
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Telecommunication Engineering

Deploying SDN architecture in Open Optical Transport
Networks

Master thesis

Bc. Ivan Eroshkin

Master programme: Electronics and Communication
Branch of study: Communication Systems and Networks

Author: Bc. Ivan Eroshkin
Supervisor: Doc. Ing. Leoš Boháč, Ph.D.

Company supervisor: M.Sc. Dominique Verchere, Ph.D.

Prague, January 2020

Thesis Supervisor:
Doc. Ing. Leoš Boháč, Ph.D.
Department of Telecommunication En-
gineering
Faculty of Electrical Engineering
Czech Technical University in Prague
Technická 2
160 00 Prague 6
Czech Republic
bohac@fel.cvut.cz

Company Supervisor:
M.Sc. Dominique Verchere, Ph.D.
ENSA Lab
Nokia Bell Labs France
7 Route de Villejust
91620 Nozay, France
dominique.verchere@
nokia-bell-labs.com

Copyright © January 2020, Bc. Ivan Eroshkin

bohac@fel.cvut.cz
dominique.verchere@nokia-bell-labs.com
dominique.verchere@nokia-bell-labs.com

Declaration

I hereby declare that I have written this master thesis independently and quoted all the
sources of information used in accordance with methodological instructions on ethical
principles for writing an academic thesis.

In Prague, January 2020

..

Bc. Ivan Eroshkin

iii

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

434675Osobní číslo:IvanJméno:EroshkinPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra telekomunikační techniky

Elektronika a komunikaceStudijní program:

Komunikační systémy a sítěStudijní obor:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Využití konceptu softwarově definovaných sítí v otevřených optických transportních sítích

Název diplomové práce anglicky:

Deploying SDN architecture in Open Optical Transport Networks

Pokyny pro vypracování:
Hlavním cílem této diplomové práce je nastudovat architektury softwarově definovaných sítí a určit, jak mohou napomoci
při řešení rostoucích požadavků na širší automatizaci v optických přenosových sítích. Úkolem studenta je metodicky
vyhodnotit populární open-source kontroléry, jako je OpenDayLight, či ONOS a vybrat ten optimální pro implementaci.
Kromě výše uvedené analýzy bude výstupem práce jednoduchý demonstrační příklad sítě ověřující spojení typu
konec-konec.

Seznam doporučené literatury:
[1] EDELMAN, Jason, Scott LOWE aMatt OSWALT. Network programmability and automation: skills for the next-generation
network engineer. Sebastopol, California: O'Reilly Media, 2018. ISBN 978-1-491931-257.
[2] GORANSSON, Paul, Chuck BLACK a Timothy CULVER. Software defined networks: a comprehensive approach.
Second edition. Singapore: Morgan Kaufmann, [2017]. ISBN 0-12804-555-8.
[3] CHADHA, Devi. Optical WDM networks: from static to elastic networks. Hoboken, NJ, USA: Wiley, [2019]. ISBN
978-1-119393-269.

Jméno a pracoviště vedoucí(ho) diplomové práce:

doc. Ing. Leoš Boháč, Ph.D., katedra telekomunikační techniky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 07.01.2020Datum zadání diplomové práce: 25.09.2019

Platnost zadání diplomové práce: 30.09.2021

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedrydoc. Ing. Leoš Boháč, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Abstract

With the rising demands on the network throughput, latency and security, legacy con-
trol networking concepts should be reconsidered. Software-Defined Networking (SDN) is
one of the possible solutions, to which telecommunication industry is moving.

This work presents current state-of-the-art in Software-Defined Networking and focuses
on some open-source solutions of SDN controllers, like ONOS and OpenDaylight. Main
focus is to understand how SDN can help to solve increasing demand for broader automa-
tion in Optical Transport Networks.

The practical section is divided in two parts. Within the first part I focused on extending
functionality of SDN controller to facilitate more efficient configuration and control of
optical network devices. Main contribution was to implement additional features to SDN
drivers for Nokia 1830 PSS (ROADM) and extend functionality of Nokia 1830 PSI-2T
(Optical Transponder) driver.

Second part is dedicated to the Alarm Correlation problematic in open optical networks.
We designed, developed an Alarm Correlation function as a SDN application then we
tested it on emulated optical devices to prove the concept.

Keywords: Software-Defined Networking, SDN, NETCONF, OPENCONFIG, Open
Network Operating Systems, ONOS 2.x, ODTN, Open and Disaggregated Transport Net-
work, Open Optical Transport Networks, Optical Transponder, ROADM, Reconfigurable
Add/Drop Multiplexer, Future Networks, Alarm Correlation, Alarm Localization.

This work has been supported by Nokia Bell Labs Paris.

v

Résumé

Les réseaux optiques élastiques sont prévus pour le déploiement des réseaux de com-
munication à très hauts débits de nouvelle génération à cause des demandes croissantes
des services utilisateurs exigeant des contrôles précis en terme de débit, de latence et de
sécurité. En conséquence, les solutions de contrôle existantes pour offrir des services de
connectivité doivent être reconsidérées. Les approaches orientées logicielles ”Software-
Defined Networking” dites (SDN) sont les solutions de contrôle possibles pour les réseaux
télécom que les opérateurs analysent actuellement en détails.

Dans ce context, cette thèse présente un état de l’art des solutions de contrôles des
réseaux de transports dits ”SDN” et propose des évaluations et des expérimentations
basées sur des implémentations open-source de contrôleurs SDN comme précisément
ONOS et OpenDaylight. Le principal objectif de la thèse est définir des cas d’utitisation
basées sur ces implémentations logicielles SDN et de les expérimenter pour évaluer com-
ment un contrôleur SDN peut permettre l’ouverture des réseaux optiques pour intégrer des
équipements de différents constructeurs et peut permettre l’automatisation des différentes
configurations de service de connectivité photonique.

Les expérimentations sont divisées en deux parties.

La première partie consiste à étendre les fonctionnalités d’un controller SDN pour
configurer et contrôler de bout-en-bout des équipements de réseau optique. La principale
contribution a été de concevoir, développer et d’intégrer des fonctions nouvelles basées
sur le noeud optique � reconfigurable optical add drop multiplexer �, ou � multiplexeur
optique d’insertion-extraction reconfigurable � ROADM de NOKIA 1830 PSS et sur le
� transpondeur optique � NOKIA 1830 PSI-2T Optical Transponder.

La deuxième partie traite des problèmes de gestion des alarmes dans les réseaux optiques
SDN ouverts, c’est-à-dire multi-vendeurs, et principalement des fonctions de collection et
de corrélation d’alarmes. Une preuve de concepts de fonction de corrélation d’alarme a été
développée comme une application SDN et a été intégrée dans un banc expérimental de
réseau optique pour tester cette application SDN. Ensuite cette application a été évaluée
sur un réseau d’équipements optiques émulés pour évaluer son intérêt dans un réseau de
transport opérationnel.

Mots-Clés: Software-Defined Networking, SDN, NETCONF, OPENCONFIG, Open
Network Operating Systems, ONOS 2.x, ODTN, Open and Disaggregated Transport Net-
work, Open Optical Transport Networks, Optical Transponder, ROADM, Reconfigurable
Add/Drop Multiplexer, Future Networks, Alarm Correlation, Alarm Localization.

This work has been supported by Nokia Bell Labs Paris.

vii

Abstrakt

Pro udržeńı tempa s rostoućımi požadavky na přenosovou rychlost, latenci a bezpečnost
je nutné zvážit současnou koncepci ř́ızeńı śıt́ı. Software-Defined Networking (SDN) je
jedno z možných řešeńı, ke kterému telekomunikačńı pr̊umysl směruje.

Tato práce představuje současný stav Software-Defined Networking a zaměřuje se na
vybraná open-source řešeńı v oblasti SDN kontroler̊u, jako je ONOS či OpenDaylight.
Hlavńım ćılem této části práce je vysvětlit, jak může SDN pomoci vyřešit rostoućı požadavky
na rozš́ı̌reńı automatizace v otevřených optických śıt́ıch.

Praktická část této práce je rozdělená do dvou oblast́ı. V rámci prvńı oblasti jsem se
zabýval rozš́ı̌reńım funkčnosti SDN kontroleru pro umožněńı konfigurace a ř́ızeńı optických
komunikačńıch zař́ızeńı. Hlavńım př́ınosem je implementace nových funkcionalit SDN
driveru pro Nokia 1830 PSS (ROADM) a rozš́ı̌reńı funkcionality driveru pro Nokia 1830
PSI-2T (optický transpondér).

Ve druhé části práce jsem se zabýval problematikou korelace alarmů v otevřených
optických śıt́ıch. Výsledkem je funkce pro korelaci alarmů ve formě SDN aplikace, kterou
jsem dále otestoval na emulovaných optických zař́ızeńıch pro prokázáńı funkčnosti celého
konceptu.

Kĺıčová slova: Software-Defined Networking, SDN, NETCONF, OPENCONFIG, Open
Network Operating Systems, ONOS 2.x, ODTN, Open and Disaggregated Transport Net-
work, Open Optical Transport Networks, Optical Transponder, ROADM, Reconfigurable
Add/Drop Multiplexer, Future Networks, Alarm Correlation, Alarm Localization.

Tato práce byla stvořena za podpory Nokia Bell Labs Pař́ıž.

ix

Word of Gratitude

First of all, I would like to express my gratitude to M.Sc. Dominique Verchere,
Ph.D. for giving me an opportunity to work as an Intern in Bell Labs and making this
Diploma thesis happen. I would like to thank him for his encouragement, navigation
during the whole process, useful tips and his belief in me. He is truly incredible person.
It was a very precious experience working with him.

I would like to thank Doc. Ing. Lukáš Vojtěch, PhD. and Ing. Zbyněk Kocur,
PhD. for navigating me over whole studies at CTU, helping me to gather practical ex-
perience outside the university and setting correct working mentality.

Most of all, I am grateful to my parents, Ing. Igor Eroshkin and Ing. Nina Eroshk-
ina, for giving me an opportunity to study abroad, for their love, encouragement, infinite
belief and financial support through all of my studies. I love you.

I am also especially thankful to my close friends for their support and belief in me
during the past several years of my studies.

xi

Acknowledgements

I would like to thank Doc. Ing. Leoš Boháč, Ph.D. for his supervision, patience,
useful feedback, advises and administrative support during the whole work on this thesis.

Special thanks goes to M.Sc. Andrea Campanella, member of ONF, one of the
ONOS project developers and ODTN project leader. His useful tips, personal time in-
vestments and his technical guidance over the ONOS project has helped this work to be
finalized on time (in quite tough time constraints). Without this person it wouldn’t be
possible to achieve these results.

Also, I want to express my special gratitude to M.Sc. Sagar Arora for making my
internship happened, for his support during the first time at the new place and for making
my integration as an Intern easier. I really do appreciate this.

I am especially grateful to Doc. Ing. Zdeněk Bečvář, Ph.D. for providing me an
opportunity to study abroad at EURECOM and encouraging me on this adventure. It
was definitely precious experience with a lot of warm memories kept in mind.

I would also like to thank an Italian crew, who shared with me these beautiful moments
during the internship.

Last, but not least, I would like to thank Joaquim Oliveira for his support and
guidance on how to configure Nokia’s equipment.

xiii

List of Tables

2.1 Protocol comparison . 22

2.2 ODL and ONOS comparison . 29

xv

List of Figures

1.1 Network Orchestration principle . 5

2.1 SDN Architecture . 7

2.2 NFV Architecture . 9

2.3 Service Function Chaining principle . 10

2.4 OpenConfig data model tree [30] . 15

2.5 Beginning of the NETCONF communication 18

2.6 ONOS Architecture [43] . 24

2.7 OpenDaylight Architecture. Carbon release [49] 26

2.8 µONOS Architecture [54] . 28

3.1 Structure of OADM [71] . 34

3.2 ROADM architecture [73] . 35

3.3 WSS with MEMS principle [76] . 36

4.1 Nokia 1830 PSI-2T [79] . 40

4.2 Nokia 1830 PSS [80] . 41

4.3 DeviceDescriptionDiscovery interface workflow 45

4.4 FlowRuleProgrammable interface workflow. Getting the Flow Rules in-
stalled on the device . 47

4.5 FlowRuleProgrammable interface workflow. Applying the Flow Rules to
the device . 49

4.6 FlowRuleProgrammable interface workflow. Removing the Flow Rules
from the device . 50

4.7 Cli command, roadm-xc, workflow . 55

4.8 PowerConfig interface workflow . 57

4.9 AlarmConfig interface workflow . 59

xvii

4.10 Topology in the lab . 61

4.11 Alarm Correlation. Scenario 1 . 62

4.12 Alarm Correlation. Scenario 2 . 62

4.13 Alarm Correlation application architecture 64

5.1 Testing topology . 70

5.2 Ping from first router . 71

5.3 Ping from second router . 71

5.4 Power presence in the channel . 72

5.5 Testing topology for Alarm Correlation application 72

5.6 Testing topology for Alarm Correlation application. ONOS GUI. 75

5.7 Logs of the ONOS after Alarm Correlation application was executed 76

5.8 Link states after Alarm Correlation application was executed 76

5.9 Link states after Alarm Correlation application was executed. ONOS GUI. 76

6.1 Future network architecture . 81

6.2 Future network transit architecture . 81

B.1 Flexible DWDM grid . 85

C.1 Optical UI interface. Setting the power on optical port 87

C.2 Topology representation in ONOS . 87

List of Acronyms

API Application Programmable Interface. xviii

CDC-F ROADM Colorless, Directionless, Contentionless, Flex Spectrum Reconfigurable
Optical Add-Drop Multiplexer. xviii, 38, 41, 43

DWDM Dense Wavelength Division Multiplex. xviii, 34, 35, 83

EDFA Erbium Doped Fiber Amplifier. xviii, 84

FIFO first-in first-out. xviii

LCoS Liquid Crystal on Silicon. xviii, xxii, 37

MEMS Micro-Electro-Mechanical Mirror. xvii, xviii, xxii, 36

NETCONF Network Configuration Protocol. xvii, xviii, xxi, xxii, 13, 14, 16–19, 23, 24,
44, 52, 54, 60, 61, 77, 78

NFV Network Function Virtualization. xviii, xxi, 9

OADM Optical Add-Drop Multiplexer. xvii, xviii, 33, 34

ODL OpenDaylight. xviii, 23

ODTN Open and Disaggregated Transport Networks. xviii, 6

ONOS Open Network Operating System. xviii, 6, 23–25, 42

ROADM Reconfigurable Optical Add-Drop Multiplexer. xvii, xviii, xxii, xxiii, 6, 31,
34, 35, 37, 39, 42, 52, 84

RPC Remote Procedure Call. xviii, 14, 17

SDN Software-Defined Networking. xviii, 2

SFC Service Function Chaining. xviii, xxi, 10

T-API Transport API. xviii, 6, 80

WSS Wavelength Selective Switch. xvii, xviii, 34–37, 84

XC Cross-Connection. xviii, 33, 42, 43, 51, 52, 54

YANG Yet Another Next Generation. xviii, 13–15

xix

Contents

Abstract v

Word of Gratitude xi

Acknowledgements xiii

List of Tables xv

List of Figures xvii

List of Acronyms xix

1 Introduction 1

1.1 Telecommunication industry evolution . 1

1.2 Need for automation . 2

1.3 Software-Defined Networking paradigm . 2

1.4 Network orchestration . 4

1.5 Open Optical Networks . 6

2 SDN Overview 7

2.1 Architecture . 7

2.1.1 Network Function Virtualization . 9

2.1.2 Service Function Chaining . 10

2.2 Protocols . 10

2.2.1 OpenFlow . 10

2.2.2 P4 . 12

2.2.3 Open vSwitch Database Management Protocol 13

2.2.4 Network Configuration Protocol . 13

xxi

2.2.4.1 YANG Data Modeling language 13

2.2.4.2 OPENCONFIG . 15

2.2.4.3 NETCONF protocol . 16

2.2.5 RESTCONF . 19

2.2.6 gRPC . 20

2.2.7 Protocol comparison . 21

2.3 SDN Controllers . 23

2.3.1 Open-source solutions . 23

2.3.1.1 ONOS . 23

2.3.1.1.1 Architecture . 23

2.3.1.2 OpenDaylight . 25

2.3.1.2.1 Architecture . 25

2.3.2 Custom solutions . 27

2.3.3 µONOS - next-gen SDN . 27

2.4 SDN controller comparison . 29

3 Optical Networks 31

3.1 Brief technological overview . 31

3.2 Optical elements brief overview . 31

3.2.1 Optical amplifiers . 31

3.2.2 Optical Add-Drop Multiplexer . 33

3.2.3 Reconfigurable Optical Add-Drop Multiplexer 34

3.2.3.1 ROADM Architecture . 35

3.2.3.2 Wavelength Selective Switching 35

3.2.3.2.1 Micro-Electro-Mechanical Mirror 36

3.2.3.2.2 Binary Liquid Crystal 36

3.2.3.2.3 Optical filtering 37

3.2.3.2.4 Liquid Crystal on Silicon 37

3.2.3.3 New generation ROADMs 37

4 Implementation 39

4.1 Targets . 39

CONTENTS xxiii

4.1.1 SDN controller choice . 39

4.1.2 Nokia 1830 PSI overview . 40

4.1.3 Nokia 1830 PSS overview . 41

4.1.4 Setting the goals . 42

4.2 ROADM driver . 42

4.2.1 Driver overview and general steps for it’s creation 42

4.2.2 Implementing DeviceDescriptionDiscovery behavior 44

4.2.3 Implementing FlowRuleProgrammable behavior 46

4.2.3.1 Get Flow Entries . 46

4.2.3.2 Apply Flow Rules . 48

4.2.3.3 Remove Flow Rules . 50

4.2.4 Some more modifications . 50

4.2.5 In conclusion about the driver . 52

4.3 Cli command development . 52

4.4 PowerConfig behavior integration . 56

4.5 AlarmConfig behavior integration . 58

4.6 Sample Alarm Correlation application development 60

4.6.1 Analyzed scenarios . 60

4.6.2 Application development . 62

4.6.3 Implementing sample application 64

4.6.4 In conclusion . 66

5 Validating results 69

5.1 Configuring end-to-end optical channel connectivity 69

5.1.1 Scenario description . 69

5.1.2 Configuration steps . 70

5.1.3 Validation . 71

5.2 Alarm correlation scenario . 71

5.2.1 Scenario description . 72

5.2.2 Configuration steps . 73

5.2.3 Validation . 75

6 Conclusion 77

6.1 Work evaluation . 77

6.1.1 Encountered issues . 77

6.1.1.1 NetconfSessionMinaImpl issue 77

6.1.1.2 RoadmDeviceMessageHandlerView issue 78

6.1.1.3 Issue with AlarmConfig behavior 78

6.1.1.4 Issue with storing of existing Flow Rules 78

6.1.2 Contributions . 79

6.1.3 Future Work . 79

6.2 Future networks . 79

6.2.1 Possible architecture . 80

Appendix A 83

Appendix B 85

Appendix C 87

Bibliography 94

Chapter 1

Introduction

1.1 Telecommunication industry evolution

Telecommunication industry came a long path and experienced a rapid evolution since
it’s beginning. Industry has started as a pure fixed networks used for transferring voice
on long distances. During the evolution of the telecommunication industry a lot of differ-
ent technologies were introduced. Some of them, such as Synchronous Digital Hierarchy
(SDH), have been kept functional as a legacy networks. Some of them, i.e. Plesiosyn-
chronous Digital Hierarchy (PDH) or ATM networks, are rarely represented today. Nowa-
days, telecommunication networks are more dynamic and data-centric.

When networks were used only for voice exchange, telecommunication market didn’t
evolve fast. From the time, when the internet was introduced to the humanity, require-
ments on network throughput and quality of service are keeping continuously increase. It
triggered variety of changes in the network structure. For example, in transport networks
were introduced optical communication as a solution for carrying higher amount of infor-
mation. It corresponded to raised demand on higher network capacity. Better network
performance allowed to the operators introduce new types of services and provide existing
ones with better quality.

Important role in telecommunications played mobile networks. They allowed people to
communicate from anywhere at any time and became an important part of our life. It
pushed the industry again to correspond to even more dynamic requirements on network
capacity, elasticity and other network parameters.

Today, telecommunication networks are playing huge role in every day life of millions
of people. We can’t really imagine our life without mobile phones, cloud-based services
and applications which makes our life easier, more comfortable and more interactive.

With introduction of new services and raised demand on the network resources, hier-
archical network architecture approach became limiting. Enhancing such architecture is
also quite costly for the operator, mainly in terms of money investments. Continuous
research in the networking field and introduction of new promising concepts play a huge
role in pushing the network evolution and shaping the networking future. In order to sat-
isfy customer’s demand, telecommunication operators should reconsider the way of using
legacy networks with regard to the rising demand on the network parameters.

1

1.2 Need for automation

Rise of mobile networks, constantly increasing amount of the content and advent of
cloud services raised requirements on the network throughput, latency, dynamicity, pri-
vacy, security and many other parameters. It pushed the telecommunication industry to
reconsider the traditional network architecture [1]. Most of the conventional networks
are hierarchical, built in a tree structure with backward compatibility to legacy networks.
This design was appropriate to the client-server communication. Nevertheless, when it
comes to the dynamic computing, storage needs for data centers enterprises, campuses
and carrier environments, this architecture is weak [1]. Key aspects driving the new trans-
port networking evolution include [1]:

• Change of traffic patters, which is mainly lead by following reasons:

– Before communication between the client and the server was simple - client
sends the request, server makes some computations and returns data.

– Now, with introduction of cloud solutions, communication between the user
and server has been changed - client’s request can require distributed com-
putations. So, server makes requests to another servers in order to pro-
vide some additional computations, read external data storage(s) and return
computed data from different servers before sending reply back to the client.
This approach introduces Machine-to-Machine (M2M) communication and
raises requirements on the network throughput and network latency.

– Also, with raise of the mobile networks, user pushes ”change of traffic pat-
terns” by trying to access the corporate data and applications from any
device, anywhere, at any time.

• Growth of cloud services mainly triggered by popularity between enterprises.
Main benefit here consists in outsourcing of some IT tools that company needs.
Later on company borrows these tools from Google, Amazon or any other big
cloud provider. This demand pushed cloud providers to build an appropriate in-
frastructure to satisfy tenants. It resulted in increased requirements on elasticity
and scalability of the network resources within Data Center interconnections.

• Big data usually require thousand of parallel computations to process big
amount of data. It includes communication of thousands servers at the same
time, all of which need direct and highly reliable network connections with each
other.

In the end you don’t know, when the network will require high throughput and when
it wouldn’t. Building infrastructure with the margin on high throughput requires a lot of
investments, what is not always possible for the telecommunication operator. It’s quite
costly - keeping the network equipment running, when it’s not used. It results in wasting of
an electricity, additional costs on maintenance, operations, infrastructure administration
and many other costs.

1.3 Software-Defined Networking paradigm

In past several years Software-Defined Networking (SDN) paradigm is gaining momen-
tum. What is it and why it attracts so much attention?

Originally, SDN was introduced by Stanford University as a solution for configuration
and control of Ethernet Switches with OpenFlow protocol. Later on SDN principles were
extended to multi-layer transport network and evolved in a solution for Data Center

CHAPTER 1. INTRODUCTION 3

network management system. Now it gains popularity in embedding into the telecommu-
nication networks.

SDN approach consists in separation of the network data plane (packets) and the net-
work control plane (routing process) [1]. Traditional networks are decentralized and very
complex to maintain. Basically, it is required to go inside each network element and con-
figure it separately. When the network contains thousands of such elements, this task is
becoming quite complex. As a possible solution, SDN attempts to centralize the network
intelligence [1] in one entity (usually running on a server), which will simultaneously take
care of the network management, network configuration and troubleshooting. This ap-
proach creates dynamic, flexible and scalable network with software-based management
and configuration [2].

In general, SDN provides an abstraction between network infrastructure and network
services. To achieve this, there are several constraints on SDN architecture [1], [2]. It
should be:

• Directly programmable - decouple forwarding functions from data plane;

• Agile - flow of traffic according to current conditions;

• Centrally managed - gather all intelligence of the network into one entity
through which maintenance, configuration and troubleshooting could be done.
Also it tells the network equipment how forwarding plane should handle the
network traffic [2];

• Programmatically configured - enable quick and dynamic configuration of
network resources for better performance optimization of the network;

• Open standard-based and vendor-neutral - unify management and reduce
complexity of network configuration.

Based on these pillars, SDN provides a good degree of flexibility and optimization
with quick reaction on changing network environment. This could be a good solution
for optimizing the network performance ”on demand”. It helps the telecommunication
operator to save costs on the network maintenance [2].

Somehow, main disadvantage of the SDN approach, due to the intelligence centraliza-
tion, consists in it’s elasticity, scalability and security [1]. These issues are still remain for
further investigation.

Let’s have a look on some of the SDN use-cases [1]–[3]:

• Data Centers interconnection - software control of data center’s intercon-
nections could help raise reliability and quality of offered services.

• Software-Defined Wide Area Network (SD-WAN) - introduces SDN
principles in the network, which covers wide geographical area. Main motiva-
tion here is to reduce costs of WAN network, ease maintenance and configuration
of the network [2]. A good example of SD-WAN approach could be data cen-
ter interconnection scenario (described above), where main target is to unify the
multiple connections within an enterprise.

• Software-Defined Local Area Network (SD-LAN) - introduces software-
based approach with policy driven architecture in wireless and wired LANs [1].
This solution could be suitable for enterprises.

• Software-Defined Mobile Network (SDMN) - targets to design mobile
networks with protocol-specific features implemented in a software. It maximizes
use of software and hardware in core network and Radio Access Network (RAN)
[1]. New generation of mobile networks are moving towards this concept.

• Link provisioning - provisioning of the links (i.e. of transport network) could
help to quickly react on changes in the network state. Dynamic analysis of
gathered from the network data can help to improve reliability and quality of
the connectivity. For example, based on obtained network information you can
deploy following services:

– Bandwidth-on-demand - control of carrier links gives an opportunity to
request additional bandwidth within a network path when it’s necessary. It
could dynamically increase throughput of the network path. By analogy,
bandwidth could be also reduced, when the network path is not used inten-
sively. It could optimize network performance and help to save some costs
on maintenance.

– Load Balancing - direct reaction on load level of the network can help to
equalize the network load balance by rerouting the network flows through the
alternative paths. It helps to keep the QoS on the acceptable level. It also
requires choice of suitable metric with introduction of the Path Computation
Element (PCE) functionality.

In conclusion, SDN allows more dynamic and more programmatically efficient config-
uration of the network. It can help to improve network performance, optimize resources
and make network monitoring easier to perform. SDN basically makes network more
cloud-like by introducing software-based approach in it’s configuration [1], [2]. SDN is
still not fully deployed in real networks, but it stands on the edge of it.

1.4 Network orchestration

When SDN allows dynamic configuration and management of network equipment, the
need in solution which can deliver services to the end-user is crucial. This is where the
network orchestration could help to achieve this goal.

