 0.982
Monodepth2 w/o pretraining[5] M 0.132 1.044 5.142 0.210 0.845 0.948 0.977

Monodepth2(1024x320)[5] M 0.115 0.882 4.701 0.190 0.879 0.961 0.982
Garg[62] S 0.152 1.226 5.849 0.246 0.784 0.921 0.967

Monodepth R50[14] S 0.133 1.142 5.533 0.230 0.830 0.936 0.970
Monodepth2 w/o pretraining [5] S 0.130 1.144 5.485 0.232 0.831 0.932 0.968

Monodepth2[5] S 0.109 0.873 4.960 0.209 0.864 0.948 0.975
Monodpeth (1024 x 320)[5] S 0.107 0.849 4.764 0.201 0.874 0.953 0.977

UndeepVO D*MS 0.183 1.730 6.57 0.268 - - -
Monodepth2 w/o pretraining[5] MS 0.127 1.031 5.266 0.221 0.836 0.943 0.974

Monodepth2[5] MS 0.106 0.818 4.750 0.196 0.874 0.957 0.979
Monodepth2(1024x320)[5] MS 0.106 0.806 4.630 0.193 0.876 0.958 0.980

Table 3.1: Comparision of monodepth2 with the existing method on KITTI
2015 using Eigen split[5]
where, D - Depth supervision,
S - Self-supervised stereo supervison,
M - Self-supervised stereo supervison

Table 3.2: Confusion matrix for the binary classification[18]

3.11.1 Confusion matrix

The confusion matrix gives a detailed overview of correct and incorrect
classification for each class. It can be considered as a table with prediction
vs. ground truth.

Considering the example of binary classification in table 3.2. Here the
row of the matrix represents the values from the actual class, while column
represents the values in the predicted class.

True positive

True positive is the number of occurrences when the prediction is true, and
the ground truth is also true.

False positive

False positive is the number of occurrences when the prediction is true, and
the ground truth is false. It is also known as type 1 error.

28

..........................3.11. Evalution of machine learning model

True negative

True negative is the number of occurrences when the prediction value is false,
and the ground truth is true.

False negative

False negative is the number of occurrences when the prediction value is false,
and the ground truth is also false. It is also known as type 2 error.

3.11.2 Accuracy

Accuracy in the context of machine learning is the ratio of the number of
correct predictions to the total number of predictions. It is given by

Accuracy = TP + TN

Total
(3.25)

It shows how often the trained model makes the correct prediction.

3.11.3 Misclassification rate

Miscalssification rate is given by the ratio of summation of false positive and
false negative to the total number of predication.

Misclassification rate = FP + FN

Total
(3.26)

It shows how ofter the prediction of the trained model is wrong. It is also
equivalent to unit minus accuracy.

3.11.4 True positive rate

True positive rate describes how often we make the correct prediction in case
of the actual value is true. We want this to be as high as possible. It is also
known as recall.

True positive rate = TP

TP + FN
(3.27)

3.11.5 True negative rate

True negative rate is the rate at which actual value was false, and our model
predicts it as true. It is also known as specificity and given by the ration of
true negative to the summation of a true negative and false positive.

True negative rate = TN

TN + FP
(3.28)

29

3. Theory

Figure 3.17: Confusion matrix for multiclass classification [15]

3.11.6 Precision

Precision is the ration of true positive and summation of true positive and
false positive. Precision describe about how much percent of the results are
relevant.

Precision = TP

TP + FP
(3.29)

3.12 Multi class evaluation

Similarly the confusion matrix of multi class classification can be seen by
figure 3.17 and the elements of confusion matrix can be found using equation
3.30

tpi = cii

fpi =
n∑

l=1
cli − tpi

fni =
n∑

l=1
cil − tpi

tni =
n∑

l=1

n∑
k=1

clk − tpi − fpi − fni

[15] (3.30)

where,
tpi is the true positve of class i,
fpi is the false positive of class i,
fni is false negative of class i,
tni is true negative of class i

30

Chapter 4
Software tools

4.1 Google Direction API

The Directions API is a service that results in a route between locations.
Directions API enables searching for directions for several modes of trans-
portation, including: transit, driving, walking, or cycling[26]. The result gives
the direction and route to the destination. The way is the path leading from
start to the destination location in the form of the polyline. This polyline
can be converted into other forms, such as a list of a waypoint for other
applications.

4.2 Google Street View API

The Street View Static API lets to download the images available in the
location passed in the request. The request is the URL parameters sent
through a standard HTTP request, and results as a static image[3].

Working of street view API can be inferred from figure 4.1

4.3 Folium

Folium [63] is a Python package that visualizes the data on an interactive
leaflet map. The library has several built-in tilesets from OpenStreetMaps[64]
and other platforms such as mapbox. Moreover, it supports custom tilesets
from different other API. Folium support both image, video, GeoJSON [20]
and TopoJSON [65] overlay.

4.4 KERAS

Keras [23] is a high-level neural networks API, written in Python and capable
of running on top of TensorFlow [24], CNTK [66] , or Theano [67].

31

4. Software tools

Figure 4.1: Street view work flow [16]

The architecture of the neural network Mask R-CNN is developed with the
help of this package. It has support for CPU and GPU as well as TPU in
case we use Google Colab. It provides an intuitive way of defining a neural
network by using the functional API, which allows defining layer as functions.
It is a powerful library with lots of options in tweaking the parameter of the
layer during learing and other processes.

4.5 TensorFlow

TensorFlow[24] is a machine learning computational backend developed by
Google LLC. It is a tool for expressing and implementing a machine learning
algorithm. Tensorflow library consists of visualization tools like TensorBoard,
which make debugging and optimization of the neural network easier. The
computation developed in TensorFlow can be executed in a variety of systems
with little or no change making it a flexible tool.

4.6 Pytorch

Pytorch[68] is an open-source machine learning tool developed by Facebook’s
AI research lab. It is used for applications such as computer vision[19] and
natural language processing [69]. The architecture of CNN monodepth2 used
in thesis is implemented in PyTorch. It has the capability to use GPU for
parallel processing of data.

4.7 Google Colab

It is a free research tool for machine learning education and research tool
which uses Jupyter [70] notebook environment from Google LLC, which can
be run a maximum of 12 hours in single runtime[21].

Google Colab has support for deep learning application like Keras, Ten-
sorFlow, Pytorch [68] and OpenCV [71].Also, the other dependencies could
be easily installed using pip installer. It also allows three different kinds
of runtime hardware like GPU, CPU, and TPU, which can accelerate the
process.

32

Chapter 5
Implementation

This chapter describes the implementation of a given task from the perspective
of the software side. This section explains the technical specifications and
parameters of each tool. A pipeline explains the flow of data and process
from input to output. Moreover, its description shows the dependencies of
one block on others. The data is processed to give a specific output and
used in further blocks. The pipeline structure can be seen in figure 5.1 and
arrangement of files can be seen in structure B.1

5.1 Input

Input is in the form of geojson[20] file, a list of tuples of coordinates with
features consisting of geometry type polygon. Overpass API needs a pair
of coordinates in the form of the bottom left and top right coordinate and
assume to create a bounding box out of it. The bounding box is created from
input geojson, which will be the input for the Overpass API query.

5.2 Creating a query

The input bounding box is split into small boxes of the area with some (say
0.005 equivalent of 55.66m [72]) minimum distance parameter of the side.
These small bounding boxes are saved in a file in the form of a list. This list
is the input to GSV API to download the available images for the coordinates
provided. For each iteration of the list for the query, images, along with their
metadata, are saved in a different directory(batch).

5.3 Downloading of Images from location

Street view images are in the form of 360 panoramas and divided into four
parts of 640x640 image with a field of view 0, 90, 180, 270.

GSV API takes query: parameter location, (in the form of a list of
coordinates (output from Overpass API)), size of the image, heading, field of
view, etc. and return the pictures available at the location along with their

33

5. Implementation....................................

Figure 5.1: The proposed pipeline for city mapping

metadata. These outputs are RGB images and used as the input for the deep
learning network(s).

5.3.1 Structure of metadata

Figure 5.3 is the example of metadata where the first query results in an
image with a given pano_id and second query result with no image available
for that coordinates. The metadata is a list that consists of a dictionary for
each request. The dictionary consists of "copyright", "data", location (in the
form of latitude and longitude), panorama id, status, and file name. This
metadata is used to create a database to match the corresponding image to
information during the later phase.

