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Abstract

This thesis deals with design and imple-
mentation of a module, for sky-light sim-
ulation, which can be used in system
VRUT. Furthermore, it focuses on im-
plementation of a standalone application
which supports aerial perspective for sky-
light simulation.
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Abstrakt

Tato bakalarska prace se zabyva navrhem
a implementaci modulu pro simulaci ob-
lohy, ktery muze byt pouzit v systému
VRUT. Préce se dédle zaméruje na imple-
mentaci samostatné aplikace, ktera pod-
poruje vzdusnou perspektivu pfi simulaci
oblohy.
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Chapter 1

Introduction

The sky is a big part of every realistic outdoor scene, and it is usually the
first thing that makes an impression on a viewer (see Figure . Therefore
it should behave and look as the observer would expect, and do not create
the sensation of disbelief.

Figure 1.1: Reference photographs of the sky and atmosphere[NAS].

In computer graphics there are two popular methods to render the skydome.
The first method would be via a fixed environment map, which might be a
photograph or a hand-drawn image. Even though this method can be visually
pleasing, it also has drawbacks. The main problem is the used image can not
be changed if someone decides the sun should be a little bit higher or lower.
The more flexible approach is to use a skylight model where the parameters
of the sky, for example air turbidity or position of the sun, can be specified
(see Figure [1.2). Existing skylight models vary in computation complexity
and may not be feasible for real-time applications, but some models make
simplifying assumptions to be viable for real-time rendering. This work
focuses on those skylight models that can be computed in real-time.
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Figure 1.2: Sample images generated by implemented models a) Hosek-Wilkie
model b) Bruneton model.

B 1.1 Goal

The first goal of this project was to implement an skylight model as a module
for a system VRUT which is a abbreviation of Virtual Reality universal toolkit.
The second goal was to design and implement a standalone application with a
skylight model that supports an aerial perspective. There are plenty of models
that achieve a realistic sky and are rendered continuously in real-time [Brul7].
This work covers two of those models, which seemed the most promising
for its goals. These two models are Lukas Hosek’s and Aleksander Wilkie’s
model for Full Spectral Sky-Dome Radiance [HW12], and Eric Bruneton’s
model of precomputed atmospheric scattering[BN0O8]. Before description
of the implantation of these models can be made, it is important to first
describe how these models function and also define the clear sky model
from which they are derived in the chapter . Then in chapters and
are described the implementation details of the VRUT module and the
standalone application, respectively. Last but not least, the results of the
implementations are discussed in the chapter @



Chapter 2

Skylight Models

This chapter goes over the theory behind skylight models, but first it is
necessery to define a few basic terms from radiometry, such as radiance,
irradiance, and transmittance. It is also important to define light scattering
and its two types, Rayleigh and Mie scattering. Then using these terms,
a physical model (2.1), on which each of the models that follow is based
on, can be described; however, each of them makes different assumptions to
simplify it to be more feasible for real-time rendering. Last but not least,
using the gathered knowledge, Hosek-Wilkie and Bruneton model are covered
in sections (2.2) and (2.3), respectively.

As mentioned above, few basic terms from radiometry need to be defined.
The first one is radiance L, defined as the quantity of radiation [W] emitted
by a surface [m?] while falling within a solid angle of [sr]. In other words, its
the total amount of energy emitted, received, transmitted by a surface, per
unit area, per unit solid angle. Its unit is [W - m~2 - sr~1]. Spectral radiance
L) describes radiance as a function of wavelength. This means that for certain
wavelength intervals, the total amount of radiation is given for all wavelengths
in that interval. Spectral radiance is denoted as [W -m~2 - sr=! . nm=1].
Irradiance £ is defined as the quantity of radiation received per unit area
[W - m~2]. Similarly to spectral radiance the spectral irradiance has unit
(W - m=2.nm~!] [Koll2]. Finally, the transmittance T is the material’s
effectiveness in transferring radiation. In other words, it describes energy loss
by absorption or scattering of the passing light through a material.

When light rays pass through a medium, they can collide with the medium’s
particles in such a way that their direction becomes altered. This physical
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2. Skylight Models

phenomenon is called scattering. If the light scatters only once then it is
called single scattering. However, the light can also bounce between the
medium’s particles more than once before it finally escapes the medium. In
this case, it is called multiple scattering (See Figure [2.1). The scattering

single scattering multiple scattering

Figure 2.1: Comparison between single and multiple scattering [YYCMO6].

has two main types that are the most prevalent. The first one is called the
Rayleigh scattering. It is a type of elastic scattering, which means that the
light does not lose energy in the scattering process. In other words, the light
might change direction after being scattered, but energy remains constant.
Elastic scattering is, of course, an idealistic idea since the light’s energy
changes, but the energy loss is so small that it can be neglected. Rayleigh
scattering describes how the light is scattered by particles smaller than the
light’s wavelength A. Since it is symmetrical around the axis of incoming
light, it is not anisotropic, in other words its not dependant on the light’s
direction. The other type of scattering is called the Mie scattering. This

Rayleigh Scattering Mie Scattering Mie Scattering,

Direction of incident light

Figure 2.2: Difference in directional dependency of the Mie and the Rayleigh
scattering [Nav].

type of scattering is caused by particles of the same or larger size than the
light wavelength. In contrast to the Rayleigh scattering, the Mie scattering is
highly anisotropic (see Figure [2.2)[Kol12].
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2.1. Physical Model

B 21 Physical Model

In CG, the most widely used physical model of the atmosphere is the clear-
sky model. The atmosphere, in the model, is described as a thin spherical
layer of decreasing density containing only two components, air molecules
and aerosol particles. The distribution of these particles is not uniform,
but since the atmosphere is spherical, density can be determined by height
r. The atmospheric layer that envelops the Earth starts at the sea level
R, = 6360km and ends approximately at the height of the stratosphere
R; = 6420km [BNO§|. At each point of the atmosphere, light is scattered by
air molecules and aerosol particles from its incidental direction by an angle
0. The amount of the scattered or absorbed light is given by a product of
scattering coefficient 5° and a phase function P. The scattering coefficient
8% gives us the fractional rate in the transmission of radiation through a
scattering medium and depends on the particle density of the medium [BNOS].
Phase function P determines how much radiation is scattered in a particular
direction by a particle. For air molecules which are smaller than a wavelength
of light the scattering coefficient 8% and the Rayleigh phase function (see
Figure [2.3)) are given by the Rayleigh theory as [BNOS§]:

Pr(0) = 16777(1 + cos?(0)) (2.1)
Bm2_1)2
B(h, \) = we e (2.2)

where 0 is a scattering angle from light’s incidental direction, h = r — R, is

Phase Function, P(6)
90°

Incident Light W

270"

Figure 2.3: Rayleigh phase function for scattering angle 6.

the altitude, A\ is wavelength of light, n is the index of refraction of air, N
the molecular density at sea level Ry, and Hg = 8km is a thickness of the
part of the atmosphere that is affected by the Rayleigh scattering if it was
uniform. On the other hand, aerosol particles are big enough to be affected

5



2. Skylight Models

by the Mie scattering. Therefore their phase function Py is given by the Mie
theory, approximated by the Cornette-Shanks phase function (see Figure

as [BNOg]:
3 (1= ¢*)(1 + cos?(9))

8T (24 ¢2)(1+ g2 — 2gcos(6))?

B3y (h N) = B3,(0, e ™7 (2.4)

where g € (—1,1) is an asymmetry factor denoting the width of the forward

Par(9) (2.3)

IllIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
IllIILIIIIIIIIIIIIIIIIllllIIllIIIIIIIII

Figure 2.4: The Mie phase function consists of multiple lobes. Prevalence of
these lobes is given by the size of the scattering particle.

lobe (see Figure , Hjy; ~ 1.2km is a height scale of aerosol particles within
the atmosphere with exponentially decreasing density. The final portion of
scattered and absorbed light at each point of the atmosphere is given by the
sum of products of phase functions and extinction coefficients[BNOS].

PrB% + Pufiy (2.5)

Where 3% and 3%, are extinction coefficients. For small particles that are
affected by the Rayleigh scattering, can be said that 8% is equal to 3%, since
light scattered by the Rayleigh scattering does not lose energy. However,
because the Mie scattering’s behavior is not elastic, it is crucial to introduce
an absorption coefficient of 3, to 55, which would lead to following|[BNOS]:

B = B + By (2.6)

B 2.1.1 Rendering equation

Now with the defined atmosphere, and how light is scattered and absorbed
within it, the rendering equations to obtain light’s radiance values at each
point of the atmosphere can be defined. Note that light can also bounce off
the ground, which can be modeled as a Lambertian surface with height field

6



2.1. Physical Model

of reflectance ax(x, A) and normal n(x). For the following rendering equations
note that L(x,v,s) is the radiance of light reaching point x from direction
v and with sun’s direction s. The extremity of a ray xo(x,v) with origin
in x and direction v. Where xq is either located on the ground R, or at
the top of the atmosphere boundary R;. T'(x,X¢) describes transmittance of
atmosphere between points x and xo. Z(Xg, s) is the radiance of light reflected
from point xg with sun’s direction s. J(y,v,s) is radiance of light at height
y in direction —v and sun’s direction s. Values for each of the mentioned
terms are given by equations bellow [BNOS]:

T(x,x0) = exp(— /xo Z B (y)dy) (2.7)

X ie{R,M}

0 top of the atmosphere
I[L] (XO, S) = {a(xo)

=2 [or L(x0, w, s)w - n(xg)dw otherwise
(2.8)

T[L)(y,v,5) A Y BWRE-w)Lly,ws)d  (29)

i1€{R,M}

Using introduced notations the rendering equations for obtaining radiance
values are defined as [BNOS§]:

L(x,v,s) = (Lo + R[L] + S[L])(x,V,s) (2.10)
B T(x,%x0)Lsun otherwise
Lotx,v,s) = {O v # s or Sun is occluded (2.11)
R[L|(x,v,s) = T(x,x0)Z[L](x0,s) (2.12)
S[L](x,v,s) = :0 T(x,y)T(L](y, v, s)dy (2.13)

where Lg is the direct sunlight Lg,, attenuated by T', R is the light reflected
at xg attenuated by T before reaching x, S is the portion of light between x
and x( which scattered towards x (see Figure 2.5 .

Figure 2.5: Visual representations of all the defined rendering equations [BNOS§]



2. Skylight Models

As can be seen the equation [2.10|is very complex to solve, and therefore not
suitable for real-time rendering. For this reason, many analytical assumptions
have been made to simplify it. One of these assumptions, which is also the
most widely used by real-time applications, is to ignore multiple scattering.
With only single scattering in mind, the equation |2.10, would be reduced into
the equation bellow [BNOS|:

L = Lo + R[Lo] + S[Lo] (2.14)

However, this still leaves us with a problem that S[Lg] is also too complicated
to solve. Therefore some analytical models proposed further simplifications,
such as flat earth with constant atmosphere density or without the Mie
scattering, to tackle this problem. These simplifications, however, come at
a price of idealization. For example, the flat earth hypothesis limits the
observer only to the ground level [HW12]. A popular method in CG is to use
an analytical formula in which parameters are fitted to externally obtained
reference data. This kind of method is usually low cost, thus ideal for real-
time. Another general approach to solve S[Ly]| is to use numerical integration
with the use of low sampling [O’NO5].

B 2.2 Hosek-Wilkie Model

The Hosek and Wilkie’s model [HW12] is an example of an analytical approach
for solving the physical model assuming only single scattering and flat earth
hypothesis. The model is inspired by an already existing Preetham model
[AJP99], which it tries to improve. To develop such a model, they first needed
reference data. Thus they created a brute force path tracer that simulates
interactions between particles in the atmosphere and light. Then they used
the path tracer to generate a large number of reference images of the sky-dome
for different atmospheric conditions (see Figure 2.6). With access to reference
data and the knowledge of how Perez formula, which is the core of Preetham’s
model [AJP99], is derived, they devised an extended Perez formula and fitted
the distribution parameters to the reference data.