Network orchestration term covers the ability to program automated network behaviors
to support applications and services on top of the network [4]. It is ensured by coordination
between the required network equipment and software elements (of the applications). In
network orchestration coordination between the software actions and the SDN Controller
is crucial. One of the most important elements of the network orchestration is the ability
to automate connectivity, based on the network state information obtained from the
network monitoring [4].

SDN controller provides you an abstract way to operate with the network device(s),
orchestrator deploys network control functions as SDN applications and services on top of
it. In order to operate efficiently, you should coordinate hardware equipment and software
applications [4], [5]. This is where orchestrators play a big role. To illustrate better this
idea, please have a look on Figure 1.1.

As were mentioned above, orchestrator interfaces with the SDN controller and deploys
applications based on the network capabilities. Literally, orchestrator tells the SDN con-
troller how it should configure the network in order to deploy and develop certain service
to the customer. This interaction is done within certain level of abstraction. For exam-
ple, orchestrator could send required network parameters. SDN, based on this parameters,
would configure the network accordingly. Right now, recognized network orchestrators in
industry are ONAP and Kubernetes.

CHAPTER 1. INTRODUCTION 5

Network Infrastructure Layer

Network Control Layer

Network Service Layer

Orchestrator

SDN Controller

Path
Computation

Element
QoS

Link RestorationFirewall

Network Service
Provisioning

Figure 1.1: Network Orchestration principle

Network orchestration could be applied in following areas [5]:

• Automation of IP-based or OpenFlow-based routing;

• Dynamic security services;

• Traffic engineering based on Path Computation Element (PCE) function, which
ensures that workflow follows the correct path in the network;

• Network service provisioning within the workflow path;

• Workflow directioning and management based on obtained from the network
information.

There are some initiatives which try to standardize network orchestration. One of
them is ”institutional” one - Management and Orchestration (MANO) platform based on
TOSCA modelling language. It was introduced by ETSI. The other initiative is commer-
cial one. It is lead by AT&T and Orange and resulted into development of an ONAP, the
network orchestrator. It allows real-time, policy-driven orchestration and automation of
physical and virtual network functions (VNFs) [6]. SDN is one of the ONAP’s important
components [7].

Summarizing all mentioned before, SDN controller provides tools for network managing.
Orchestrator creates services based on these network management tools [4]. Describing
management tasks could be complicated and this is where the orchestration steps in the
game. It deploys services on top of your network, allows the network to scale as needed and
deploy resources as needed. This approach makes the network more agile and responsive.

In the future, network orchestration systems would definitely fill the gap between a
wide range of technologies that were enabled by cloud-based network and communication
services. For example, between Telecom systems, data-center resources and the customers
who are looking to purchase services [4].

1.5 Open Optical Networks

Another trend gaining momentum in past few years is ”Open Optical Networks”. What
does it mean? According to [8], it is an optical network which is defined by following
milestones:

• Open-source software developed and contributed by interested parties. It is
freely available and shared. Everyone have access to it and everyone can have a
look on it.

– A good example could be an open-source SDN controllers like OpenDaylight
and ONOS.

• Open-source APIs represent a group of APIs defined on an open forum. They
are also freely available to everyone in order to implement it into their hardware
or software.

– NETCONF protocol based on OPENCONFIG data models or T-API are
good examples of an open API.

• Open hardware is not yet defined precisely. It is still an open question. Basi-
cally, there are two ways to interpret this term:

– Optical equipment specification set by industrial standards, like Multi-
Source Agreement (MSA) projects of AT&T and other participants - Open-
ROADM. It was designed with equipment inter-operability in mind. This
provides more freedom to the telecommunication operators in choosing of
a hardware from different vendors. More work is still required to be done
there.

– Hardware ”openness” to open APIs. In other words, support of different
Open APIs by various vendors. It makes possible to manage proprietary
equipment in the same way by third party management system or even
SDN controller, since API is known and freely distributed.

Literally, open optical network is an optical network driven by open-source technologies
and open to multi-vendor cooperation. Why is it beneficial? Main reason consists in the
approach to separate various hardware elements (like ROADMs, line cards, transponders
and other) and allow ”cherry picking” of the best components from the different vendors.
This extra degree of freedom gives an opportunity to make the custom built of the network
according to the specific requirements of the company.

The telecommunication networks are moving towards multi-vendor environment or,
in other words, fully disaggregated systems. This approach provides more flexibility
in vendor selection and gives the network operator more advantages in the technology
upgrades [8]. What we can say for sure, SDN is going to play a big role in bringing
”openness” into the networks. One of the projects, which is targeting this area, is ”Open
and Disaggregated Transport Networks” (ODTN) lead by ONOS project developer’s team
[9].

There are still a lot of open questions and barriers which community needs to tackle be-
fore it would be possible to apply this concept in practice. Right now, network equipment
maintenance, system integration, absence of unified management tools and slow standard
development are the main obstacles [8].

Chapter 2

SDN Overview

This chapter provides an overview of a SDN architecture and briefly describes the most
commonly used protocols in SDN. Open-source SDN controller solutions as well as custom
SDN controllers developed by Google and Cisco are introduced in the second part of this
chapter.

2.1 Architecture

NorthBound Interface

SouthBound Interface

East/WestBound
 Interface

East/WestBound
 Interface

Application Layer

Control Layer

Infrastructure Layer

Network
Topology Viewer

App

Flow Optimizer
App

OpenFlow
Switch Server Edge Router TOR Switch Server

Policy
Enforcement

App

Network
Management

App
Load Balancer

App

Network
Automation App

Firewall App

Network
Bandwidth App

SDN Controller
NorthBound Plugins

Core services

SouthBound Plugins

Figure 2.1: SDN Architecture

7

SDN architecture is represented on Figure 2.1 and could be described with following
pillars [1]–[3]:

• Application layer represents programs or applications that communicate via
NBI with the SDN controller. They provide a required behavior of the net-
work. Such applications can include Load Balancing, Firewall, Network Topology
Overview, Policy Enforcement, Network Bandwidth Optimizing and many more.
They concentrate main network intelligence and specify network behavior. Also,
such level of abstractions helps to specify and implement network services.

• NorthBound Interface (NBI) ensures communication between Application
and SDN Controller. NBI consists from variety of different APIs/protocols, like
REST API or T-API (under development). Literally, NorthBound Interface en-
sures ”understanding” between SDN controller and application specifying net-
work behavior. This interface is implemented in an open, vendor-neutral and
interoperable way [1].

• Control layer is mainly represented by SDN controller or any other Network
Operating System (NOS). Provides translation from user requirements into the
device-specific format and abstracts the view of network state. Must include
several NBI and SBI interfaces.

– Control layer could also be represented by several SDN controllers commu-
nicating with each other through East/WestBound Interface. More on SDN
controllers would be described in section 2.3.

• SouthBound Interface (SBI) ensures communication between SDN con-
troller and Network Equipment. SBI consists from variety of protocols like
OpenFlow, NETCONF, RESTCONF, P4 and many more. This interface is also
responsible for gathering monitoring data and informing user about immediate
changes in the state of the network.

• Infrastructure layer is represented by various Network Equipments (NEs),
like OpenFlow switches, TOR routers or servers, with advertised forwarding and
processing capabilities [1]. In SDN, NE is usually covered with following term:

– White Box switch is switching and routing hardware providing pro-
grammable abstraction from the network functions. Such kind of a switch
enables to application on top of the SDN controller specify routing table and
tell how to route connections to fulfill appropriate task [10]. In other words,
it’s programmable hardware (box), where you can specify any behavior you
need. White Box switch relies on Operating System which could come from
vendor or could be downloaded separately [10].

• East/WestBound Interface (EWBI) ensures communication between dif-
ferent SDN controllers in distributed networks. It requires standardization and
a lot of research to be done.

By defining this pillars, separation between data plane and control plane becomes more
clear. Putting out intelligence from the network equipment on the external entity cre-
ates an agile network infrastructure, which can be dynamically programmed on certain
behavior according to the needs of the customer.

There are two terms which are tightly related to the SDN - Network Function Virtual-
ization (NFV) and Service Function Chaining (SFC). Next two sub-sections are explaining
these terms.

CHAPTER 2. SDN OVERVIEW 9

2.1.1 Network Function Virtualization

Network Function Virtualization (NFV) complements SDN concept. It decouples hard-
ware and software to enable flexible network deployment and dynamic operations [11].
With NFV hardware-based network services run on a servers as a software and called Vir-
tual Network Functions (VNFs) [12]. Network Function Virtualization aims to accelerate
service innovation and provisioning using standard IT virtualization technologies.

For better understanding let’s have a look on Figure 2.2, where the NFV architecture
is represented.

Virtualization Layer

Other virtual
componentsVirtual networkVirtual ComputeVirtual Storage

Hardware Components

Software components
Network Function Virtualization Infrastructure

VNF #1 VNF #2 VNF #3 VNF #4 VNF #5

Virtualized Network Functions

NFV
Orchestrator

VNF
Manager(s)

NFVI
Manager(s)

 NFV Management and
Orchestration (NFV-MANO)

Figure 2.2: NFV Architecture

We can split whole NFV architecture on three main blocks [11], [12]:

• Network Function Virtualization Infrastructure (NFVI) - defines all
hardware and software components that build an environment, where VNFs are
deployed. NFVI can spread on several different geographical areas. Physical
network interconnections between these areas are part of NFVI.

• Virtualized Network Functions (VNFs) - implemented software represen-
tation of network functions, that NFVI can perform.

• Network Function Virtualization Management and Orchestration
(NFV-MANO) - interface and reference point through which all functional
blocks of NFV architecture exchange information. It is done for the purpose of
management and orchestration of VNFs and NFVI.

ETSI has already standardized Management And Operations (MANO) framework - an
open ecosystem for Network Function Virtualization (NFV) based on automation and or-
chestration [11]. Virtual Network Functions (VNFs) are interoperable with independently
developed management and orchestration systems. Management and orchestration are in-
teroperable within themselves as well [11]. In MANO everything is defined with TOSCA
- language which was created to describe components and relationships between cloud-
based web services and processes that manage them [13].

As you can see, NFV closely reminds the concept of SDN, but still remains different.
SDN came out from separation between data plane and control plane of network equip-

ment. NFV came out from the idea to separate hardware from software. These two
concepts are complementary. Their combination, SDN-NFV, provides an ultimate level
of agility:

• SDN provides control and management of network elements;

• NFV provides application agility by using virtualized environment.

2.1.2 Service Function Chaining

Another important term which complements SDN and NFV is Service Function Chain-
ing (SFC). This is another level of abstraction based on top of SDN and NFV. It creates a
chain of connected network services and connects them in a virtual chain [14]. The main
idea of SFC is represented on Figure 2.3.

VNF #1

VNF #2

VNF #3

VNF #4

VNF #5

SDN-NFV environment

Telecom Operator Billing System

VNF #6

VNF #7

VNF #8

Client #1

Client #2

Client #3

Figure 2.3: Service Function Chaining principle

This capability can be used by network operator in order to setup various ”catalogs” of
connected services based on a single network connection [14]. Each ”catalog” could have
different characteristics and later could be sold as a service according to the needs of the
customers.

The main advantage of SFC consists in the automation of the way virtual network
connections can be set up to handle the traffic for certain service [14]. Another big
benefit of this approach is optimization of network resources.

2.2 Protocols

Let’s switch to the protocols which allow to embed SDN paradigm into networks. This
section provides a brief overview of the most common protocols implemented as a SBI of
different SDN controllers.

2.2.1 OpenFlow

OpenFlow is the first protocol which decoupled Control Plane from the Forwarding
Plane of the network [15]. It’s added value comes from enabling the direct access and
manipulation with the forwarding plane of the network device, which could be switch or
router (generally OpenFlow switch). That kind of separation allowed more sophisticated
traffic management.

OpenFlow protocol enables the network controller to determine the network path of the
packet between several (or many) switches [15]. This protocol defines packet matching
rule and action, which the device supposed to execute, once the match is found. Controller

CHAPTER 2. SDN OVERVIEW 11

installs this rule in a ”Flow Table” of the device [16]. Once the packet enters the device
and matches the rule in a Flow Table, the device executes corresponding action [16]. To
adopt the protocol for dynamically changed network and reduce complexity, each of the
rules in a Flow Table has it’s own timeout, expiry date. In this way OpenFlow allows to
do routing decisions periodically [11].

Packets, which didn’t find the match on the switch, are forwarded to the controller. It
installs either temporary rule, just for this specific packet, or the ”permanent” rule, with
the timeout [15]. In any case, the decision is taken on the controller side. Forwarding
then is done on the device.

OpenFlow allows SDN controller to push changes to the Flow Table in order to control
flows for optimal network performance and manage traffic patterns [16]. Controller can
decide to modify existing rule on one or more OpenFlow switches. It also helps to avoid
the situation when the device asks the controller what to do with each packet entered the
switch [15].

In general, each rule installed in the Flow Table could be described with following
parameters [16]:

• Rule - defined mainly by matching criteria. You can match:

– source or destination IP;

– source or destination MAC;

– source or destination port;

– Vlan ID;

– Ethernet type or specific IP protocol;

– and many more parameters depending on the OpenFlow protocol version.

• Action - tells the device what to do. It could be:

– Forward packet to the specific port;

– Encapsulate packet and forward it to the controller;

– Drop the packet;

– Set the packet to normal processing pipeline (usually default rule).

OpenFlow protocol provides high level of flexibility in network management. Device
functions are no more dependent on the specific hardware. OpenFlow protocol, by provid-
ing various set of rules, makes the OpenFlow switch very versatile device. Basically, you
could compose from the device a firewall, load balancer, put any other functionality on
demand, or even put them all just in one box. Ability to run the device with a necessary
functionality and possibility of dynamic reconfiguration according to the specific network
needs is the main advantage of OpenFlow.

Somehow, there are already plenty of versions of the OpenFlow. Any new protocol sup-
port requires upgrading the existing OpenFlow protocol to a newer version. It makes the
protocol more complex because of the variety of different matching rules. Also, once any
new packet is coming, device always asks the server what to do with a packet. Decisions
are not taken on the device side anymore. It adds some complexity to the communica-
tion process and can dramatically increase latency in the worst case scenario (device asks
server what to do with every packet). This is the main disadvantage of the OpenFlow
protocol. Most probably, in the near future OpenFlow would be substituted with a P4
protocol (described in 2.2.2).

2.2.2 P4

P4, or Programming Protocol-independent Packet Processor, is a language which de-
scribes how packets should be processed by forwarding element [17], [18]. P4 specifies
only the data plane forwarding functionality of the target device. Specified forwarding
behavior is then converted by P4 compiler into the data needed for control plane and data
plane to communicate [17]. P4 doesn’t specify the behavior of control plane of the device
[17].

As the language targets on protocol independence, there are some constraints on it’s
design [18]:

• Target independence - P4 programs are designed to be implementation-
independent, so they can be compiled on any device.

– Each device is called P4 target.

– Each target must provide a P4 compiler, which maps the P4 source code
into the device-specific model. Compiler could be embedded into the device
or run as an external software or as a cloud-based service.

• Protocol independence - achieved by not enabling native support for protocols
as Ethernet, TCP/IP or any other. Instead of that, P4 describes the header
format and/or the field names of the required protocols. This information is
interpreted and processed by the target compiler.

• Reconfigurability - P4 targets should be able to dynamically change the way
they process the packets.

With regard to the constraints above, P4 program specifying forwarding behaviour
should have following components [18]:

• Parsing logic - forwarding rule for specified custom packets, not only limited
on TCP/IP or Ethernet.

• Headers - description of the packet format with name of the fields within the
packet. To provide required protocol independence custom fields of random
length are allowed.

• Parser - finite state machine, which extracts required header bits according to
the specification provided through the P4 program.

• Generic match action table - set of user-defined match-action tables. User
can add a match-action through the control plane.

– Match-action pipeline - packet forwarding process can be broken into
several actions, where each action corresponds to the table lookup or specific
header manipulation.

– Tables - contain state (matching criteria + action) used to forward the
packets.

– Actions - P4-specific description of required manipulations with the packet.

In order to process the packet, P4 determines relative sequence of the tables and allows
conditional execution of each table based on if/else statements [18].

In comparison with OpenFlow, P4 is concentrating only on data plane layer, with-
out any interaction with control plane layer. P4 language introduces ultimate level of
agility and provides great flexibility by adding new features and removing unnecessary
and unused protocols [19],

CHAPTER 2. SDN OVERVIEW 13

2.2.3 Open vSwitch Database Management Protocol

The Open vSwitch Database Management Protocol (OVSDB) is a management protocol
in a SDN environment. It was specified in RFC 7047 [20] several years ago.

OVSDB was originally created as a part of the open-source software Open vSwitch
(OVS), the virtual switch for Linux-based hypervisors with a lot of various features [21].
Main focus of OVS was to create a modern programmatic management protocol. This
attempt resulted in an OVSDB as a solution.

A lot of people think that OVSDB is quite similar to OpenFlow, but it isn’t. Open-
Flow allows to manage flows, or forwarding rules, when OVSDB is a solution for device
configuration. Open vSwitch Database Management Protocol allows to configure ports,
bridges, create/delete interfaces on the device [21].

OVSDB functionality could be described with following milestones [22]:

• Each device with an OVSDB support has an OVSDB database schema. It spec-
ifies device configuration information. This database contains control and statis-
tical information.

• Information is stored in a different tables inside the database. It can contain, for
example, learning information about MAC layer and many others,

• Entity, communicating with an OVSDB device, monitors the state of each table
in a database and can add, delete or modify these information according to the
user’s needs.

Unfortunately, right now exist very few management platforms (SDN controllers) with
support of OVS or OVSDB in particular. OVSDB is now supported by more vendors,
than OVS itself [21], [22].

2.2.4 Network Configuration Protocol

Since in this work we mainly use NETCONF protocol, it will be described in details
within this section. Some prerequisites are required for better understanding of the NET-
CONF protocol. Following two sub-sections will provide a brief overview of YANG data
modeling language and vendor-neutral data models developed by OpenConfig working
group, which are tightly aligned with the Network Configuration Protocol.

2.2.4.1 YANG Data Modeling language

Yet Another Next Generation (YANG) is a data modeling language used to model
configuration and state data, which are being manipulated during the NETCONF com-
munication. It is defined in RFC 6020 [23], where all exact details of the language are
explained. With YANG data modeling language, it is possible to describe various in-
terfaces of particular network equipment. For example, in YANG representation simple
interface of the switch can look like [24], [25]:

list interface {
key “name”;
leaf name {

type string;
description “Interface’s name”;
}
}
leaf type {

type string;
description “Type of the interface”;
}

leaf speed {
type string;
units ”Mb/s”;
description “Supported speed”;
}

Later on it could be translated into XML format:

<interface>
<name>eth0</name>
<type>Ethernet</type>
<speed>40</speed>

</interface>
<interface>
<name>eth1</name>
<type>Optical Ethernet</type>
<speed>100</speed>

</interface>

Such statements combined in a big structure can result into definition of a module
representing the whole device or specific aspect of it’s functionality.

YANG data modeling language also provides some important features, which is good
to mention.

• YANG can model state data as well as the configuration data based on a config
statement. When a node is tagged with config false, it’s hierarchy flagged as
a state data and returned with NETCONF get message. Otherwise, if a node
is tagged with config true, it’s hierarchy flagged as a configuration data and
returned with NETCONF get-config message [24].

• YANG has a set of built-in types, which are similar to the ones used in many
programming languages [24]. Nevertheless, it has some specific differences due
to the requirements of the management domain. As an extension, you can define
derived types from the base ones [24]. A base type can either be a built-in type
or another derived type [24], [25].

• It is possible to extend modules by insertion of additional vendor-specific param-
eters (nodes) into the data model. You should define location in the data model
and conditions when the vendor-specific module is valid [24]. It is probably the
most important feature of YANG.

Flexibility provided by YANG data modeling language turns out in a high integrity into
NETCONF protocol. For example, NETCONF RPCs are based on YANG data modules.
[24]

CHAPTER 2. SDN OVERVIEW 15

2.2.4.2 OPENCONFIG

OpenConfig is a collaborative effort in the networking industry which aims to move
towards more programmable and dynamic multi-vendor network configuration. It tries to
adopt software-defined networking principles such as declarative configuration and model-
driven management and operations [26]–[29]. OpenConfig supports vendor-neutral data
models to configure and manage the network [29]. These data models define configuration
and operational state of the network equipment for the most common protocols or services
[26]. The main goal of the OpenConfig, as an operators initiative, is to use the same set
of standards in order to configure the network devices from the multiple vendors [26],
[27], [29]. Data models are written in YANG data modeling language, which is briefly
described in the section 2.2.4.1 above.

OpenConfig modules define a data model through its data. Each model is uniquely
identified by namespace URL to avoid possible conflicts. OpenConfig working group is
leveraging YANG to model not only configuration data, but also telemetry information
coming from the device [28]. The Figure 2.4 specifies all data models produced by Open-
Config working group on 15th of May 2019.

Figure 2.4: OpenConfig data model tree [30]

If you wish to have a look on some of the OpenConfig data models which must be
implemented by optical devices in order to support NETCONF protocol, please refer to
Appendix A.

OpenConfig provides already quite detailed and highly-developed data model for the
optical transport networks. There is also another competitor, OpenROADM, which tar-
gets to specify even more detailed data models for the transport optical networks.

To conclude, OpenConfig is made up for big network operators, which are shaping the
direction for the developed data models. OpenConfig standard, by it’s nature, targets to
cover transport network and provides data models for Border Gateway Protocol (BGP),
Multiprotocol Label Switching (MPLS) and many more protocols used in big transport
networks. When it goes to the optical equipment, especially in transport network, we
always abstract from the protocols and go on the lowest possible layer extending the OSI
on L0, photonic layer. At this point we are pushed to describe physical properties of
the optical channels, what brings a bit different understanding and abstraction of the
network.

However, OpenConfig working group activity is not about developing a standard data
model for every feature the network equipment supports [28]. It’s a great first step towards
the open network automation. It provides consistency across all vendors and ensures that
you are not using any vendor-proprietary features [28]. A consistent predictable model
across the network devices is where the whole magic is [28].

2.2.4.3 NETCONF protocol

Network Configuration Protocol (NETCONF) was created with purpose to unify man-
agement and configuration of the network equipment. In order to be able to do this,
network device should implement a database, where it stores all it’s configuration. There
are four types of databases [31]:

• Running – stores current configuration of the device during it’s running;

• Candidate – stores sample configuration of the device, which could later replace
the actual configuration of the device;

• Startup – stores default configuration of the device to run on start-up;

• Writable-running – basically the same as “Running” database. It is being
implemented as the only device database or if the device doesn’t support “Can-
didate” type of database.

Configuration information is passed in one of the formats – OpenConfig or Open-
ROADM. In simple words, both of these standards specify sets of the parameters which
are necessary to pass in order to configure the device. Main difference between them is
in their naitre. OpenROADM targets on any optical network, including transport one.
OpenConfig targets on transport network in general. In the optical network domain,
OpenROADM describes more in details optical networks than OpenConfig.

Once all parameters are collected and composed to a NETCONF message, controller is
ready to send the configuration request to the device. Process of the device configuration
could be done in several ways:

• You’re directly changing “Writeable-running” database.

• You’re storing changes inside “Candidate” database, validating them and then
copying them to the “Running” database.

One of the necessary things to do is to lock your target database before writing changes
to it [31]. Locking/Unlocking process is implemented in order to prevent writing to the
same database from several NETCONF sessions at the same time. Once you wrote your
configuration, don’t forget to unlock target database.

In the beginning of each NETCONF session, parties should exchange a list of supported
capabilities with each other. This feature was implemented in order to ensure that the
communicating parties will understand each other. It is one of the most important things
in the NETCONF protocol. Here is the list of capabilities which could be exchanged
during the NETCONF session establishment with their brief description [31]:

CHAPTER 2. SDN OVERVIEW 17

• :base:1.0 – indicates support of NETCONF v1.0;

• :base:1.1 – indicates support of NETCONF v1.1;

• :writable-running – this capability is enabled by default. If the candidate data
storage is used, this capability should be disabled; [32]

• :candidate – enables to store configuration which will then replace “running” con-
figuration. Could be implemented either as an external or as a built-in database.
This capability is also enabled by default. If the candidate data storage is not
used, this capability should be disabled; [32], [33]

• :startup – indicates ability to store the configuration which is then will be loaded
as a default in “running” mode in case of an unexpected device shutdown or a
reboot. Disabled by default; [32], [33]

• :validate – indicates ability of the network equipment provide a semantic valida-
tion of the stored configuration. Constraints should be specified in the YANG
data model. Validates complete database, not particular <edit-config> requests;
[33]

• :confirmed-commit – this mode requires a server to send two commit RPC re-
quests instead of one, to save any changes in the ”running” database. If the
second request does not arrive within a certain interval, the server will automat-
ically revert the running configuration to the previous version; [32], [33]

• :rollback-on-error – allows the client to set the <error-option> parameter to
rollback-on-error (other permitted values are stop-on-error and continue-on-
error). What is taken as an “error” should be defined by the data model. If
any error occurs during the edit operation, target database will not be affected.
[32], [33]

• :url – indicates which schemes (file, https, sftp) the server supports within a
particular URL value.

• :notification – indicates, if the server supports the basic notification delivery
mechanism defined in RFC 5277 [34] (<create-subscription> will be accepted by
the server).

• :interleave – the server will accept <rpc> requests while notification delivery is
active. Otherwise, client can’t send <rpc> request during the notification sub-
scription. The :notification capability must be present as well, if this capability
is advertised.

• :partial-lock – indicates, if the server supports <partial-lock> and <partial-
unlock> operations defined in RFC 5717 [35]. It allows to each of multiple in-
dependent clients write to a different part of the <running> configuration data
store at the same time.

• :xpath – the server fully supports the W3C XPath 1.0 specification [36] for filtered
retrieval of configuration and other database contents. Type attribute within the
<filter> parameter may be set to the ‘xpath’. Also, server may partially support
XPath retrieval filtering, it can’t advertise the :xpath capability.

All NETCONF operations are carried out within a session, which is attached to the
transport layer connection. Protocol doesn’t have standard security model yet. Each
session itself is wrapped inside the SSH connection with a statically assigned port 830.
SSH provides encryption and security constraint into the communication. NETCONF is a
session-based network management protocol, which uses XML-encoded Remote Procedure
Call (RPC) with configuration data to manage network devices. [33]

NETCONF communication is Client-Server based and simple by itself. Right in the
beginning of the NETCONF session, Client and Server should exchange <hello> messages
advertising their capabilities. In order to communicate correctly, set of the exchanged
capabilities should be the same. Once it’s done and the communication is established,
Client can send <rpc> requests in order to retrieve the data and configure the device.
Server’s request queue is serialized, so requests will be processed in order of their reception.
Beginning of the NETCONF communication is shown on the Figure 2.5:

Figure 2.5: Beginning of the NETCONF communication

Most of the operations are designed to select one or two specific configuration databases.
Let’s have a look on some of them:

• <get> - retrieves data from the running configuration database and/or device
statistics.

• <get-config> - retrieves data only from the running configuration database.

• <edit-config> - allows to provide modifications to the configuration database.