The structure of download dictionary with batches are as follows B.2

5.4 File Handling

A Python dictionary combines the metadata of each downloaded batch as
a database. Duplicate entries and "NOT FOUND" queries are deleted to

34

............................ 5.5. Classification and segmentation

Figure 5.2: Example of downloaded image(640x640)from GSV API

Figure 5.3: Structure of metadata from GSV API

optimize the dictionary. The name of the files is renamed based on their
panorama id along with angle.

Note - There was no way to differentiate the images from the panorama id
with a different heading. Cause the localization of the object in space needs
the heading information; the photos are renamed with the addition of there
heading angle at the end. It is assumed and tested that the 1st image with
the same pano_id is the angle which is input first argument in GSV API
during downloads.

The renamed images are stored in directory "imgdataset" and its structure
can be seen from B.5

5.5 Classification and segmentation

Images are taken from "imgdataset" and checked with the "img_db.json" to
match the information with metadata are iterated with classification and
segmentation. A dictionary (det_dic.json) stores the detected object along
with the location of the image and is used in a later phase to create a statistical
graph.

Each detection creates the mask and the string of class names and the
bounding box. A separate directory store the mask files of detection and
organized based on the file name. The corresponding information with masks
and objects is stored in the dictionary mask_dict.json. The structure of the
mask dictionary can be seen from B.3.

35

5. Implementation....................................

Figure 5.4: Structure of mask dictionary

Figure 5.5: Example of the resulted image processed with Mask R-CNN with
different color mask and confidence score of the detected class

5.5.1 Mask dictionary

An example of a mask dictionary data structure can be seen in figure 5.4. It
consists of two images and the detected object with mask number:

The filename (pano_id) is the key for the Python dictionary, which consists
of another nested dictionary with keys (like date, location, detected class).
Each detect class in the image has a dictionary with a key mask(some number),
and the value associated with key mask(some number) is the centroid of the
bounding box generated by Mask R-CNN.

5.6 Depth estimation

Depth is estimated by another state of the art deep neural network on images
inside the directory "imgdataset." The result is a depth value for each pixel
in the image.

The images from this step are stored in the directory "Depth" with grayscale
.jpeg image and .npy array so it can be used for visualization. The structure
of the depth mask can be viewed from B.4.

36

....................................5.7. Depth Analysis

Figure 5.6: Example of resulted depth image processed with monodepth2 when
converted to grayscale

Figure 5.7: Structure of final dictionary

5.7 Depth Analysis

The segmented masks saved in the previous step is applied over corresponding
depth image using the information form (mask_dict.json) dictionary. The
depth with the pixels where the mask value is true is averaged and taken as the
depth of the object. The centroid of the bounding box in the image gives infor-
mation about the position of the image in other axes. The depth images are
cropped within masks and are stored in the separate directory(mask_depth)
to visualize the results.

A dictionary file "final_dict.json" stores the organized dictionary for each
image with features and detected object location. Below is the structure of
"final_dict.json". Figure 5.7 is the example of the final dictionary.

The coordinates of the object in each image in the final dictionary are the
result of the bounding box position from the mask dictionary, and the depth
calculated when an average of per-pixel depth is estimated with the mask
over depth image.

Figure 5.8 show the depth of the six detected objects with their average
depth value.

37

5. Implementation....................................

Figure 5.8: Individual depth masks of detected class with their estimated depth
value

Figure 5.9: Structure of output geojson file

5.8 Creating Geojson file and map

The data from the final dictionary is used to create the geojson file. Geojson
file consists of information on the name of the image, date of origin, location,
and the name of the class. The information is stored as a feature with
geometry "point" and properties as a class, date, marker color, and file name.
The structure of output geojson file can be seen in figure 5.9

Python package Folium has been used to bind the data on a map for visu-
alizations as markers on the map. The directory "maps" store the individual
file for each class with a visualization marker on the map.

5.9 Statistics

The number of detection is calculated and written to file with the class name
and the number of detection. The same information is visualized with a bar
graph(number of detection vs. classes).

With each run of the whole pipeline, a separate database is generated, each
database results with individual output of visualization file from Folium and
geojson file. The geojson file and the statistics are combined to merge the
overall data.

The database structure is as follows B.5

38

Chapter 6
Methodology

This chapter describes the methods and approach used in blocks of pipeline
mentioned in the chapter Implementation. This chapter also describes the
purpose of using specific parameters.

6.1 Building query

Due to the limited load capacity of API (total capacity of overpass API server
is 1,000,000 requests per day)[37], query and downloading done are small
parts to reduce the server loads and prevent timeout (server busy) errors.
These bounding boxes are equal in the area given the minimum distance say
(0.005 equivalent of 55.66m [72]) between the side of the coordinate. The
query is generated in the form of a list of the coordinates (top right and
bottom left), which is further used by the Overpass API to find the available
coordinates on the streets. Points between two coordinates are divided equally
using linespace[73]. These points are in the form of lists and saved in the text
file, which serve as the input for the next step.

6.2 Overpass API

Overpass API is used to get the coordinates available on the streets. Overpass
API gets the argument in the form of the bounding box one at a time (list of
two coordinates top right and bottom left) and results with the coordinate
available on the streets. In overpass API, adding parameter "way" and
selecting the type of way which in case "highway" for example gives the
coordinates of highways within the area of interest. The resulting query
gives output in the form of the nodes, a tuple of coordinates(latitude and
longitude). These coordinates are used in GSV API to download the images.

39

6. Methodology.....................................

Figure 6.1: Parameters of GSV query

6.3 Downloading the Images with Google Street
View API

Street View is one of the features in Google Maps; It is a virtual reproduction
of street surroundings on Google Maps. It consists of millions of panoramic
images that come from two sources - Google and contributors[3].

Google street view API python sends a URL request to the server to
download the images. The requests are in the form of string made up of
parameters needed to fulfill the query; the server returns with the metadata
with the information of images such as date, location in the form of latitude
and latitude, panorama id, status, and file name.

The parameter string is in the form of a Python dictionary with keys like
location, size, heading, the field of view, pitch, and developer key. A developer
key is one of the most critical parameters to make Google Street API work.

Figure 6.1 is an example of Street View API parameters to showing the
"apiargs" dictionary with key and values.

The result is in the form of a dictionary with metadata. RGB images
can be downloaded with helper function "download_ links" specifying the
parameter with the name of the folder or location of the directory in the form
of string.

6.3.1 Selecting the parameter for Google street view API

Argument ’location’ takes the coordinates of the location in the form of
latitude, longitude. Multiple locations can be fitted in arguments. If no image
is available, then API will return a generic image with the text "Sorry, we
have no imagery here."

The highest resolution that can be downloaded is 2048x2048, which is
available with google premium account services. In the thesis, a standard
640x640 image is used for the whole process.

The heading indicates the compass heading of the camera; accepted values

40

............................... 6.4. Maintenance of dictionary

(a) : Example of downloaded image with
pitch 90

(b) : Example of downloaded image with
pitch -90

Figure 6.2: Downloaded GSV image with the different pitch angle

are 0 to 360. North is indicated by 0. Heading of 0, 90, 180, and 270 is
chosen with the aim to extract all information from the 360 panoramic images.

FOV shows the horizontal field of view and is set to set to maximum (120)
to get all possible details from the image.

Pitch is the camera up and down angle. For example, having a pitch to
-90 or 90 gives the images headed up to the sky and bottom to the floor.

Figure 6.2 shows a downloaded image with 6.2a with 90 and 6.2b with -90
angle

6.4 Maintenance of dictionary

GSV API tries to grab the panoramic images close to the coordinate provided.
GSV API also downloads the metadata in the form of a dictionary that
consists of information like the name of the image, location, date, etc. There
are cases when it is possible to download the same image multiple times. A
dictionary is maintained to avoid the processing of the same multiple times.
Dictionary consist of all metadata of all the images, the same images (which
is checked on the basis of the panorama id) is deleted from the list. This
dictionary is further used in file handling to rename the images.

6.5 File handling

GSV API allows the user to download the panoramic images in the form of a
2D image on the basis of the angle of heading. The whole panoramic image
can be downloaded using images providing the different angles of heading.
But unfortunately, API doesn’t provide any information about the angle of
heading. The images download sequentially on the basis of the heading angle
provided during the API query. In this step, images are renamed on the basis
of there panoramic id along with there heading angle. This step reduces the

41

6. Methodology.....................................
duplicate images and adds information about the heading angle, which is
crucial when estimating the position of the marker in space.