B 2.2.1 Calculating spectral radiance

The core of the Hosek-Wilkie model is an extended Perez formula with
included anisotropic term y, which places a localized glow around solar point.
This anisotropic term used is to simulate the zero-order glow of the Mie
scattering, which produces a phenomenon called circumsolar ring (see Figure

8



2.2. Hosek-Wilkie Model

0O
IO

Figure 2.6: Three comparison images between actual photose and results of the
Hosek-Wilkie brute force path tracer [HW12]

r“‘-

Figure 2.7: Comparison between actual photo of circumsolar ring (aureole) and
result of of the Hosek-Wilkie model[Kol12]

2.7). Extended Perez formula and anisotropic term y are defined bellow

[HW12].
F(0,~) = (1+A€COS€EO~01)(C+D€E7+FCOS2’}/—|—GX(H, 7)—1—1008%9) (2.15)

1+ cos’a

1+ g2 —2g- cosa

x(g, ) = (2.16)

The original Perez formula which served as base for the previusly defined
extended model is given by [HW12]:

Fpere-(0,7) = (14 AeB/39)(1 4 CePY + E cos®v) (2.17)

where 6 is the zenith view angle, v is the angle formed by viewing ray and
solar point. Parameters A through I are distribution coefficients to tune
the luminance distribution and do not directly translate to any physical
quantities.

Note that coefficient C has replaced the value of 1 in the second parenthesize.
This is to obtain absolute luminance values at zenith instead of relative ones,
since they decided, as opposed to the Preetham model, not to normalize
against zenith luminance. The decision not to normalize by zenith luminance

9



2. Skylight Models

is due to a complication that arose, with the inclusion of the anisotropic term,
when they tried to do it. Instead, they decided to multiply the result by the
expected value of spectral radiance. The final value of the spectral radiance
is calculated as follows [HW12]:

Ly = F(0,7) - Lux (2.18)

where Ljsy is an expected value of spectral radiance in a point randomly
selected in the upper hemisphere with uniform distribution.

Radiance distribution parameters A through I in Hosek-Wilkie’s extended
formula are calculated using bezier curves, as opposed to Preetham’s linear
function of turbidity. Thus they provide a four dimensional table (10x2x9x6)

M? of values MT.apec - for each integer values of turbidities 7" € {1,...,10},
two values of albedo o € {0, 1} and nine distribution parameters p € {1,...,9}
there is total of six controls points ¢ € {1,...,6} of a bezier curve. The

resulting vector of distributional parameters A through I is calculated as
follows [HW12]:

A A

Vp = Map (1= z)"+
m%a’pg -5z(l — x)4+
1 s - 1023(1 — )+ 210

A o - 1023(1 — 2)2+ '

MTa,p4 - VT x

mé\“,a,pﬁ : 5‘T4(1 - x)l

A 5
MTap6 T

where z is the solar elevation normalized to an interval [0,1] as:

xTr =

w
)

The reason for the cube root is to spread the values more evenly along
the interpolation interval since most of the changes in radiance distribution
pattern happen abruptly at low solar elevations.

The expected value of spectral radiance Ly is calculated similarly as
distribution parameters; the only difference being that the result is a single
value. This means there is a three dimensional (10 x 2 x 6) table R* of values
rT,a,c for which the same quantic bezier interpolation is used to obtain a
single value of L.

10



2.3. Bruneton Model

B 2.2.2 Limitations and Complexity

The Hosek-Wilkie model limits the observer to the ground since the analytical
formulas were fitted only for views at the ground level. Another limitation
of the model is that it supports only the sun’s directions above the horizon.
The reason being that it would need a different analytical model since the
sky radiance pattern is significantly different at sunrise or sunset than during
the day.

Time and memory complexity to render a pixel is O(1). There is no
precomputation phase if a user wants to use the provided radiance data.
However, it is needed to recompute the sky radiance for many views, sun
directions, and perform a new nonlinear fitting, if one wants to change
atmospheric parameters [Brul7].

B 2.3 Bruneton Model

In contrast to the previously described model, which uses externally obtained
reference data for fitting distributional coefficients inside an analytical formula,
the Bruneton method [BNOS] is to solve equation (2.10) directly. This is done
via a precomputation phase, where the model tries to precompute equation
(2.10) as much as possible, with minimal approximations or idealism. Zero
and single scatterings are computed precisely; however, multiple scattering is
only approximated by a perfect sphere of constant reflectance to allow for
mentioned precomputations.

First, since it is assumed the ground is a perfect sphere it is important to
define notations L', Lj,L.,,.,Py, Pr, R, S, T', J', £, o, x|, as spherical
approximations of their counterparts from (2.1). Also because of our spherical
approximations a position x and a direction v can be reduced to an altitude
r and a view zenith angle . Sun direction s can be also mapped to spherical
coordinates ps and v. With the defined notations the functions that depend
on x,v,s can be expressed only by four parameters r, u, us and v, where

each value is given by following parametrization:

r=||z|| (2.20)
z-v

= — 2.21

p=— (2.21)
TS

pe=8 (2.22)
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vV=1-S§ (2.23)

The main idea behind the precomputation phase and its algorithm (see
algorithm (0 is that the radiance value L can be express with a series in the
linear operators R and S as:

L =1Ly+ (R+S)[Lo]+ (R+ S)[(R+ S)[LO]] + ...
:L0+L1—|—L2—|—...

n
=1

:L0+L*

(2.24)

where each L; is the contribution of light reflected and/or scattered exactly i
times. R is for Ly computed exactly during rendering using equation (2.12),
S on the other hand is more complicated since it is an integral between x
and xg, but due to the oclusion term in Lg, the integral is null at all points y
that are in shadow. Using this fact it can be assumed that these points are
between x; and x, which means we can ignore the occlusion. Therefore the
integral can be reduced to lit segment [x,x;]. Thus S[Lg] can be computed
as S[Lo] = [X° TTLy) = [X°TILy] — [ TILy], which can be rewritten
as a equation of two precomputed functions 7" and S’[Lj] [BNO§]:

S[Lo|(x,v,s) = S'[Ly)(x,v,s) — T'(x,xs)S"[ L) (xs, v, S) (2.25)

For multiple scattering it is more difficult to account for occlusion in the
terms Lo + L3 + ... + L, = R[L.] + S[L,|. Fortunately effects of the multiple
scattering are small compared to the single scattering during the day, and
the contribution of the ground is small when it’s not directly lit by the sun
[BNOS]. Therefore Bruneton proposes to approximate occlusion effects in
S[L4] by integrating the multiple scattering contributions, without occlusion,
between x and x,. This gives positive and negative bias. The approximation
of S[L.] gives S[L.] ~ [}* T J[L.]. R[L.] approximates occlusion effects with
the ambient occlusion of horizontal hemisphere due to the ground’s tangent
plane, 100" This gives R[L.] ~ R[L,] with [BN0S]:

a(xg) 14 n(xg) - n’(xq)
T 2

£ (x0,5) = {(ff s b (2.27)

R[L.] = T(x,x0) E'[L](x0,s) (2.26)

Finally using this idea the result of the algorithm (0)) are three tables T,
E and S. Table T, which after our previous parametrization depends on
altitude r and view zenith angle pu, stores transmittance T"(r, u) for all r and
u. Because T'(r, u) corresponds to T'(x,xo(x,Vv)) the following identity needs
to be used in order to compute the transmittance between two points x and
y.

T'(ry, pia)
T'(ra, pa)

12

T(x,y) = (2.28)



2.3. Bruneton Model

where 7, and u, are calculated using equations |2.20 and |2.21| respectively. 74
and pg are given by formula:

Ty = \/d2 + 2dpgry + 12 (2.29)
d
g = Lk T (2.30)
Td

Note that d is simply the distance between points x and y. The table [E holds
the accumulated irradiance £'(r, us, v) of all scattering orders. The value of
irradiance for each scattering order is given by evaluating the equation [2.27.
Last but not least the third table S stores the scattering values S’(r, u, ps, ).
To precompute E and S the algorithm uses three intermediate tables AF,
AS and AJ containing after each iteration ¢ E'[L}], S'[L}] and J'[L}]. At the
end of each iteration AE and AS are added to the result tables E and S (see
algorithm (0).

Algorithm 1 Precompute(norgers)

Input:

A ... Atmospheric Parameters
Output:

S ...Multiple scattering table
E ...Irradiance table

T ... Transmittance table

T(r, p1) < T'(r, p);

AE(r, ps,v) < E'[Ly)(r, us, )
AS(Tv s sy V) A S/[L6] (Tv My s, V)
E(r,u) <0

S(r, g, s, v) < AS(r, 1, s, v)

for (Z —1toi < norde?"s) do

A(r, p, pis,v) = J'[T%AE + AS|(r, 1, 1, v)

AE(r, s, v) + 8’[T%AE + AS](r, ps,v) = E'NAS|(r, s, )
AS(7, s pis, v) = [0 T (@, y) AI(| |yl s ps, v)dy

E(r, ps,v) = E(r, s, v) + AE(r, s, 1)

S(r, p, prs, v) <= S(r, p, pis, v) + AS(r, p, s, v)

To store values into our N dimension tables, a special mapping between
coordinates and their physical counterparts is needed. For tables T and E
which depend only on r and y, a naive mapping of normalizing the values r
and g into a table of indices in [0,1]? is sufficient. However, for S an issue
arises with mapping from (r, s, its, v) into a table indices in [0, 1]. With the
usage of the simple mapping, a problem of rapidly growing memory usage
would appear, because of the high resolutions needed for u to get a good
sampling for aerial perspective. Lower resolutions for p would result in visible
artifacts, especially near the horizon. To avoid this problem and better exploit

13



2. Skylight Models

the range of possible values, Bruneton proposes the mapping bellow [BNOS|:

Uy = % (2.31)
" %4—% ifru < Oand A >0 (2.32)
: % — ngi QFAQJ;{Z otherwise
1 — e—31s—06
1
uy = 10 (2.34)
2
where

p=|r — Ryl (2.35)
H =R~ Ry (2:36)
A=7r*u®—p (2.37)

Furthermore, to save space, Bruneton proposes storing the red value of the
Mie scattering into the alpha channel of S. To approximate the rest of the
values of the the Mie scattering using the red channel the formula below is
used [BNOS].

SM,T /BI%,T @
SR’ r ﬂ]‘?/[,r 5]?/[

Finally, to obtain the radiance values to render the sky and aerial perspective,
equations bellow are evaluated for each pixel.

SM ~ SR (2.38)

L~ Lo+ R[Lo] + R[L,] + S'[L]jx — T(x,%,)S'[L]x, (2.39)

Where x is a camera position, x; depends on terrain shadows and gives
light shafts. Lg is computed as in (2.11) using only precomputed values of
transmittance from table T. Computing R[L{] requires transmittance table
T, a(xp) and n(xg) and a shadow test to determine if x¢ is lit. Lastly to
compute R[L,] and S'[L');, = S'[L'](x,v,s) the irradiance table E and the
scattering table S are used.

The model is also able to generate light shafts but since this thesis focuses
only on the sky the algorithm to do so will not be covered. The algorithm
can be found in the original paper [BNOS§].

B 2.3.1 Limitations and Complexity

In contrast to the Hosek-Wilkie model, the Bruneton model supports all
viewing positions from the ground to space. Its main limitation, which
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2.3. Bruneton Model

authors want to remove in the future, is rooted in the dependency on the
clear-sky model. Since the model assumes homogeneous particle density in
the atmosphere, dependent only on the distance from the Earth center, it is
not affected by clouds or other pollution in the atmosphere.