• <copy-config> - copies a configuration database. Device should support at
least two different types of databases. Source and destination databases could be
specified.

• <delete-config> - deletes chosen configuration database (should be specified).

• <commit> - commits (basically copies) the contents of the <candidate/> con-
figuration database to the <running/> configuration database.

• <discard-changes> - clears all changes from the <candidate/> database and
makes it (the <candidate/> database) match the current <running/> configu-
ration database.

• <validate> - checks the entire content of whole configuration database on se-
mantic correctness. Target database for checking could be specified.

• <lock> - locks chosen configuration database and allows only to current session
apply changes to it.

• <unlock> - unlocks configuration database and allows another users to apply
changes in it.

• <create-subscription> - creates a NETCONF notification subscription. For
example, telemetry data could be reported through this mechanism.

• <close-session> - terminates the current session

CHAPTER 2. SDN OVERVIEW 19

• <kill-session> - terminates another session, the different one from the session,
which invoke this <rpc> request. [33]

Extending the NETCONF Server [32]

All enabled NETCONF capabilities are advertised within the initial <hello> message,
which Server sends to the Client right in the beginning of the communication. Never-
theless, to indicate device capabilities (what the device can actually perform), supported
YANG modules are exchanged via <hello> message as well [32]. This allows us to ex-
tend the NETCONF protocol on custom <rpc> operations defined separately from the
standard ones. This feature provides a higher degree of flexibility and versatility of the
protocol and allows to the vendors provide specific <rpc> requests for more precise device
tuning.

2.2.5 RESTCONF

RESTCONF protocol is specified in RFC 8040 [37]. It implements some of the NET-
CONF functionality on top of the HTTP/HTTPS connection [38]. RESTCONF, as well
as a NETCONF, was developed with purpose to manage the device in a standard way.

Since RESTCONF protocol is quite similar to the NETCONF protocol, it also imple-
ments different types of data storage. There are currently two types [39]:

• Operational - contains data inserted via the network.

• Config - contains data inserted via controller.

Each data store is defined by set of device-specific resources written in YANG data
modeling language. Each resource defines it’s own content and notification events [39].
All RESTCONF content splits to one of the following categories [39]:

• data resource,

• operation resource,

• event stream resource.

Network equipment running a RESTCONF agent could be manipulated with following
HTTP commands [38]:

• GET - retrieves data from specific resource. Supports all types of the resources,
except ”operation” one.

• PATCH - partially modifies resource information. Similar to the NETCONF
<merge> request.

• PUT - creates or replaces the target resource.

• POST - creates a data resource or invokes an operation resource.

• DELETE - deletes the target resource.

RESTCONF protocol is quite close to the NETCONF by it’s functionality, but still
missing some crucial functions [38] like multiple datastores, locking of a datastore, rollback
function and many others. RESTCONF protocol is not intended to replace a NETCONF
protocol. It targets to provide simplified interface with REST principles that follows
device abstraction through a data model [39].

2.2.6 gRPC

Google RPC, or gRPC, is a high performance RPC framework using Protocol Buffers
(Protobuf) and HTTPv2 as a transport protocol. Protocol Buffer is a platform-neutral
and language-agnostic serialization format introduced by Google. Each message is a
small logical record of information containing a series of name-value pairs represented in
a JSON-like format [40].

Since gRPC is based on HTTPv2, it exploits many of it’s features, for example [41]:

• Persistent TCP session - everything is done within one TCP session (you don’t
need to re-open it again);

• Compressing headers ;

• Cancellation and timeout contracts between client and server;

• Flow control on data frames - now client or server can set their own values for
flow control. It adds extra degree of complexity.

In gRPC all communication is Client-Server based [40], where device is always a Server.
We can differentiate two types of the gRPC communication [41]:

• Unary - synchronous communication. Client sends one request and waits until
Server’s respond. Once the answer is obtained, Client sends next request.

• Streaming - could be accomplished in three different configurations:

– Client pushing messages to a stream;

– Server pushing messages to a stream;

– Client and Server both send data into a (bidirectional) stream.

In all streaming cases Client initiates RPC method [42]. There is no acknowl-
edgement until stream is completed, what adds complexity when you need to
debug failure of one of the nodes. Somehow, it could be solved with bidirectional
stream, where Server streams acknowledgements.

Great advantage of gRPC consists in compatibility provided by Protocol Buffer (Pro-
tobuf). Protobuf is an Interface Definition Language for describing the service interface
and the structure of the payload messages [42]. It is also a serialization format for the
sent data. Protobuf allows quick encoding and decoding procedure, refuses zero-copying
of data and instead chooses which data to encode and which to decode. This makes the
data smaller from the encoding/decoding prospective, usage of CPU. Because of that, the
gRPC protocol is quite fast [41].

Protobuf allows to define ”Schema(s)”, where you specify semantics of your object
and basically tell which functionalities does the device support. You can specify there
which field of the packet should be validated [40]. Once you introduce new Schema in
the communication, entities, which don’t implement it, can easily parse this new feature
further without even inspecting it [40].

Protocol Buffer defines how to interpret messages and allows the developer to create
stubs making encoding and decoding process quicker [41]. You can freely add or re-
move stubs. Name of the field inside the stub should be different. It ensures backward
compatibility.

CHAPTER 2. SDN OVERVIEW 21

Protobuf looks like:

message Foo {
string name = 1
int32 age = 24
}

There are some constraints on Protobuf structure:

• Every Protobuf encoder/decoder should be able to skip the fields it doesn’t know

• Every Protobuf encoder/decoder should be able to set default values for fields it
can’t find.

• Any field in Protobuf should start from the wire type to define how the message
should be decoded.

– Decoding strategy could vary with regard to the field type.

In conclusion, gRPC1 is quite robust and quick protocol. It is backward compatible
and supports code generating feature. Also, you can change out any encoding method to
the one you like. Protocol buffers offers a great speed advantages in encoding, decoding
and size of the data transferred over the wire [40].

2.2.7 Protocol comparison

Comparison of the protocols described in previous sub-sections is depicted in the Table
2.1, where we tried to summarize all benefits and drawbacks of each them.

1gNOI and gNMI protocols are carried by gRPC protocol.

Protocol Device is Body of
usage Benefits Drawbacks

OpenFlow Client
Device

forwarding
function

Separation of
control and data

plane layer,
Device could

execute whatever
network

functionality you
want

Centralized
intelligence

(interaction with
control layer),
Device makes
request to the

central entity in
order to make a

decision,
Sophisticated

and complex to
implement, Must
be extended with
any new protocol

support

P42 Server
Device

forwarding
function

Protocol-
independent,

Highly agile and
flexible, Device

could execute any
function you wish

Each device must
run P4 compiler
(could be heavy

on resources)

OVSDB Server Device
configuration

Enables precise
and agile

configuration of
the device

Few management
platforms

support this
protocol

NETCONF Server Device
configuration

Standardized
management

based on unified
data models,
Flexible in

configuration

XML
representation,
RPC calls could

differ
dependently on
particular Data

Model
implementation

RESTCONF Server Device
configuration

Standardized
management

based on unified
data models,

Relatively easy
to implement,

Runs over HTTP

Less functionality
and flexibility

than in
NETCONF

gRPC Server Device
configuration

Fast, Language-
agnostic, High

degree of
compatibility,

Secure and
Robust

Each
implementation
is specific one,
Schema names

should be tracked

Table 2.1: Protocol comparison

2It is not correct to compare P4 with other protocols, since it’s not yet fully deployed in industry.
Following comparison is just author’s subjective opinion.

CHAPTER 2. SDN OVERVIEW 23

2.3 SDN Controllers

The most popular SDN controller solutions are described within this section. There are
a lot more SDN controllers, but some of them are already out of date and not maintained
anymore. Because of that Author focuses on actual state-of-the-art of SDN controllers.
In main focus are solutions, on which major industry players are betting.

2.3.1 Open-source solutions

Open-source solutions are not (yet) widely used in real networks, but they are certainly
almost ready to be put in practice. In the following sub-sections we will take a look on
the most famous controllers - OpenDaylight (ODL) and Open Network Operating System
(ONOS) - which are being developed on regular basis for already a long time.

2.3.1.1 ONOS

Open Network Operating System (ONOS) is an open-source controller written in JAVA
and initially developed by Open Networking Lab (ONLab) which was later merged with
Open Network Foundation (ONF). This controller was initially designed for scalability
and high-availability [43] targeting to become a solution for Wide Area Networks (WANs)
and Service Provider Networks.

Before diving deeper into the ONOS architecture, let’s have a look on interesting ”know-
how” introduced during the development of ONOS - Intent-Based Networking [43],
[44]. Intent Framework of ONOS [44] allows application just to specify it’s desire, so there
is no need to tell precisely which parameters to set up on the device side. In other words,
you’re specifying ”What do you want to do” instead of ”How to do”. Such policy-based
directive is called an intent. This functionality could be achieved by introducing special
Intent Compiler which translates the desire into device-specific information. Main goal
of such an approach was to shift focus from the network details level to the network
application level.

Since ONOS is positioning as a scalable platform, it introduces distributed architecture
in order to scale with increasing number of the devices [43].

2.3.1.1.1 Architecture

Let’s have a closer look at the ONOS subsystem infrastructure.

As you can see on the Figure 2.6, we can logically split ONOS on four layers [43]:

• (Network) Applications (L2 Forwarding, Learning switch and etc.);

• Northbound API (REST API, Web GUI, Cli);

• Distributed Core Services (Device Drivers, Intents, Flow Rule and others);

• Southbound Protocols (APIs) (OpenFlow, NETCONF, OVSDB, etc.).

Figure 2.6: ONOS Architecture [43]

Application layer represents main “intelligence” of the ONOS. In general, applica-
tions implement network functionality. They are responsible for routing, switching and
more sophisticated services which could be built on top of the ONOS controller. Every
application is based on top of the microservices provided by the controller’s distributed
core.

Northbound API provides us a lot of freedom in interacting with ONOS core. You
can configure controller through the REST API or using the Transport API3 [45], [46],
you can just simply use embedded in ONOS Web GUI to manage your network or simply
use the command line. As an external option, you can use python programs stored in the
directory ”tools/test/scenarios/bin” of the ONOS controller to enable some functionality.

Distributed Core Services has microservice structure. It is divided on different
subsystems which interact with each other. When one of the services crashes, it doesn’t
lead to the crush of the whole controller. Different microservices could be independently
restarted. It provides quite agile core structure.

Main task of the ONOS core is to receive information from the network devices and
provide it to the applications running on top of the network. This is one of the reasons,
why ONOS core implements a lot of different microservices (which are built based on

3Conceptually Transport API looks similar to the NETCONF protocol. It also uses XML-like format
to parse the network data. You can see content of Transport API by invoking “odtn-show-tapi-context”
from the client console of the ONOS. It will parse you all information about connectivity services, devices,
links and different topologies registered in the controller.

CHAPTER 2. SDN OVERVIEW 25

Object-Oriented Programming philosophy). Intent Framework is a part of the the ONOS
distributed core.

Southbound API is represented by many different protocols. ONOS Southbound In-
terface implements such protocols as OpenFlow, P4, OVSDB, NETCONF, RESTCONF
and gRPC. They ensure communication and data exchanging (like statistics, device in-
formation and device configuration) between the network device and the ONOS core.
Every Southbound protocol in ONOS implements it’s own provider in order to unify and
simplify interaction with the network device [43]. Main purpose of the ”provider” is to
provide necessary description of the network device. Device subsystems supports multiple
providers [43].

One of the magnifique features of ONOS is that it could be deployed in several sepa-
rate instances which coordinate with each other [43]. With this feature we can achieve
resiliency, fault-tolerance and better load-balancing management [43].

ONOS is essentially an OSGi-compliant framework [43] used for binding together de-
veloped4 applications and microservices. OSGi is a Java framework which enables devel-
opment of modular software programs. Each microservice (bundle) is represented by set
of JAVA classes packed into a jar file and could be dynamically reloaded on demand [47].

ONOS uses Karaf as an OSGi framework implementation. Whole controller runs in a
Karaf container. ONOS developer’s team provide very well-written documentation and
plenty of tutorials on ONOS basics and how to implement certain functionality.

2.3.1.2 OpenDaylight

OpenDaylight (ODL) is another open-source controller written in JAVA and based on
the OSGi architecture as well. It is the most advanced controller in terms of ”out of the
box” functionality. It focuses on building multi-vendor, multi-project ecosystem to drive
innovation and open network approach towards SDN [48].

ODL is developed and maintained by the Linux Foundation. ODL’s projects are focused
on adding specific features to the controller [48]. Similar to other SDN controllers, ODL
supports network programmability through the various Southbound protocols and differ-
ent network services. It also has Northbound Interface and set of applications performing
wide variety of network functionality.

2.3.1.2.1 Architecture

Let’s now have a closer look on OpenDaylight architecture. It is depicted on Figure
2.7.

In OpenDaylight ecosystem controller acts as a middleware connecting together appli-
cations and protocols talking to the network devices [48]. Controller allows to application
to be agnostic to the device-specific things. Such an approach allows developers to con-
centrate more on the application itself, rather than think about how to tell the device
what to do.

Southbound Interface (SBI) of OpenDaylight supports various communication pro-
tocols, like OpenFlow, BGP, SNMP and many others. Each protocol is represented by

4In past applications used to be developed with Maven. Now development of any functionality, in-
cluding applications, is done mainly with Bazel. Maven is still supported, but not recommended to
use.

Figure 2.7: OpenDaylight Architecture. Carbon release [49]

it’s own module, which is linked to the Service Abstraction Layer (SAL). SAL determines
how to fulfill application request with respond to underlying protocols and devices.

Service Abstraction Layer (SAL) is the key aspect in ODL design. It provides
abstraction of services between the service consumers (applications) and producers (net-
work devices). Basically SAL acts as an entity registering and interconnecting different
services within the core. There are two ways of implementing this entity [48]:

• Application-Driven SAL (AD-SAL) focuses on providing abstraction from
the device to the application developer. It allows the developer to concentrate
on the application logic, rather than focusing on how the device behaves.

– The primary problem on which AD-SAL concentrates is providing set of
universal APIs with support of all device functions. Device talks to the SDN
controller via driver-specific modules. These protocol plugins communicate
with SAL layer exposed API [48]. Basically, SAL converts device-specific
functionality into the set of API plugins and allows any application to use
these APIs.

• Model-Driven SAL (MD-SAL) goes a step further (than AD-SAL) and al-
lows the developer to work with service-agnostic interfaces, which are provided
by ”service modules” (i.e. any protocol plugin). The key difference with AD-SAL
lies in a way how these plugins are used by different providers and consumers.

– Providers (generally southbound plugins) create the model of the service
they use and store it in a YANG format. After that, YANG compiler creates
uniform API for the consumer and become part of the plugin. It provides a
very high level of uniformity between different plugins in terms of definition
and usage. It also complicates debugging process, cause you can’t modify
the generated code.

The controller platform itself has various network service functions included - service

CHAPTER 2. SDN OVERVIEW 27

for topology discovery, forwarding manager, switching manager and many more [48]. It
also contains vendor components needed to interact with the underlying network devices
in specific format. Network service functions and vendor components are interconnected
within the SAL core.

Northbound Interface (NBI) interconnects applications and SAL core. NBI sup-
ports OSGi framework (Apache Karaf) and bidirectional REST API [48]. OSGi is used
by the application that is being run in the same environment as a SDN controller, REST
API is used by the application that is running in the external environment [48].

Applications , the top layer of ODL, concentrate main network intelligence. Most of
the applications are directly mapped to the appropriate services of the SAL core. These
apps could also be used as a way to orchestrate the network (i.e. Load Balancing).

In the beginning of it’s path, ODL was the most documented SDN controller, but with
the time, due to the rapid frequency of new releases, the documentation became outdated
and doesn’t precisely describe it’s actual state.

2.3.2 Custom solutions

With the rise of open-source SDN solutions, some big companies made their own dis-
tributions of SDN controller. Generally, it is classic open-source SDN controller enriched
with adaptors and functionality of their own devices. For example, Cisco provides their
own distribution of ODL controller [50]. It leaves all functionality of ODL needed for
communication with Cisco network equipment.

Nokia ’s Network Service Platform (NSP) is based on ODL and embeds capability to
communicate with Nokia network equipment, enriching it with some specific functionality.

As a pioneer in SDN field, Google , in order to provide services of better quality,
developed it’s own controller platform called Andromeda. The main problem it targets
to solve is orchestrating of Data Center network interconnections. Andromeda is used
for provisioning, configuring, and managing virtual networks [51]. The main goal of
Andromeda is to maximize network performance and at the same time expose NFV.

In 2017 Google announced, that their SDN solution goes to the public internet on
the edge of cloud [52]. That’s how the Espresso, new SDN stack, was introduced. It’s
main enhancement consists in providing scaling and provisioning metro-type of networks.
Espresso extends SDN to the edge of Google’s network, where it connects to other networks
across the world [52]. To generalize, Espresso is a SDN stack, Andromeda is a NFV stack
[52].

2.3.3 µONOS - next-gen SDN

Roots of both open-source SDN controllers, ODL and ONOS, go in the beginning of
201x. At that time in fashion were the micro-service architecture, mainly based on OSGi
framework. With introduction of Docker containers, which can provide higher agility and
(software) reliability, OSGi-based architecture became outdated. Right now, there is a
need to rework legacy SDN controller architecture and introduce the fresh one, where
different controller’s modules could scale independently. That’s the main idea behind the
µONOS.

By the developer’s team were already defined main pillars of µONOS architecture. They
are following [53]:

• Native support of new-generation control and configuration interfaces and stan-
dards, like P4, gNMI, gNOI and others.

• Basis for zero-touch operation support.

• Modular structure based on poly-language gRPC interface for inter-module in-
teractions.

• Platform should be composed as a set of microservices with possibility to be
deployed in cloud or Data Center environment. In other words, become more
Cloud-native.

• Module system based on microservices should be dynamically scalable and per-
formance efficient in terms of throughput and latency.

µONOS is mainly written in Go language and, if necessary, could support low-level
C/C++ insertions for better performance optimization. Developer’s team defined some
functional requirements on µONOS platform design [53], which include:

• Configuration, monitoring and maintenance of network devices.

• Configuration and programming of the forwarding plane.

• Validation of the network topology and of forwarding plane behavior.

• Efficient collection of network performance metric.

µONOS is still in it’s beginning and didn’t get to the alfa release yet. Currently
configuration subsystem is being developed. It is designed to be a separate entity, what
allows it to co-exist with current ONOS5 release (2.x) and fit with next-generation SDN
concept [54]. You can see it’s architecture on the figure below.

Figure 2.8: µONOS Architecture [54]

5Currently ONOS does not support configuration subsystem. Device configuration should be done
manually through the Cli or WebGUI.

CHAPTER 2. SDN OVERVIEW 29

As you can see from the Figure 2.8, principle Northbound API, as well as Southbound
API, would be gNMI and gNOI. Transfer of information between interfaces will be done
through gRPC. In case of Stratum6-based switches no adaptation layer is needed due to
the homogenity of Northbound and Southbound API. For the devices, that don’t support
gNMI and gNOI, adapters could be developed either as an external service or as a proxy
agent on the device [54].

2.4 SDN controller comparison

This section presents brief comparison of two main open-source SDN controllers - ONOS
and ODL.

As you may think, ONOS and ODL are the same, providing same functionality, but in
reality, from architectural point of view, they are very different [56]. Let’s have a closer
look on the Table 2.2 with the use-cases of both controllers [57].

Use-case OpenDaylight ONOS

Legacy Network Interoperability YES YES

Service Insertion and Changing YES YES

Network Monitoring YES YES

Network Virtualization YES YES

Traffic Engineering YES YES

OpenStack Neutron Support YES YES

ONAP SDN-C Integration YES NO

Transport Networks YES YES

Path Computation Element YES YES

Table 2.2: ODL and ONOS comparison

As you can see, with the time, from the use-case point of view, controllers became almost
similar.They have different architectural approaches. ONOS is staying at Application-
Driven abstraction, ODL moves forward with Model-Driven abstraction. MD-SAL has
it’s own advantages and disadvantages with regard to former AD-SAL architecture. It
is great concept simplifying application development, but making the debugging process
way more harder.

On the one hand, ODL is truly lead SDN platform from the functional point of view.
ONOS is a bit behind, but provide all necessary services and APIs in order to develop
same set of functionality according to the customer’s needs.

On the other hand, ONOS stays simple by it’s nature and this way more developer-
friendly. Needless to mention, that ONOS has almost perfect documentation (including
tutorials) what provides an easy beginning with the developing process. Last, but not
least, ONOS community, comparing to the ODL one, is open and very interactive. You
can always find answers or get any feedback. It is quite important, especially in the
beginning of SDN developer’s path.

6Stratum is an OS for whitebox switches developed by ONF [55]. It enriches whole SDN ecosystem
deployed by ONF.

Chapter 3

Optical Networks

3.1 Brief technological overview

The challenge to open the control and to automate the configuration of Optical Net-
works are way more wider problematic than is explained in this chapter. This thesis
focuses mainly on the provisioning of photonic connectivity services by configuring layer
zero, L0 per OSI model, of optical networks. In this chapter technological overview of
xPON, WDM or any other technology used in optical networks would not be provided.
If the Reader is interested in some of these topics, Author summarized some useful links
to go through:

• If the Reader wants to read more about Passive Optical Networks (PON), Author
suggests to look here [58] or here [59]. Also, it’s good to read this [60] beautiful
set of articles dedicated to the different aspects of PON networks;

• For better overview in Active Optical Networks (AON) Author suggests to the
Reader to have a look at [61];

• For overview in GPON, the Reader can go through [62] and some articles at [60];

• If the Reader wants to learn more about wavelength-division multiplexing
(WDM) systems, Author invites him to go through this [63], [64] article.

3.2 Optical elements brief overview

In this chapter we will describe the most common elements which are used in active
optical networks. Going through the passive optical components within this work is not
really beneficial. Because of that we will go directly to the active optical components
overview with special focus on ROADM systems. It is beneficial for better understanding
of the implementation part purpose.

3.2.1 Optical amplifiers

Amplifier is important component in any transport optical network. It allows to extend
the transmitting distance of the optical network and enlarge it’s coverage, what is a key
factor. Main advantage of an optical amplifier consists in it’s ability to amplify signal
directly on photonic layer without any conversion to the electric domain and back to the

31

optical one. It reduces delay of the system and eases it’s maintenance. Different types of
amplifiers were invented to meet different signal amplifying requirements [65] in different
situations.

In optical transport networks we can differentiate 3 types of the amplifiers according
to their usage:

• Pre-Amplifier is usually being installed near the receiver to ensure that the
optical signal could be detected by the receiver. It amplifies optical signal on the
certain level. Offers higher gain;

• Booster is installed right after the transmitter to amplify the signal inserted
into the fiber link. Offers lower gain and higher output power;

• In-line Amplifier is installed every 80-100 km of optical fiber to ensure, that
within the whole transmission signal stays above the noise ratio, in other words
- detectable. Has moderate gain. [65]

Gain of the amplifier should be calculated carefully before installing it to the optical
network.

Reliable work of the optical amplifiers is crucial in optical transport networks. In this
sub-chapter we will have a brief overview of a different optical amplifiers.

EDFA

Erbium-doped fiber amplifier (EDFA) is probably the most famous and the most used
fiber amplifier. Working principle of this amplifier is based on constant pumping of the
energy to the optical fiber doped with Erbium. Laser diode emits the light on 980 nm
or 1480 nm wavelength [66]. Such energy pump transfers the fiber to the active state
(stimulated emission) where it starts to emit photons with the 1550 nm wavelength. This
wavelength is typically used in telecommunications due to the small losses in the optical
fiber. Emitted photons then amplify target signal. [66], [67]

Could be used as a Booster, In-line or Pre-amplifier.

YDFA

Ytterbium-Doped Fiber Amplifier (YDFA) has the same concept as an EDFA amplifier,
but doped with Ytterbium. It makes slight difference the area of amplifier’s usage. For
example, amplifiers based on ytterbium-doped fiber can be used to boost 1-µm laser
sources [67].

Main drawback of YDFA amplifiers is their non-linear spectral amplification charac-
teristic [67]. For example, in this case some wavelengths could be amplified more than
others. It could evolve into other bad effects during the transmission.

YDFA amplifier generates really huge gain and because of that it isn’t really used in
telecommunication industry.

CHAPTER 3. OPTICAL NETWORKS 33

Raman amplifier

Raman amplifier is a special type of fiber amplifier. It is based on the effect of Raman
scattering. To compose such an amplifier you need a Raman-active medium, usually
optical fiber, and a laser (pump beam) which transmits optical signal with a wavelength
of a few nanometers shorter, than the wavelength of the signal we are trying to amplify [68].
By pumping the energy from the another laser, we are developing Raman scattering effect
- evolving emission on the different wavelengths (corresponding to the target wavelength)
which then amplifies our target signal [67].

Raman amplifier is very versatile and could be tuned to any wavelength typically used
in telecommunications. It competes mainly with EDFA amplifiers in it’s usage. [67], [68]

Semiconductor optical amplifier

Semiconductor Optical Amplifier(SOA) uses the semiconductor as the gain medium.
Usually operates at a signals in between 850 nm and 1600 nm [69]. Working principle
is basically the same as for semiconductor laser - it amplifies incident light through the
stimulated emission [69]. Emitted photons have the same wavelength as targeting one.
Since SOA amplifier can work on different wavelength, it should be tuned precisely.

Semiconductor amplifier is cost-effective solution typically used as a Booster or In-line
amplifier.

3.2.2 Optical Add-Drop Multiplexer

Before diving deeply inside the problematic of Reconfigurable Add-Drop Multiplexers
(ROADMs), let’s have a short look on it’s parent, the OADM.

In the Wavelength-Division Multiplexing (WDM) systems there is a need for multi-
plexing and routing different channels of light In or Out of the fiber. Optical Add-Drop
Multiplexer (OADM) provides such functionality like adding or dropping one or several
wavelengths (channels) and passing those signals to the another network path. OADM
can be considered as a specific type of optical Cross-Connection (XC) [70]. OADM is a
common type of optical node used in optical telecommunication networks. A traditional
OADM consists from three stages:

• Optical Demultiplexer – separates wavelength at output of the fiber onto
input ports;

• Optical Multiplexer – gets together all wavelengths to the output port;

• Method of reconfiguring paths between the demultiplexer, the multiplexer
and a set of ports for adding or dropping signals. It could be:

– fiber patch panel;

– optical switch [70].

Figure 3.1: Structure of OADM [71]

All lightpaths which go directly through the OADM are called “cut-through lightpaths”,
while added or dropped lightpaths are respectively called “added” or “dropped” lightpaths
[72].

3.2.3 Reconfigurable Optical Add-Drop Multiplexer

Reconfigurable Optical Add-Drop Multiplexer (ROADM)1 is active optical element
critical for optical transport networks. Next several sub-chapters are targeting to provide
a slightly deeper overview of ROADM’s functionality and it’s main components.