6.6 Classification and segmentation

Mask R-CNN[4] is state of the art deep neural network proposed by Facebook
research scientist Kaiming HE in 2017 which can perform instance segmen-
tation and object detection together. It can have several different backbone
architectures like Inception V2, ResNet 50, Resnet101, and Inception-Rennet2.
Mask R-CNN with Resnet-101-FPN backbone was able to outperform another
state of the art network like MNC and FCIS [74] winner of COCO 2015 and
2016 segmentation challenge. Pre-trained weights on the COCO dataset with
Resnet 101 architecture were used to classify data on GSV images.

Images from GSV are taken as input and processed with Mask R-CNN
for classification and segmentation of objects. These images are processed
with Mask R-CNN, and with the pre-trained weight of 81 classes, the output
is the images with classification with labels and confidence score, bounding
boxes around the detected object, colored pixel-wise mask on detected objects.

Implementation of the architecture of Mask R-CNN was done in Keras
framework and TensorFlow computational backend and is taken from the
open-source repository from Matterport [75]. Model implementation and
architecture of Mask R-CNN is done in Python and can be seen in script
model.py. It consists definition of all the layer and architecture of Mask
R-CNN in TensorFlow.

Implementation of the creation of masks and image processing is done
with the OpenCV [71]. The output from the results are in form of image
with overlay of text(class name) with number(confidence of being of that
class, from zero to one, being one means full confidence) bounding box to
localize the classified object in image and mask with color to cover pixel-wise
segmentation of detected object in image.

With ResNet 101 as backbone architecture, the model provides several
changeable parameters to make it fit for a variety of the application. Some of
the easily configurable parameters are minimum confidence detection, learning
momentum, learning rate, etc.

Table 6.1, shows some of the configurable parameters of Mask R-CNN
[75]. The number of classes depends on the pre-trained model. Minimum
confidence decides the creation of a bounding box. If the confidence of the
classified object is less than the minimum confidence, no bounding box is
formed. The minimum confidence score is set to a threshold of 0.7, which
can reduce false detection (False Negatives).

42

............................. 6.7. Depth of the detected object

BACKBONE resnet101
BACKBONE_STRIDES [4, 8, 16, 32, 64]
BATCH_SIZE 1
BBOX_STD_DEV [0.1 0.1 0.2 0.2]
DETECTION_MIN_CONFIDENCE 0.7
DETECTION_NMS_THRESHOLD 0.3
GPU_COUNT 1
IMAGES_PER_GPU 1
IMAGE_CHANNEL_COUNT 3
IMAGE_MAX_DIM 512
IMAGE_META_SIZE 93
IMAGE_MIN_DIM 400
IMAGE_MIN_SCALE 0
IMAGE_RESIZE_MODE square
IMAGE_SHAPE [512 512,3]
LEARNING_MOMENTUM 0.9
LEARNING_RATE 0.001
MASK_POOL_SIZE 14
MASK_SHAPE [28, 28]
MAX_GT_INSTANCES 100
VALIDATION_STEPS 50
WEIGHT_DECAY 0.0001

Table 6.1: Configurable parameters of Mask R-CNN

Figure 6.3: Wrong classification of class knife with good confidence score of 0.76

Figure 6.3, shows an example of the class knife, which is classified wrong
and makes less significance in street view images.

With each detection of an object, a mask is saved with the use of Python
package Numpy. The corresponding dictionary is updated with the name
of the image, class of the object, mask number, and the coordinate of the
centroid of the detected object.

6.7 Depth of the detected object

Classified and segmented images are in the form of RGB and do not describe
any depth information. In order to localize and place under the map, another
deep neural network developed by the author and his team monodepth2[5]
is used. This convolutional neural network architecture is implemented in
Pytorch and uses an unsupervised method to predict depth from a single
image. The model was trained on cityscapes with Resnet 50 [57] architecture

43

6. Methodology.....................................

Figure 6.4: An estimated depth value(rounded off to whole number) of objects
inside bounding boxes

on Cityscapes [76] training data set, which consists of 22973 training images.
For the testing "mono+stereo_1024x320" model was chosen for processing as
it shows the best results during evaluation [5].

The purpose of finding the depth of the object is to place it as close to the
real position on the map. The depth value of the detected objects is estimated
with the help of the mask of the object generated during the segmentation
step. The average value of depth per pixel within the masks of objects is
taken. Further, this depth value is rescaled and added with latitude and
longitude of the image to create the location of the detected object in space
considering the formula and calculation from figure 6.9.

Example of the estimated depth of objects rounded off and converted to
real number can be seen in figure 6.4

6.8 Depth Analysis

The mask from the classification and segmentation step is used with the
depth image. The average depth from the images within the mask is used
as the distance of the object with respect to the image. These masks are
cropped from the depth images, and the estimated depth value is written in
the image with the text string. The image is color-coded to grayscale shown
in figure 6.5, and these images are saved under directory "Maskdepth" for

44

............................ 6.9. The scheme of creating the map

(a) : Detected objects
in image

(b) : Converted
grayscale image of
mask of first detected
object

(c) : Converted
grayscale mask of
second detected
object

Figure 6.5: Detected objects and their converted gray scale image

visualization. A text string "depth" using OpenCV is overlayed on the image
to show the estimated depth of the object respect to the image.

A dictionary is created using all the corresponding data to the image and
will be used to create the final geojson file and other outputs.

6.9 The scheme of creating the map

Data from the above sections have been used in the following way to locate
the marker in the map.

A panoramic image is divided into four parts with 0, 90, 180, and 270
degrees. There is a different formula to calculate the location of the object for
each angle. Figure 6.6, shows the axis each object should take for an image
with a given heading angle.

For an example of heading angle 270, the position of the bounding box adds
to the latitude(horizontal) of images and depth to the negative of longitude.
Similarly for 0, depth is taken positive of latitude and position of the bounding
box is taken in the direction of longitude.

XX represents the bounding box location in the image of 640x640; depth
represents the estimated depth of object using DNN.

Formula to finding the latitude and longitude is as follows.
For 0 degree:

Lat = latofimage+ (0.0000001 ∗Depth) (6.1)
Lon = lonofimage+ (0.0000001 ∗ (XX − 320) (6.2)

45

6. Methodology.....................................

Figure 6.6: Scheme for estimating the location of an object, with different
heading angles.

For 90 degree:

Lat = latofimage− (0.0000001 ∗ (XX − 320) (6.3)
Lon = lonofimage+ (0.0000001 ∗Depth) (6.4)

here xx get flipped For 180 degree:

Lat = latofimage− (0.0000001 ∗Depth) (6.5)
Lon = lonofimage− (0.0000001 ∗ (XX − 320) (6.6)

For 270 degree:

Lat = latofimage+ (0.0000001 ∗ (XX − 320) (6.7)
Lat = lonofimage− (0.0000001 ∗Depth) (6.8)

For the source [72] , 0.000001◦= 0.11 m

6.10 Marker visualization in the map

The final dictionary from the previous step is used to generate a geojson file,
and the visualization of the marker in the map using Folium. A separate
file which consists of visualization for the same class is also generated. The
marker shows the name of the images as an overlay and the name of the class

46

............................6.11. Implementation in Google Colab

Figure 6.7: Resulting map from the geojson file

Figure 6.8: Resulting map from the folium

when selected. Moreover, these makers have a separate color for different
classes.

Geojson file is created using Python package geojson. Markers have feature
geometry "point" and have properties like marker color, class name, date of
the image taken from the final dictionary. Colors are picked from python
package Matplotlib[77]. These colors are in the form of a hex code, which is
HTML compatible. The resulting map can be seen from figure 6.8 and 6.7

6.11 Implementation in Google Colab

Implementation of the whole process work in Google Colab is done in the
same way with some extra setups.

6.11.1 Building the environment

There are some dependencies and packages which need to be installed into the
instance to run the whole setup. The first block is to start with downloading
and installing all the dependencies.

6.11.2 Downloading and running of scripts

The next block downloads the repositories consisting of the scripts. After
downloading files from the repository, the input is given by uploading a
geojson file with a polygon feature(rectangle).