Time and memory complexity to render a pixel is O(1). However Pre-
computation phase involves computing integral over all ng x ng directions
for every cell of the 4D table AJ, yielding a O(n,n,n,,n,,neng) memory
complexity, and O(n,ngn,,n,) time complexity [Brulf].
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Chapter 3

Skylight model for system VRUT

Virtual reality universal toolkit or VRUT for short was created
in collaboration with the department of computer graphics and interaction
CVUT FEL, and Skoda Auto. It is a universal flexible tool for working
with graphical data. The core application serves as a link between multiple,
relatively independent modules. These modules can assign different tasks
regarding displaying or other functionalities over graphical data and thus
extend the functionality of the application as a whole. The communication
between modules is handled via messages which are distributed by the VRUT’s
kernel. One of the assignments for this project was to extend the library of
these modules by one that helps to bring more realism into scenes created in
VRUT through one of the existing skylight models.

DEEE-EEEESEECERERREE BEE & AEERRARE

pppppp

Figure 3.1: VRUT’s graphical interface with DynamicSkylight module enabled
for turbidity 7' = 3 and albedo o = 0.1.
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3. Skylight model for system VRUT

B 31 Implemenatation Design

Skylight model for system VRUT had to be computed in real-time, preferably
without any precomputations. Also, since a viewer in a scene is limited to the
ground, the picked model did not have to support an aerial perspective. This
fact led to the decision to implement the Hosek-Wilkie model , which
supports only the ground perspective and has computation complexity to
render a pixel O(1) with no precomputations.

65535 (NoneScene) ~

Properties

enabled

turbidity

albedo

Date |

Time

Speed

Longitude

LT

Latitude

Meridian

Light Colering

enabled O

Figure 3.2: Graphical user interface (GUI) of the implemented module.

The skylight model is implemented into the system VRUT as a module
with a graphical user interface. The GUI gives a user the freedom to choose
the time of the day, speed of elapsing time, GPS coordinates of the scene, and
tweak parameters of the Hosek-Wilkie model, such as turbidity and ground
albedo (see Figure .The choice of light coloring is also included, which
sets the color of the directional light, that would be the scene’s sun, to the
computed color of the sun by the extended Perez formula.

18



3.2. Calculation of sun position

B 3.2 Calculation of sun position

Figure 3.3: Coordinate system used for implementing Hosek-Wilkie model
[ATP99].

One of the requirements for our module was to be able to automatically
determine the sun’s position based on observers selected GPS coordinates,
date, and the time of the day. To do that, the sun’s position can defined by
two angles, the sun’s altitude 65 and azimuth ¢s. Values of these angles are
obtained in radians by evaluation following equations [AJP99]:

t
0s = g — arcsin(sinXy - sind — cos Xy - coso - cos—q;) (3.1)
—c0s6 - sinTLs
= arctan 1 3.9
b (cosX¢ - 81nd — sinXy - coso - cos qt; ) (32)
J—81

§ = 0.4093 - sin(2 .
0.4093 - sin(2m 368 ) (3.3)

where X is latitude, ¢, is true solar time and ¢ solar declination. True solar
time can be obtained using user inputted local time t,,, date which is then
internally converted into Julian calendar, longitude X, and lastly SM is
standard meridian which determines the timezone.

J —80 J—38 SM — X,

—0.129 - sin(2 12
373 ) sin(2m=e=) + p

ts = tm + 0.170 - sin(4.0m

GPS parameters and standard meridian are put into the formula in radians,
but for ease of use the GUI takes parameters in degrees.

During testing, a flaw with the above formula was revealed when the
azimuth reaches its limit on the interval [0, 7]. When this event happens, the
azimuth jumps to the other side of the range, even though the altitude still

19



3. Skylight model for system VRUT

has not reached the horizon, which leads to an error in the sun position. This
error is, of course, an issue; however, solving this problem would most likely
require a different formula for calculation of solar angles.

Date

Local Time —l_>
Sun Position Calculation

Time Zone —————————

GPS —,_>

" la——  Turbidity
| Improved Perez Coeficients an Lookup Tables and
Formula expected values * Bezier polynomial
[<¢—— Albedo

Figure 3.4: The rendering pipeline of the Hosek-Wilkie model.

—————— Solar altitude and azimuth

B 33 Implementation details

Since system VRUT can be run on machines with or without a graphics card,
the module runs purely on CPU with sequential rendering. The plan was to
also make use of the OpenGL library for drawing the environmental map,
however that would require create a new rendering pass inside the VRUT.
Beause of this fact , it was decided that the VRUT implementation would
only use the pure CPU rendering and the rendering using OpenGL would be
part of the standalone application.

First, the implementation has the whole pipeline implemented inside a
single class, DynamicSkyLight. The calculation is done in three stages (see
Figure . Firstly the solar angles are calculated using the formulas from
, which returns a vector of two elements, the sun’s altitude, and azimuth.
Then using the provided tables of spectral radiance, coefficients A through 1
and the expected value of spectral radiance L,y are calculated as in formula
. For each side of the cube map, the previously acquired values are
used to determine the value of the extended Perez formula at each pixel.
After the cube map is drawn, it is sent to the scene to replace a previous one.
The module also proceeds to update the background’s material to alert the
SceneManager that a change was made. Also, if enabled, the module uses the
Perez formula to acquire the sun’s color, which is then used as a diffuse color
for directional light (see Figure . The CPU version produces six images
of a cube environment map on each draw call. Each side of the cube map has
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3.3. Implementation details

SkyLight Module

Scene
w0 |
————»| Run()
[ o ]

vtQueueEmpty(
o © o
Yes

Recalculate()

SetMaterial()

Addimage() |DrawEnvwcmenlMap()‘ I UpdateLight() ‘

SetLight()

Figure 3.5: Diagram of module’s run cycle.

proportions of 256 x 256 with three unsigned char channels. The texture size
is set this way due to the limitation of sequential drawing. Higher resolutions
led to a noticeable slowdown (see Table ...) without any appreciable increase
in visual quality.