Reconfigurable Optical Add-Drop Multiplexer (ROADM) is basically OADM which
adds the ability to remotely switch traffic from a WDM system at the wavelength layer
[72]. It is achieved by using the Wavelength Selective Switch (WSS) module, which allows
individual or multiple wavelengths carrying data channels to be added and/or dropped
from a transport fiber right on the optical layer (L0). There is no conversion from the
optical signal to the electronic signal and back, what reduces the delay of such system
[72].

ROADM provides a lot of advantages in terms of operating with the network. For
example:

• There is no need to plan the entire bandwidth assignment during the initial
deployment of the system. Configuration could be done “on-the-fly”, when it is
needed and without affecting the data traffic passing through the ROADM.

• It allows remote configuration and reconfiguration.

• Automatic power balancing. In ROADM it is not clear, where a signal can be
potentially routed, so there is a necessity of power balancing for the signals. [72]

Functionality provided by ROADM originally appeared in a long-haul Dense Wave-
length Division Multiplex equipment. It also began to appear in the metro optical systems
because of the increasing demand on the network capacity [72].

1One of the main tasks of this work is to enable software-based configuration of ROADM. Chapter 4
is dedicated to it.

CHAPTER 3. OPTICAL NETWORKS 35

3.2.3.1 ROADM Architecture

Let’s take a deeper look on a general concept of ROADM and try to understand, how
it works. ROADM generally consists from two main elements: wavelength splitter and a
Wavelength Selective Switch. Let’s take a look on the Figure 3.2.

Figure 3.2: ROADM architecture [73]

Optical signal, after entering the ROADM on certain interface, passes through the
demultiplexing section (wavelength splitter) and divides into several channels [74]. Each of
the channels correspond to the certain wavelength. After that wavelength passes through
the Add/Drop section, or Wavelength Selective Switch (WSS), which could respectively
drop or also reroute the wavelength to the another direction. It can also let the wavelength
pass through. If the wavelengths was redirected, WSS can add the wavelength from
another direction on this port. After passing the WSS, all wavelengths are being joined
together in a multiplexing section and go out from the interface.

One of such modules is needed per one direction. In a ROADM terminology, direction
(or the DWDM line interface) can be also called a degree. For example, for four direction
connectivity you need a four degree ROADM [74].

3.2.3.2 Wavelength Selective Switching

To route/switch signals (wavelengths) between optical fibers, Wavelength Selective
Switch (WSS) component is being used. Functionality of such element is simple to un-
derstand, but hard to implement. The various incoming channels of a common port are
dispersed (demultiplexed) continuously onto a switching element which then directs and
attenuates each of these channels independently [75]. Operation of such mechanism can
be bidirectional, so the wavelengths can be multiplexed together from different ports into
a single common port.

WSS is responsible for switching in ROADM. This functionality could be achieved by
various techniques. Next few sub-chapters would briefly describe some of these methods.

3.2.3.2.1 Micro-Electro-Mechanical Mirror

The simplest and the earliest commercial solution is based on movable mirrors using the
Micro-Electro-Mechanical Mirror (MEMS) [75] technology. The incoming light is broken
into a spectrum by a diffraction grate. Each wavelength then focuses on separate MEMS
mirror. By tilting the mirror in one dimension, the channel can be directed back into any
of the fibers in the array.

Figure 3.3: WSS with MEMS principle [76]

The technology has an advantage of a single steering surface, not necessarily requiring
the polarization diversity optics. It also works well in the presence of a continuous signal,
allowing the mirror tracking circuits to dither the mirror and maximize coupling [75].

This kind of WSS typically produces poor open loop performance, but good extinction
ratios [75]. During manufacturing, the channels must be carefully aligned with the mirrors,
what complicates the manufacturing process. Also, phase of the light is not really well
controlled during the mirroring and artifacts can appear due to the interference of light
from the other channels. [75]

3.2.3.2.2 Binary Liquid Crystal

Liquid crystal switching avoids complexity of manufacturing and high costs. Again,
diffraction grating breaks the incoming light into the spectrum. Array of liquid crystals,
controlled by the software, performs switching function. Each liquid crystal (LC) corre-
sponds to one wavelength. Liquid crystal individually can let the light pass and “adds”
it, or doesn’t let the light pass and “drops” it. At the output, all left wavelengths are
multiplexed into the one port. [75]

This technology has an advantage of relatively low cost parts, simple design of control
electronics and stable beam positions without any active feedback. Somehow, this simple
design is valid for one fiber only. In case of the transport network, where we must operate
with hundreds of optical fibers, complexity of such system increases significantly.

Main disadvantage of this technology consists in the sickness of switching elements. It
is hard to keep the optical beam focused over this depth. [75]

CHAPTER 3. OPTICAL NETWORKS 37

3.2.3.2.3 Optical filtering

Same concept as in Binary Liquid Crystals is applied in terms of optical filters. Each
filter is meant to let only certain wavelength pass through, and drops the rest. By com-
posing arrays of such filters we can create a selective switching array. [75]

3.2.3.2.4 Liquid Crystal on Silicon

Liquid Crystal on Silicon (LCoS) is attractive as a WSS mechanism because of contin-
uous addressing capability, which enables new functionality [75]. The main enhancement
comparing to the Binary Liquid Crystal is that the device shouldn’t be pre-configured
for the specific application. It can be configured remotely via software. Additionally, it
is possible to reconfigure the channels while device is still operating. LCoS technology
introduces more flexible wavelength grids, which help to unlock the full spectral capacity
[75] of optical fibers. New features also include shaping the power levels within a current
channel, broadcasting the optical signal to more than one port and fine-grained chan-
nel control (central, minimum, maximum frequencies, channel bandwidth) via embedded
software [75].

3.2.3.3 New generation ROADMs

It’s been a while, since first concept of the ROADM was introduced to the market.
Over the time, design of the ROADM became more sophisticated and new functionality
were introduced. We can split ROADMs on following categories.

Colorless ROADM is the ROADM which enables flexible allocation of any wave-
length (or color) to any port [74]. It contains one WSS switch per one degree (direction).
Complete software control. For realizing colorless feature, filter modules should be imple-
mented.

Directionless ROADM does not require physical reconnection of the transmission
fibers. This kind of the device is being deployed for temporary installations or for restora-
tion purposes [74]. It avoids restrictions regarding to the directions. “Directionless” tech-
nology could also be used to reroute the wavelength in a different direction. Directionless
ROADM is very important for true optical flexibility [77].

Contentionless ROADM is the ROADM which eliminates the possibility of col-
lision at the same port for two identical wavelengths [74]. It must provide dedicated
internal structure to avoid this. Contentionless architecture allows multiple copies of the
same wavelength on a single add/drop structure with no particular restrictions [77]. It
eliminates the necessity of manual intervention (physical recabling) in some cases [77].

Gridless (Flex Spectrum) ROADM supports various channel grids specified by
ITU-T G.694 [78] within the same optical signal. Such ROADM could be adapted for
future transmission speed requirements [77]. When you need a transfer speed more than
100 Gb/s, standard bandwidth of 50 GHz could not be enough [77]. Also, different
modulations within the same signal (on different parts of spectrum) could be used. At
the same time operator could require such high speed in combination with 40Gb/s or 100
Gb/s, what makes flexibility of spectrum provided by gridless ROADM very important.
This type of ROADM could be useful for transmission containing different modulations
or for coherent transmission.

Combination of Colorless, Directionless, Contentionless and Flex Spectrum (CDC-

F) properties provides an ultimate level of flexibility [74]. According to [77], CDC-F
ROADMs could help to save expenses on the network provisioning, since technicians
don’t need to manually reconfigure network equipment anymore. Automation also greatly
accelerates bandwidth (or capacity) provisioning. Operators will have an ability to re-
spond to the rising demand on the capacity (i.e. for delivery of cloud based services). Even
greater benefits could be achieved in the topology flexibility and simplified operations with
the network equipment. What is more important, human factor will be eliminated. CDC-
F ROADM is a necessary prerequisite for telecommunication operators, if they want to
implement openess and automation with SDN in their transport network [77].

Chapter 4

Implementation

Deploying SDN architecture in Open Optical Networks is a challenging task. First of
all, we should choose a proper open-source SDN controller with regard to the available
equipment. After that we should define the goals we want to achieve.

Beginning of this chapter explains choice of the SDN controlling platform and sets the
goals. Second part of this chapter describes the implementation process.

4.1 Targets

In the lab setup we have in disposition following Nokia’s flagship devices1:

• 2x Nokia 1830 PSI-2T - Optical Transponder.

• 2x Nokia 1830 PSS - Reconfigurable Optical Add-Drop Multiplexer
(ROADM).

Both of these devices implement Open-APIs. They support capability to communicate
over NETCONF protocol, which could be considered as an Open-API. Important to
mention, devices support OPENCONFIG data models.

Since one ROADM has 1-degree and other ROADM has 2-degree, we don’t have too
much freedom in setting various topologies in the lab. Also, we would like to manage and
configure the devices through the SDN controller in order to establish end-to-end optical
channel connectivity. This task is already quite challenging. Let’s choose a proper SDN
controller through which we would manage these devices over the NETCONF protocol.
Next sub-section is dedicated to it’s choice.

4.1.1 SDN controller choice

Open-source SDN solutions, like ONOS or ODL, were already described and compared
in section 2.3. With respect to the basic functionality, they have no differences. Somehow,
getting familiar with an internal structure is more complicated in case of OpenDaylight.

Author’s definitive choice of the SDN controller was ONOS. There are several reasons
behind it:

1Overview of both Nokia’s flagship devices is provided in sub-section 4.1.2 and sub-section 4.1.3.

39

1. Documentation is not outdated comparing to the OpenDaylight.

2. More interactive community which responds and navigates you.

3. No need in advance functionality provided by OpenDaylight. ONOS has
already everything what you need inside. Just use it.

4. ODTN project inside the ONOS lead by Andrea Campanella which targets to
embed functionality for Open and Disaggregated Transport Networks (ODTN).

• The driver with basic functionality to manage the Nokia 1830 PSI-2T Op-
tical Transponder was already contributed to the ONOS community.

• Somehow, ONOS doesn’t implement possibility to manage the Nokia’s
ROADM. We need to develop a driver on our own.

4.1.2 Nokia 1830 PSI overview

Nokia 1830 Photonic Service Interconnect (PSI) is an optical transponder developed
for Data Center Interconnection (DCI) applications [79]. It is shown on Figure 4.1.2

Figure 4.1: Nokia 1830 PSI-2T [79]

This device has following specifications [79]:

• 100G, 200G and 250G coherent optical line ports ;

• 40GE and 100GE client ports ;

• Integrated L1 encryption based on AES-256 algorithm;

• Streaming telemetry for real-time provisioning;

• Support of Open-API interfaces.

It is a high capacity and cost efficient network solution for DCI applications over metro,
regional and long-haul distances. This device offers optimized network solutions for cloud
era [79]. It’s also possible to have an alternative solution on modular basis, Nokia 1830
PSI-M, where you can attach different modules from the catalogue corresponding to your
demand.

In the lab setup we have two Nokia 1830 PSI-2T.

CHAPTER 4. IMPLEMENTATION 41

4.1.3 Nokia 1830 PSS overview

Nokia 1830 Photonic Service Switch (PSS) is an optical CDC-F ROADM. It supports
next-generation DWDM multi-service, multi-layer P-OTN transport [80].

This device supports 100G-600G wavelength transport. It tents to transform tradi-
tional DWDM into a flexible transport layer by providing an agile wavelength routing
and scalable multi-layer switching and services. [80]

Figure 4.2: Nokia 1830 PSS [80]

Meeting unpredictable traffic demands by optimizing optical networks is the main focus
of this device. Area of application is following [80]:

• Metro and long-haul transport;

• Broadband backhaul;

• Data Center Interconnection;

• Carrier Ethernet;

• Wavelength services.

100G connectivity services with 100G multi-terabit OTN switching and flexible (100G–600G)
wavelength transport are supported by Nokia 1830 PSS [80].

This platform allows to deploy services rapidly, reduce network TCO and extend it’s
lifecycle [80]. It also provides support of Open-API in order to deploy SDN architecture
and distributed GMPLS control option. These capabilities let us dynamically maximize
network capacity and efficiency.

Nokia 1830 PSS allows creating of cross-connectivity between any input client port
and any output degree port (usually amplifier’s card ports). Such an approach provides
mapping of input ports to the output ports and de-facto makes the device to act as a
wavelength router.

There are different versions of the device, which basically differ in the scale of usage
(from metro to international). Somehow, each platform has common software, common
hardware and common control functions [80].

In the lab setup we have one 1-degree Nokia 1830 PSS-16II and one 2-degree Nokia
1830 PSS-16II.

4.1.4 Setting the goals

We’re targeting to manipulate with the optical device configuration over the SDN con-
troller. A good result could be an ability to configure both devices under ONOS and
establish end-to-end optical channel connectivity. Steps we need to accomplish in order
to deploy SDN architecture in Open Optical Networks are following:

1. Part I

• Implement an ONOS driver for the Nokia 1830 PSS.

• Write a Cli command through which we could set the XCs on the device.

• Implement PowerConfig interface for the existing ONOS driver for Nokia’s
1830 PSI-2T Transponder.

• Perform some tests to verify and validate functionality of this solution in
terms of end-to-end optical channel connectivity.

2. Part II

• Implement AlarmConfig interface, which would treat alarms in proper way
on both devices.

• Develop an application (or skeleton), which is capable of reconfiguring the
network devices in given topology.

4.2 ROADM driver

To deploy automatically configurable transport networks, we need to manage ROADMs
under the ONOS controller. For this purpose we need to develop a driver and integrate
it inside the SDN controller.

This section explains general steps for implementing of such driver in ONOS. Detailed
explanation of the whole process is also provided.

4.2.1 Driver overview and general steps for it’s creation

Let’s have a look on what does the ”Device Driver” mean in terms of ONOS. What
does it do? There are some pillars which define any driver implementation in ONOS:

CHAPTER 4. IMPLEMENTATION 43

• Each driver is defined by the set of the behavioral models (and their implemen-
tations).

• Behavioral model is implemented as a Java interface. It describes set of functions
(or ”behaviors”) which device is capable to perform.

– Functionality of behavioral models mostly aligns with OPENCONFIG Data
Models.

• Any behavioral model could require specific implementation for any device.

• Device driver could have as many different behavioral models as it needs.

• Set of the behaviors is specified inside the xml file of the driver with corresponding
XML tag.

Based on this definition, we can state that ONOS is not device-independent. Once
we want to control a new device under the controller, we need to write a custom driver.
Because of that almost all drivers are more less similar. They differ2 only in the way of
extracting necessary data and parsing them to the corresponding internal ONOS struc-
tures. Below are summarized minimal requirements that any driver needs to implement,
if we want to manage the device under the ONOS controller:

1. Parse device to the ONOS and register it inside the controller.

2. Establish communication session (over NETCONF protocol).

3. Read out all basic information from the device about the software and hardware
components, including number of ports and their type.

4. Implement some management logic in order to configure the device.

Our task is to manage the Nokia 1830 PSS-16II device, which is CDC-F ROADM. We
need to implement our own custom driver in order to discover the device information and
manipulate with it’s XCs. To achieve this, we need to implement two following behavioral
models:

• DeviceDescriptionDiscovery - read out all basic information from the device
about the software, hardware and ports. Store this information inside the internal
structures of ONOS;

• FlowRuleProgrammable - main configuration logic of the device is imple-
mented here. In our case, this interface is responsible for creating and removing
XCs on the device.

Goals are set, let’s dive deeper into the implementation part.

Before reading following sub-chapters, Author would like to notify the Reader, that it
would be much more comfortable and easier to read the diagrams introduced below in the
electronic version of this work.

2On the time of publishing of this work, there were some actions on consolidating existing drivers and
unifying them. You can find more here [81]

4.2.2 Implementing DeviceDescriptionDiscovery behavior

”DeviceDescriptionDiscovery” behavior is responsible for extracting of the basic in-
formation from the device and storing it inside the ONOS. This behavioral model is
fundamental to implement. Later on, you will see that all management would be based
on the obtained information within this behavior.

To implement it, we created a file called ”NokiaPssOpenConfigDeviceDiscovery.java”
and stored it inside the ”/odtn” folder of the driver:

$ONOS ROOT/drivers/odtn-
driver/src/main/java/org/onosproject/drivers/odtn/

Each behavior is defined by the Java interface instance. In that case, it’s implementa-
tion always means that you should strictly implement all functions defined by the inter-
face. If necessary, you can decompose functionality of mandatory functions on the set of
smaller functions. It is very useful, especially when such functions have common routines.
These assumptions make the code cleaner and easier to read. Behavior’s functionality of
”NokiaPssOpenConfigDeviceDiscovery.java” is depicted on the diagram Figure 4.3.

As you can see on Figure 4.3, there are two main functions - discoverDeviceDetails
and discoverPortDetails. They are being triggered every time the driver is invoked.
First of all, both of them establish the NETCONF session in a specific way. All Nokia’s
devices running on OpenAgent (software, operating system of the device) require two-level
authentication with the following method:

1. Exchange <hello> messages with capabilities.

2. Pass the <login> request with correct credentials to authenticate the session.

• This RPC request is a custom one. It is implemented in one of the custom
data models passed during the initial <hello> message exchange.

New operations are typically identified with a new capability. It should be added to
the list of capabilities sent by the NETCONF server during the initial <hello> message
exchange. In case of Nokia’s ROADM, and any other OPENCONFIG-based device, a
lot of custom <rpc> commands were added to the NETCONF protocol. It helps to
extend operability and provides more precise tuning of the ROADMs (i.e. allows to create
cross-connections, set frequency/power, implements additional layer of security by adding
necessary <login> requests to the communication flow and many more). Because of that,
in the file odtn-driver.xml, in one of the properties, were passed the capabilities obtained
from the device <hello> message. Due to the privacy of this information, appropriate
data models wouldn’t be shown there. You can have a look on the existing Nokia 1830
PSI-2T driver [82].

Once two-layer authentication is passed, we can obtain all information we need by
composing other (custom) RPC requests. One of them is <get system-software>,
which is invoked inside the discoverDeviceDetails function. We’re sending this request
to obtain an answer, from where we can extract all necessary information and store
it inside the DefaultDeviceDescription instance (it is responsible for storing a general
information about the device).

After discoverDeviceDetails function ends it’s execution, ONOS triggers execution
of discoverPortDetails. This function is a bit more complex. As were previously de-
scribed, it establishes NETCONF session by passing two-layer authentication first. Then,
in buildGetPlatformComponentsRpc, it composes a custom RPC request to get an

CHAPTER 4. IMPLEMENTATION 45

discoverDeviceDetails

1. Gets device ID

2. Gets NetconfSession instance
by invoking
getNetconfSessionAndLogin
3. Build the <get> request for
software components and send it
to the device using requestSync
instance of NetconfSession
4. Read out all necessary
parameters and store them as
DefaultDeviceDescription

Return device description stored
in default format
(DefaultDeviceDescription)

buildGetSystemSoftwareRpc

Builds an RPC <get> request to
retrieve system software information.
This RPC is custom one and ensured
by passing appropriate device
capabilities in the initial <hello>
message.

Returns string containing an RPC
request to retrieve software
information

getNetconfSessionAndLogin

Gets as an input device ID,
username and password

1. Gets the NetconfDevice
instance for corresponding device
ID (and checks whether it is null)

2. Gets the NetconfSession
instance and checks whether it is
null)

3. Builds an RPC <login> request
and uses requestSync method of
NetconfSession class to retrieve
information from the device
4. Checks, if obtained answer
contains <ok> (it means, <login>
was successful)

5. Throws an exception if there
was any issue during the
communication with the device

Returns valid instance of
NetconfSession

discoverPortDetails

1. Gets device ID

2. Gets NetconfSession instance by
invoking
getNetconfSessionAndLogin
3. Builds RPC <get> request in order
to retrieve platform component
information (with the help of
buildGetPlatformComponentsRpc
function)

4. Gets out data from the device reply

5. Loads information into
XMLConfiguration instance
6. Extracts information from the obtain
answer (with the help of
discoverPorts function)

Returns list of port read from the
device

discoverPorts

Gets as an input XML parsed
information retrieved from the
device

Goes over each <component>
field and extracts information
individually

Returns list containing
PortDescription instances (the
way to represent ports inside
the ONOS)

toPortDescriptionInternal

Gets component configuration
information as an input

1. Reads out basic information
from the component like port
name and port type

2. Once port type was read, it
creates description of the port
according to it's type (big if
statement defining which values
to extract for each type of the
port)

Returns port description stored in
appropriate format

buildLoginRpc

Gets as an input username and
password for log in process

Builds an RPC <login> request to
authenticate current NetConf session.
This RPC is custom one and ensured
by passing appropriate device
capabilities in the initial <hello>
message.

Returns string containing an RPC
request to log into the device

buildGetPlatformComponentsRpc

Builds an RPC <get> request to retrieve
component information from the device.
This RPC is custom one and ensured by
passing appropriate device capabilities in
the initial <hello> message.

Returns string containing an RPC request
to retrieve capabilities from the device.

getDataofRpcReply

Gets as an input parameter
RPC reply (as a String)
obtained from the device

Removing every XML-tag
except those, which are
inside <data> </data>

Returns the body of data of
the RPC message

Figure 4.3: DeviceDescriptionDiscovery interface workflow

information about the device ports and parses obtained information to the internal ONOS
storage in appropriate data structure.

Since the device can have multiple ports, obtained reply is decomposed on smaller
sections. Each of them contains information about the single port. It is done inside

the discoverPorts function. On each section is applied universal algorithm to extract
necessary data - type of the port, name of the port and many other parameters. Simulta-
neously with the extraction, all information is stored in the internal storage of the ONOS
controller.

During the development of this behavior an issue described in sub-section 6.1.1.1 was
found.

Once the basic information about ports is extracted and stored, we can move on and
implement the main device functionality - cross-connection creation. Next sub-chapter is
dedicated to this task.

4.2.3 Implementing FlowRuleProgrammable behavior

Implementing of FlowRuleProgrammable behavior is always tricky. It tightly depends
on the device functionality and can vary from device to device. This behavioral model
manages ”Flow Rules” installed on the device. In terms of ONOS, ”Flow Rule” repre-
sents the ”Rule” installed inside the device or, in other words, piece of device-specific
configuration [83]. Inspired by OpenFlow protocol, ONOS, as a SDN controller, installs
”Flows” into the device. Flow Rule Subsystem interacts with a specific part of the driver,
implementation of FlowRuleProgrammable behavior, in order to manage installed on the
device rules.

In general, we can divide FlowRuleProgrammable interface on three parts:

• Get Flow Entries3 is responsible for obtaining configuration already installed
on the device. It parses configuration to the internal structures of the ONOS in
order to display it later inside the controller.

• Apply Flow Rules is responsible for installing Flow Rule on the device. It
parses information from the FlowRule structure to the device-specific code. This
part of the behavior is triggered by corresponding microservice of the ONOS
(RoadmManager in our case).

• Remove Flow Rules is responsible for deleting Flow Rule on the device. It
parses information from the FlowRule structure to the device-specific code. This
part of the behavior is triggered by corresponding microservice of the ONOS
(RoadmManager in our case).

Describing all three parts simultaneously is quite complex. We spread our explanation
on the next three sub-sections. Corresponding workflow diagrams would be introduced
to ease the understanding.

4.2.3.1 Get Flow Entries

As were said before, ”Get Flow Entries” part of the FlowRuleProgrammable behavioral
model ensures obtaining of the installed ”Flow Rules” (or configuration) from the device.
Workflow of this part is depicted on Figure 4.4. It represents the ”Get” part of the
FlowRuleProgrammable interface implementation.

Basically, main task of this part of the interface is to read out the configuration from

3Difference in the name - Entry instead of the Rule - is given by the origin of the obtained data.
Since, we are talking about the configuration already installed on the device and we want to pass it to
the ONOS, it means, that this configuration is literally ”enters” the controller. That’s where the name
comes from.

CHAPTER 4. IMPLEMENTATION 47

getFlowEntries

1. Gets NetconfSession
instance
2. Builds and RPC <get>
request and retrieves
installed XCs from the
device (using requestSync
method on NetconfSession
instance)
3. Extracts everything
wihtin <data> body

4. Processes each XC and
stores it as instance of a
FlowEntry

5. Throws an exception if
something went wrong
during one of the steps

Returns set of a Flow
Entries retrieved from the
device

ParseDataToFlowRule

Gets as an input extrected
configuration and device ID

1. Converts configuration into
an appropriate format to read
2. Goes over each XC in
order to extract all necessary
information and composes
them into a Flow Rule
3. Searches for a match with
already stored Flow Rules (to
avoid duplicating)

4. Stores it as a Flow Entry
inside the device cache

Returns list of Flow Entries toFlowRule

Gets as an input
information about XC

1. Extract all necessary
parameters from the XC
information

2. Converts frequency
bounds into central
frequency and computes
the bandwidth
3. Parses information to the
FlowRule builder which is
then converted to the
FlowEntry

Returns Flow Entry
containing information
about one XC

getDataofRpcReply

Gets as an input parameter
RPC reply (as a String)
obtained from the device

Removing every XML-tag
except those, which are
inside <data> </data>

Returns the body of data of
the RPC message

buildGetWR

Builds and RPC <get> request
to retrieve all information from
the wavelength-router
capability of the device.
This RPC is a custom one and
ensured by passing
appropriate device capabilities
in the initial <hello> message.

Returns string containing an
RPC <get> request to retrieve
XCs from the device

convertToOch

Gets as an input frequency bounds

1. Computes central frequency and
bandwidth
2. Creates an OchSignal instance
and sotres computed parameters
(according to ITU-T 694.1)

Returns created OchSignal instance

getNetconfSessionAndLogin

Gets as an input device ID,
username and password

1. Gets the NetconfDevice
instance for corresponding device
ID (and checks whether it is null)

2. Gets the NetconfSession
instance and checks whether it is
null)

3. Builds an RPC <login> request
and uses requestSync method of
NetconfSession class to retrieve
information from the device
4. Checks, if obtained answer
contains <ok> (it means, <login>
was successful)

5. Throws an exception if there
was any issue during the
communication with the device

Returns valid instance of
NetconfSession

buildLoginRpc

Gets as an input username and
password for log in process

Builds an RPC <login> request to
authenticate current NetConf session.
This RPC is custom one and ensured
by passing appropriate device
capabilities in the initial <hello>
message.

Returns string containing an RPC
request to log into the device

toPortNumberInternal

Gets as an input parameter
port number (as a String)
obtained from the RPC reply
of the device

1. Reads out list of all ports
from the device.
2. Filters each port based on
the real port name stored in
annotation.
3. Once match is found, stores
ONOS's port index as a
PortNumber

Returns the PortNumber
representing parsed port
inside the ONOS

Necessary to compose Flow
Rule with correct port
numbers

getConnectionCache

Returns DeviceConnectionCache
instance, where you can store
your Flow Rule

findMatch

Gets as an input parameter
Flow Rule

1. Invokes FlowRuleService
instance with respect to the
device ID and gets the Flow
Rules installed on the device
2. Goes over each Flow Rule
and founds a match with a
passed Flow Rule

3. Once match is found return
found Flow Rule, otherwise
return null

Returns either null (if no
match found) or Flow Rule
which matched the reference
Flow Rule (passed one)

Figure 4.4: FlowRuleProgrammable interface workflow. Getting the Flow Rules installed
on the device

the device and interpret it with regard to the internal ONOS structures. It means, that
we need to perform following steps:

• ”Ask” the device about it’s configuration;

• Obtain reply and extract necessary data;

• Convert extracted data into the appropriate format and compose FlowEntry in-
stance (Flow Rule coming in the direction from the device to the ONOS).