6.11.3 Visualization

The statistics of the data are visualized with the bar graph, and the generated
geojson file can be used to view the markers.

47

6. Methodology.....................................
6.12 Experimentation

Below is a list of supplementary experiments performed during the thesis for
improvement

6.12.1 Downloading images from the status of GSV API

All available images can be downloaded with a simple approach by sampling
the space. The latitude with two endpoints can be sampled easily and can be
iterated over the vertical plane. Google street view API returns metadata
with each request sent with an "apiarg" string. A result is a dictionary, which
contains location, panorama id, date, status. Using the value from key "status"
as "OK" implies the image at the location is available and "NOT FOUND"
for no image found for location. The idea was to use the status string and
build the algorithm which can download images sequentially. The proposed
algorithm can be seen with the following flowchart 6.9.

It was necessary to have images sequentially in order to avoid the same
objected detected multiple times in a nearby location. A script was developed
with logic to download the images sequentially.

The approach was first to find the point where street view is available. For
that, random points are sampled in space under given coordinates. The query
is sent with that location, location with status "OK" is put in a separate list
and used afterward. A list of points is found by making a circle around those
points; this list is passed again in query and searches for status "OK" if found
add to list and repeat the previous step until a point is out of the region
under coordinates specified.

This method reduces the loss of available image under the area of interest.
This method would allow almost downloading of all the images available from
GSV.

Figure 6.9 shows the algorithm to download images.

6.12.2 Mapping without depth Image

An attempt to create and place the object in the map without using depth
images. Simple geometry was used to do such, 6.10 shows the approach.

Considering the image to be 640x640, Assuming that the bottom cen-
ter(320,640) as zero and the origin of the axes. The values in x - y coordinate
is scaled and summed up with the geographic coordinate of the image and
used as the location of the object. This naive approach gives the results as
the object at the top portion of the image as more depth and the object

48

..................................... 6.13. Clustering

located at the bottom of the image less depth. It might be correct and fast
for some cases, but it fails to give optimum results.

6.12.3 Changing parameters of Mask R-CNN

Mask R-CNN architecture allows changing many parameters during the
training of the data set as well as testing of data sets. The parameter
changed during testing was the minimum confidence score for the classification.
Changing the minimum confidence score can eliminate the problem like 6.3.

6.13 Clustering

There might be the case when the same object is detected multiple times. For
example, the car following the camera on the street. Clusters can be created
with the same class and finding the centroid of the cluster. This centroid is
then used as the location of the objects. Kmeans clustering algorithm gives
the centroid of clusters, which is used for the location of the marker in the map.
The number of clusters is estimated with the maximum distance between
two pictures with the intuition to form cluster on the basis of the density of
images in area, rather using the elbow graph to find the optimum value [78].
With the centroid with some cluster size, the same object detected in different
images with depth will gather together and make dense location points in the
correct location while others with incorrect points will be considered with
less weight.

Clustering was implemented with the Python package Sci-Kit learn [79].
The clustering algorithm is iterated over keys from the dictionary to find
the centroid to make a certain number of the cluster which is a function of
maximum distance stated above.

However, the clustering algorithm did not converge to the right solution.
The localization was poor, and there are often no multiple detections of the
same object. So this implementation is not used during the final program.

6.14 Waypoint coordinates

Approach to download the sequential image in the street. Google direction
API takes the input argument like starting and destination location and makes
the request to the server. The server responds with a dictionary consisting of
the information like all the ways possible and their routes, time to arrive, time
for depart. Out of which key "polyline" is value consist of polyline points in
the form of string. The string is encoded with an encoded polyline algorithm
format [80]. Polyline string is then decoded back to latitude, longitude coor-
dinate system. A python package polyline [81] is used to decode the polyline

49

6. Methodology.....................................
string into a list of tuples, which consist of latitude and longitude of waypoints.

Figure 6.11 shows the example of a polyline with its corresponding coordi-
nates when decoded in the form of tuples.

Even though decoding coordinates of waypoint were found, but they are
not close enough to have efficient mapping. Hence, the next task was to
make the waypoint close enough to each other so that there will not be much
difference between adjacent GSV images. A significant difference can result
in loss of information and no objects in space. An example of such a waypoint
before sampling can be in figure 6.12.

To make the waypoints close enough and to have GSV images, points were
sampled with minimum distance parameter and sampled if their distance is
more than the minimum distance. Sampling is done with Numpy linspace
function. The output of such can be visualized in figure 6.13.

This approach does not allow to cover the whole area of interest; instead,
it gives the results just for a specific street. So the approach has not been
used in the final program.

50

................................ 6.14. Waypoint coordinates

Figure 6.9: Flow chart for downloading the image with the status result

51

6. Methodology.....................................

Figure 6.10: Geometric approach of finding location of object from the image
considering (320,640) as the center of coordinate system

Figure 6.11: Polyline with corresponding coordinates

52

................................ 6.14. Waypoint coordinates

Figure 6.12: Resulting waypoints from polyline from Google Direction API. The
points have been decoded and placed in form of White marker

Figure 6.13: Sampled waypoints when the distance between two waypoints is
greater than minimum distance

53

54

Chapter 7
Experimentation evaluation

The final results of the projects can be seen under the appendix with some of
the images and their marker in map with the location with the statistics also
with the availability of GSV images in that area.

7.1 Resulting map from the Setup

The end result is the geojson file, which is a form of database with store
geological information of feature with its properties. The map visualization
generated by Folium, which uses service from Openstreet maps. There are
individual maps visualization for each class and a combined map visualization
with different marker colors.

7.2 Result of Map generation with overpass API
nodes

One of the problems faced with Overpass API is that it gives a run time
error when there are too many requests. Fail cases needed to be developed
for the issues. Though overpass API gives results with coordinates of the
node, because the coordinates of nodes were not in the proper sequence
of the waypoint, i.e., does not able to catch adjacent image for feature
extraction. The other finding with the API is the resulting nodes do not give
the coordinates distributed on the street. The resulting nodes are starting
and the endpoint of the streets. Several combinations of the highway and
other ways mixed together to get the more sampled points within the area of
interest.

7.3 Mapping with the geometric method and
Kmeans clustering

As mentioned in section methodology, the idea of tagging objects with ge-
ometry does not provide good results, also as mentioned before, the heading
of the downloaded images is not fixed and gets changed from time to time.

55

7. Experimentation evaluation...............................

Figure 7.1: Resultant marker when using the geometric mean and clustering
approch

The results are quite wrong, and duplicate images make a huge difference in
it. Also, due to the lack of heading in the picture, it was no reason to put
the marker in the location of the image + the geometric parameter in the im-
age (in x and y). One of such resulting example of mapping can be seen in 7.1.

In the marker, the white marker represents the person, and the red one
represents the car. It is hard to distinguish any of them due to high density.
This example can also be seen as the same problem when the same object is
placed four times and rectified with a clustering algorithm during convergence.

7.4 Mapping using depth and metadata

The updated object’s location from the metadata and the depth with some
normalization and scaling gives the approximate results. However, there
are still some fail cases when the depth of images is at the extreme. Some
predefined constant is set for such situations. These constants will interchange
with depth if it passes the threshold.

56

................... 7.5. Use of GSV API to download the sequence of image

Figure 7.2: Misclassification of the grill (purple mask) as the bench with
confidence score of 0.97

7.5 Use of GSV API to download the sequence of
image

As mentioned in the methodology section 6.9, though, the algorithm was able
to grab most of the images available at the location. However, the number of
requests to the server is significantly increased. The more straightforward
solution is to use the polyline. However, this algorithm performs and returns
only the access points, there might be some cases where polyline coordinates
can be used, but no GSV image found at those locations.

7.6 Performance of Mask R-CNN on GSV dataset

Experimentation with the Mask R-CNN at 3 different locations in Prague.

1) 50.10291748018805, 14.39132777985096 Dejvice
2) 50.0795436,14.3907308 Strahov
3) 50.0746767,14.418974 Karlovo namesti

With the specified parameters of Google Streetview API as mentioned in
6.3 in Implementation section total 27 images were downloaded.

All images were processed with Mask R-CNN with Resnet101 as the back-
bone and pre-trained weight available with 81 classes. Among all 27 pictures,
there was correct classification except eight misclassified objects, examples of
such can be seen below.