The OpenGL version in the standalone application uses the same computa-
tional pipeline as the CPU one, with one difference. Since the implementation
has access to the GPU, the drawing can outsourced to it, and not compute
the image sequentially as in the CPU method. Distribution parameters and
the expected value of spectral radiance are sent to the fragment shader as a
ten component vector where each cell has three float values. Also since the
implementation is not limited by sequential rendering, it can use a bigger
cube map. The used environment map’s sides have each size 1024 x 1024
with 3 float channels.
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Chapter 4

Standalone Application

Second goal of this project was to design and implement a standalone applica-
tion, which uses a skylight model that is able to render an aerial perspective.
For this purpose the application uses the Bruneton model which not only
supports the aerial perspective but also views from space (see Figure .

\
| |

Figure 4.1: Examples of different observer positions from the ground to the space.

B a1 Implementation Design

The application did not have to be very complex therefore it uses the Model-
View-Controller design (MVC). The MVC design separates the data model,
user interface, and control management into three separate components (see

Figure .

® Model represents data used by an application.
® View converts given data into an view-able form for an user.

® Controller reacts to events and translates them into actions to be per-
formed by a model.
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4. Standalone Application

View

Model

F———— — >

Controller

Figure 4.2: Diagram of MVC architecture

B a2 Implemetation of Bruneton model

Since OpenGL does not support 4D textures, the implemantion stores the
4-dimensional tables, which depend on parameters r, u, us, and v, as 3D
textures. Implementation of these 3D textures is done similarly as in the
original Eric Bruneton’s implementation. The tables are defined as 3D tables,
but each 2D layer stores 3D information as sub-layers (see Figure. 4.3)
positioned next to each other. Also since atmospheric parameters are not
changed during run time they are directly baked into each shader where they
can be accessed by a constant.

Figure 4.3: 4D table AS as a 3D texture.

Our implementation uses the same texture sizes as were used in the original
implementation. Transmittance texture 1" is 256 x 64, has 3 float channels.
Irradiance textures [E and AE are 64 x 16, each has 3 float channels. Scattering
textures S and AS have width 32 x 8 (see Figure |4.3), height 128, and depth
32. Each of them has 4 float channels. The original implementation makes
use of geometry shaders to write into the individual layers of 3D textures.
Instead of that, OpenGL’s compute shaders are used to write into each layer
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4.2. Implemetation of Bruneton model

of a framebuffer directly. This approach directly bypasses the unnecessary
vertex and geometry shader stages.

Date

Local Time —L»
Sun Position Calculation

Time Zone ——

_|_> Atmospheric Parameters
GPS

‘

-+

—— Solar altitude and azimuth

Rendering

Equation l@— TablesSTE -e—  Precomputation

Rendered Image

Figure 4.4: Rendering Pipeline of the Bruneton Model

As mentioned above, the precomputations are done via OpenGL’s com-
putation shaders and follow the same pipeline as in algorithm |0| (see Figure
4.4). The input for these shaders are atmosphere parameters which are as
mentioned above baked into their source code. These parameters state the
bottom and top radius of the atmospehere, solar irradiance, solar angular
radius, scattering coefficients, absoption coefficient and so on. The outputs
of these shaders are 2D and 3D textures (see Figure 4.5)), which are used for
rendering a final background image.

Transmittance shader. This shader computes the transmittance between
points x and y. This involves three integrals. The first one is the integral
of the number density of air molecules along the segment [x,y]. Then there
is the integral of the number density of aerosol particles along the segment
[x,y]. Last but not least, the integral of the number density of air molecules
that absorb light along the segment [x,y]. Results are stored into the 2D
texture T (see Algorithm 2) [BNOS].

Direct Irradiance shader. Direct Irradiance shader computes the direct
irradiance (see Algorithm 3|) and stores it in AE. It also prepares E for later
computations by setting all cells to null. The direct irradiance is computed
as the Sun radiance at the top of the atmosphere, tuned by transmittance.
Since the solar solid angle is small, the transmittance can be approximated
by a constant. Then the integral becomes equivalent to the ambient occlusion
due to a sphere, also called view factor [BNO§].
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4. Standalone Application

Transmittance
shader >

Transmittance Texture Y

| Single Scattering

‘ Shader

Direct Irradiance
Shader >

Direct Irradiance Texture

—— Delta Mie scattering Texture

Deta Rayleigh scattering
texture

| Y

Direct Scattering
Multiple Scattering | Indirect Irradiance | Scattering Density Density for 2. 3
Shader i Shader i shader and 4. scattering

orders

'y

Indirect Irradiance Texture

Scattering Texture

Figure 4.5: Diagram of the precomputation algorithm. Note that the output
texture of the multiple scattering shader S has red value of the Mie scattering as
alpha channel. Therefor the table has in fact clear background, but for clarity
the background is set to black.

Single Scatteing shader. Computes the single Rayleigh and Mie scattering
values and stores the values in Rayleigh scattering table ASr and Mie
scattering table ASjy; and then stores them into S (see Algorithm 4)).

Scattering Density shader. This shader evaluates the equation (2.9), which
is needed for the calculation of multiple scattering. The shader computes the
radiance, which is scattered at some point x inside the atmosphere, towards
some direction —w. The scattering event is also assumed to be the k-th
bounce.

The radiance is integral over all incidental the possible directions w;, of the
product of, the incidental radiance L; arriving at x from direction w; after
k-1 bounces (see Algorithm [5)[BNOS].