– Also, we must be sure, that composed FlowEntry doesn’t duplicate. We
would search inside the FlowRule Storage and make sure, that the Flow
Rule is unique one. Once we found a match in a store, let’s just update a
status of the found Flow Rule on ”ADDED”.

When the device is added to the SDN controller, whole routine is triggered by invok-
ing of the getFlowEntries function. After that, corresponding chain of functions is
performed. As you may see from the diagram on Figure 4.4:

1. We start our communication with the device by passing two-level authentication.

2. After that, we compose a custom RPC request to obtain configuration about the
existing XCs. Wavelength-router, the OpenConfig data model, is responsible for
handling that. It was described in Appendix A.

3. Obtained data are parsed and converted to the Flow Rule (by toFlowRule
function). We also search for it’s duplicates (with findMatch function).

4. Finally, Flow Rule is converted to the Flow Entry(s) (mandatory format). It
is stored in the device cache instance provided by the getConnectionCache
function. Later on it will allow us to display and manage Flow Rules under
ONOS.

This is the general flow of the GetFlowEntries part of the behavior. For more details
please go through the diagram on Figure 4.4.

The main issue and main complexity there came from necessity to parse all required
parameters in a correct format to compose the Flow Entry. Certain level of complexity
comes from Java. ONOS controller extends standard interfaces and classes by introduc-
ing it’s own ones. These new instances are built on top of the existing Java classes. For
example, ONOS project introduces class for storing the IPv4 addresses - IPv4, or Port-
Number class as an internal representation of a port number. Almost all of these classes
are extended by other classes, where each brings something new.

Such an approach complicates relations between different substructures of the controller.
It’s not always clear on how to parse the certain data in a correct format. This is one of
the reasons, why some support functions like toPortNumberInternal, convertToOch,
toFlowRule and findMatch were introduced.

4.2.3.2 Apply Flow Rules

Next step is to implement the ”Apply Flow Rules” part of the FlowRuleProgrammable
behavior. Specifically this part is responsible for installing the Flow Rules on the device.
To do this we must handle the interpretation of the Flow Rule coming from ONOS back
to the device-specific format.

The idea behind is following:

• User composes and passes the parameters through the appropriate Cli command
inside the ONOS shell (karaf).

• These parameters are passed to the corresponding instance, which composes spe-
cific Flow Rule.

• Then, newly born Flow Rule is passed to the appropriate device driver.

CHAPTER 4. IMPLEMENTATION 49

• Invoked driver instance triggers execution of applyFlowRules function inside
the FlowRuleProgrammable behavior implementation. It executes corresponding
routine to parse passed FlowRule and ”installs” it to the device.

You can see the workflow diagram of this part of the FlowRuleProgrammable interface
on the Figure 4.5

applyFlowRules

Gets as an input set of
Flow Rules it needs to
apply to the device

1. Gets NetconfSession
instance and checks,
whether it is null

2. Goes over each Flow
Rule and applies it to the
current device

3. Stores applied Flow Rule
inside the controllers cache

4. Throws an exception if
something went wrong
during one of the steps

Returns list of added Flow
Rules

applyFlowRule

Gets as an input
NetconfSession instance
(with which it
communicates) and Flow
Rule to install

1. Gets port's name from
the internal ONOS storage
2. Sets all necessary
parameters
3. Forms a specific Add XC
message
4. Sends the message via
requestSync method of
NetconfSession instance
and check, whether reply
contains <ok> (it means
request succeeded). If not,
throws a NetconfError.

Returns a String stating
that certain flow Rule was
sucessfully added

buildAddXC

Gets as an input all
necessary parameters to
compose an RPC request

Makes some additional
computations on the
parameters and forms an
RPC request

Returns string containing
RPC request to add XC

extractOch

Gets as an input OchSignal
instance

1. Extracts all necessary
values from OchSignal
2. Computes upper and
lower frequency bounds.

Returns frequency bounds
stored as a HashMap
instance

getNetconfSessionAndLogin

Gets as an input device ID,
username and password

1. Gets the NetconfDevice
instance for corresponding device
ID (and checks whether it is null)

2. Gets the NetconfSession
instance and checks whether it is
null)

3. Builds an RPC <login> request
and uses requestSync method of
NetconfSession class to retrieve
information from the device
4. Checks, if obtained answer
contains <ok> (it means, <login>
was successful)

5. Throws an exception if there
was any issue during the
communication with the device

Returns valid instance of
NetconfSession

buildLoginRpc

Gets as an input username and
password for log in process

Builds an RPC <login> request to
authenticate current NetConf session.
This RPC is custom one and ensured
by passing appropriate device
capabilities in the initial <hello>
message.

Returns string containing an RPC
request to log into the device

toPortNumberInternal

Gets as an input parameter
port number (as a String)
obtained from the RPC reply
of the device

1. Reads out list of all ports
from the device.
2. Filters each port based on
the real port name stored in
annotation.
3. Once match is found, stores
ONOS's port index as a
PortNumber

Returns the PortNumber
representing parsed port
inside the ONOS

Necessary to compose an
index for passing to the RPC
request

getPort

Gets as an input PortNumber
instance

Invokes DeviceService instance
and gets the port Name for the
corresponding parsed port

Returns string containing the
actual name of the port

getConnectionCache

Returns DeviceConnectionCache
instance, where you can store
your Flow Rule

Figure 4.5: FlowRuleProgrammable interface workflow. Applying the Flow Rules to the
device

Again, as in the previous section, communication with the device starts from passing
the two-level authentication. After that we’re iterating over each passed Flow Rule and
decompose it on parameters which we need to pass to the device. Since we’re working
with NETCONF protocol, we need to convert all parameters to the corresponding format
to pass them as a missing puzzle of the final RPC request. For this purpose some addi-
tional functions, like getPort (to get port name), extractOch (to get frequency), were
introduced.

Once the RPC request is ready, we can send it to the device and get the reply. If the
reply states, that request was satisfied (usually contains <ok/> tag in the reply), we can
store this Flow Rule inside the device cache. It would be visible inside the ONOS Flow
Rule database.

4.2.3.3 Remove Flow Rules

If we want to delete the existing Flow Rule, same routine, as were described in the
section 4.2.3.2, is applied. The only difference now is that the driver executes remove-
FlowRules function, which triggers a bit different sequence of necessary functions.

This part of the FlowRuleProgrammable behavior implementation is very similar to
”Apply Flow Rules” part. You can see it’s workflow on Figure 4.6.

removeFlowRules

Gets as an input set of
Flow Rules it needs to
remove from the device

1. Gets NetconfSession
instance and checks,
whether it is null

2. Goes over each Flow
Rule and removes it from
the current device (cache)

3. Throws an exception if
something went wrong
during one of the steps

Returns list of removed
Flow Rules

removeFlowRule

Gets as an input
NetconfSession instance
(with which it
communicates) and Flow
Rule to remove

1. Sets all necessary
parameters
2. Forms a specific Drop
XC message
3. Sends the message via
requestSync method of
NetconfSession instance
and checks, whether reply
contains <ok> (it means
request succeeded). If not,
throws a NetconfError.

Returns a String stating
that certain flow Rule was
sucessfully removed

buildDropXC

Gets as an input all
necessary parameters to
compose an RPC request

Composes a drop XC RPC
request

Returns string containing
RPC request to drop XC

getNetconfSessionAndLogin

Gets as an input device ID,
username and password

1. Gets the NetconfDevice
instance for corresponding device
ID (and checks whether it is null)

2. Gets the NetconfSession
instance and checks whether it is
null)

3. Builds an RPC <login> request
and uses requestSync method of
NetconfSession class to retrieve
information from the device
4. Checks, if obtained answer
contains <ok> (it means, <login>
was successful)

5. Throws an exception if there
was any issue during the
communication with the device

Returns valid instance of
NetconfSession

buildLoginRpc

Gets as an input username and
password for log in process

Builds an RPC <login> request to
authenticate current NetConf session.
This RPC is custom one and ensured
by passing appropriate device
capabilities in the initial <hello>
message.

Returns string containing an RPC
request to log into the device

toPortNumberInternal

Gets as an input parameter
port number (as a String)
obtained from the RPC reply
of the device

1. Reads out list of all ports
from the device.
2. Filters each port based on
the real port name stored in
annotation.
3. Once match is found, stores
ONOS's port index as a
PortNumber

Returns the PortNumber
representing parsed port
inside the ONOS

Necessary to compose an
index for passing to the RPC
request

getPort

Gets as an input PortNumber
instance

Invokes DeviceService
instance and gets the port
name for the corresponding
parsed port

Returns String containing the
actual name of the port

getConnectionCache

Returns DeviceConnectionCache
instance, where you can store
your Flow Rule

Figure 4.6: FlowRuleProgrammable interface workflow. Removing the Flow Rules from
the device

4.2.4 Some more modifications

In order to integrate full device functionality, during the driver development we needed
to make some additional changes in some ONOS subsystems. Some of these fixes were
contributed to the ONOS community and would be included in ONOS 2.3 release. Some
of them stayed proprietary. Let’s assume, that we want to run the driver in ONOS 2.2.
We should make some additional changes in ONOS core.

First of all, we need to modify FlowRuleManager instance in order to make ONOS
storing Flow Rules already installed on the device. Proposed solution was following -
extend current API of FlowRuleManager on another flag, importExtraneousRules. You
can see this short fix below.

CHAPTER 4. IMPLEMENTATION 51

// the device has a rule the store does not have
if (!allowExtraneousRules) {

extraneousFlow(rule);
} else if (importExtraneousRules) { // Stores the rule, if so is

indicated↪→

store.addOrUpdateFlowRule(rule);
}

Main idea behind is following:

• allowExtraneousRules indicates, if you want to leave existing configuration
on the device before it’s been connected to the ONOS.

• importExtraneousRules specifies, if you really want to import these configu-
ration inside the ONOS in order to manipulate with it in the future.

By default ONOS doesn’t save existing device configuration, or Flow Rules. It deletes it
right after the device discovery procedure is finished. To make existing XCs, represented
as a set of Flow Rules, be stored in ONOS, we should pre-set the controller right after
it’s start through the command line with following commands:

cfg set org.onosproject.net.flow.impl.FlowRuleManager
allowExtraneousRules true

cfg set org.onosproject.net.flow.impl.FlowRuleManager
importExtraneousRules true

cfg get org.onosproject.net.flow.impl.FlowRuleManager

Last command shows you the values of allowExtraneousRules and importExtraneous-
Rules. You can verify that desired variables are set on True. This patch of FlowRuleM-
anager was contributed to the ONOS community. You can find it here [84]

After we extended FlowRuleManager API, we should modify FlowRuleParser. Cur-
rently, Flow Rule for optical devices contains only one port. For the ROADM is crucial
to parse two ports between which we want to create cross-connections. Following short
snippet represents the way how the problem was solved.

if (c instanceof PortCriterion) {
inputPortNumber = ((PortCriterion) c).port(); // obtain input port
portNumber = ((PortCriterion) c).port();

}

....

if (i instanceof Instructions.OutputInstruction) {
outputPortNumber = ((Instructions.OutputInstruction) i).port(); //

obtain output port↪→

portNumber = ((Instructions.OutputInstruction) i).port();
}

Input port is always stored as a Criterion instance, output port is always stored as an
Instruction instance inside the Flow Rule. We also must specify according functions to
return desired values.

public PortNumber getInputPortNumber() {
return inputPortNumber;

}

public PortNumber getOutputPortNumber() {
return outputPortNumber;

}

Once these changes are implemented, we can run the driver without any issues.

4.2.5 In conclusion about the driver

Developed version of the driver is applicable for ONOS 2.2. Upcoming version, ONOS
2.3, would have some changes inside the driver subsystem, which is currently being con-
solidated. Drivers are unified with regard to the OPENCONFIG data models. You can
follow the driver consolidation flow here [81].

Developed driver allows user to create unidirectional cross-connections in the Nokia’s
ROADM. Driver uses NETCONF protocol for communication with the device. Software
running on the Nokia’s ROADM supports creation of only unidirectional XCs over NET-
CONF protocol. In case, you want to have bidirectional cross-connection, you need to
create XC twice.

Developed driver, somehow, has some limitations.

• Port indexing. From unknown reasons port indexing was each time different,
NokiaPssOpenConfigDeviceDiscovery is executing twice. Because of that,
device ports are written to the ONOS twice. A while after, store is being updated
and removes all duplicated ports. It results in a each time different indexing of
a ports.

• Inability to drop existing XCs. In order to remove XC from the ROADM,
we should pass some specific information4 related to this XC. This information,
somehow, doesn’t align with the Flow Rule representation inside the ONOS. It
is being generated from the parameters stored inside the Flow Rule, particularly
from the port index. As were stated before, port indexing is a bit random. In
case, we connect ROADM with already existing XC and we want to manage
them, it is not possible.

During the driver development few bugs were encountered. You can find their descrip-
tion in sub-section 6.1.1. Some of these issues were contributed to the ONOS community
as a patch.

4.3 Cli command development

Once the driver is finalized, we should develop the Cli command. We want to allow the
configuration of Cross-Connections (XCs) on the device through the command line of the
ONOS.

During the development we decided to add command’s implementation to the ”ROADM”
application of the ONOS. It’s done in order to benefit from the services and related pack-
ages provided by the ”ROADM” application. This application could be found in:

$ONOS ROOT/apps/roadm/app/src/main/java/org/onosproject/roadm/

In this directory we create another one called ”/cli”, where we would store the code of
the new Cli command. Next, we create a file called ”RoadmCrossConnectCommand.java”.
It implements the Cli command logic. Below is provided the skeleton code of such Cli
command. Comments are explaining some implemented features.

4This specific piece of information couldn’t be disclosed, since it’s proprietary information about the
device.

CHAPTER 4. IMPLEMENTATION 53

/**
* This is the command for creating/removing cross-connections on/from

the ROADM.↪→
*
*/

@Service
@Command(scope = "onos", name = "roadm-xc",

description = "Creates/Removes cross-connection on/from the
ROADM")↪→

public class RoadmCrossConnectCommand extends AbstractShellCommand {

@Argument(index = 0, name = "operation",
description = "Specify Create or Remove action",
required = true, multiValued = false)

@Completion(RoadmCrossConnectCommandCompleter.class)
private String operation = null;

@Argument(index = 1, name = "deviceId",
description = "ROADM's device ID (from ONOS)",
required = true, multiValued = false)

@Completion(DeviceIdCompleter.class)
private String deviceId = null;

@Argument(index = 2, name = "srcPort",
description = "XC's source port {PortNumber}",
required = true, multiValued = false)

private String srcPort = null;

@Argument(index = 3, name = "dstPort",
description = "XC's destination port {PortNumber}",
required = true, multiValued = false)

private String dstPort = null;

@Argument(index = 4, name = "freq",
description = "XC's central frequency in [GHz]",
required = true, multiValued = false)

private String freq = null;

@Argument(index = 5, name = "sw",
description = "Frequency Slot Width in [GHz]",
required = true, multiValued = false)

private String sw = null;

@Argument(index = 6, name = "gridType",
description = "Frequency grid type. Could be FLEX, CWDM, DWDM

or UNKNOWN.",↪→

required = false, multiValued = false)
private String gridType = null;

@Argument(index = 7, name = "channelSpacing",
description = "Channel spacing in [GHz]",
required = false, multiValued = false)

private String channelSpacing = null;

@Override
protected void doExecute() throws Exception {

// Main logic of the command is implemented here
if (operation.equals("create")) {

print("Creating XC !");
} else if (operation.equals("remove")) {

print("Removing existing XC !");
} else {

print("Unspecified operation -- {} --", operation);
}

}
}

You may notice ”@Service” tag in the beginning of the code. It is really important to
add it. This statement registers new Cli command inside the Karaf. There are some more
”@” options, which implement different functionality. Some of them define variables to
pass, some of them enable autocomplete feature.

Based on the definition above Cli command in action should look like:

roadm-xc create/remove deviceId srcPort dstPort centralFrequency
slotWidth gridType channelSpacing

For example, if we want to create XC on certain device, we should type in the command
line following:

roadm-xc create netconf:123.123.123.123:830 17 21 195500 50 DWDM

CHL 6P25GHZ

From the example above we can see following parameters passed:

• option ”create” represents the ADD action, ”remove” accordingly specifies
DROP action;

• ”netconf:123.123.123.123:830” is a device ID, where 123.123.123.123 rep-
resents an IP address of the device, 830 corresponds to the common port of the
NETCONF communication;

• ”17” is a port number representation (stored in ONOS) of a source port;

• ”21” is a port number representation (stored in ONOS) of a destination port;

• ”195500” is a central frequency of the channel in [GHz];

• ”50” is a slot width of the connection in [GHz];

• ”DWDM” is a type of the frequency grid;

• ”CHL 6P25GHZ” is a channel spacing distance in [GHz]. Value corresponds
to 6.25 GHz

Now, after we’ve got familiar with the skeleton code, let’s have a look on the Figure 4.7
to get structural overview of the logic implemented in our solution. You can also checkout
the full code of the Cli command here [85] as it was contributed to the ONOS community.

As you can see on Figure 4.7, the main function, which triggers all actions, is doExe-
cute. First parameter passed to the Cli command decides with the help of if statement,
which part should be executed - addRule or dropRule.

If we’re creating XC, we need to convert input parameters into appropriate format in
order to pass them to the corresponding instances later. To convert Central Frequency and
Frequency Slot Width to the OchSignal instance, createOchSignal function is invoked.
This function is tightly bound to the shared utility instance, OpticalChannelUtility. This
shared utility contains various functions for converting optical channel parameters with
regard to the ITU-T 694.1 standard [78] to the OchSignal instance and back. You can
have a look on brief overview of this standard in Appendix B.

Once all parameters are converted, we can invoke RoadmService instance and pass
these parameters to the appropriate function (createConnection). RoadmService instance
is responsible for composing the ”Flow Rule” from the passed parameters. Later, it passes

CHAPTER 4. IMPLEMENTATION 55

doExecute

Works with passed parameters,
such as:
- Operation - Add or Drop
- Device ID
- Source Port
- Destination Port
- Central Frequency
- Slot Width (or just Bandwidth)

All parameters are global and
accessible from all functions.

Executes the main routine of the
Cli command - Adding or
Dropping the Flow Rule (XC).
Also, checks whether device and
ports are available.

addRule

1. Converts passed through the
Cli command parameters to the
appropriate format.
2. Invokes RoadmService
instance and passes parameters
to the appropriate function. It will
then compose a Flow Rule and
invoke corresponding driver.

dropRule

1. Converts parameters passed
through the Cli command to the
appropriate format.
2. Reads out all Flow Rules
installed on the device.
3. Filters Flow Rule installed on
the device with respect to passed
parameters.
4. Once, first match found,
extracts the FlowId of the rule.
5. Invokes RoadmService
instance and passes extracted
FlowId to the corresponding
fuinction, which then deletes this
Flow Rule.

createOchSignal

Gets as an input Central
Frequency, Slot Width, Grid
Type and Channel Spacing

Prepares obtained values to
pass to further instances. This
function is linked with
OpticalChannelUtility class,
which creates OchSignal
instance according to ITU-T
694.1 recommendation.

Returns as an otput created
OchSignal instance

Figure 4.7: Cli command, roadm-xc, workflow

the ”Rule” to the corresponding driver instance. In our case RoadmService would compose
a ”Flow Rule” and install it on the device by invoking NokiaPssFlowRuleProgrammable
interface, particularly addFlowRules function. After ”Flow Rule” is added to the device,
it should be visible inside the ONOS terminal (invoke command ”flows”).

In case we want to remove XC, a little bit different logic is implemented. We’re getting
input parameters and converting them again to the appropriate format in order to create
a dummy ”Flow Rule”. After that, we read out all ”Flow Rules” installed on the device
and iterate over them in a loop. In each iteration we’re comparing parameters of the
”Flow Rule” installed on the device with the dummy ”Flow Rule” we just composed.
Once the full match is found, we read out the FlowId of matched ”Flow Rule” and pass
it to the appropriate function of RoadmService instance (removeConnection). It invokes
NokiaPssFlowRuleProgrammable interface, particularly removeFlowRules function. After
that the chosen ”Flow Rule” should be deleted from the device.

Since all input parameters are global, they’re accessible from any function. We don’t
need to pass them to the functions, except if we want to get their modified version.

Two help instances were created during the development of the roadm-xc command -
RoadmCrossConnectCompleter and OpticalChannelUtility. First instance is responsible
for completing feature. It offers the user to choose between create and remove options.
OpticalChannelUtility is a shared utility instance, which was already described above.
You can have a look on full code of mentioned instances here [85].

We’re missing one last step to integrate this command inside the ONOS. To do this,
we should add some dependencies into the BUILD file of the ROADM app. Here is a
snippet of such file.

COMPILE_DEPS = CORE_DEPS + JACKSON + CLI + [# Some changes here
"//core/store/serializers:onos-core-serializers",
"//apps/optical-model:onos-apps-optical-model",

]
TEST_DEPS = TEST_ADAPTERS + [

"//utils/osgi:onlab-osgi-tests",
]
osgi_jar_with_tests(

karaf_command_packages = ["org.onosproject.roadm.cli"], # Some
changes here↪→

test_deps = TEST_DEPS,
deps = COMPILE_DEPS,

)

Some additional changes are made in this file:

• Added ”karaf command package” with link to the Java program implement-
ing logic of the Cli command. It adds command into the karaf shell.

• Added ”JACKSON” and ”CLI” into the dependencies. It is important in
consequence with previous point.

Now we can run clean installation of the ONOS and test the command.

This command was contributed to the ONOS project community. You can find this
contribution here [85].

4.4 PowerConfig behavior integration

Next and probably the easiest step of the development is to integrate PowerConfig
interface into the existing driver of Nokia 1830 PSI-2T device (Optical Transponder).
This interface implements the power configuration capability for the optical transceiver
devices. To enable the PowerConfig behavior, we should go to the already well-known
file, odtn-drivers.xml, and add following lines to enable corresponding behavioral model
on the device:

<behaviour api=”org.onosproject.net.behaviour.PowerConfig”
impl=”org.onosproject.drivers.odtn.NokiaTerminalDevicePowerConfig”/>

Now the driver will see which file it should execute, when the user wants to configure
the power on the device. You may notice, that the file responsible for this functionality
is called NokiaTerminalDevicePowerConfig.java [86].

As an inspiration for our implementation, existing power configuration solution of
Cassini equipment, CassiniTerminalDevicePowerConfig.java, was taken.

You can find the workflow diagram of the PowerConfig behavior on Figure 4.8 with
brief description of each function. Some values taken from the device datasheet were
hardcoded. If you have a look on getTargetPowerRange and getInputPowerRange,
you’ll notice that they contain device power range, which is hardcoded. The main purpose
is to limit the range of the values, which you can pass to the device, basically ensuring
passing of the values in correct diapason.

The main challenge during the whole process consisted in the the way of parsing of
obtained configuration through the internal Java libraries. Also, composing the RPC

CHAPTER 4. IMPLEMENTATION 57

getDataofRpcReply

Gets as an input parameter
RPC reply (as a String)
obtained from the device

Removing every XML-tag
except those, which are
inside <data> </data>

Returns the body of data of
the RPC message

did

Returns the device ID for
which method is applied

getTargetPower

Gets port number and
component we are targeting to
read out

1. Gets the NeconfSession with a
device
2. Composes an RPC message
(with parsePort method) to get
the necessary information out of
certain component
3. Gets a reply from the device
and reads out necessary value(s)
4. Throws an exception, if
something went wrong during
one of the steps

Returns the value of target
output power

setTargetPower

Gets port number, component we
are targeting to read out and
power [dBm] to set

1. Gets the NeconfSession with a
device
2. Composing an RPC message
with the help of parsePort
function

3. Gets an answer from the
device and checks, if it contains
<ok> tag

4. Prints a message to the
Debug console accordingly to the
success or failure of operation

currentInputPower

Gets port number and component we
are targeting to read out

1. Executes getOpticalChannelState
with a certain filter to get and instant
value of Input power

2. Reads out an information from the
obtained answer in p.1

3. Stores the value of current Input
power set on the device

4. Throws an exception, if something
went wrong during one of the steps

Returns the value of current Input
power

currentPower

Gets port number and component we
are targeting to read out

1. Executes getOpticalChannelState
with a certain filter to get an instant
value of Output power

2. Reads out an information from the
obtained answer in p.1

3. Stores the value of current Output
power set in the device

4. Throws an exception, if something
went wrong during one of the steps

Returns the value of current Output
power

getTargetPowerRange

Hardcodes minimum and
maximum value of the
Output power, which you
can then set on the device

getInputPowerRange

Hardcodes minimum and
maximum value of the
Input power supported by
the device

getOpticalChannelState

Gets the device instance, port
number and filter scheme to
apply for RPC request as an
input parameters

1. Gets the NeconfSession with a
device
2. Composes body of an RPC
message with a help of ocName
function

3. Send an RPC request,
retrieves an infromation from the
device and parses it to the calling
instance

Returns the device answer on
formed RPC request

ocName

Gets the device instance and a
port number as an input paramters

1. Gets the DeviceService instance
and reads out port name and port
type from the internal ONOS
storage
2. Checks whether this port is an
optical one or not

3. If the port is an optical one,
function composes the correct
name which will be used then in
RPC request

Returns the correct name of the
optical port or null

parsePort

Gets the device instance, port number,
component and power [dBm] as an
input paramters

1. Checks, whether component is null.
If yes, returns null.
If not, executes ocName.

2. Checks whether output of ocName
is null.
If yes, returns null.
If not, composes skeleton message to
retrieve all information about port
component.
3. Checks, whether passed power is
null.
If yes, returns composed skeleon
message.
If not, inserts filter scheme (to set the
power) the message.

Returns the correct name of the optical
port or null

executeRpcReq

Gets as an input parameter RPC
message to send (as a String)
and instance of NetconfSession

1. Sending the RPC message via
requestSync method (instance of
NetconfSession)

2. Reads out data of the answer
and parses back to the calling
instance
3. Throws an exception, if
something went wrong during the
communication with the device

Returns the device answer
getNetconfSessionAndLogin

Gets as an input device ID,
username and password

1. Gets the NetconfDevice
instance for corresponding device
ID (and checks whether it is null)

2. Gets the NetconfSession
instance and checks whether it is
null)

3. Builds an RPC <login> request
and uses requestSync method of
NetconfSession class to retrieve
information from the device
4. Checks, if obtained answer
contains <ok> (it means, <login>
was successful)

5. Throws an exception if there
was any issue during the
communication with the device

Returns valid instance of
NetconfSession

buildLoginRpc

Gets as an input username and
password for log in process

Builds an RPC <login> request to
authenticate current NetConf session.
This RPC is custom one and ensured
by passing appropriate device
capabilities in the initial <hello>
message.