In figure 7.2, Grill is misclassified as the bench.
In figure 7.3, street name text is classified as the car.
In figure 7.4, person is detected in between the trees with confidence 0.95.
In figure 7.5, there is no classification of the car at the instance.

57

7. Experimentation evaluation...............................

Figure 7.3: Street name text (red mask) is classified as the car

Figure 7.4: Person is detected in between the trees with confidence 0.95

In an experiment of 1.5 sq mile area, 1000 downloaded images, and 2475
objects were detected. The evaluation of the detection was as follows.

The confusion matrix figure A.7 shows predicted vs actual value for each
class. The objects which were classified wrong and did not belong to any of
the class are put into background class (actual value) and add up as False
positive. Similarly, the objects which were not detected but present in the
image is put into the background class (predication value) add up as false
negative.

The average precision of the Mask R-CNN on GSV images was 0.7644, and
an average recall was 0.8591, which is calculated by taking the average of
precision and recall from all the classes Considering no ground truth available
and evaluation sets created manually.

7.7 Performance of GSV Images

Images from GSV are captured with a 360 camera system mounted on Google’s
vehicle. Also, Street View images can be in the form of continuous images at
street or 360 images at some viewpoints. There are some cases in continuous
street view images when the car changes its lanes. Also due to imagery
captured with the vehicle, there might be some glitches at some location
due to uneven speed, or the image stitching algorithm does not work correctly.

58

............................. 7.8. Performance of Depth Images

Figure 7.5: No detection(false negative) of class car (red car)

Figure 7.6: Shift of the lanes from left to right on straight road though the
coordinates of image is at center of road

Figure 7.6 shows the shifting of lanes from left to right, but the coordinates
of image location remain in the center of the street.

Glitches in GSV images can be seen in figure 7.7 The shift of lanes can
cause loss of the region in which we are more interested in; the anomaly can
be seen in figure 7.6

7.8 Performance of Depth Images

The depth image is stored in the ".npy" file, which is a form of an array,
and it ranges from 0 - 255 per pixel. The depth value is rounded off to its
whole number and can be seen in figure 7.8. The estimated depth value is
proportional to the distance of the object respect to the camera. The results
have significant variance through the experiment.

7.9 Performance of Folium

Folium is a python package that uses OpenStreetMap [64] maps to render
and bind data to the map. Detected objects are placed in the overlying map
as a marker. In a personal experiment, when the number of markers reaches
more than 40,000, the map becomes unresponsive and shows no results. From
section 8.2, It can be seen 0.01 square miles can hold 1200 + feature.

59

7. Experimentation evaluation...............................

Figure 7.7: Glitchs in GSV

Figure 7.8: Visual reference of the estimated depth

60

Chapter 8
Results

Altogether thesis consists of data mining, usage of the machine learning
algorithm, use of DNN, manipulation of the database, scripting in Python,
computer vision, API integration problems. The work done converged into
adequate usable solution with an exploration of the state of the art and usage
of them to prepare the application.

The software outputs a vectorized description projected and visualized over
an underlying map. The vectorized description is in the form of a marker
placed on the map.

8.1 Performance of localization

Some examples of the objects which are localized by the application with the
maker on the map.

Figure 8.1, 8.2 shows there position in the map 8.3 Purple marker shows
traffic light and light Orange shows potted plant.

8.2 Performance on large data set

An example of showing detection done in various locations covering 17.47 sq.
Miles area shown in figure 8.4. There were 15,877 downloaded images. The
bounding box shows the area of interest, and the markers within the box are
the results generated after the tests.

Table 8.1 showing the number of detections per class. Top 5 classes during
an test were

Cars with 60972 detections
Person with 15196 detections
Truck with 1974 detections
Bench with 1285 detections

61

8. Results

Figure 8.1: Downloaded images at 0 and 90 heading

Figure 8.2: Downloaded images at 180 and 270 heading

potted plant with 1282 detections

There were several other classes with few detections, which can be inferred
for the table 8.1.

The Mask R-CNN pre-trained model was trained with 81 classes. Out of
them, there are some classes like elephant and giraffe where the expectancy
is low on the streets. These classes often show misclassification. Example of
the detection of two giraffes in the area shown in figure 8.4, and both were
misclassified and can be seen in figure 8.5.

On an average of the test area of 0.01 sq. miles, it took approximately 200
sec on the Google Colab notebook to complete the whole process. There were
192 images, and the number of detected features were 1263 for the following
test.

62

...................................... 8.3. Drawback

Figure 8.3: Markers of the detected class on the map , purple marker shows the
traffic light light orange shows potted plant

Class name Number of detections
BG 0
person 15196
bicycle 173
car 60972
motorcycle 201
airplane 19
bus 889
train 459
truck 1974
boat 1096
traffic light 1261
fire hydrant 287
stop sign 1066
parking meter 46
bench 1285
bird 38
cat 0
dog 16
horse 11
sheep 3
cow 18
elephant 7
bear 1
zebra 0
giraffe 10
backpack 91
umbrella 195
handbag 142
tie 2
suitcase 94
frisbee 11
skis 17
snowboard 4
sports ball 9
kite 19
baseball bat 0
baseball glove 0
skateboard 14
surfboard 15
tennis racket 4
bottle 181

Class name Number of detections
wine glass 5
cup 37
fork 10
knife 3
spoon 1
bowl 34
banana 0
apple 0
sandwich 0
orange 0
broccoli 8
carrot 0
hot dog 0
pizza 0
donut 0
cake 3
chair 1030
couch 22
potted plant 1282
bed 14
dining table 208
toilet 52
tv 68
laptop 15
mouse 4
remote 5
keyboard 17
cell phone 2
microwave 1
oven 5
toaster 0
sink 62
refrigerator 42
book 133
clock 132
vase 39
scissors 1
teddy bear 2
hair drier 0
toothbrush 0

Table 8.1: Number of detection with their classes

8.3 Drawback

This section describes the shortcoming of the methods and algorithms used
in the thesis.

63

8. Results

Figure 8.4: Combination of various database together with bounding box as
given input and marker points as the output

8.3.1 Location of the markers are not correct

The depth of images is estimated with the state-of-the-art DNN. Still, there
was a difference in the ground truth and the estimated value. Keeping in mind
that the information is purely based on a 2D RGB image. The measured value
doesn’t always converge to have closer or expected value. There was variance
with different scenarios according to the image. A panoramic 360 image is
divided into four parts according to their heading angle. An image can consist
of many objects with a different perspective and orientation. Finding the
angle of the object with the 2D image can be tricky and out of the scope of
the thesis topic.

8.3.2 Google Colab

Though the final software is implemented and visualized in the Google Colab
notebook, the development was done with the local computer. The reason
was due to limitations in the period of run time. Google colab allows only
12 hours of run time in a single run, which can disturb the progress when
the test is performed on a large area. Also, during the period of 2018 on
individual experience, the colab notebook crashed 2 out of 10 times during
development.

64

..................................... 8.4. Future work

(a) : Misclassification of the giraffe with
confidence score of 0.95

(b) : Misclassification of the giraffe with
confidence score of 0.75

Figure 8.5: Giraffes detected during test

8.4 Future work

8.4.1 Training own dataset

Training can be done for both classification, segmentation, and depth model.
The pre-trained model used for classification and segmentation consists of 81
classes for detection. The images from GSV can be labeled for training the
model with the classes of interest.

8.4.2 Downloading sequence of images

In order to eliminate cases of multiple detections, images can be downloaded,
which are closer to each other in terms of their coordinates. The images of
the adjacent coordinate can be processed with feature extraction, to find the
same objects in the images. If the same object is found multiple times, the
mean position of the object can be used as its original position.

One approach could be to download the images sequentially by using google
direction API to get the location.

The output from GSV results with sequential images like figure 8.6.

Direction API and Google street view API

There might be some cases when direction API would result in the polyline,
which gives the sequence of waypoint image from our starting point to
endpoint. In the series of the image, the same object can be detected using
feature extraction and can be eliminated.

65

8. Results

Figure 8.6: Sequence of images downloaded from left to right

66

Chapter 9
Conclusion

This thesis was aimed to design, implement, and evaluate deep neural networks
solution for city mapping using Google Street View imagery. Design and
implementation of software have been discussed in chapter 5 along with
methodology in chapter 6. Evaluation of state-of-the-art network was done in
chapter 7 with results shown in chapter 8. The solution uses two state-of-the-
art networks to develop a solution. The implementation is done in Python
with Keras, TensorFlow, and Pytorch frameworks on existing pre-trained
models. The user interface for the application execution, processing of the
input images, and visualization of the results were realized using Google
Colab. Comparison with previous state-of-the-art was analyzed and described
in chapter 3.