Indirect Irradiance shader. The indirect ground irradiance is computed
numerically over all directions w of the hemisphere. The shader produces
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4.2. Implemetation of Bruneton model

Algorithm 2 T'(r, )
Input:
A... Atmosphere parameters
Output:
T... Transmittance table

procedure Optical LengthtoR(r, u, Density Layer)

N + StepCount > Number of intervals for numerical integration

StepSize <— DistanceToRt(r, u)/N

Acc+ 0

for (i <+ 0 to N) do > Integration Loop
d; < i % StepSize > Distance from origin

ri < DistanceFromPlanetCenter(d;,r, j1)

y; < DensityAtPoint(r; — Ry, DensityLayer)

if i=0o0ri= N then > Trapezoidal Rule
Weight < 0.5

else
Weight < 1

Acc + Acc + y; x Weight x StepSize
return Acc

T < exp (= X(r,ay B * Optical LengthToRy(r, 1))

two 2D tables: AR of the k-th order and accumulated irradiance table E (see
Algorithm |6)).

Multiple scattering Shader. The Shader computes the k-th order of scat-
tering for each point x and direction w, the radiance coming from w after
k bounces, using the table AJ precomputed in the previous shader [BNOS]
(see Algorithm [7)). The results are scattering table ASy of the k-th order and
accumulated table S, of k orders.

Finally, the precomputed textures are used to render an environment map
as a cube map with the size for each side 1024 x 1024 with 4 float channels.
The formula bellow is evaluated for each pixel of the cube map.

L~ L;un(% pus, Vs)T' (1, pus) + Z Pz‘/(V)Sl(ra Mo fhs, Vs) (4.1)
R,M

The result of this equation is the final sky color, which is stored in our cube
map. Since the implementation only renders the sky, it does not utilize
shadow volumes. Therefore the implementation does not make use of the
light shafts which the model is capable of.
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4. Standalone Application

Algorithm 3 &'[Ly)(r, w, pis, V)

Input:

T... Transmittance table

A ... Atmosphere parameters
Output:

AL ... Direct Irradiance Table

Es < SolarIrradiance

as < SunAngular Radius

T < T(r, ps)

¢ < AvarageCosFactor(us, as)
AEg < EsxT x ¢

28



4.2. Implemetation of Bruneton model

Algorithm 4 S'[L{)(r, u, s, v)

Input:

T... Transmittance table

A... Atmosphere parameters

Output:

ASg ... Single Rayleigh scattering table

ASyg ... Single Mie scattering table

ASy ... Combined scattering table of 0 order

N < StepCount > Number of intervals for numerical integration
if Ray intersects ground then
Step < Ry /N
else
StepSize <+ Ry/N
Acc 0
for (i < 0 to N) do > Integration Loop
d; < i x StepSize
ra; < ra(r,p,d;) > get rq,, g, and pug ., Parameters at a current step
pd; < pa(r, i, disra;)
Hsq, — :ud(’r? s di, sz’)
if Ray intersects ground then > Sample T
T« T(T, _:U’)/T(Tdi? _Mdi)
else
T« T(Ta M)/T(Tdiv /"Ldi)
Ts < T(ra,, ps, ) > Sample T to the sun
T TxT,
y; < T * DensityAtPoint(rq — Ry)
if i=0o0ri= N then > Trepezoidal Rule
Weight < 0.5
else
Weight < 1

Acc < y; x Weight

AS; + Acc x StepSize x SolarIrradiance x ScatteringCoef ficient; > 1is
either Rayleigh or Mie. The algorithm is the same for both.
ASy (ASR.T‘, ASR.g, ASR.b, ASMT)
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4. Standalone Application

Algorithm 5 j’[T%AE + AS|(r, p, ps, v)

Input:

T... Transmittance table

ASg ... Single Rayleigh scattering table

ASy; ... Single Mie scattering table

ASg_1 ... Combined scattering table of n-1 order
AE_; Irradiance table of (k-1)th order

A... Atmosphere parameters

Output:

Al ... Scattering density table of k-th order

N + StepCount
Acc + 0
for i to N do
0 < ix0StepSize
if RayIntesectsGround(r,cos(6)) then
dg < DistanceToRy(r,cos(f)) > Distance to the bottom boundry
Ty < T(rq,, —cos(0)a,)/T(r, —cos(0)) > Transmittance to the
ground
oy < GroundAlbedo
else
dg <0
Ty, <0
ag <0
for j to 2N do
¢ < j* pStepSize
w; + SphericalCoords(8, ¢)
dw < 0StepSize x pStepSize * sin(0) > SolidAngle
V] < Wg - W;j
if k ==1 then
incident Radiance < Pr(v1) * ASg(r,w.z, us,v1) + Pp(v1) *
ASn(ryw.z, s, V1)
else
incident Radiance < Sp_1(r,w;.z, lis, V1)
Eg — AE,_1(Rg,ny - wy) > SampleAE;_1 on the ground
incidental Radiace < incidental Radiace + (Ty * ag x &) /7
Vg — W - w;
densityr < GetDensityr(r — Ry)
densityyr < GetDensityy (r — Rg)
Acc + Acc+ dw xincidental Radiance * Z%{,M 37 x density; x P;(vo)

Al + Acc

30



4.2. Implemetation of Bruneton model

Algorithm 6 &'[TEAE + AS|(r, s, v)

Input:

T... Transmittance table

ASg ... Single Rayleigh scattering table

ASy ... Single Mie scattering table

ASk_1... Combined scattering table of k-1 order
Ex_1 Irradiance table of (k-1)th order

A ... Atmosphere parameters

Output:

AEy ... Irradiance table of k-th order

Ei ... Accumulated irradiance table of k-th order

N  StepCount > Number of intervals for numerical integration
Acc+ 0

¢StepSize «+ /N > Integration over a sphere
0StepSize < /N

for i to N/2 do > Integration cycle

0 =1i*0StepSize
for j to 2N do
¢ =1* pStepSize
w < SphericalCoords(8, ¢)

dw «+ 0StepSize x pStepSize * sin () > SolidAngle
V4w ws
if £k ==1 then
y < Pr(v) * ASR(r,w.z, u,v) + Py(v) « ASy(r,w.z, p, V)
else

Y < Sn—l(T,w-Zvﬂa V)
Acc + Acc+ y x dw * w.z

AE; < Acc
Er < Ep_1 + AE,
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4. Standalone Application

Algorithm 7 [%0 T(x,y) AJ(||yll, 1, p1s, v)dy

Input:

T...