Returns string containing an RPC
request to log into the device

Figure 4.8: PowerConfig interface workflow

message to obtain required parameters is needed. For each device custom data model
implementations could slightly differ.

Next challenging part during the deployment of this interface came from the device
part. Nokia 1830 PSI-2T contains not only ”Optical Channel” type of the ports, but also
”Packet” type of the ports. In PowerConfig interface we’re targeting to set the power
only on the ”Optical channel” ports, but not on the ”Packet” type of the ports. This
situation could provoke returning of a null values from some functions. It leads the
interface implementation to behave in an incorrect way. For example, during the testing
not all ports were able to simultaneously refresh their values. Moreover, some ports were
showing the ”null” value, even if the value was set and present in the device.

To avoid this, several enhancements on the PowerConfig behavior implementation were
done:

• We check each port on it’s type and continue processing only ”Optical Channel”
type of the ports, otherwise return we null state;

• It is necessary to catch all possible null states in order to reduce unnecessary
computations by the controller.

After that was done, PowerConfig behavior worked more stable and displayed all values
at the same time. This interface continuously reads out the data from the device. It is
done due to the laser values fluctuation. Once per period, usually 4-5 seconds, ONOS
controller sends a NETCONF <get-config> RPC request in order to read out power
values from the specific port. Obtained from the device reply is then parsed and visualised
through the ”Optical UI” interface.

We can find implemented functionality under ”Optical UI” tab by clicking on the port
icon in the right top corner. To see how does it look like, please visit Appendix C.
Implementation of PowerConfig interface also enables power configuration through the
following Cli command:

power-config get/edit-config connectionPoint value

where:

• ”get” option specifies ”request” action. It tells to read out a target power value
from the device’s specific port.

• ”edit-config” option specifies ”set” action. It sets target power value on the
device’s specific port.

• ”connectionPoint” specifies connection point, where we should set the power.
Information must be passed here in format {DeviceId}/{PortNumber}.

• ”value” is a target power value in [dBm].

You can find full implementation contributed to the ONOS project community here
[86].

4.5 AlarmConfig behavior integration

As a part of upcoming work on Alarm Correlation in Nokia Bell Labs, AlarmConfig
behavior was required to be implemented. It is responsible for treating alarms coming
from the device. It translates alarms from the OPENCONFIG format and stores them
inside the ONOS.

You can find the workflow diagram of this interface implementation on Figure 4.9.

CHAPTER 4. IMPLEMENTATION 59

translateAlarms

Translates Alarms from the
device-specific format to
the internal ONOS format

1. Obtains notification from
the device

2. Checks, whether
notiification contains
<update> body and treats
notification accordingly
3. Checks, whether
notification contains
<delete> body and treats
notification accordingly
4. If <update> or <delete>
tags were NOT found,
throws an error

Returns set of translated
alarms gathered from the
device

treatDelete

Gets as an input body of
notification

1. Extracts body of the
information from the notification
(still XML-formatted string)

2. Creates a new alarm and
searches for it's patter inside
the Alarm store of ONOS

3. If the match is found,
updates an alarm severity level
on CLEARED

Returns DefaultAlarm instance

buildAlarm

Gets as an input body of
notification

1. Extracts information from the
notification (still XML-formatted
string)

2. Extracts all necessary
parameters with regard to the
OpenConfig Alarm data model

3. Checks, whether severity level
was extracted and composes an
instance of DefaulAlarm
respectively
4. If the severity level wasn't
extracted, it means, that this is
pure notification. It's not stored.

Returns DefaultAlarm instance

getUpdateDataFromNotification

Gets as an input obtained notification

Extracts the notification body
within <update> </update> tags as an
XML-formatted String

Returns sting containing information
captured within <update>
</update> tags of the notification

getDeleteDataFromNotification

Gets as an input obtained notification

Extracts the notification body
within <delete> </delete> tags as an
XML-formatted String

Returns sting containing information
captured within <delete>
</delete> tags of the notification

treatUpdate

Gets as an input body of notification

1. Extracts the notification body
within <update> </update> tags as
an XML-formatted String

2. Creates an alarm

Returns newly built Alarm

findAlarm

Gets as an input body of notification

Builds an Alarm based on the
information obtained from the
notification and searches for it's
match in internal Alarm storage

Returns found Alarm. If nothing was
found, returns null.

Figure 4.9: AlarmConfig interface workflow

According to the OPENCONFIG data model, alarms have following format:

alarms
alarm

id
config
state

id
resource
text
time-created
severity
type-id

This interface has only one function, translateAlarms, which does the whole routine.
In order to ease the code and avoid duplicating, we decomposed it on a set of smaller
functions. In translateAlarms we’re treating upcoming notification from the device and
checking whether it is:

• an <update> type of the event, what corresponds to the newly created alarm.

• <delete> type of the event, what indicates that alarm is expired (solved, not
valid anymore).

Based on the type of the event corresponding set of functions is being triggered.

In case we want to create a new alarm, we go to the treatUpdate function. Body
within the <update></update> tags is extracted with the help of the getUpdate-
DataFromNotification function (it cuts off everything outside the body of <update>
tags).

Once it’s been done, buildAlarm function is invoked. It extracts all necessary infor-
mation from the XML String, creates a new Alarm instance and stores it in ONOS.

In case we want to clear an alarm, we go to the treatDelete function. With the help of
getDeleteDataFromNotification function, body within the <delete></delete> tags
is extracted. After that this information is passed to the findAlarm function. Main
purpose of this function is to find in the related to the device set of alarms the one with
the same parameters. To do this, we create a pattern of an alarm with the buildAlarm
function and try to match it with alarms collected from the device. Once the match is
found, we update an alarm by putting a clear flag.

In order to start using this interface we should slightly modify the existing driver of
Nokia 1830 PSI-2T and a new driver of Nokia 1830 PSS. In the body of discoverPort-
Details function we should insert following lines:

try {
ns.startSubscription();
log.info("Started subscription");

} catch (NetconfException e) {
log.error("NETCONF exception caught on {} when the subscription

started \n {}",↪→

data().deviceId(), e);
}

In that way we start NETCONF subscription. Client (SDN controller in our case) col-
lects device notifications within the current NETCONF session. By default, NETCONF
subscription puts Client into the listener mode and restricts it from sending any further
NETCONF requests, what makes not possible to manage the device within the same
NETCONF session. Fortunately, NETCONF subscription in ONOS is implemented with
interleaving feature. It means that we would be able to manage the device even if there
is a subscription running on the current session.

This interface was contributed to the ONOS project community. You can find it here
[87]. Developed interface is universal. It is valid for both devices, Nokia’s ROADM and
Nokia’s Optical Transponder.

4.6 Sample Alarm Correlation application develop-
ment

After implementing AlarmConfig behavior and collecting alarms from the devices, we
could put some logic on top of it. Next few sub-sections are dedicated to the implemen-
tation of an application. It is capable of alarm analysis and signalizing, if there is any
issue in the network. Developed application is targeting to be a part of a SDN controller.
Communication with the devices is done over the NETCONF protocol.

4.6.1 Analyzed scenarios

Before diving into the application development we concentrated on the analysis of a
”fiber cut” scenario. It is necessary to understand, how we could detect and localize
failure based on the alarms obtained from the different devices. After that we could start
putting logic into application.

We worked with the same device bench in the lab. Topology is depicted on Figure 4.10.

CHAPTER 4. IMPLEMENTATION 61

Transponder A Transponder B

ROADM A ROADM B

1/3/LineOut 1/3/LineIn

1/3/LineIn 1/3/Lineout

1/10/C11/10/C11/2/L1 1/2/L1

.52

.103 .227

.76

135.117.245.xxx

ONOS

Figure 4.10: Topology in the lab

Several tests simulating ”fiber cut” scenario were performed. We unplugged optical
fiber between each pair of the devices. Following scenarios were covered:

• Optical Transponder - ROADM

– Unplug one fiber on the Transponder side.

– Unplug both fibers on the Transponder side.

– Unplug one fiber on the ROADM side.

– Unplug both fibers on the ROADM side.

• ROADM - ROADM

– Unplug one fiber (on the degree port) at a time.

– Unplug both fibers (on the same degree port) at the same time.

Later on, collected over NETCONF subscription alarms were analyzed. We detected
two following scenarios, covering ”fiber cut” problematic.

First scenario is Optical Transponder - ROADM case. It is depicted on Figure 4.11.

Second scenario is ROADM - ROADM case. It is depicted on Figure 4.12.

In both scenarios we catch two ”Loss Of Signal”-type of the alarms on interconnected
ports. It indicates to us that there is a ”fiber cut”. With regard to this rule we can make
a detection.

Other types of the alarms were caught as well. Most of them were stating that there
is a ”Loss Of Frame”, ”External Interface Failure” or something else happening in the
network. These types of the alarms are not that useful for a failure localization.

Generalizing this approach, we need to correlate two parameters:

• Alarms should be ”Loss Of Signal”-type.

• These alarms should be caught on two interconnected ports within the same link.

Transponder A Transponder B

ROADM A ROADM B

1/3/LineOut 1/3/LineIn

1/3/LineIn 1/3/Lineout

1/10/C11/10/C11/2/L1 1/2/L1

.52

.103 .227

.76

135.117.245.xxx

ONOS

Loss of Signal
on port XX

Loss of Signal
on port XX

Figure 4.11: Alarm Correlation. Scenario 1

Transponder A Transponder B

ROADM A ROADM B

1/3/LineOut 1/3/LineIn

1/3/LineIn 1/3/Lineout

1/10/C11/10/C11/2/L1 1/2/L1

.52

.103 .227

.76

135.117.245.xxx

ONOS

Loss of Signal
on port XX

Loss of Signal
on port XX

Figure 4.12: Alarm Correlation. Scenario 2

4.6.2 Application development

Now, after target approach is defined, we can start thinking on it’s implementation as
a SDN application.

Network topology is stored in ONOS as a set of links. Each link contains information
about source Connection Point, destination Connection Point and link metrics. Connec-
tion point (CP) is composed from the Device ID and Port Number.

Also, ONOS already contains Path Computation Element (PCE) function. We propose
to utilize it for failure localization and path restoration purposes. PCE function is based by
default on Dijkstra5 algorithm and interacts with a Topology subsystem of the controller.

CHAPTER 4. IMPLEMENTATION 63

PCE is capable of searching for a path between two nodes (devices). Found path between
two devices contains set of links. Search could be based on different algorithms.

Utilizing these tools could ease the development process. General algorithm for ”fiber
cut” detection could look like:

• Get the path between two nodes;

• Iterate over each link:

– Check alarm store of source CP on presence of ”Loss of Signal”-type of the
alarm on current CP’s port.

– Check alarm store of destination CP on presence of ”Loss of Signal”-type
of the alarm on current CP’s port.

∗ If both ends of the link contain ”Loss of Signal”-type of the alarm, then
”fiber cut” was detected and localized.

· In that case we should disable the link to exclude it from further
path computations.

∗ Otherwise, continue iteration over the links in the path and check each
link on the presence of two ”Loss of Signal” alarms.

Once failed link is identified, we should reconfigure optical network to restore impacted
optical channels. To fulfill this task we can rely again on PCE function. Since cut link
was disabled and excluded from the network topology used by PCE, we could easily find
an alternative path between two nodes. Afterwards we should reconfigure each device in
this new path. In context of optical transport networks we mostly have two types of the
devices:

• Optical Transponder, where we need to configure:

– Wavelength on the port;

– Power on the port.

• ROADM, where we need to configure:

– Cross-connectivity between certain pairs of ports.

Each device requires specific interaction and configuration of specific parameters. In
order to automate (re)configuration of the device, we can create a shared utility containing
specific functions capable of (re)configuring the device. In multi-vendor environment we
have to have more of such utilities, where each would implement functions responsible for
different vendor device reconfiguration.

Since we studied only ”fiber cut” scenario, different cases could bring more complexity
inside the structure of this Alarm Correlation application. Different cases could introduce
different parameters for correlation. In our prospective a good solution could be to wrap
functionality related to the detection of a specific failure state in an utility. Later on each
next failure scenario could be implemented as a separated shared utility. It makes the
structure more modular-like and easy to track.

With regard to the aforesaid architecture of the Alarm Correlation application was
developed. It is depicted on Figure 4.13.

5ONOS implements a lot of different algorithms for path search. You can always swap Dijkstra
algorithm with the one which fits your requirements the best.

Main body

@Activate

@Deactivate

@Modified
Checking on network on
failure states

Alarm Handler

Contains algorithms for detection
of different failure states

Reconfiguration Handler

Contains algorithm for network
reconfiguration

Nokia Reconfiguration Handler

Toolchain for reconfiguration of Nokia's
devices
Each device according to it's type
should be treated differently

"Other Vendor" Reconfiguration Handler

Toolchain for reconfiguration of devices from
other vendor
Each device according to it's type should be
treated differently

Fiber Cut Alarm Handler

Toolchain for detection of
fiber cut

"Specific" Alarm Handler

Toolchain for detection of
specific alarm

Starts app

Stops app

Figure 4.13: Alarm Correlation application architecture

Within this architecture we tried to introduce following modular approach:

• Main body of the program have three states:

– @Activate - starts the application.

– @Deactivate - ends application correspondingly.

– @Modified - method, which reacts on dynamic changes of the network
parameters (i.e. network state). From there we would like to trigger routine
for checking the network on different failure states and then corresponding
reconfiguration of the network.

• Alarm Handler is an instance capable of detecting different failure states in
the network. Contains various algorithms for detection of different failures. It is
linked to the following instances:

– Fiber Cut Alarm Handler contains set of functions necessary for ”fiber
cut” scenario detection. Based on these functions algorithm in Alarm Han-
dler for ”fiber cut” detection is built.

– ”Specific” Alarm Handler contains set of functions for other failure sce-
nario detection. Alarm Handler later implements algorithm for this spe-
cific case detection based on the functions provided by this utility.

• Reconfiguration Handler contains algorithm (and some supportive functions)
for (re)configuring path in the network. It is linked to following instances:

– Nokia Reconfiguration Handler contains set of functions capable of
(re)configuring different types of Nokia’s optical devices.

– ”Other Vendor” Reconfiguration Handler contains set of functions
capable of (re)configuring different types of optical devices from different
vendor.

4.6.3 Implementing sample application

Once an approach is defined, we could start implementing this application. First of all
we should create a new directory under $ONOS ROOT/apps/ . It would contain files

CHAPTER 4. IMPLEMENTATION 65

of application. Full path to our application now looks like:

$ONOS ROOT/apps/alarmcorrelation/

In /alarmcorrelation directory we should put a BUILD file. It contains instructions
for application building. Here you could also bind pieces of functionality from different
subsystems of the controller. Skeleton BUILD file should look like this:

COMPILE_DEPS = CORE_DEPS + [
"//core/net:onos-core-net", # enables ONOS core net packages for

managing links↪→

"//apps/faultmanagement/fmcli:onos-apps-faultmanagement-fmcli", #
Enables AlarmManager stuff↪→

"//apps/faultmanagement/fmmgr:onos-apps-faultmanagement-fmmgr-native",↪→

"//apps/roadm/app:onos-apps-roadm-app", # Enables RoadmService
instance↪→

"//apps/optical-model:onos-apps-optical-model-native", # Enables the
use of OpticalChannelUtility↪→

...
And many other dependencies

]

osgi_jar_with_tests(
deps = COMPILE_DEPS,

)

onos_app(
app_name = "org.onosproject.alarmcorrelation",
category = "Traffic Engineering",
description = "This is proposition of application, which is capable

of " +↪→
"detecting failure states in the optical network. " +
"By now, only fiber cut scenario is implemented.",

title = "Alarm Correlation",
url = "http://onosproject.org",

)

After that, in order to include our application into the full build of the ONOS, we
should add one more dependency inside the file tools/build/bazel/modules.bzl .

ONOS_APPS = [
Apps
"//apps/alarmcorrelation:onos-apps-alarmcorrelation-oar",
...

]

Now we can implement functionality with regard to the proposed architecture. All files
responsible for it’s functionality must be stored in:

../alarmcorrelation/src/main/java/org/onosproject/alarmcorrelation/

Inside this folder we created following files:

• AlarmCorrelation.java - main body of the program;

• AlarmHandler.java - instance containing algorithm for ”fiber cut” detection,
respectively for any other scenario.

• FiberCutAlarmHandler.java - instance containing set of functions helping to
detect ”fiber cut” scenario.

• package-info.java - contains license information and short information about
this package.

As you may notice, we didn’t specify here (re)configuration part, since it wasn’t tested.
Implemented algorithm you can find here [88]. Workflow of this application was tested
on Cassini emulators (please refer to the section 5.2).

4.6.4 In conclusion

During the development of the application we made following assumptions:

• PCE function is perfect and knows everything about the network.

– Default metric consists in computing number of ”hops”. It is possible to
change this metrics on custom one.

• Shortest path is computed and configured between each pair of the nodes in the
network.

• Detecting two ”Loss of Signal” alarms on interconnected ports is enough for
stating, that the fiber has been cut.

– ”Loss of Signal” alarm could have various causes. It is also necessary to keep
track of history of different parameters (like transmitting/receiving power
and etc.) on interconnected ports. State of the laser (active/inactive) should
be also correlated.

These assumptions are limiting. In practice, the shortest path between two nodes is
not necessary the best one and used metrics could differ from number of ”hops” between
two nodes.

This application is a proposition of a concept, which, for sure, must be enhanced in the
future. It was developed for single-vendor environment. Multi-vendor environment could
bring additional complexity to this problematic. We should know operating principles of
each device in order to state about the origin of the failure, even if types of the alarm are
standardized by OPENCONFIG [89], [90]. This understanding is also necessary, when it
goes to (re)configuration part. Moreover, it is necessary to have an utility which is capable
of (re)configuring each specific device in multi-vendor environment. More investigation
in multi-vendor case should be done.

Following modular approach, application could be extended on other utilities. For
example, such module could implement specific Machine Learning (ML) technique for
predicting specific failure state in the network. Other utility could implement other ML
algorithm for predicting other failure state in the network. Implementing of ML tech-
niques is always complex. We should clearly understand how we can benefit from certain
algorithm and which data we should pass as an input. This is a big field for further
research.

It would be also beneficial to measure delay between the time, when actual failure state

CHAPTER 4. IMPLEMENTATION 67

has happened, and a moment, when this state was detected by the application. Within
several tests performed on better understanding of ”fiber cut” scenario, difference between
first captured alarm and the last captured alarm was few seconds.

In conclusion, this application is a proposal of how does alarm correlation function could
look like. A lot of work still needed to be done in order to improve this application and
make it able to handle other network failure cases, not only one specific failure scenario.

Chapter 5

Validating results

This chapter presents practical application of developed features. In the first part of
this chapter steps for end-to-end optical channel connectivity validation are described. In
the second part of this chapter, I tried to test Alarm Correlation application on emulated
optical devices.

5.1 Configuring end-to-end optical channel connec-
tivity

This section provides description of an end-to-end optical channel connectivity valida-
tion scenario. Device’s bench, network setup and configuration steps are described as
well.

5.1.1 Scenario description

For validation of end-to-end optical channel connectivity simple topology setup depicted
on Figure 5.1 was used.

Devices used in this topology are following1:

• Transponder A - Nokia 1830 PSI-2T;

• ROADM A - Nokia 1830 PSS-16 II;

• ROADM B - Nokia 1830 PSS-16 II;

• Transponder B - Nokia 1830 PSI-2T;

Firstly, we should create cross-connection corresponding to the interconnected ports
on the ROADMs. After that, we should configure the Power (and frequency) on Optical
Transponder.

Once it’s done, we connect via the SSH to both switches and execute ping command
to validate establishing of end-to-end optical channel connectivity. Both switches are in
the same sub-network - 10.2.0.x .

ONOS instance is running on a localhost of a laptop.

1These devices were introduced in Section 4.1.2 and Section 4.1.3 of chapter four.

69

Transponder A Transponder B

ROADM A

SwitchSwitch

Domain A

ROADM B

1/3/LineOut 1/3/LineIn

1/3/LineIn 1/3/Lineout

1/10/C11/10/C11/2/L1 1/2/L1

.52

.103 .227

.76

.116 .117

135.117.245.xxx

ONOS

Figure 5.1: Testing topology

5.1.2 Configuration steps

This section briefly describes steps for running ONOS and configuring network devices
via the Cli (and WebUI) of ONOS.

• Start ONOS with ok clean command.

• Connect to the Karaf (ONOS command line interface) with onos localhost
command.

• Set ONOS Flow Rule Subsystem with following commands:

cfg set org.onosproject.net.flow.impl.FlowRuleManager
allowExtraneousRules true

cfg set org.onosproject.net.flow.impl.FlowRuleManager
importExtraneousRules true

cfg get org.onosproject.net.flow.impl.FlowRuleManager

It would force ONOS to store Flow Rules already installed on the device. You
can verify it later, once devices are registered, with the command flows .

• Register devices and links via REST API of ONOS (onos-netcfg localhost de-
vices.json command).

• Check from the Karaf shell, that devices and links are registered. Use approptiate
commands devices and links .

• Check Flow Rules installed on the devices by typing flows in a command line.

Now we can start configuration of the ROADMs.

CHAPTER 5. VALIDATING RESULTS 71

• With help of a Cli command developed during this work, we can easily manage
cross-connections on the ROADM side.

– Configure unidirectional XCs between ports 1/10/C1 and 1/4/LineOut and
1/3/LineIn and 1/10/C1 on both ROADMs. Wavelength and Slot Width
parameters should be the same in all link.

• Configure wavelength on the transponder side with following command:

wavelength-config edit-config DeviceID/PortNumber wavelength

– Somehow, there is one disadvantage. After executing this command, corre-
sponding port of the device would be deactivated. You need to go to the
WebUI of the device and activate this port again. After that you will be
able to set transmitting power.

• You can set the transmitting power through Optical UI tab inside the ONOS
WebGUI. Go to the Optical UI , choose device you wish to set the power (Op-
tical Transponder in our case) and click on the Ports icon. In a while you’ll get
an information about the power value on each port. You can dynamically change
transmitting power via this tab.

– In alternative way you can set power via following Cli command:

power-config edit-config connectionPoint value

5.1.3 Validation

Once steps described in previous sub-section are done, login to the routers and validate
end-to-end optical channel connectivity with a ping. You can also go to the WebUI of
both Optical Transponders and validate that an optical link was established by checking
amount of receiving energy on the corresponding Line ports of each transponder.

Figure 5.2: Ping from first router Figure 5.3: Ping from second router

On Figure 5.2 and Figure 5.3 are represented successful ping between two devices. On
Figure 5.4 you can see presence of the power in the channel after all configuration steps
were done. Also, you can find how does the process of setting power on optical port
through Optical UI look like on Figure C.1.

5.2 Alarm correlation scenario

This section presents validation of Alarm Correlation function developed as a SDN
application.

Figure 5.4: Power presence in the channel

5.2.1 Scenario description

Workflow of the developed application was tested on Cassini emulator. It is emulated
optical Cassini equipment wrapped in a docker container. You can find some guidance
on how to operate with it here [91]. With the help of this emulator we created testing
topology depicted on Figure 5.5.

Cassini emulator Cassini emulator

Cassini emulator Cassini emulator

202 202 201201201 201

:11001

:11002 :11003

:11005

127.0.0.1:xxxxx

ONOS

Cassini emulator
:11004

203

203207

207
Loss of Signal

on port 202
Loss of Signal

on port 202

Figure 5.5: Testing topology for Alarm Correlation application

CHAPTER 5. VALIDATING RESULTS 73

To test the algorithm, I slightly changed the Main body of developed application.
Before doing check on ”fiber cut” scenario I inserted in the alarm store two ”Loss of
Signal”-type of the alarms on ports 202 of devices :11002 and :11003. Once it’s done,
alarm correlation function should detect ”fiber cut”.

5.2.2 Configuration steps

In order to fake algorithm, we must insert Loss of Signal type of the alarms. It was
done with the help of following two functions implemented as a part of FiberCutAlarmHan-
dler.java.

public static void insertLosAlarms() {

AlarmStore alarmStore = AbstractShellCommand.get(AlarmStore.class);

Alarm alarm1 = generateLosAlarm("1",
DeviceId.deviceId("netconf:127.0.0.1:11002"),↪→

"202", 12);
Alarm alarm2 = generateLosAlarm("2",

DeviceId.deviceId("netconf:127.0.0.1:11003"),↪→

"202", 15);
alarmStore.createOrUpdateAlarm(alarm1);
alarmStore.createOrUpdateAlarm(alarm2);

}

public static Alarm generateLosAlarm(String id, DeviceId deviceId,
String source, long timeStamp) {

return (new DefaultAlarm.Builder(AlarmId.alarmId(id),
deviceId, "Loss of Signal:" + source,
Alarm.SeverityLevel.CRITICAL,

timeStamp).↪→

withServiceAffecting(true).build());
}

First one insert generated alarms in the alarm store, second on genrates ”Loss of Sig-
nal”-type of the alarm. After that we inserted in the main body of the application
following lines:

private static final DeviceId DEVICE_ID_SOURCE =
DeviceId.deviceId("netconf:127.0.0.1:11001");↪→

private static final DeviceId DEVICE_ID_DESTINATION =
DeviceId.deviceId("netconf:127.0.0.1:11005");↪→

...

//Faking (inserting LoS alarms inside the storage)
FiberCutAlarmHandler.insertLosAlarms();
delay(5000);
Link l =

AlarmHandler.detectFiberCut(ReconfigurationHandler.getPath(DEVICE_ID_SOURCE,
DEVICE_ID_DESTINATION));

↪→
↪→

// Once alarm is detected, disabling the link
disableLink(l.src(), l.dst());

This piece of code initializes two nodes, source and destination, between which the path
would be computed. insertLosAlarms() function inserts alarms inside the alarm store
of the ONOS. detectFiberCut() method triggers routine to detect failure state. As a

parameter you need to pass the network path to check. Function getPath() there returns
network path between two nodes in the network. In the end, we disable link which was
returned as the one with fiber cut. Piece of code disabling the link is provided below.

private void disableLink(ConnectPoint cpSrc, ConnectPoint cpDst) {

log.info("\n\n [disableLink] Deleting link between {} and {} \n",
cpSrc, cpDst);↪→

linkProviderService.linksVanished(cpSrc);
linkProviderService.linksVanished(cpDst);

}

Application is modified and ready to be tested. Now we need to set up the network
topology and register it inside the ONOS. To do this, simple bash script was created.