The necessary proof of concept is demonstrated with the output in Google
Colab. Different approaches have been discussed with their pros and cons for
the individual block of the pipeline with scope of improvement in future work.
The software outputs a vectorized description projected and visualized over
an underlying map. The vectorized description is in the form of a marker
placed on the map. The evaluation of Mask R-CNN on GSV images gives
the average precision value of 0.7191 and an average recall of 0.7684 when
tested over more than 1000 images manually.

The software solution can result in an application that can be used to find
different objects located in space. A neural network could be trained to find a
particular object and find it in the area. Further, it can be trained to detect
an anomaly in the vast data set, which is quite dull and tedious work for a
human. It can be used used to analyze the scenario with a different GSV
timeline. There comes an infinite possibility to use this a base to create a
specific application. Some of the example like to detect the number of trash
and cans in the particular area to implement the optimum amount of trash bin
on streets or to find the density of plants in a area or maybe find number of
human in streets to find out the busiest streets in the city or finding free space
to put more ATM or finding the nearest fire hydrant in case of fire or vice versa.

67

68

Appendix A
Pictures

Class name Number of detections
BG 0
person 77
bicycle 13
car 762
motorcycle 4
airplane 0
bus 1
train 0
truck 19
boat 24
traffic light 9
fire hydrant 0
stop sign 10
parking meter 0
bench 8
bird 0
cat 0
dog 0
horse 0
sheep 0
cow 0
elephant 0
bear 0
zebra 0
giraffe 0
backpack 0
umbrella 2
handbag 1
tie 0
suitcase 0
frisbee 0
skis 0
snowboard 0
sports ball 0
kite 0
baseball bat 0
baseball glove 0
skateboard 0
surfboard 1
tennis racket 0
bottle 0

Class name Number of detections
wine glass 0
cup 0
fork 1
knife 1
spoon 1
bowl 0
banana 0
apple 0
sandwich 0
orange 0
broccoli 0
carrot 0
hot dog 0
pizza 0
donut 0
cake 0
chair 10
couch 0
potted plant 55
bed 0
dining table 6
toilet 0
tv 0
laptop 3
mouse 1
remote 1
keyboard 0
cell phone 0
microwave 0
oven 0
toaster 0
sink 1
refrigerator 0
book 5
clock 2
vase 2
scissors 0
teddy bear 0
hair drier 0
toothbrush 0

Table A.1: Number of detected objects per class within area of interest(Munich)

69

A. Pictures

Figure A.1: Availability of GSV images in Munich

Figure A.2: Munich street with input bounding box (black) with the resulting
marker

70

....................................... A. Pictures

Figure A.3: Availability of GSV images in Prague street

Figure A.4: Street in Prague with area of interest as bounding box (black) with
the resulting marker

71

A. Pictures

Class name Number of detections
BG 0
person 77
bicycle 13
car 762
motorcycle 4
airplane 0
bus 1
train 0
truck 19
boat 24
traffic light 9
fire hydrant 0
stop sign 10
parking meter 0
bench 8
bird 0
cat 0
dog 0
horse 0
sheep 0
cow 0
elephant 0
bear 0
zebra 0
giraffe 0
backpack 0
umbrella 2
handbag 1
tie 0
suitcase 0
frisbee 0
skis 0
snowboard 0
sports ball 0
kite 0
baseball bat 0
baseball glove 0
skateboard 0
surfboard 1
tennis racket 0
bottle 0

Class name Number of detections
wine glass 0
cup 0
fork 1
knife 1
spoon 1
bowl 0
banana 0
apple 0
sandwich 0
orange 0
broccoli 0
carrot 0
hot dog 0
pizza 0
donut 0
cake 0
chair 10
couch 0
potted plant 55
bed 0
dining table 6
toilet 0
tv 0
laptop 3
mouse 1
remote 1
keyboard 0
cell phone 0
microwave 0
oven 0
toaster 0
sink 1
refrigerator 0
book 5
clock 2
vase 2
scissors 0
teddy bear 0
hair drier 0
toothbrush 0

Table A.2: Number of detected object per class within area of interest(Prague)

72

....................................... A. Pictures

Figure A.5: Availability of GSV images at area of interest

Figure A.6: Resulting visualization of large scale map with 17336 detections

73

A. Pictures

Class name Number of detections
BG 0
person 3121
bicycle 46
car 11717
motorcycle 73
airplane 2
bus 226
train 112
truck 322
boat 264
traffic light 313
fire hydrant 53
stop sign 193
parking meter 9
bench 229
bird 6
cat 0
dog 3
horse 1
sheep 2
cow 1
elephant 2
bear 0
zebra 0
giraffe 2
backpack 29
umbrella 32
handbag 24
tie 2
suitcase 13
frisbee 3
skis 0
snowboard 1
sports ball 2
kite 1
baseball bat 0
baseball glove 0
skateboard 4
surfboard 4
tennis racket 1
bottle 21

Class name Number of detections
wine glass 2
cup 9
fork 1
knife 1
spoon 0
bowl 16
banana 0
apple 0
sandwich 0
orange 0
broccoli 0
carrot 0
hot dog 0
pizza 0
donut 0
cake 0
chair 178
couch 3
potted plant 155
bed 0
dining table 28
toilet 25
tv 11
laptop 2
mouse 0
remote 0
keyboard 1
cell phone 1
microwave 1
oven 1
toaster 0
sink 18
refrigerator 10
book 18
clock 20
vase 1
scissors 0
teddy bear 0
hair drier 0
toothbrush 0

Table A.3: Number of detected object per class

74

....................................... A. Pictures

Figure A.7: Confusion matrix of 81 classes

75

76

Appendix B
File structure

77

B. File structure
B.1 Structure of Files

Root directory

monodepth2 - CNN package for depth estimation
...

Mask RCNN - CNN package for object classification and segmentation
...

box.txt - bounding box coordinates from geojson file

input.geojson - input geojson file

run_all.sh - bash script to run program sequentially

requirement.txt - requirements for the environment

workspace - directory of python scripts

database - directory for all the database created
...

readgeojson.py - read input.geojson file

build_query.py - python script to build query

gsv_down.py - script to download GSV images

filehan.py - script for file rename and editing

CNNdet.py - script for classification and segementation(MaskRCNN)

CNNdepth.py - script to depth CNN(Monodepth2)

anadepth_depth.py - script to analyze depth

cre_map.py - script for creating maps

mergemap.py - script for mergring maps and outputs

finaldetdic.json - dictionary consist of all detection from all database together

finalmap.geojson - combined geojson file of all detections

overallstatus.png - graph number of detection vs class

statusinnumber.txt - statistic number of detection for each class

78

................................B.2. Structure of Downloads

B.2 Structure of Downloads

Downloads - download images from GSV API

0 - batch 1

gsv1.jpeg - images

metadata.json - metadata from API

...

1 - batch 2

gsv1.jpeg - images

metadata.json - metadata from API

...
...

B.3 Structure of Masks

Mask - numpy mask file which should be applied on depth image

filename1(pano_id)

Mask0 - numpy mask file

...

filename2(pano_id)

Mask0 - numpy mask file

...
...

B.4 Structure of Mask_depth

Mask_depth - visualization of resulting depth when mask is used

filename1(pano_id)

Mask0.jpeg

...

filename2(pano_id)

Mask0.jpeg

...
...

79

B. File structure
B.5 Structure of database

Database

0 - Database1

Downloads - download images from GSV API
...

imagedataset - Renamed images wiht pano_id
...

Detection - Processed images with segmentation and classification
...

Depth - Processed images with depth estimation in form of gray scale and npy file
...

Mask_depth - visualization of resulting depth when mask is used
...

Mask - numpy mask file
...

Maps - Map directory for each class

class1.html
...

det_dict.json

map.html

hmap.html - heat map of the database

img_db.json -combined dictionary from all metadata from each batch

query_points.txt - list of query points for each batch

myfile.geojson - out put geojson file for each batch

final_dict.json - dictionary which get updated during the pipeline

mask_dict.json - information consisting mask file name and depth

status.png - graph number of detection vs class

statusinnumber.txt - statistic number of detection for each class

1 - Database2
...