Transmittance table

AJi Scattering density table of k-th order
Sk—1... Scattering table of (k-1)th order
A... Atmosphere parameters

Output:

ASg ... Scattering table of k-th order

Sk

... Accumulated scattering table of k-th order

N « StepCount > Number of intervals for numerical integration
if Rayintersectsground(r, ) then

StepSize < Ry/N

else

StepSize < Ry /N

Acc + 0
for (i < 0 to N) do > Integration Loop

d; + 1% StepSize

ra; < ra(r, @, d;) > Get rg, pug and pgq for current integration step
frd; = pa(r, i, diy ;)

frsd; <= pa(Ts ps, di % V)

if RaylIntersectsGround(r, ) then > Sample T
T« T(Tdm _:udi)/T(T? —,LL)
else

T« T(Tv H)/T(wa :udi)
yi < T x AJ(r;, mu;, mug;) > Sample AJy and tune it by transmittance
if i=0o0ri= N then > Trepezoidal Rule
Weight < 0.5
else
Weight < 1
Acc <+ y; x Weight

ASy, < Acc
Sk — Sk—l + ASk
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Chapter 5

Results

This chapter presents results of this work’s imprementations. Benchmarks
were done on a PC running Windows 10, with Intel Core i7-8750H and NVIDIA
GeForce GTX 1060. Results were obtained by averaging 100 iterations.

B 51 Skylight for VRUT

In this section are shown results of implementation of Hosek-Wilkie’s model
into the system VRUT compared to the results of the same sky-light model
implemented using the OpenGL in the standalone application. Rendering of

Cube side’s size | CPU rendering time[ms| | GPU rendering time[ms]
256 x 256 108.5 1.74
512 x 512 383.65 3.07
1024 x 1024 1564.39 6.96
2048 x 2048 6360.62 6.01
4096 x 4096 26079.375000 9.65

Table 5.1: Comparison between rendering times of the CPU implementation
and the GPU implementation of Hosek-Wilkie’s model for different cube map
sizes.

the sky with varying times of the day, and values of turbidity and albedo are

shown in figures [A.1] [A.2] [A.3] [A.4] and [A.5]
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Figure 5.1: Plot of the table As can be seen CPU rendering times grow
exponentially with texture size but GPU rendering times increase linearly with
minor deviations.

. 5.2 Bruneton model

In this section are shown results of implementation of Bruneton model in
the standalone application. Rendering of the resolution 1920 x 1080 with
cube map’s side size 1024 x 1024 takes 3.64 ms. Precomputation phase takes
1138.03 ms. Offscreen rendering times of the environmental map for different
cube map sizes can be seen in table (see Figure . Rendering of the
sky with observer positions and sun’s altitudes are shown in figures 'A.06,
A7 and [A.8.

Cube side’s size | rendering time[ms]
256 x 256 0.89
512 x 512 2.87
1024 x 1024 4.48
2048 x 2048 10.58
4096 x 4096 30.05

Table 5.2: Off-screen rendering times of the enviromental map for different cube

map sizes.
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Figure 5.2: Off-screen GPU rendering times comparison between Hosek-wilkie
and Bruneton skylight models for different cube map sizes. Both models’ render-
ing times grow linearly with texture size.
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Chapter 6

Conclusion

This thesis extends the library of VRUT’s modules by a module providing a
sky-light model that runs in real-time with low computational and memory
complexity. The implemented module broadens the user’s toolset for creating
realistic outdoor scenes. The model was also implemented as a part of the
standalone application using library OpenGL.

Furthermore the standalone application implements the Bruneton sky-light
model that supports all observer positions, from the ground to space. The
model has rendering complexity for each pixel O(1) with the precomputation
phase, which is implemented using OpenGL’s computation shaders.

. 6.1 Future Work

In the future, we would like to include the support for shadow volumes into
the standalone application, which could be subsequently used for rendering
light shafts. Possible future work might also be the inclusion of real-time
rendered volumetric clouds.

For VRUT’s DynamicSkylight module, the future implementations could
try to find a better formula to obtain solar angles.
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Appendix A

Results

Figure A.1: Sunrise for T =5 a = 0.1.

Figure A.2: Sundown for T =5 a =0.1.
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A. Results

Figure A.3: Sun at zenith T =5 a =0.1.

Figure A.4: Sun at zenith T =5 a =0.1.

Figure A.5: Sundown for T = 3 a = 0.9.
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A. Results

Figure A.6: Observer on the ground, altitude 30 degrees.

Figure A.7: Observer on the ground, altitude -2.03 degrees.

Figure A.8: Observer inside the atmosphere.



A. Results

Figure A.9: Observer in space.
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~

Nazev bakalarské prace:

Model oblohy pro systém VRUT

Nazev bakalafské prace anglicky:

Daylight model for system VRUT

Pokyny pro vypracovani:

Seznamte se s existujicimi modely osvétleni oblohy [1-6]. Zaméfte se na modely schopné v realném ¢ase spocitat
osvétleni/barvu celé oblohy (napf. [2-4]). Prostudujte existujici moznosti jak tyto modely obohatit o dal$i efekty jako mraky
¢i mlha.

Na zakladé prostudované literatury navrhnéte a implementujte modul pro systém VRUT (Virtual Reality Universal Toolkit),
ktery umozni zaclenit model oblohy jak do path-traceru, tak do OpenGL rendereru v podobé mapy prostredi (environment
map). Dale navrhnéte a implementujte samostatnou aplikaci v OpenGL, ktera bude schopna zobrazit model oblohy pro
zvolené datum, ¢as a pozici na zemékouli. Aplikaci obohatte o sadu GLSL shader( pro implementaci vzdusné perspektivy
a vrstvy mraka [6,7].

Funké&nost vytvorené aplikace ovérte alespon na tfech rdznych scénach a vysledky porovnejte s realnymi fotografiemi
oblohy.
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