#!/bin/bash

sudo docker run -it -d --name odtn-emulator_openconfig_cassini_1_1 -p
11001:830 onosproject/oc-cassini:0.21↪→

echo "First device is created"

sudo docker run -it -d --name odtn-emulator_openconfig_cassini_2_1 -p
11002:830 onosproject/oc-cassini:0.21↪→

echo "Second device is created"

sudo docker run -it -d --name odtn-emulator_openconfig_cassini_3_1 -p
11003:830 onosproject/oc-cassini:0.21↪→

echo "Third device is created"

sudo docker run -it -d --name odtn-emulator_openconfig_cassini_4_1 -p
11004:830 onosproject/oc-cassini:0.21↪→

echo "Fourth device is created"

sudo docker run -it -d --name odtn-emulator_openconfig_cassini_5_1 -p
11005:830 onosproject/oc-cassini:0.21↪→

echo "Fifth device is created"

onos-netcfg localhost devices.json
echo "Devices are registered"

sleep 3

onos-netcfg localhost link.json
echo "Links are registered"

As you may notice, last two commands are linked to files devices.json and link.json .
These files contain information about the devices and links correspondingly. They were
composed with regard to our target topology. To give a better idea following snippets
provide a piece of these files.

{
"devices" : {

"netconf:127.0.0.1:11001" : {
"basic" : {

"name":"cassini1",
"driver":"cassini-openconfig"

},
"netconf" : {

"ip" : "127.0.0.1",
"port" : "11001",
"username" : "root",
"password" : "root",

CHAPTER 5. VALIDATING RESULTS 75

"idle-timeout" : "0"
}

},
}

}

...

{
"links": {

"netconf:127.0.0.1:11001/201-netconf:127.0.0.1:11002/201": {
"basic": {

"type": "OPTICAL",
"metric": 1,
"durable": true,
"bidirectional": true

}
},

}
}

All what is left to do is just to start ONOS, register topology with a script provided
above and execute application with following command:

app activate org.onosproject.alarmcorrelation

After that checkout logs of the ONOS.

5.2.3 Validation

Results of the test are represented below. With the help of bash script, registered
topology looks like on Figure 5.6.

Figure 5.6: Testing topology for Alarm Correlation application. ONOS GUI.

In the ONOS logs on Figure 5.7 we can see that algorithm successfully detected failure
state and deactivated failed link.

In the ONOS command line we can observe changes in state of the link represented on
Figure 5.8. Same information we can observe in ONOS WebGUI (see Figure 5.9).

Figure 5.7: Logs of the ONOS after Alarm Correlation application was executed

Figure 5.8: Link states after Alarm Correlation application was executed

Figure 5.9: Link states after Alarm Correlation application was executed. ONOS GUI.

Chapter 6

Conclusion

6.1 Work evaluation

In this work was studied the problematic of Software-Defined Networking (SDN). I dived
inside the principles of SDN and had a look on some protocols used in SDN, mainly on
NETCONF. It helped to understand the communication flow between the SDN controller
and the device.

Brief overview and comparison of two most popular open-source solutions for SDN con-
troller was provided as well. Each platform has it’s own pros and cons. Somehow, industry
is currently taking advantage of advanced functionality of OpenDaylight. Probably, after
some years of deployment, industry would go back to ONOS again. Upcoming changes in
it’s architecture are very promising.

In practical part I developed a driver for Nokia’s ROADM and extended functionality
of existed solution for Nokia’s Optical Transponder. Extensions for Optical Transponder
driver were contributed to the ONOS community. ROADM driver stayed proprietary for
future evolution and future usage.

Architecture of the Alarm Correlation function as a SDN application was proposed.
Several tests simulating ”fiber cut” scenario were performed. Based on the obtained
information I was able to track the failure state in the network with regard to the obtained
alarms. Based on this information, I came out with a proposal for such an application.

Practical part introduced several enhancements in ONOS controller. Some of these
enhancements were contributed to the ONOS community. You can find full list of contri-
butions here [92].

6.1.1 Encountered issues

During the development process several issues were encountered. Brief description is
provided within this sub-section.

6.1.1.1 NetconfSessionMinaImpl issue

In the beginning of the ROADM driver development an issue in communication between
ONOS and ROADM occurred. SDN controller and device were not able to understand
each other. Root cause of this problem was in exchanged NETCONF message format.

77

There are currently two versions of NETCONF protocol (v1.0 and v1.1), which have
some specific changes. One of them is message format. In v1.1 it is different from v1.0.
In the beginning of the NETCONF communication Client and Server should exchange
<hello> messages, which carry set of capabilities that each party implements. Version of
NETCONF protocol is also specified within this initial message.

Both parties, Nokia’s ROADM and ONOS, are able to communicate with both versions
of NETCONF protocol. For some reasons, ONOS always communicated in NETCONF
v1.1, when the device expected1 communication in NETCONF v1.0. This was an obstacle.
It made the device misunderstood the communication flow.

In order to fix this, some lines in NetconfSessionMinaImpl.java, implementing possibil-
ity to communicate in NETCONF v1.1 were commented. It forced ONOS to communicate
with NETCONF protocol v1.0. After that communication between the SDN controller
and Nokia’s ROADM (and Optical Transponder) was always successful.

This is a temporary solution, not something what could be contributed to the ONOS
community.

6.1.1.2 RoadmDeviceMessageHandlerView issue

With the development of the ROADM driver, there was a need to display the device
under ”Optical UI” tab, introduced by ONOS for managing optical devices. On the first
try Nokia’s ROADM didn’t show up. Later on minor fixes were done in order to make
the ROADM visible inside the ”Optical UI” tab. These minor changes were contributed
as a patch. You can find it here [93].

6.1.1.3 Issue with AlarmConfig behavior

When I started to work with alarms, there was a need to implement AlarmConfig
behavioral model, which translates alarms coming from the device and stores them inside
the ONOS. There was an issue with incorrect passing of the NETCONF notification
through some internal ONOS data structures. With the help of Andrea Campanella,
small patch fixing this issue was created, tested and contributed to the community. You
can find this contribution here [94].

6.1.1.4 Issue with storing of existing Flow Rules

By default ONOS doesn’t store existing configuration installed on the device. Each
time device is connected to the ONOS, it tries to clean up the device’s configuration. It
means that each time you should set a specific flag in ONOS in order to prevent erasing
of the device configuration.

In order to ease it and extend this API, thanks to Andrea Campanella, some small fixes
were proposed and contributed as a patch. You can find it here [84]. Main contribution
is in embedding second flag to the FlowRuleManager. Now, you have two flags you need
to set. First one, allowExtraneousRules, tells ONOS to not delete device configuration.
Second flag, importExtraneousRules, tells ONOS to import this configuration inside the
ONOS. By default both flags are set on false, what means that device configuration
wouldn’t be kept, once the device is connected to ONOS.

1Most probably such a choice of NETCONF protocol version was due to the old version of the software
running on the device.

CHAPTER 6. CONCLUSION 79

6.1.2 Contributions

Except aforesaid patches some other contributions to the ONOS community were done
during this work:

• PowerConfig behavior for Nokia’s Optical Transponder was contributed [86] to
the ONOS community. It allows to set transmitting power values on Line ports
of the device.

• AlarmConfig behavior for Nokia’s Optical Transponder was contributed [87] as
well. It translates OPENCONFIG-based alarms to internal ONOS representation
and stores them inside the controller. Alarms could be later visualised through
the WebGUI or command line. This implementation is compatible with Nokia’s
ROADM driver.

• Cli command for creating cross-connections [85] on ROADMs. This command
due to the tight bundling with RoadmManager instance and Flow Rule Subsystem
is capable of configuring ROADM of any vendor.

6.1.3 Future Work

This work already provides solid basis for applying SDN concepts in Open Optical
Transport networks. Somehow, several aspects could be improved:

• ROADM driver could be extended on further functionality. For example,
embed power adjustment capability or enable possibility to set output power on
amplifier card.

• Alarm Correlation app could be potentially reworked. There could be im-
plemented next features:

– Keep track of wider range of parameters in order to detect ”fiber cut” sce-
nario. History of output power values as well as laser state (active/inactive)
could be taken into account for example.

– Extend application on further failure scenarios. This could potentially lead
to existing algorithm rework.

– More investigation should be done on interaction with PCE function of
ONOS.

6.2 Future networks

Software-Defined Networking concept was introduced already a long time ago. Since
that time it is still not fully deployed in the real networks. Rising demand of operators
on full automation of the network and desire to do not be attached to only one vendor
pushed the operators to create various initiatives. Some of them, like OPENCONFIG
and OpenROADM, standardize device functions. Vendor later must implement these
data models inside their devices. Configuration of network in multi-vendor environment
becomes more universal. It leads to appearance of multi-vendor environment in real
networks.

SDN by separating control and data plane introduces programmable approach in the
networks. It lets the operator to save costs on network maintenance and network ad-
ministration, centralizes control of the network and eases network provisioning and trou-
bleshooting. From this prospective SDN is a next logical step of network evolution.

Big companies, like AT&T, Orange, Nippon Telegraph and Telephone (NTT) and Tele-
fonica, are betting on SDN as a future solution. Moreover, development of some promising
technologies, like ONAP or OpenDaylight, is lead by these big players, who invested a lot
of money and time into these initiatives.

Wrapping aforesaid, future network evolution could be summarized with following pil-
lars:

• Deeper integrity of SDN into the networks.

• Network will move towards Cloud-Native environment .

– Server dominating environment would provide more freedom for introduc-
tion of NFV/VNF.

– Microservice-oriented environment would be prevalent.

– Network orchestration would be done with ONAP, NFV-MANO, Kuber-
netes or any other network orchestrator.

• Rise of the Machine Learning (ML) techniques in networking is already
triggered. Some big standardization institutions, like ITU, already propose some
recommendations. A good example could be ITU-T Y.3172 [95] recommendation,
which standardizes ML framework for networking purposes.

• Maybe, one day Artificial Intelligence (AI) embedded inside the network
would be introduced. Somehow, working ML techniques should be introduced in
the network first. Only after this industry could start move towards AI.

• Multi-vendor environment inside the network.

6.2.1 Possible architecture

Until now we were talking about SDN in a small scale of the lab. When it goes to
the reality, network consists from thousands of elements. One huge instance of the SDN
controller running on top of a global network is quite heavy. Right now SDN is purely
used for network configuration, but we also need to create services on top of the network.
For this purpose network orchestrator, like ONAP, could be beneficial. On the Figure 6.1
is represented possible architecture of future multi-domain network environment.

As you may notice, SDN controller now covers and manages only certain domain.
Domain could be whatever - data center, city (or city agglomeration) or even whole region.
In multi-domain case SDN architecture deployed in the network becomes distributed. For
this purpose, we need a network orchestrator, which would allocate enough resources for
each SDN controller and take care of services running on top of the network.

Another huge milestone for deploying SDN architecture in real networks would be
coexistence with legacy networks. Telecom operators already invested a lot of money into
their networks. Changing all architecture from the scratch is risky and costly. In this case,
there is a need in a transition solution. On Figure 6.2 is represented such architecture,
where SDN cooperates with legacy networks.

Network Monitoring System (NMS) is already capable of managing legacy network. It
should be enhanced on some additional features in order to cooperate with a SDN con-
trollers or directly with a network orchestrator. One of the possible solutions could be
embedding universal interface, like T-API or any other, which would provide state infor-
mation about the network on higher control levels. Network orchestrator again facilitates
work of whole infrastructure. It is one of the possible solutions. A lot of research in this
area still needed to be done.

CHAPTER 6. CONCLUSION 81

Transponder A

Transponder B

ROADM A

ROADM C

ROADM B

OpenDayLight

ONOS OpenDayLight

Domain A
Domain B

Domain C

ONAP

Figure 6.1: Future network architecture

Transponder A

Transponder BROADM A
ROADM C

ROADM B

Network Monitoring System (NMS)

OpenDaylight

Domain A

ONAP

ROADM D

Transponder C

ONOS

T-API

Domain B

Figure 6.2: Future network transit architecture

For the industry SDN seems to be a promising solution as a control platform for the
network. It could ease maintenance, troubleshooting and save huge costs on network
administration. Standardization activities, like development of data models, are currently
running. It should give to the operators more freedom in choice of the device between
different vendors, bringing a possibility of multi-vendor environment inside the network.

Raise of virtualization technologies and complementary to the SDN concepts, like
NFV/VNF, open wider possibilities for service providing. It also brings opportunity
to embed various Machine Learning techniques on top of the network. ML would not
provide a greater speed advantage, but it would be extremely beneficial for more precise
estimation of network parameters and, mainly, for prediction of events inside the network.
It should result in providing a better quality services to the end consumer.

Appendix A

OpenConfig data models for optical communication

Let’s have a look on some of the OpenConfig data models and try to understand, what
they’re providing to us. In terms of this work our main focus is data models for optical
transport and some other models which optical devices should support as well.

Platform data module

• openconfig-platform – defines a data model for representing a system component
inventory, which can include hardware or software information. Each element in the
inventory is termed “component” and contains at least a unique name and unique
type. Each component has also list of sub-components, like an interface has ports.
This is the generic schema for the device. [96]

• openconfig-platform-types – defines data types which are supported by the Open-
Config component inventory model. Includes information about hardware, software,
chassis, linecard, port, controller card and many more components [97].

• openconfig-platform-linecard – this module defines data related to the Linecard com-
ponent in the openconfig-platform model. It describes configuration data and oper-
ational state for all linecard components. [98]

• openconfig-platform-port – defines data related to the Port components in the openconfig-
platform model [99]. It includes information about port state, channel speed con-
figuration and similar.

• openconfig-platform-transceiver – defines configuration and operational state data
for transceivers. Transceiver is expected to be a sub-component of a Port component
[100]. Provides operability with input/output parameters of the optical channel like
power and frequency.

• openconfig-platform-ext – defines optional extensions (i.e. operational state) for the
existing OpenConfig data model [101].

Optical transport module

• openconfig-terminal-device – describes an optical terminal device data model for
managing terminal systems on client and line side in a Dense Wavelength Division
Multiplex (DWDM) transport network [102]. This model includes definitions of:

– physical port – physical pluggable client port. Has one or more physical chan-
nels;

– physical channel – physical lane or channel in the physical client port;

83

– logical-channel – logical grouping of logical grooming elements that may be
assigned to multiplexing/de-multiplexing, or to an optical channel for the line
side transmission. It can represent an ODU/OTU logical packing of the client
data onto the line side;

– optical channel – corresponds to an optical carrier and assigns a frequency
(wavelength). Can also have power, Bit Error Rate (BER) and operational
mode properties. [102]

• openconfig-transport-types – contains general type definitions and identities for the
optical transport models [103], like frequency value, administrative state mode, base
mapping protocols and even some statistics.

• openconfig-transport-line-common – describes common data elements for the optical
transport line system elements, such as amplifiers and ROADMs (will be described
in following chapter) [104]. Includes types of the optical port (if it’s ingress or
egress), input/output power parameters.

• openconfig-transport-line-connectivity – defines the device-level connectivity in terms
of internal port-to-port connection for the optical transport system elements like
ROADMs and amplifiers [105]. All connections are unidirectional and are only
internal.

• openconfig-optical-amplifier – contains configuration and operational state data for
the optical amplifiers as a part of a transport line system [106]. Defines different
types of the optical amplifiers (EDFA, Raman and etc.) with bounds of gain range,
amplifier mode, power, fiber type profile and many more parameters.

• openconfig-wavelength-router – defines configuration and operational state data for
the optical transport line system node, different types of Reconfigurable Optical
Add-Drop Multiplexer (ROADM), Wavelength Selective Switch (WSS) [107]. Nodes
are modeled as configurable switching elements with ingress and egress ports, ad-
d/drop ports which could be splitted between different degrees (group of interface
cards ensuring fully functionality) of the device. Also, enables to configure Power
Spectrum Density.

• openconfig-channel-monitor – describes operational state data for the optical trans-
port system elements such as wavelength router (i.e. ROADM) and amplifier. Spec-
ified set of data (operational state, PSD, frequency) which could be monitored [108].

Appendix B

Brief introduction to the ITU-T 694.1

This standard specifies DWDM frequency grid by introducing frequency slots and spec-
ifying them. Each frequency slot can be represented by ”Central Frequency” and ”Slot
Width”. Also, to simplify numbering of frequency slots, two parameters, ”m” and ”n”,
were introduced. You can compute central frequency according to the following equation
[78]:

fcentral = 193.1 + n× 0.00625, (B.1)

where n is a positive or negative integer including 0, and 0.00625 is the nominal central
frequency granularity in [THz].

Slot width could be computed like [78]:

SlotWidth = 12.5×m, (B.2)

where m is a positive integer, and 12.5 is the slot width granularity in GHz.

For better understanding let’s have a look on Figure B.1, which represent usage of such
conception.

Any combination of frequency slots is allowed as long as there is no overlap between
any two frequency slots [78].

Figure B.1: Flexible DWDM grid

85

Appendix C

Here are the screenshots of the WebGUI of ONOS, particularly ”Optical UI” tab.

Figure C.1: Optical UI interface. Setting the power on optical port

Figure C.2: Topology representation in ONOS

87

Bibliography

[1] Software-defined networking, Wikipedia. [Online]. Available: https://en.wikipedia.
org/wiki/Software-defined_networking.

[2] M. Lessing and S. Staff, What is Software-defined networking (SDN)? Definition.
SDxCentral, Sep. 2019. [Online]. Available: https : / / www . sdxcentral . com /
networking/sdn/definitions/what-the-definition-of-software-defined-
networking-sdn/.

[3] M. Rouse, L. Rosencance, J. English, and J. Burke, Software-defined Networking (SDN),
TechTarget.com, Aug. 2019. [Online]. Available: https://searchnetworking.
techtarget.com/definition/software-defined-networking-SDN.

[4] SDxCentral Staff, What is SDN orchestration (SDN Policy orchestration)?, SDx-
Central, Aug. 2015. [Online]. Available: https://www.sdxcentral.com/networking/
sdn/definitions/what-is-sdn-orchestration/.

[5] M. Rouse and J. DerGurahian, WhatIs. [Online]. Available: https://searchnetworking.
techtarget.com/definition/network-orchestration.

[6] Home Page, ONAP. [Online]. Available: https://www.onap.org/.

[7] ONAP. [Online]. Available: https://www.onap.org/architecture.

[8] H. Adams, Open optical networks: what, why and next steps, IHS Inc., Aug. 2017.
[Online]. Available: https://technology.ihs.com/594552/open- optical-
networks-what-why-and-next-steps.

[9] Open and Disaggregated Transport Network, Open Networking Foundation. [On-
line]. Available: https://www.opennetworking.org/odtn/.

[10] S. Staff, What is White Box Switching White Box Switches (are they SDN Switches)?,
SDxCentral, Jan. 2015. [Online]. Available: https : / / www . sdxcentral . com /
data-center/bare-metal/white-box/definitions/what-is-white-box-
networking/.

[11] Network function virtualizetion, Wikipedia. [Online]. Available: https : / / en .
wikipedia.org/wiki/Network_function_virtualization.

[12] SDxCentral Staff, An Overview of NFV Elements, SDxCentral, Jul. 2015. [Online].
Available: https://www.sdxcentral.com/networking/nfv/definitions/nfv-
elements-overview/.

[13] OASIS TOSCA, Wikipedia. [Online]. Available: https://en.wikipedia.org/
wiki/OASIS_TOSCA.

[14] S. Raynovich, What is Network Service Chaining? Definition, SDxCentral, Feb. 2016.
[Online]. Available: https://www.sdxcentral.com/networking/virtualization/
definitions/what-is-network-service-chaining/.

[15] OpenFlow, Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/
OpenFlow.

89

https://en.wikipedia.org/wiki/Software-defined_networking
https://en.wikipedia.org/wiki/Software-defined_networking
https://www.sdxcentral.com/networking/sdn/definitions/what-the-definition-of-software-defined-networking-sdn/
https://www.sdxcentral.com/networking/sdn/definitions/what-the-definition-of-software-defined-networking-sdn/
https://www.sdxcentral.com/networking/sdn/definitions/what-the-definition-of-software-defined-networking-sdn/
https://searchnetworking.techtarget.com/definition/software-defined-networking-SDN
https://searchnetworking.techtarget.com/definition/software-defined-networking-SDN
https://www.sdxcentral.com/networking/sdn/definitions/what-is-sdn-orchestration/
https://www.sdxcentral.com/networking/sdn/definitions/what-is-sdn-orchestration/
https://searchnetworking.techtarget.com/definition/network-orchestration
https://searchnetworking.techtarget.com/definition/network-orchestration
https://www.onap.org/
https://www.onap.org/architecture
https://technology.ihs.com/594552/open-optical-networks-what-why-and-next-steps
https://technology.ihs.com/594552/open-optical-networks-what-why-and-next-steps
https://www.opennetworking.org/odtn/
https://www.sdxcentral.com/data-center/bare-metal/white-box/definitions/what-is-white-box-networking/
https://www.sdxcentral.com/data-center/bare-metal/white-box/definitions/what-is-white-box-networking/
https://www.sdxcentral.com/data-center/bare-metal/white-box/definitions/what-is-white-box-networking/
https://en.wikipedia.org/wiki/Network_function_virtualization
https://en.wikipedia.org/wiki/Network_function_virtualization
https://www.sdxcentral.com/networking/nfv/definitions/nfv-elements-overview/
https://www.sdxcentral.com/networking/nfv/definitions/nfv-elements-overview/
https://en.wikipedia.org/wiki/OASIS_TOSCA
https://en.wikipedia.org/wiki/OASIS_TOSCA
https://www.sdxcentral.com/networking/virtualization/definitions/what-is-network-service-chaining/
https://www.sdxcentral.com/networking/virtualization/definitions/what-is-network-service-chaining/
https://en.wikipedia.org/wiki/OpenFlow
https://en.wikipedia.org/wiki/OpenFlow

[16] SDxCentral Staff, What is OpenFlow? Definition and How it Relates to SDN, SDx-
Central, Aug. 2013. [Online]. Available: https://www.sdxcentral.com/networking/
sdn/definitions/what-is-openflow/.

[17] P4 project overview, Open Networking Foundation. [Online]. Available: https:
//www.opennetworking.org/p4/?utm_referrer=https://www.google.fr/.

[18] P4 (programming language), Wikipedia. [Online]. Available: https://en.wikipedia.
org/wiki/P4_(programming_language).

[19] B. Butler, What P4 programming is and why it’s such a big deal for Software Defined Networking,
Network World from IDG, Jan. 2017. [Online]. Available: https://www.networkworld.
com/article/3163496/what-p4-programming-is-and-why-it-s-such-a-big-
deal-for-software-defined-networking.html.

[20] B. Pfaff and B. Davie, The Open vSwitch Database Management Protocol, RFC
7047, Internet Engineering Task Force, Dec. 2013. [Online]. Available: https :
//tools.ietf.org/html/rfc7047.

[21] SDxCentral Staff, What is Open vSwitch Database or OVSDB?, SDxCentral, Sep.
2014. [Online]. Available: https://www.sdxcentral.com/open-source/definitions/
what-is-ovsdb/.

[22] Understanding the OVSDB Protocol Running on Juniper Network Devices, Juniper
Networks, Jun. 2018. [Online]. Available: https://www.juniper.net/documentation/
en_US/junos/topics/concept/sdn-ovsdb-junos.html.

[23] M. Bjorklund, YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF),
RFC 6020 (Proposed Standard), Internet Engineering Task Force, Oct. 2010. [On-
line]. Available: http://www.ietf.org/rfc/rfc6020.txt.

[24] The YANG Data Modeling Language, Tail-f Systems. [Online]. Available: http:
//66.218.245.39/doc/html/ch03.html.

[25] M. Bjoerklund, DHCP Tutorial, YANG Central. [Online]. Available: http://www.
yang-central.org/twiki/bin/view/Main/DhcpTutorial.

[26] OpenConfig Overview, Juniper Networks. [Online]. Available: https : / / www .
juniper.net/documentation/en_US/junos/topics/concept/openconfig-
overview.html.

[27] M. Rouse and M. Haughn, OpenConfig, WhatIs.com. [Online]. Available: https:
//whatis.techtarget.com/definition/OpenConfig.

[28] J. Edelman, OpenConfig, Data Models, and APIs. [Online]. Available: http://
jedelman.com/home/openconfig-data-models-and-apis/.

[29] OpenConfig - Home, OpenConfig Working Group. [Online]. Available: http://
www.openconfig.net/.

[30] Openconfig data models and apis, OpenConfig Working Group. [Online]. Avail-
able: http://www.openconfig.net/projects/models/.

[31] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, Network Configuration Protocol (NETCONF),
RFC 6241 (Proposed Standard), Internet Engineering Task Force, Jun. 2011. [On-
line]. Available: http://www.ietf.org/rfc/rfc6241.txt.

[32] The NETCONF Server, Tail-f Systems. [Online]. Available: http://66.218.245.
39/doc/html/ch15.html.

[33] Network Configuration Protocol, NetConf Central. [Online]. Available: http://
www.netconfcentral.org/netconf_docs.

[34] S. Chisholm and H. Trevino, NETCONF Event Notifications, RFC 5277 (Proposed
Standard), Internet Engineering Task Force, Jul. 2008. [Online]. Available: http:
//www.ietf.org/rfc/rfc5277.txt.

https://www.sdxcentral.com/networking/sdn/definitions/what-is-openflow/
https://www.sdxcentral.com/networking/sdn/definitions/what-is-openflow/
https://www.opennetworking.org/p4/?utm_referrer=https://www.google.fr/
https://www.opennetworking.org/p4/?utm_referrer=https://www.google.fr/
https://en.wikipedia.org/wiki/P4_(programming_language)
https://en.wikipedia.org/wiki/P4_(programming_language)
https://www.networkworld.com/article/3163496/what-p4-programming-is-and-why-it-s-such-a-big-deal-for-software-defined-networking.html
https://www.networkworld.com/article/3163496/what-p4-programming-is-and-why-it-s-such-a-big-deal-for-software-defined-networking.html
https://www.networkworld.com/article/3163496/what-p4-programming-is-and-why-it-s-such-a-big-deal-for-software-defined-networking.html
https://tools.ietf.org/html/rfc7047
https://tools.ietf.org/html/rfc7047
https://www.sdxcentral.com/open-source/definitions/what-is-ovsdb/
https://www.sdxcentral.com/open-source/definitions/what-is-ovsdb/
https://www.juniper.net/documentation/en_US/junos/topics/concept/sdn-ovsdb-junos.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/sdn-ovsdb-junos.html
http://www.ietf.org/rfc/rfc6020.txt
http://66.218.245.39/doc/html/ch03.html
http://66.218.245.39/doc/html/ch03.html
http://www.yang-central.org/twiki/bin/view/Main/DhcpTutorial
http://www.yang-central.org/twiki/bin/view/Main/DhcpTutorial
https://www.juniper.net/documentation/en_US/junos/topics/concept/openconfig-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/openconfig-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/openconfig-overview.html
https://whatis.techtarget.com/definition/OpenConfig
https://whatis.techtarget.com/definition/OpenConfig
http://jedelman.com/home/openconfig-data-models-and-apis/
http://jedelman.com/home/openconfig-data-models-and-apis/
http://www.openconfig.net/
http://www.openconfig.net/
http://www.openconfig.net/projects/models/
http://www.ietf.org/rfc/rfc6241.txt
http://66.218.245.39/doc/html/ch15.html
http://66.218.245.39/doc/html/ch15.html
http://www.netconfcentral.org/netconf_docs
http://www.netconfcentral.org/netconf_docs
http://www.ietf.org/rfc/rfc5277.txt
http://www.ietf.org/rfc/rfc5277.txt

BIBLIOGRAPHY 91

[35] M. Foschiano, Cisco Systems UniDirectional Link Detection (UDLD) Protocol, RFC
5171 (Informational), Internet Engineering Task Force, Apr. 2008. [Online]. Avail-
able: http://www.ietf.org/rfc/rfc5171.txt.