...

80

Appendix C
Bibliography

[1] Stanford Vision Lab, “Large Scale Visual Recognition Challenge
(ILSVRC),” 2015.

[2] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei,
“ImageNet Large Scale Visual Recognition Challenge,” International
Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.

[3] Developers.google.com, “Developer Guide,” 2018.

[4] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” Pro-
ceedings of the IEEE International Conference on Computer Vision,
vol. 2017-Octob, pp. 2980–2988, 2017.

[5] C. Godard, O. Mac Aodha, M. Firman, and G. J. Brostow, “Digging
into self-supervised monocular depth prediction,” October 2019.

[6] A. Chandra, “How do you decide on what filters to use in CNN?,” 2018.

[7] P. Pošík and P. Pošík, “CZECH TECHNICAL UNIVERSITY IN
PRAGUE Faculty of Electrical Engineering Department of Cybernetics
Linear Methods for Regression and Classification,” tech. rep.

[8] P. Pošík and P. Pošík, “CZECH TECHNICAL UNIVERSITY IN
PRAGUE Faculty of Electrical Engineering Department of Cybernetics
Neural Networks. Introduction and Rehearsal,” tech. rep.

[9] Juan Miguel Valverde, “Activation Functions in Deep Learning (Sigmoid,
ReLU, LReLU, PReLU, RReLU, ELU, Softmax) – Lipman’s Artificial
Intelligence Directory.”

[10] Http://cs231n.stanford.edu/, “Convolutional Neural Networks (CNNs /
ConvNets),” 2019.

[11] E. Villa, “Convolutional Neural Network,” 2019.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” Enzyme and Microbial Technology, vol. 19, pp. 107–117,
dec 2015.

81

C. Bibliography
[13] T. Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,

“Feature pyramid networks for object detection,” Proceedings - 30th IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2017,
vol. 2017-Janua, pp. 936–944, 2017.

[14] C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised monocular
depth estimation with left-right consistency,” in CVPR, 2017.

[15] J. A. (https://stats.stackexchange.com/users/153844/josh albert), “How
to build a confusion matrix for a multiclass classifier?.” Cross Validated.
URL:https://stats.stackexchange.com/q/338240 (version: 2019-07-31).

[16] G. Develper, “google-streetview 1.2.9,” 2019.

[17] T. Zhang and R. Ma, “Identify the cells’ nuclei based on the deep learning
neural network,” arXiv e-prints, p. arXiv:1911.09830, nov 2019.

[18] “Decoding the Confusion Matrix - Towards Data Science.”

[19] G. Stockman and L. G. Shapiro, Computer Vision. Upper Saddle River,
NJ, USA: Prentice Hall PTR, 1st ed., 2001.

[20] Geojson, “GEOJSON,” 2016.

[21] Colab.research.google.com, “Welcome to Colaboratory!.”

[22] Python Software Foundation, “Python,” 2019.

[23] F. Chollet et al., “Keras.” https://keras.io, 2015.

[24] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kud-
lur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale
machine learning on heterogeneous systems,” 2015. Software available
from tensorflow.org.

[25] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[26] Developer.google.com, “Direction API,” 2019.

[27] T.-Y. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick,
J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft
{COCO:} Common Objects in Context,” CoRR, vol. abs/1405.0, 2014.

[28] K. Kita-wojciechowska and E. Sciences, “Google Street View image of a
house predicts car accident risk of its resident,”

82

https://keras.io
http://www.deeplearningbook.org

..................................... C. Bibliography

[29] S. Law, B. Paige, and C. Russell, “Take a Look Around: Using Street
View and Satellite Images to Estimate House Prices,” 2018.

[30] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: the
kitti dataset,” The International Journal of Robotics Research, vol. 32,
pp. 1231–1237, 09 2013.

[31] M.-Y. Liu, S. Lin, S. Ramalingam, and O. Tuzel, “Layered Interpretation
of Street View Images,” 2015.

[32] J. Kang, M. Körner, Y. Wang, H. Taubenböck, and X. X. Zhu, “Building
instance classification using street view images,” ISPRS Journal of
Photogrammetry and Remote Sensing, vol. 145, pp. 44–59, 2018.

[33] V. A. Krylov, E. Kenny, and R. Dahyot, “Automatic discovery and
geotagging of objects from street view imagery,” Remote Sensing, vol. 10,
no. 5, 2018.

[34] S. Suresh, N. Chodosh, and M. Abello, “Deepgeo: Photo localization
with deep neural network,” CoRR, vol. abs/1810.03077, 2018.

[35] M. A. Sudharshan Suresh, Nathaniel Chodosh, “50States10K,” 2018.

[36] O. Samano Abonce, M. Zhou, and A. Calway, “You Are Here:
Geolocation by Embedding Maps and Images,” arXiv e-prints,
p. arXiv:1911.08797, Nov 2019.

[37] Osmlab, “Overpass API Documentation,” 2015.

[38] R. Arandjelović, P. Gronat, A. Torii, T. Pajdla, and J. Sivic, “NetVLAD:
CNN architecture for weakly supervised place recognition,” arXiv e-
prints, p. arXiv:1511.07247, Nov 2015.

[39] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolu-
tional Networks for Biomedical Image Segmentation,” arXiv e-prints,
p. arXiv:1505.04597, may 2015.

[40] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely
Connected Convolutional Networks,” arXiv e-prints, p. arXiv:1608.06993,
aug 2016.

[41] X. Li, H. Chen, X. Qi, Q. Dou, C.-W. Fu, and P. A. Heng, “H-DenseUNet:
Hybrid Densely Connected UNet for Liver and Tumor Segmentation
from CT Volumes,” arXiv e-prints, p. arXiv:1709.07330, sep 2017.

[42] H. Zhao, O. Gallo, I. Frosio, and J. Kautz, “Loss Functions for Neural
Networks for Image Processing,” arXiv e-prints, p. arXiv:1511.08861,
nov 2015.

[43] “Package/Tikz.” \url{http:https://github.com/PetarV-/TikZ/}, 2018.

83

C. Bibliography
[44] H. Robbins and S. Monro, “A Stochastic Approximation Method,” The

Annals of Mathematical Statistics, vol. 22, no. 3, pp. 400–407, 1951.

[45] “Complete Guide of Activation Functions - Towards Data Science,” 2019.

[46] Wikipedia, “Convolution,” 2019.

[47] J. Brownlee, “A Gentle Introduction to Pooling Layers for Convolutional
Neural Networks,” 2019.

[48] R. Girshick, “Fast R-CNN,” Proceedings of the IEEE International
Conference on Computer Vision, vol. 2015 Inter, pp. 1440–1448, 2015.

[49] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the Inception Architecture for Computer Vision,” 2015.

[50] F. Chollet, “Xception: Deep learning with depthwise separable convolu-
tions,” Proceedings - 30th IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 1800–1807, 2017.

[51] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “MobileNets: Efficient Convolutional
Neural Networks for Mobile Vision Applications,” 2017.

[52] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bileNetV2: Inverted Residuals and Linear Bottlenecks,” 2018.

[53] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” Proceedings - 30th IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017-
Janua, pp. 2261–2269, 2017.

[54] B. Zoph and J. Shlens, “Learning Transferable Architectures for Scalable
Image Recognition,”

[55] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster {R-CNN:} Towards
Real-Time Object Detection with Region Proposal Networks,” CoRR,
vol. abs/1506.0, 2015.

[56] En.wikipedia.org, “Bilinear interpolation,” 2019.

[57] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4,
Inception-ResNet and the Impact of Residual Connections on Learning,”
Journal of Urology, vol. 131, pp. 262–263, feb 2016.

[58] J.-W. Bian, Z. Li, N. Wang, H. Zhan, C. Shen, M.-M. Cheng, and I. Reid,
“Unsupervised Scale-consistent Depth and Ego-motion Learning from
Monocular Video,” tech. rep.

[59] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao, “Deep
Ordinal Regression Network for Monocular Depth Estimation,” CoRR,
vol. abs/1806.02446, 2018.

84

..................................... C. Bibliography

[60] Z. Yang, P. Wang, Y. Wang, W. Xu, and R. Nevatia, “{LEGO:} Learn-
ing Edge with Geometry all at Once by Watching Videos,” CoRR,
vol. abs/1803.05648, 2018.