[36] XPATH Cover Page, W3C. [Online]. Available: http://www.w3.org/TR/xpath.

[37] A. Bierman, M. Bjorklund, and K. Watsen, RESTCONF Protocol, RFC 8040,
Internet Engineering Task Force, Jan. 2017. [Online]. Available: https://tools.
ietf.org/html/rfc8040.

[38] A. Dainese, NETCONF and RESTCONF, ipSpace.net. [Online]. Available: https:
//www.ipspace.net/kb/CiscoAutomation/070-netconf.html.

[39] Kanika, What Is RESTCONF?, SDN Tutorials. [Online]. Available: http://sdntutorials.
com/what-is-restconf/.

[40] K. Lelonek, A brief introduction to gRPC in Go. [Online]. Available: https://
blog.lelonek.me/a-brief-introduction-to-grpc-in-go-e66e596fe244.

[41] J. Smith, Introduction to gRPC, Container Solutions, Mar. 2017. [Online]. Avail-
able: https://blog.container-solutions.com/introduction-to-grpc.

[42] gRPC Concepts Overview, chromium.googlesource.com. [Online]. Available: https:
//chromium.googlesource.com/external/github.com/grpc/grpc/+/HEAD/
CONCEPTS.md.

[43] S. Rao, SDN Series Part Seven: ONOS, thenewstack.io, 2015. [Online]. Available:
https://thenewstack.io/open-source-sdn-controllers-part-vii-onos/.

[44] A. Koshibe, Intent Framework, wiki.onosproject.org, May 2016. [Online]. Avail-
able: https://wiki.onosproject.org/display/ONOS/Intent+Framework.

[45] Architecture and Internals Guide, ONOS wiki. [Online]. Available: https://wiki.
onosproject.org/display/ONOS/Architecture+and+Internals+Guide.

[46] TAPI Overview, Open Networking Foundation. [Online]. Available: https : / /
wiki.opennetworking.org/pages/viewpage.action?pageId=317292566.

[47] OSGi, Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/OSGi.

[48] S. Rao, SDN Series Part Six: OpenDaylight, The Most Documented Controller, the-
newstack.io, Jan. 2015. [Online]. Available: https : / / thenewstack . io / sdn -
series-part-vi-opendaylight/.

[49] OpenDaylight Architecture - Carbon release, The Linux Foundation. [Online]. Avail-
able: https://www.opendaylight.org/what-we-do/current-release/carbon.

[50] Cisco Open SDN Controller, Cisco Systems Inc. [Online]. Available: https : / /
www.cisco.com/c/en/us/products/cloud-systems-management/open-sdn-
controller/index.html.

[51] A. Vahdat, Enter the Andromeda zone - Google Cloud Platform’s latest networking stack,
Google, Apr. 2014. [Online]. Available: https://cloudplatform.googleblog.
com/2014/04/enter- andromeda- zone- google- cloud- platforms- latest-
networking-stack.html.

[52] L. Hardesty, Google Brings SDN to the Public Internet, SDxCentral, Apr. 2017.
[Online]. Available: https://www.sdxcentral.com/articles/news/google-
brings-sdn-public-internet/2017/04/.

[53] ONOS, ONF. [Online]. Available: https://docs.onosproject.org/.

[54] ONOS configuration overview, ONF. [Online]. Available: https://docs.onosproject.
org/onos-config/docs/.

[55] [Online]. Available: https://www.opennetworking.org/stratum/.

http://www.ietf.org/rfc/rfc5171.txt
http://www.w3.org/TR/xpath
https://tools.ietf.org/html/rfc8040
https://tools.ietf.org/html/rfc8040
https://www.ipspace.net/kb/CiscoAutomation/070-netconf.html
https://www.ipspace.net/kb/CiscoAutomation/070-netconf.html
http://sdntutorials.com/what-is-restconf/
http://sdntutorials.com/what-is-restconf/
https://blog.lelonek.me/a-brief-introduction-to-grpc-in-go-e66e596fe244
https://blog.lelonek.me/a-brief-introduction-to-grpc-in-go-e66e596fe244
https://blog.container-solutions.com/introduction-to-grpc
https://chromium.googlesource.com/external/github.com/grpc/grpc/+/HEAD/CONCEPTS.md
https://chromium.googlesource.com/external/github.com/grpc/grpc/+/HEAD/CONCEPTS.md
https://chromium.googlesource.com/external/github.com/grpc/grpc/+/HEAD/CONCEPTS.md
https://thenewstack.io/open-source-sdn-controllers-part-vii-onos/
https://wiki.onosproject.org/display/ONOS/Intent+Framework
https://wiki.onosproject.org/display/ONOS/Architecture+and+Internals+Guide
https://wiki.onosproject.org/display/ONOS/Architecture+and+Internals+Guide
https://wiki.opennetworking.org/pages/viewpage.action?pageId=317292566
https://wiki.opennetworking.org/pages/viewpage.action?pageId=317292566
https://en.wikipedia.org/wiki/OSGi
https://thenewstack.io/sdn-series-part-vi-opendaylight/
https://thenewstack.io/sdn-series-part-vi-opendaylight/
https://www.opendaylight.org/what-we-do/current-release/carbon
https://www.cisco.com/c/en/us/products/cloud-systems-management/open-sdn-controller/index.html
https://www.cisco.com/c/en/us/products/cloud-systems-management/open-sdn-controller/index.html
https://www.cisco.com/c/en/us/products/cloud-systems-management/open-sdn-controller/index.html
https://cloudplatform.googleblog.com/2014/04/enter-andromeda-zone-google-cloud-platforms-latest-networking-stack.html
https://cloudplatform.googleblog.com/2014/04/enter-andromeda-zone-google-cloud-platforms-latest-networking-stack.html
https://cloudplatform.googleblog.com/2014/04/enter-andromeda-zone-google-cloud-platforms-latest-networking-stack.html
https://www.sdxcentral.com/articles/news/google-brings-sdn-public-internet/2017/04/
https://www.sdxcentral.com/articles/news/google-brings-sdn-public-internet/2017/04/
https://docs.onosproject.org/
https://docs.onosproject.org/onos-config/docs/
https://docs.onosproject.org/onos-config/docs/
https://www.opennetworking.org/stratum/

[56] Scott M. Fulton III, OpenDaylight and ONOS: Does SDN Really Need Two Controllers?,
thenewstack.io, Mar. 2016. [Online]. Available: https://thenewstack.io/opendaylight-
onos-sdn-really-need-two-controllers.

[57] S. Rao, SDN Series Part Eight: Comparison Of Open Source SDN Controllers, the-
newstack.io, Mar. 2015. [Online]. Available: https://thenewstack.io/sdn-
series-part-eight-comparison-of-open-source-sdn-controllers/.

[58] C. Lam, Passive Optical Networks: principles and practice, 2007. [Online]. Avail-
able: https://books.google.fr/books?hl=en&lr=&id=DSO5CVBuhKEC&oi=
fnd&pg=PP1&dq=passive+optical+network+overview&ots=rQnTEOYxFa&sig=-
TSbsXwLpO8UqTVT5C_x1bkp8ko#v=onepage&q=passive%20optical%20network%
20overview&f=false.

[59] Passive Optical Networks, Wikipedia. [Online]. Available: https://en.wikipedia.
org/wiki/Passive_optical_network.

[60] Passive Optical Networks, ScienceDirect. [Online]. Available: https://www.sciencedirect.
com/topics/computer-science/passive-optical-network.

[61] FTTH Access Networks - AON vs. PON, fiberopticshare.com, 2015. [Online]. Avail-
able: http://www.fiberopticshare.com/ftth-access-networks-aon-vs-
pon.html.

[62] Basic Knowledge About GPON SFP Trancievers, fs.com, Jan. 2018. [Online]. Avail-
able: https://community.fs.com/blog/basic-knowledge-about-gpon-sfp-
transceivers.html.

[63] Wavelength-division multiplexing, Wikipedia. [Online]. Available: https://en.
wikipedia.org/wiki/Wavelength-division_multiplexing.

[64] [Online]. Available: https://www.springer.com/gp/book/9783030162498#
aboutAuthors.

[65] Tutorials of Fiber Optic Products, Difference between Pre-Amplifier, Booster Ampllifier and In-line Amplifier,
fiber-optic-tutorial.com. [Online]. Available: http://www.fiber-optic-tutorial.
com/differences-between-pre-amplifier-booster-amplifier-line-amplifier.
html.

[66] FiberLabs Inc., Erbium-Dopped Fiber Amplifier (EDFA), FiberLabs Inc. [Online].
Available: https://www.fiberlabs.com/glossary/erbium- doped- fiber-
amplifier/.

[67] Dr. Rüdiger Paschotta, Fiber Amplifiers, RP Photonics Encyclopedia. [Online].
Available: https://www.rp-photonics.com/fiber_amplifiers.html.

[68] D. R. Paschotta, Raman Amplifiers, RP Photonics Encyclopedia. [Online]. Avail-
able: https://www.rp-photonics.com/raman_amplifiers.html.

[69] Semiconductor Optical Amplifier (SOA) Introduction, Fiber Optic Solutions. [On-
line]. Available: http://www.fiber- optic- solutions.com/introduction-
semiconductor-optical-amplifier-soa.html.

[70] Optical Switch, Wikipedia. [Online]. Available: https://en.wikipedia.org/
wiki/Optical_switch.

[71] Optical Add-Drop Multiplexer, Wikipedia. [Online]. Available: https://en.wikipedia.
org/wiki/Optical_add-drop_multiplexer.

[72] Reconfigurable Optical Add-Drop Multiplexer, Wikipedia. [Online]. Available: https:
//en.wikipedia.org/wiki/Reconfigurable_optical_add-drop_multiplexer.

[73] A Primer on ROADM Architecture, ADVA. [Online]. Available: https://oristel.
com.sg/wp-content/uploads/2015/03/A-Primer-on-ROADM-Architectures.
pdf.

[74] Optical Networks - ROADM, Tutorials Point. [Online]. Available: https://www.
tutorialspoint.com/optical_networks/optical_networks_roadm.htm.

https://thenewstack.io/opendaylight-onos-sdn-really-need-two-controllers
https://thenewstack.io/opendaylight-onos-sdn-really-need-two-controllers
https://thenewstack.io/sdn-series-part-eight-comparison-of-open-source-sdn-controllers/
https://thenewstack.io/sdn-series-part-eight-comparison-of-open-source-sdn-controllers/
https://books.google.fr/books?hl=en&lr=&id=DSO5CVBuhKEC&oi=fnd&pg=PP1&dq=passive+optical+network+overview&ots=rQnTEOYxFa&sig=-TSbsXwLpO8UqTVT5C_x1bkp8ko#v=onepage&q=passive%20optical%20network%20overview&f=false
https://books.google.fr/books?hl=en&lr=&id=DSO5CVBuhKEC&oi=fnd&pg=PP1&dq=passive+optical+network+overview&ots=rQnTEOYxFa&sig=-TSbsXwLpO8UqTVT5C_x1bkp8ko#v=onepage&q=passive%20optical%20network%20overview&f=false
https://books.google.fr/books?hl=en&lr=&id=DSO5CVBuhKEC&oi=fnd&pg=PP1&dq=passive+optical+network+overview&ots=rQnTEOYxFa&sig=-TSbsXwLpO8UqTVT5C_x1bkp8ko#v=onepage&q=passive%20optical%20network%20overview&f=false
https://books.google.fr/books?hl=en&lr=&id=DSO5CVBuhKEC&oi=fnd&pg=PP1&dq=passive+optical+network+overview&ots=rQnTEOYxFa&sig=-TSbsXwLpO8UqTVT5C_x1bkp8ko#v=onepage&q=passive%20optical%20network%20overview&f=false
https://en.wikipedia.org/wiki/Passive_optical_network
https://en.wikipedia.org/wiki/Passive_optical_network
https://www.sciencedirect.com/topics/computer-science/passive-optical-network
https://www.sciencedirect.com/topics/computer-science/passive-optical-network
http://www.fiberopticshare.com/ftth-access-networks-aon-vs-pon.html
http://www.fiberopticshare.com/ftth-access-networks-aon-vs-pon.html
https://community.fs.com/blog/basic-knowledge-about-gpon-sfp-transceivers.html
https://community.fs.com/blog/basic-knowledge-about-gpon-sfp-transceivers.html
https://en.wikipedia.org/wiki/Wavelength-division_multiplexing
https://en.wikipedia.org/wiki/Wavelength-division_multiplexing
https://www.springer.com/gp/book/9783030162498#aboutAuthors
https://www.springer.com/gp/book/9783030162498#aboutAuthors
http://www.fiber-optic-tutorial.com/differences-between-pre-amplifier-booster-amplifier-line-amplifier.html
http://www.fiber-optic-tutorial.com/differences-between-pre-amplifier-booster-amplifier-line-amplifier.html
http://www.fiber-optic-tutorial.com/differences-between-pre-amplifier-booster-amplifier-line-amplifier.html
https://www.fiberlabs.com/glossary/erbium-doped-fiber-amplifier/
https://www.fiberlabs.com/glossary/erbium-doped-fiber-amplifier/
https://www.rp-photonics.com/fiber_amplifiers.html
https://www.rp-photonics.com/raman_amplifiers.html
http://www.fiber-optic-solutions.com/introduction-semiconductor-optical-amplifier-soa.html
http://www.fiber-optic-solutions.com/introduction-semiconductor-optical-amplifier-soa.html
https://en.wikipedia.org/wiki/Optical_switch
https://en.wikipedia.org/wiki/Optical_switch
https://en.wikipedia.org/wiki/Optical_add-drop_multiplexer
https://en.wikipedia.org/wiki/Optical_add-drop_multiplexer
https://en.wikipedia.org/wiki/Reconfigurable_optical_add-drop_multiplexer
https://en.wikipedia.org/wiki/Reconfigurable_optical_add-drop_multiplexer
https://oristel.com.sg/wp-content/uploads/2015/03/A-Primer-on-ROADM-Architectures.pdf
https://oristel.com.sg/wp-content/uploads/2015/03/A-Primer-on-ROADM-Architectures.pdf
https://oristel.com.sg/wp-content/uploads/2015/03/A-Primer-on-ROADM-Architectures.pdf
https://www.tutorialspoint.com/optical_networks/optical_networks_roadm.htm
https://www.tutorialspoint.com/optical_networks/optical_networks_roadm.htm

BIBLIOGRAPHY 93

[75] Wavelength Selective Switch, Wikipedia. [Online]. Available: https://en.wikipedia.
org/wiki/Wavelength_selective_switching.

[76] Principles of 2-D MEMS switching, ResearchGate. [Online]. Available: https://
www.researchgate.net/figure/Principle- of- the- 2D- MEMS- switching_
fig2_309168203.

[77] Next-Generation ROADM Architecture Benefits, Fujitsu. [Online]. Available: https:
//www.fujitsu.com/us/Images/Fujitsu-NG-ROADM.pdf.

[78] Spectral grids for WDM applications: DWDM frequency grid, Recommendation ITU-
T G.694.1, International Telecommunication Union, Feb. 2012. [Online]. Available:
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en.

[79] 1830 Photonic Service Interconnect (PSI), Nokia. [Online]. Available: https://
www.nokia.com/networks/products/1830-photonic-service-interconnect/
#overview.

[80] 1830 Photonic Service Switch, Nokia. [Online]. Available: https://www.nokia.
com/networks/products/1830-photonic-service-switch/#overview.

[81] S. Desai, ONOS Driver Consolidation, PALC Networks. [Online]. Available: https:
//gerrit.onosproject.org/#/q/owner:dsudeep%2540palcnetworks.com+
status:open.

[82] odtn-driver.xml, ONOS project. [Online]. Available: https://github.com/opennetworkinglab/
onos / blob / master / drivers / odtn - driver / src / main / resources / odtn -
drivers.xml.

[83] ONOS project, Flow Rule Subsystem, ONF. [Online]. Available: https://wiki.
onosproject.org/display/ONOS/Flow+Rule+Subsystem.

[84] I. Eroshkin, Save Flow Rules patch, Nov. 2019. [Online]. Available: https : / /
gerrit.onosproject.org/#/c/22816/.

[85] ——, Cli command to manage XCs on ROADM, Nokia Bell Labs, Oct. 2019. [On-
line]. Available: https://gerrit.onosproject.org/#/c/22750/.

[86] ——, (Contribution) PowerConfig capability for Nokia’s Optical Transponder, Nokia
Bell Labs, Oct. 2019. [Online]. Available: https://gerrit.onosproject.org/#/
c/22722/.

[87] ——, NokiaAlarmConfig interface, Nokia Bell Labs, Dec. 2019. [Online]. Available:
https://gerrit.onosproject.org/#/c/22870/.

[88] I. Eroshkin and D. Verchere, Alarm Correlation application, Nokia Bell Labs, Nov.
2019. [Online]. Available: https://github.com/eroshiva/Alarm-Correlation-
App-Sample.

[89] Openconfig-alarms.yang. [Online]. Available: https://github.com/openconfig/
public/blob/master/release/models/system/openconfig-alarms.yang.

[90] Openconfig-alarm-types.yang. [Online]. Available: https://github.com/openconfig/
public/blob/master/release/models/system/openconfig- alarm- types.
yang.

[91] H. Okui, ODTN Phase 1.0 Demo (at NTTCom Lab), ONOS project, May 2019.
[Online]. Available: https://wiki.onosproject.org/pages/viewpage.action?
pageId=23335851.

[92] I. Eroshkin, Contributions, Nokia Bell Labs, 2019. [Online]. Available: https:
//gerrit.onosproject.org/#/q/owner:Ivan+Eroshkin.

[93] ——, Optical UI patch, Nokia Bell Labs, Aug. 2019. [Online]. Available: https:
//gerrit.onosproject.org/#/c/22501/.

[94] ——, AlarmConfig patch, Nokia Bell Labs, Nov. 2019. [Online]. Available: https:
//gerrit.onosproject.org/#/c/22806/.

https://en.wikipedia.org/wiki/Wavelength_selective_switching
https://en.wikipedia.org/wiki/Wavelength_selective_switching
https://www.researchgate.net/figure/Principle-of-the-2D-MEMS-switching_fig2_309168203
https://www.researchgate.net/figure/Principle-of-the-2D-MEMS-switching_fig2_309168203
https://www.researchgate.net/figure/Principle-of-the-2D-MEMS-switching_fig2_309168203
https://www.fujitsu.com/us/Images/Fujitsu-NG-ROADM.pdf
https://www.fujitsu.com/us/Images/Fujitsu-NG-ROADM.pdf
https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
https://www.nokia.com/networks/products/1830-photonic-service-interconnect/#overview
https://www.nokia.com/networks/products/1830-photonic-service-interconnect/#overview
https://www.nokia.com/networks/products/1830-photonic-service-interconnect/#overview
https://www.nokia.com/networks/products/1830-photonic-service-switch/#overview
https://www.nokia.com/networks/products/1830-photonic-service-switch/#overview
https://gerrit.onosproject.org/#/q/owner:dsudeep%2540palcnetworks.com+status:open
https://gerrit.onosproject.org/#/q/owner:dsudeep%2540palcnetworks.com+status:open
https://gerrit.onosproject.org/#/q/owner:dsudeep%2540palcnetworks.com+status:open
https://github.com/opennetworkinglab/onos/blob/master/drivers/odtn-driver/src/main/resources/odtn-drivers.xml
https://github.com/opennetworkinglab/onos/blob/master/drivers/odtn-driver/src/main/resources/odtn-drivers.xml
https://github.com/opennetworkinglab/onos/blob/master/drivers/odtn-driver/src/main/resources/odtn-drivers.xml
https://wiki.onosproject.org/display/ONOS/Flow+Rule+Subsystem
https://wiki.onosproject.org/display/ONOS/Flow+Rule+Subsystem
https://gerrit.onosproject.org/#/c/22816/
https://gerrit.onosproject.org/#/c/22816/
https://gerrit.onosproject.org/#/c/22750/
https://gerrit.onosproject.org/#/c/22722/
https://gerrit.onosproject.org/#/c/22722/
https://gerrit.onosproject.org/#/c/22870/
https://github.com/eroshiva/Alarm-Correlation-App-Sample
https://github.com/eroshiva/Alarm-Correlation-App-Sample
https://github.com/openconfig/public/blob/master/release/models/system/openconfig-alarms.yang
https://github.com/openconfig/public/blob/master/release/models/system/openconfig-alarms.yang
https://github.com/openconfig/public/blob/master/release/models/system/openconfig-alarm-types.yang
https://github.com/openconfig/public/blob/master/release/models/system/openconfig-alarm-types.yang
https://github.com/openconfig/public/blob/master/release/models/system/openconfig-alarm-types.yang
https://wiki.onosproject.org/pages/viewpage.action?pageId=23335851
https://wiki.onosproject.org/pages/viewpage.action?pageId=23335851
https://gerrit.onosproject.org/#/q/owner:Ivan+Eroshkin
https://gerrit.onosproject.org/#/q/owner:Ivan+Eroshkin
https://gerrit.onosproject.org/#/c/22501/
https://gerrit.onosproject.org/#/c/22501/
https://gerrit.onosproject.org/#/c/22806/
https://gerrit.onosproject.org/#/c/22806/

[95] Architectural framework for machine learning in future networks including IMT-2020,
International Telecommunication Union, Jun. 2019. [Online]. Available: https:
//www.itu.int/rec/T-REC-Y.3172/en.

[96] openconfig-platform.yang, OpenConfig Working Group. [Online]. Available: https:
//github.com/openconfig/public/blob/master/release/models/platform/
openconfig-platform.yang.

[97] openconfig-platform-types.yang, OpenConfig Working Group. [Online]. Available:
https://github.com/openconfig/public/blob/master/release/models/
platform/openconfig-platform-types.yang.

[98] openconfig-platform-linecard.yang, OpenConfig Working Group. [Online]. Avail-
able: https : / / github . com / openconfig / public / blob / master / release /
models/platform/openconfig-platform-linecard.yang.

[99] openconfig-platform-port.yang, OpenConfig Working Group. [Online]. Available:
https://github.com/openconfig/public/blob/master/release/models/
platform/openconfig-platform-port.yang.

[100] openconfig-platform-transceiver.yang, OpenConfig Working Group. [Online]. Avail-
able: https : / / github . com / openconfig / public / blob / master / release /
models/platform/openconfig-platform-transceiver.yang.

[101] openconfig-platform-ext.yang, OpenConfig Working Group. [Online]. Available:
https://github.com/openconfig/public/blob/master/release/models/
platform/openconfig-platform-ext.yang.

[102] openconfig-terminal-device.yang, OpenConfig Working Group. [Online]. Available:
https://github.com/openconfig/public/blob/master/release/models/
optical-transport/openconfig-terminal-device.yang.

[103] openconfig-transport-types.yang, OpenConfig Working Group. [Online]. Available:
https://github.com/openconfig/public/blob/master/release/models/
optical-transport/openconfig-transport-types.yang.

[104] openconfig-transport-line-common.yang, OpenConfig Working Group. [Online]. Avail-
able: https : / / github . com / openconfig / public / blob / master / release /
models/optical-transport/openconfig-transport-line-common.yang.

[105] openconfig-transport-line-connectivity.yang, OpenConfig Working Group. [Online].
Available: https://github.com/openconfig/public/blob/master/release/
models/optical- transport/openconfig- transport- line- connectivity.
yang.

[106] openconfig-optical-amplifier.yang, OpenConfig Working Group. [Online]. Avail-
able: https : / / github . com / openconfig / public / blob / master / release /
models/optical-transport/openconfig-optical-amplifier.yang.

[107] openconfig-wavelength-router.yang, OpenConfig Working Group. [Online]. Avail-
able: https : / / github . com / openconfig / public / blob / master / release /
models/optical-transport/openconfig-wavelength-router.yang.

[108] openconfig-channel-monitor.yang, OpenConfig Working Group. [Online]. Available:
https://github.com/openconfig/public/blob/master/release/models/
optical-transport/openconfig-channel-monitor.yang.

https://www.itu.int/rec/T-REC-Y.3172/en
https://www.itu.int/rec/T-REC-Y.3172/en
https://github.com/openconfig/public/blob/master/release/models/platform/openconfig-platform.yang
https://github.com/openconfig/public/blob/master/release/models/platform/openconfig-platform.yang
https://github.com/openconfig/public/blob/master/release/models/platform/openconfig-platform.yang
https://github.com/openconfig/public/blob/master/release/models/platform/openconfig-platform-types.yang
https://github.com/openconfig/public/blob/master/release/models/platform/openconfig-platform-types.yang
https://github.com/openconfig/public/blob/master/release/models/platform/openconfig-platform-linecard.yang
https://github.com/openconfig/public/blob/master/release/models/platform/openconfig-platform-linecard.yang
https://github.com/openconfig/public/blob/master/release/models/platform/openconfig-platform-port.yang
https://github.com/openconfig/public/blob/master/release/models/platform/openconfig-platform-port.yang
https://github.com/openconfig/public/blob/master/release/models/platform/openconfig-platform-transceiver.yang
https://github.com/openconfig/public/blob/master/release/models/platform/openconfig-platform-transceiver.yang
https://github.com/openconfig/public/blob/master/release/models/platform/openconfig-platform-ext.yang
https://github.com/openconfig/public/blob/master/release/models/platform/openconfig-platform-ext.yang
https://github.com/openconfig/public/blob/master/release/models/optical-transport/openconfig-terminal-device.yang
https://github.com/openconfig/public/blob/master/release/models/optical-transport/openconfig-terminal-device.yang
https://github.com/openconfig/public/blob/master/release/models/optical-transport/openconfig-transport-types.yang
https://github.com/openconfig/public/blob/master/release/models/optical-transport/openconfig-transport-types.yang
https://github.com/openconfig/public/blob/master/release/models/optical-transport/openconfig-transport-line-common.yang
https://github.com/openconfig/public/blob/master/release/models/optical-transport/openconfig-transport-line-common.yang
https://github.com/openconfig/public/blob/master/release/models/optical-transport/openconfig-transport-line-connectivity.yang
https://github.com/openconfig/public/blob/master/release/models/optical-transport/openconfig-transport-line-connectivity.yang
https://github.com/openconfig/public/blob/master/release/models/optical-transport/openconfig-transport-line-connectivity.yang
https://github.com/openconfig/public/blob/master/release/models/optical-transport/openconfig-optical-amplifier.yang
https://github.com/openconfig/public/blob/master/release/models/optical-transport/openconfig-optical-amplifier.yang
https://github.com/openconfig/public/blob/master/release/models/optical-transport/openconfig-wavelength-router.yang
https://github.com/openconfig/public/blob/master/release/models/optical-transport/openconfig-wavelength-router.yang
https://github.com/openconfig/public/blob/master/release/models/optical-transport/openconfig-channel-monitor.yang
https://github.com/openconfig/public/blob/master/release/models/optical-transport/openconfig-channel-monitor.yang