[61] A. Ranjan, V. Jampani, K. Kim, D. Sun, J. Wulff, and M. J. Black,
“Adversarial Collaboration: Joint Unsupervised Learning of Depth,
Camera Motion, Optical Flow and Motion Segmentation,” CoRR,
vol. abs/1805.09806, 2018.

[62] R. Garg, V. K. B. G, and I. D. Reid, “Unsupervised {CNN} for
Single View Depth Estimation: Geometry to the Rescue,” CoRR,
vol. abs/1603.04992, 2016.

[63] R. Story, “Folium,” 2019.

[64] OpenStreetMap contributors, “Planet dump retrieved from
https://planet.osm.org .” https://www.openstreetmap.org, 2017.

[65] M. Bostock, “TopoJSON,” 2016.

[66] F. Seide and A. Agarwal, “Cntk: Microsoft’s open-source deep-learning
toolkit,” in Proceedings of the 22Nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD ’16, (New York,
NY, USA), pp. 2135–2135, ACM, 2016.

[67] R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau,
N. Ballas, F. Bastien, J. Bayer, A. Belikov, A. Belopolsky, Y. Bengio,
A. Bergeron, J. Bergstra, V. Bisson, J. Bleecher Snyder, N. Bouchard,
N. Boulanger-Lewandowski, X. Bouthillier, A. de Brébisson, O. Breuleux,
P.-L. Carrier, K. Cho, J. Chorowski, P. Christiano, T. Cooijmans, M.-
A. Côté, M. Côté, A. Courville, Y. N. Dauphin, O. Delalleau, J. De-
mouth, G. Desjardins, S. Dieleman, L. Dinh, M. Ducoffe, V. Dumoulin,
S. Ebrahimi Kahou, D. Erhan, Z. Fan, O. Firat, M. Germain, X. Glo-
rot, I. Goodfellow, M. Graham, C. Gulcehre, P. Hamel, I. Harlouchet,
J.-P. Heng, B. Hidasi, S. Honari, A. Jain, S. Jean, K. Jia, M. Korobov,
V. Kulkarni, A. Lamb, P. Lamblin, E. Larsen, C. Laurent, S. Lee,
S. Lefrancois, S. Lemieux, N. Léonard, Z. Lin, J. A. Livezey, C. Lorenz,
J. Lowin, Q. Ma, P.-A. Manzagol, O. Mastropietro, R. T. McGibbon,
R. Memisevic, B. van Merriënboer, V. Michalski, M. Mirza, A. Orlandi,
C. Pal, R. Pascanu, M. Pezeshki, C. Raffel, D. Renshaw, M. Rocklin,
A. Romero, M. Roth, P. Sadowski, J. Salvatier, F. Savard, J. Schlüter,
J. Schulman, G. Schwartz, I. V. Serban, D. Serdyuk, S. Shabanian, E. Si-
mon, S. Spieckermann, S. R. Subramanyam, J. Sygnowski, J. Tanguay,
G. van Tulder, J. Turian, S. Urban, P. Vincent, F. Visin, H. de Vries,
D. Warde-Farley, D. J. Webb, M. Willson, K. Xu, L. Xue, L. Yao,
S. Zhang, and Y. Zhang, “Theano: A Python framework for fast compu-
tation of mathematical expressions,” arXiv e-prints, vol. abs/1605.02688,
May 2016.

85

 https://www.openstreetmap.org

C. Bibliography
[68] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,

A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
PyTorch,” in NIPS-W, 2017.

[69] A. Gelbukh, “Natural language processing,” in Fifth International Con-
ference on Hybrid Intelligent Systems (HIS’05), pp. 1 pp.–, nov 2005.

[70] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov,
D. Avila, S. Abdalla, and C. Willing, “Jupyter Notebooks – a publishing
format for reproducible computational workflows,” in Positioning and
Power in Academic Publishing: Players, Agents and Agendas (F. Loizides
and B. Schmidt, eds.), pp. 87–90, IOS Press, 2016.

[71] I. Culjak, D. Abram, T. Pribanic, H. Dzapo, and M. Cifrek, “A brief
introduction to OpenCV,” MIPRO, 2012 Proceedings of the 35th Inter-
national Convention, pp. 1725–1730, 2012.

[72] “Approximate Metric Equivalents for Degrees.”
://www.usna.edu/Users/oceano/pguth/md_help/html/approx_equivalents.htm.

[73] S. van der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy Array:
A Structure for Efficient Numerical Computation,” Computing in Science
Engineering, vol. 13, pp. 22–30, mar 2011.

[74] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei, “Fully Convolutional Instance-
aware Semantic Segmentation,” arXiv e-prints, p. arXiv:1611.07709, nov
2016.

[75] W. Abdulla, “Mask r-cnn for object detection and instance segmenta-
tion on keras and tensorflow.” https://github.com/matterport/Mask_
RCNN, 2017.

[76] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benen-
son, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for
semantic urban scene understanding,” in Proc. of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

[77] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in
Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007.

[78] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,
and A. Y. Wu, “An efficient k-means clustering algorithm: analysis and
implementation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, pp. 881–892, July 2002.

[79] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel,
V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. Van-
derPlas, A. Joly, B. Holt, and G. Varoquaux, “{API} design for machine
learning software: experiences from the scikit-learn project,” in ECML

86

https://github.com/matterport/Mask_RCNN
https://github.com/matterport/Mask_RCNN

..................................... C. Bibliography

PKDD Workshop: Languages for Data Mining and Machine Learning,
pp. 108–122, 2013.

[80] Developers.google.com, “Encoded Polyline Algorithm Format,” 2018.

[81] “GitHub - hicsail/polyline: A Python implementation of Google’s En-
coded Polyline Algorithm Format..”

87

	List of Abbreviations
	Introduction
	Motivation
	Aim and objective of the thesis
	Overview of Thesis
	Structure of thesis

	Related Work
	Theory
	Image Classification
	Semantic Segmentation
	Instance segmentation
	Feature extraction
	Neural Network
	Regression task
	Loss function
	Forward propagation
	Backpropagation
	Activation functions
	Overfitting

	Dropout regularization
	Deep learning
	Convolutional neural network
	Convolutional layers
	Pooling layer

	Neural network architectures for Image classification
	VGG16 and VGG19
	ResNet50
	Inceptionv3
	Xception
	Mobilenet v2
	Densenet
	Nasnet
	Mask R-CNN

	 Neural network for depth estimation
	Monodepth
	Monodepth2

	Evalution of machine learning model
	Confusion matrix
	Accuracy
	Misclassification rate
	True positive rate
	True negative rate
	Precision

	Multi class evaluation

	Software tools
	Google Direction API
	Google Street View API
	Folium
	KERAS
	TensorFlow
	Pytorch
	Google Colab

	Implementation
	Input
	Creating a query
	Downloading of Images from location
	Structure of metadata

	File Handling
	Classification and segmentation
	Mask dictionary

	Depth estimation
	Depth Analysis
	Creating Geojson file and map
	Statistics

	Methodology
	Building query
	Overpass API
	Downloading the Images with Google Street View API
	Selecting the parameter for Google street view API

	Maintenance of dictionary
	File handling
	Classification and segmentation
	 Depth of the detected object
	Depth Analysis
	The scheme of creating the map
	Marker visualization in the map
	Implementation in Google Colab
	Building the environment
	Downloading and running of scripts
	Visualization

	Experimentation
	Downloading images from the status of GSV API
	 Mapping without depth Image
	Changing parameters of Mask R-CNN

	Clustering
	Waypoint coordinates

	Experimentation evaluation
	Resulting map from the Setup
	Result of Map generation with overpass API nodes
	 Mapping with the geometric method and Kmeans clustering
	Mapping using depth and metadata
	Use of GSV API to download the sequence of image
	Performance of Mask R-CNN on GSV dataset
	Performance of GSV Images
	Performance of Depth Images
	Performance of Folium

	Results
	Performance of localization
	Performance on large data set
	Drawback
	 Location of the markers are not correct
	Google Colab

	Future work
	Training own dataset
	Downloading sequence of images

	Conclusion
	Pictures
	File structure
	Structure of Files
	Structure of Downloads
	Structure of Masks
	Structure of Mask_depth
	Structure of database

	Bibliography

